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Groundwater quality monitoring and prediction for irrigation purposes is of utmost 

importance for water resources management. Data were collected for groundwater quality 

parameters from a number of wells in Anbar Governorate, western Iraq, to estimate and 

predict the groundwater quality index for irrigation purposes (IWQI) using three AI 

models: (ANN), (SVM), and (DL). The inputs represent ten water quality parameters, 

including:  (EC), (TDS), (SAR), (K+), (Mg2+), (Ca2+), (Cl-), (HCO3
-), and (SO4

2-). AI 

models were applied after dividing the data into 70% for training and 30% for testing. The 

performance of the models was evaluated by determining statistical indicators between the 

actual and expected values of IWQI. The correctness was demonstrated by the outcomes 

of AI models and their high performance in both the training and testing phases. In addition, 

the statistical indicators of the SVM model showed that it was the best model that gave 

appropriate performance with (R2 = 0.99, RMSE = 31.8). We conclude that AI models can 

be relied upon for integrated and sustainable water management. 
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1. INTRODUCTION

Among the main sources of water for industry, drinking, and 

agriculture is groundwater, especially in dry and semi-arid 

areas without surface water supplies [1]. Groundwater consists 

of mineral ions that dissolve slowly as water descends into the 

aquifer. These are called total dissolved solids, which arise 

from river water or rain that recharge and store groundwater 

[2]. Previous experiments and studies have indicated that high 

concentrations of various dissolved metal ions, exceeding their 

safe standards, have negative effects on human health and the 

growth of crops [3]. To overcome the negative effects that 

weaken agricultural production and affect human health, it is 

essential to continuously assess and monitor water quality to 

ensure sustainable and integrated management and planning of 

groundwater resources. Therefore, this study relied on AI 

models to calculate and forecast IWQI purposes instead of 

traditional methods that rely on actual data taken from 

relatively large samples and need laboratory testing. It is costly, 

labor-intensive, and time-consuming. In addition, they only 

deal with linear data [4]. Artificial intelligence models can 

handle large amounts of linear and non-linear (complex) data 

and provide accurate results and good performance when 

making predictions without wasting time, effort, and cost [5].  

Over two-thirds of fresh water is used to irrigate crops, 

making agriculture the largest user of water [6]. It is necessary 

to monitor IWQI purposes to achieve sustainable development 

of water resources, especially in areas where crops are widely 

grown [7].  

There are several ways to assess how water affects soil and 

crops. Several indicators, including the SAR, Kelly index, 

magnesium absorption ratio, EC, TDS, and SR, have been 

used by researchers to assess the WQ rather than relying on 

just one [8, 9]. 

The WQI is seen to be a superior method for evaluating 

water quality as it reduces water quality to a single number 

using a collection of factors and indicators [10]. 

In recent years, artificial intelligence models, most notably 

ANN, have found widespread use in various engineering 

applications [11, 12], WQ analyses [13, 14], and WQI 

estimation and prediction [15]. Artificial intelligence models 

are employed in qualitative variable estimation and 

optimization. Since these models are data-driven, they may 

solve complicated and non-linear issues by determining the 

underlying correlations between input and output parameters, 

which results in a high degree of generalization capacity [16]. 

The assessment and prediction of the WQI have been the 

subject of several studies employing ANN, SVM, and DL 

models. The Bulletin explored recent developments in water 

quality modeling using AI [17]. 

Gad et al. [18] relied on the WQI as an output parameter for 

assessing the groundwater quality of the Nubian sandstone 

aquifer in El Kharga Oasis using artificial neural networks. To 

measure the physical and chemical properties as input 

variables. 

(Vasant and Kumar) used ANN model to estimate WQI of 

Palayar River in Tamil Nadu and found that river water is 

appropriate for irrigation but not for drinking [19]. 

Abu El-Magd et al. [20] used the SVM model to evaluate 

the quality of groundwater in Egypt based on the WQI. The 

results indicated that groundwater is affected by the 

interactions of water with rocks and the effect of dissolution 
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and filtration processes on water. 

Baek et al. [21] used a deep learning LSTM model to 

simulate the WQ of the Nakdong River Basin, combined with 

a CNN model to simulate the water level. The study 

demonstrated that the models employed in the investigation 

are very useful for simulating water quality and level with high 

accuracy, in addition to the high accuracy in performance and 

prediction during the training and testing process. 

Mokhtar et al. [22] applied three Al models (SVM, RF, 

XGB) to estimate and predict six water quality parameters of 

the Egyptian seabed for irrigation purposes (SAR, RSC, PS, 

PI, KR, SSP) based on four water variables (EC, Na+, Ca2+, 

HCO3
-) as inputs to the models. The results revealed that the 

water needs to be treated because it is not suitable for irrigation 

due to its high salt content, so only plants that can tolerate high 

salinity can be grown. The results also revealed the superiority 

of the SVM model because it gave high values for R2 and low 

values for RMSE for all irrigation water quality parameters 

during the training and testing phases. 

Tasan collected different groundwater samples from Mersin 

province within the Bozyazi district in the south of the Central 

Mediterranean region to evaluate the water quality for 

irrigation purposes based on irrigation water parameters (SAR, 

RSC, KI, %Na, MR, PS, PI) and predicted these parameters 

using (ANN and ANFIS) models. The statistical criteria results 

indicated the superiority of ANN model because it gave the 

highest value of R2 and the lowest value of RMSE for all water 

quality parameters during the training and testing phase. In 

addition, the results revealed that irrigation water quality 

parameters were within the permissible standards except for 

(MR) indicator which gave values higher than the permissible 

standards [23]. 

Gaagai et al. [24] relied on six criteria to evaluate the quality 

of irrigation water for groundwater in the Algerian desert, 

namely (IWQI, SAR, KI, MH). The results indicated that 67% 

of the groundwater was of the moderately restricted irrigation 

type and 33% of the severely restricted irrigation type. 

Therefore, when planting crops with high salt sensitivity, the 

soil should be kept soft and the soil layers should not be 

compacted. In addition, two AI models (ANN, GBR) were 

developed to predict the IWQI. The results of the statistical 

indicators indicated the superiority of the ANN model with (R2 

= 0.958) and the lowest value of (RMSE = 2.175) during the 

testing phase. 

Derdour et al. [25] took five groundwater parameters (EC, 

SAR, HCO3
-, Na+, Cl-) as inputs to estimate and predict IWQI 

and determine the suitability of groundwater for irrigation 

purposes in the Adrar region located in the Algerian desert 

using two models (SVM, KNN). The IWQI results indicated 

that 57.23% of the water was unsuitable for irrigation, 33.23% 

of the water was good for irrigation, and 9.64% of the water 

was considered restricted irrigation. In addition, the SVM 

model was considered ideal for predicting IWQI in this study, 

as it gave an accuracy of 94.2% for the training set and 100% 

for the test set. 

Rising temperatures, climate change, and reduced rainfall 

lead to increased groundwater salinity, which in turn affects 

agricultural production. Therefore, it is necessary to 

continuously monitor groundwater quality to ensure integrated 

water management and increase agricultural production. The 

purpose of this study is to estimate and predict the IWQI of 

several wells in Anbar Governorate based on ten water quality 

parameters using the weighted method to determine if 

groundwater is suitable for irrigation and predict the IWQI 

using three models: (ANN, SVM, and DL). Then, four 

statistical indicators are used to assess each model's 

performance: (R2), (MSE), (RMSE), and (MAE). The results 

will be beneficial as biased models for monitoring water 

quality and forecasting its indicators, allowing for better 

management of water resources and making informed 

decisions about available resources, particularly in areas that 

are dry and semi-arid. 

 

 

2. STUDY AREA 

 

 

 
 

Figure 1. Map showing the area of wells from which the 

study data was collected 

 

Data was collected for many wells located in Anbar 

Governorate. When collecting field data, the location and 

depth of the wells and the extent of their use were taken into 

consideration. In addition, the data used in this study were 

measured over different time periods to take into account 

changes in temperature, rainfall, humidity and other seasonal 

variations that affect groundwater quality in Anbar 

Governorate. It is between longitudes 40°28'12''E and 

41°25'48''E and latitudes 34°24'54'' and 34°11'6'' in the 

western portion of Iraq and inside the western plateau from the 

north as shown in Figure 1, as it constitutes about 55% of the 

area of Iraq, which is 137,808 km2, and which is considered 

the largest governorate in Iraq [26]. Although there are water 
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resources in the Anbar Governorate, their distribution is not 

uniform, which has led to the accessibility of water in certain 

parts of the region and water scarcity in other parts. Large 

agricultural areas are also found there, but the majority of these 

areas experience water shortages as a result of water being 

directed to a small number of agricultural areas and traditional 

irrigation techniques which consume a lot of water. As a result, 

the Western Desert now relies on groundwater for irrigation 

and drinking. It is projected that 2.4 billion cubic meters of 

groundwater are used for agricultural irrigation and other 

purposes, and that 2.5 billion cubic meters of groundwater, 

both renewable and non-renewable, are present in the Western 

Desert of Anbar Governorate [27]. The research region's 

winter climate is categorized as dry with rainfall, and in 

summer it is classified as very dry and hot with changes in 

temperature during the day [28]. 

 

 

3. WATER QUALITY INDEX 
 

The IWQI was determined using the weighted technique as 

it is a good and efficient approach, and through it, the IWQI 

can be computed using several WQ parameters (EC, TDS, 

SAR, Na+, Mg2+, Ca2+, K+, Cl-, HCO3
-, SO4

2-) [29-31]. Using 

this method, the IWQI can compensate for the rest of the water 

indicators, and through it, we determine the water quality 

suitable for irrigation purposes [32]. 

Ten water quality parameters were selected to determine the 

suitability of groundwater for irrigation purposes and its 

impact on human health and the environment. The (EC, TDS) 

variables determine the amount of salts and impurities in the 

water, SAR determines the amount of sodium and its impact 

on the health of the soil and crops, the (Ca2+, Mg2+) parameters 

determine the hardness of the water, bicarbonates (HCO3
-) 

determine the acidity level of the water, and the variables (Na+, 

K+, Cl-, SO4
2-) were selected for their impact on human and 

plant health. 

Groundwater must be monitored continuously because high 

salinity negatively affects soil health and crop growth [33]. 

The WQI can replace other water parameters for irrigation 

purposes, as shown in Table 1, which represents the WQI 

standards according to the Food and Agriculture Organization 

to determine whether the WQ is good or poor. Eq. (1) was 

applied to estimate the WQI for irrigation purposes [34, 35]. 

 

𝑊𝐴𝐼𝑊𝑄𝐼 =
∑𝑄𝑖 𝑊𝑖

∑𝑊𝑖

 (1) 

 

Qi represents the quality rating scale and can be found 

according to Eq. (2): 

 

𝑄𝑖 = 100 [
𝑉𝑖 − 𝑉0
𝑠𝑖 − 𝑉0

] (2) 

 

where, 

Vi represents the concentration of the measured water 

parameters. 

Vo represents the ideal concentrations of water parameters, 

where all parameters have Vo equal to zero except DO = 14.6 

mg/l and pH = 7. 

Si represents the standard concentrations of water 

parameters as shown in Table 2 according to the standards of 

the Food and Agriculture Organization. 

Wi represents the unit weight of each parameter and can be 

computed from Eq. (3): 

 

𝑊𝑖 = 𝑘/𝑆𝑖 (3) 

 

k represents the constant of proportionality and can be 

computed from Eq. (4). 

 

𝑘 =
1

𝛴
1
𝑆1

 
(4) 

 

Table 1. Irrigation water quality index criteria according to 

the Food and Agriculture Organization [24] 

 
IWQI Rating of Water Quality 

100 – 85 Excellent Water Quality 

85 – 70 Very good Water Quality 

70 – 55 Good Water Quality 

55 – 40 Satisfactory Water Quality 

40 – 0 Unsuitable Water Quality 

 

Table 2. Water quality parameters standards according to the 

Food and Agriculture Organization [36] 

 
Parameters Si (mg/l) 

EC 3000 (s/cmμ) 

TDS 2000 

K+ 2 

Na+ 919 

Cl- 1036 

SO4
2- 960 

SAR 9 

Mg2+ 60 

Ca2+ 400 

HCO3
- 610 

 

 

4. SODIUM ABSORPTION RATE 

 

High sodium concentration affects soil health, increases its 

alkalinity, deteriorates its structure and texture, and thus 

affects plant growth [37]. The concentration of Na, Mg, and 

Ca ions may be used to calculate the SAR [38]. SAR is used 

to calculate the hazard limits of sodium in groundwater used 

for irrigation purposes [39]. Increased sodium levels and water 

pollution resulting from population growth affect crop growth 

and weaken their production [40]. In addition, SAR is 

considered one of the water quality standards used for 

irrigation purposes [41]. From Eq. (5), the sodium absorption 

rate (SAR) can be calculated [42]: 

 

𝑆𝐴𝑅 =
𝑁𝑎+

√(Mg2+ + Ca2+)/2
 (5) 

 

 

5. MODEL PERFORMANCE MEASUREMENT 

 

Four statistical indicators were calculated between the 

actual and expected IWQI to assess the effectiveness of the 

used AI models and to calculate the best model for the study. 

These indicators include: 

 

5.1 Determination coefficient (R2) 

 

A criterion for calculating the percentage of variation in 
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dependent parameters that can be explained when predicting 

using the prediction models adopted in the study [43]. It can 

be calculated according to Eq. (6) [44]: 

 

𝑅2

= [
∑ (𝐼𝑊𝑄𝐼𝑎𝑐𝑡𝑢 − 𝐼𝑊𝑄𝐼𝑎𝑐𝑡𝑢)
𝑛
𝑖=1 (𝐼𝑊𝑄𝐼𝑝𝑟𝑒 − 𝐼𝑊𝑄𝐼𝑝𝑟𝑒)

∑ (𝐼𝑊𝑄𝐼𝑎𝑐𝑡𝑢 − 𝐼𝑊𝑄𝐼𝑎𝑐𝑡𝑢)
2

𝑛
𝑖=1 ∑ (𝐼𝑊𝑄𝐼𝑝𝑟𝑒 − 𝐼𝑊𝑄𝐼𝑝𝑟𝑒)

2
𝑛
𝑖=1

]

2

 
(6) 

5.2 Mean square error (MSE) 

 

A standard for measuring the execution of models in a 

distinctive way [45], and it can be calculated through Eq. (7) 

[46]: 

 

𝑀𝑆𝐸 =
∑ (𝐼𝑊𝑄𝐼𝑎𝑐𝑡𝑢 − 𝐼𝑊𝑄𝐼𝑝𝑟𝑒)

2𝑛
𝑖=1

𝑛
 (7) 

 

5.3 Root mean square error (RMSE) 

 

A criterion for measuring the performance of each model 

through which predictions are made [47], and it can be 

calculated using Eq. (8) [48]: 

 

𝑅𝑀𝑆𝐸 = √∑ (𝐼𝑊𝑄𝐼𝑎𝑐𝑡𝑢 − 𝐼𝑊𝑄𝐼𝑝𝑟𝑒)
2𝑛

𝑖=1

𝑛
 (8) 

 

5.4 Mean absolute error (MAE) 

 

A criterion that describes the percentage of error in the 

performance of each model used for prediction [49], and it can 

be calculated according to Eq. (9) [50]: 

 

𝑀𝐴𝐸 =
∑ (|𝐼𝑊𝑄𝐼𝑎𝑐𝑡𝑢 − 𝐼𝑊𝑄𝐼𝑝𝑟𝑒|)
𝑛
𝑖=1

𝑛
 (9) 

 

where, 

IWQIactu & IWQI pre: value of the actual and predicted 

(IWQI), respectively. 

𝐼𝑊𝑄𝐼𝑎𝑐𝑡𝑢 & 𝐼𝑊𝑄𝐼𝑝𝑟𝑒: Mean values of actual and predicted 

(IWQI), respectively. 

n = number of actual data. 

 

 

6. MODELING OF WQI 

 

In this research, three AI models were applied to estimate 

the IWQI: (ANN), (SVM), and (DL). The optimal model was 

determined by calculating statistical indices between the 

measured IWQI values and the expected values. Figure 2 

illustrates the basic steps followed in this study to calculate 

and forecast the IWQI using AI models. 

ANN, SVM and DL models were used because they are 

suitable for the nature of the groundwater data used in this 

study. The performance of each model was evaluated using 

statistical indicators and it was found that these models 

provide high accuracy and good performance when estimating 

and predicting the groundwater quality index. In addition, the 

models used in this study can deal with complex data and have 

the ability to learn from the data set used and provide good and 

accurate predictions. 

70% of the data was chosen for training and 30% of the data 

for testing, as this is the best split that gave reliable and 

accurate estimates of the IWQI. Also, having 70% of the data 

for training allows the model to be trained properly and 

appropriately, and the model to clearly identify patterns and 

relationships between variables. Having 30% of the data for 

testing allows for the performance of each model used to be 

known in the most accurate way. 

 

 
 

Figure 2. Flowchart of the designed, constructed, and 

developed methodology 

 

 

7. ARTIFICIAL NEURAL NETWORK 

 

In this study, we relied on a feed-forward back-propagation 

ANN to estimate the groundwater IWQI for this purpose. The 

FFBP model is commonly used in estimation studies [51] and 

consists of three layers [52]: The input layer is represented by 

the first, and the concealed layer by the second (it might have 

a hidden layer or layers), and the third represents the output 

layer, as shown in Figure 3, which illustrates the construction 

of the ANN [53]. 

Three networks were chosen. The first network contains two 

layers, meaning that the number of hidden layers is only one 

[54]. The second network contains three layers, meaning that 

the number of hidden layers is two [55]. The third network 

contains four layers, meaning that the number of hidden layers 

is three [56], as shown in Figure 4. 

Each layer has nodes and a chain of neurons arranged in it. 

Networks are created by connecting the neurons in each layer 

[57]. Each network has a specific weight [58].  
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Figure 3. Structure of ANN 

 

The algorithm in the training phase contains a mathematical 

formula whose function is to change the weights of each 

network by improving the error functions [59]. 

The training algorithm contains several types. The 

appropriate algorithm that gives more accurate results is 

chosen according to the type of problem and data [60]. 

In this research, the FFBP algorithm was chosen because it 

gave the best results. For every network that was employed, 

the input layer and hidden layers were chosen to use the 

TANSIG function, while the output layer was chosen to use 

the PURELINE function. 

70% of the data was selected to train the model, and 30% of 

the data was used to test the model's performance in prediction 

using MATLAB. The appropriate network for the study was 

selected according to the statistical indicators. 

 

 
 

Figure 4. Neural network structure for the three models 

 

The outcomes of the statistical indicators shown in Table 3 

showed that the best network that gave good performance in 

the training phase shown in Figure 5 is the second network 

consisting of three layers with the highest value of R2 as shown 

in Figure 6 and the lowest value of RMSE in the training and 

testing phase. 

 

Table 3. Statistical Indicators of ANN 

 

No. of Net No. of Layers 
Train Testing 

R2 MSE RMSE MAE R2 MSE RMSE MAE 

1 2 0.7989 565.404 23.778 6.477 0.1209 2463.27 49.631 17.968 

2 3 0.9549 64.179 8.011 2.42 0.9536 1203.7 34.694 13.931 

3 4 0.8582 260.2 16.131 5.397 0.9275 1550.03 39.37 15.538 
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Figure 5. Three-layer neural network (A) training structure; (B) performance; (C) training state; (D) regression 
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Figure 6. R2 of a three-layer ANN, (A) for the train and (B) for the test 

 

8. SUPPORT VECTOR MACHINE 

 

One of the machine learning models works on classifying 

data into two groups, where the data is separated by a straight 

line called the hyperplane [61], as shown in Figure 7. The best 

straight line is chosen when the distance between the straight 

line and the nearest data points is equivalent [62, 63], and the 

margin is the name given to this distance [64]. 

 

 
(a)                                            (b) 

 
(c) 

 

Figure 7. (a) Potential overload level; (b) Optimum overload 

level, and (c) Support vectors 

 

Kernel functions are employed when the data is complicated 

and cannot be divided by a straight line [65]. This makes the 

data set three-dimensional by transforming it from the input 

space to a high-dimensional space [66], as shown in Figure 8. 

The SVM model contains six types of kernel functions [67] 

as shown in Figure 9. All of them were applied using 

MATLAB to estimate the groundwater quality index as shown 

in Figure 10. After calculating the statistical indicators shown 

in Table 4. The best model that produced good results and high 

prediction performance was determined to be Linear SVM, 

which had the lowest RMSE throughout the stages of training 

and testing and the greatest R2 value, as shown in Figure 11. 

 

 
A                                                      B 

 

Figure 8. (A) Represents data in the input space; (B) 

Represents data in the feature space 

 

 
 

Figure 9. Flowchart for design and construction (SVM) 

models 

799



800



Figure 10. Training state by (A) Linear SVM; (B) Quadratic SVM; (C) Cubic SVM; (D) Fine Gaussian SVM; (E) Medium 

Gaussian SVM; (F) Coarse Gaussian SVM 
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Table 4. Statistical Indicators of SVM 

SVM 
Training Testing 

R2 MSE RMSE MAE R2 MSE RMSE MAE 

Linear SVM 0.90 1185.3 34.429 27.746 0.9947 1015.558 31.868 16.211 

Quadratic SVM 0.84 1359.6 36.873 31.343 0.9825 4164.909 64.536 24.628 

Cubic SVM 0.83 1456 38.158 32.148 0.9749 6296.84 79.353 29.951 

Fine Gaussian SVM 0.02 8498.6 92.188 80.046 0.9426 3036.484 55.104 50.859 

Medium Gaussian SVM 0.49 4448.7 66.699 57.22 0.9112 1332.845 36.508 32.988 

Coarse Gaussian SVM 0.28 6226.8 78.91 66.607 0.9538 1731.691 41.614 25.726 

Figure 11.  R2 of Linear SVM, (A) for the train and (B) for the test 

9. DEEP LEARNING

One of the AI techniques, its operation is modeled after the 

composition and capabilities of the human brain [68, 69]. The 

difference between it and ANN is that DL contains several 

hidden layers, as shown in Figure 12. Hence, it is called deep 

learning, as it deals with huge amounts of complex data 

because of its capacity to discover features and relationships 

between variables [70]. 

Deep learning has been widely used in engineering 

applications [71], where it has been utilized to estimate and 

predict WQI based on WQ parameters such as salinity, acidity, 

anions, and cations [72]. 

The DL model was used to calculate and predict the WQI 

according to the (ReLU Layer) activation function. However, 

according to the statistical indicators shown in Table 3, this 

model was found to be unsuitable for this study because it gave 

the highest value for RMSE in the testing, in contrast to the 

other models that were utilized. Figure 12 shows the RMSE in 

the training phase, and Figure 13 shows the R2 in the training 

and testing phases. Figure 12. RMSE of training 
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Figure 13. R2 for Anbar Governorate (A) for training; (B) for 

testing 

10. MODEL PERFORMANCE COMPARISON 

 

The study results show that the AI models are effective and 

provide accurate and reliable results for estimating the IWQI, 

with R2 values between (0.95 to 0.99). Furthermore, a 70/30 

data split, which includes subsets for training and testing, has 

proven to be a successful division for calculating the 

groundwater WQ. The three-layer ANN model performed 

better than other ANNs used, so a second network consisting 

of three layers and two hidden neurons was chosen. The Linear 

SVM model performed better than other SVM kernel 

functions, so it was relied upon in this research. Furthermore, 

the high RMSE value of the DL model during the testing phase 

indicated that the model does not perform well on the data used. 

According to the statistical indicators, in this study, the 

SVM model excelled the ANN and DL models. In the testing 

phase, the SVM model had the greatest value (R2 = 0.99) and 

the lowest value (RMSE = 31.8), as indicated in Table 5. The 

ANN model came in second (R2 = 0.95, RMSE = 34.6). The 

DL model's results demonstrated that it is not a suitable model 

for this investigation (RMSE = 188.6), because the DL model 

is more responsive to massive data as it contains several 

hidden layers [21, 73]. The data obtained for this research are 

considered to be of the average type. For this reason, the SVM 

model outperforms the remaining models utilized in this 

investigation, as it interacts with the average and small data 

[74], while the ANN model responds to big data [75, 76]. 

 

Table 5. Comparison of model performance for all data for testing 

 

ANN SVM DL 

R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE 

0.9536 1203.7 34.694 13.931 0.9947 1015.55 31.868 16.211 0.9889 35592.95 188.661 30.009 

The efficiency of the model was explained in this analysis 

using the R2, MSE, RMSE, and MAE, as those variables have 

been considered in the majority of publications [23, 77, 78]. In 

predicting the groundwater WQI, the SVM model has proven 

to be incredibly reliable and effective [20, 25]. 

 

 

11. CONCLUSION 

 

Determining the (IWQI) for irrigation reasons is the main 

goal of this research. The IWQI results show that 80% of the 

groundwater samples that demonstrated excellent quality for 

irrigation, while 6.67% exhibited very good quality, 6.67% 

exhibited good quality, and 6.67% exhibited satisfactory 

quality. Therefore, the groundwater quality can be generally 

classified as suitable for irrigation. 

As a secondary objective of this research, comparisons were 

made between AI models used to identify the accuracy of the 

groundwater quality index (GWI) in predicting future water 

quality index. ANN, SVM, and DL were used to verify IWQI 

estimate. To estimate and forecast the IWQI of groundwater 

from many wells in the Anbar Governorate, the ANN and DL 

models have been beaten by the SVM model. AI models can 

be used to estimate the parameters used to calculate the (IWQI). 

This method eliminates errors resulting from several factors, 

such as expert opinions on groundwater quality indicators, thus 

achieving purer results.  

The results of this research will contribute to the integrated 

management of groundwater resources and help water 

managers, policy makers, and water researchers provide 

important information for making informed decisions about 

water use and directing water to areas that need attention. 

Water managers and policy makers can rely on the results 

of this study to improve irrigation practices by developing 

plans to improve water efficiency for irrigation purposes, 

estimating climate impacts on groundwater quality, and 

identifying agricultural areas that need development. In 

addition, the SVM model can be integrated with water 

management systems to provide accurate predictions of 

groundwater quality, select suitable agricultural lands and 

water in the region, and develop early warning systems for 

farmers when changes in water quality occur. 

AI models are characterized by high accuracy, performance, 

and fast data processing, but their performance depends on the 

quality of the data, as if the data is insufficient or inaccurate, it 

affects the accuracy of the results. In addition, the results 

obtained from AI methods vary from one region to another. 

Therefore, the methodology of the model used depends on the 

type of data in each region. The model used may not be 

scalable or widely applicable. To overcome these drawbacks 

or limitations, it is necessary to improve and process the data 

quality or update more advanced models that have the ability 

to deal with unprocessed data to improve the performance of 

the model used for the study. 

It is recommended to apply hybrid models to future water 

quality work to improve water control and improve the 

accuracy of water quality indicator predictions. The study 

methodology can be applied to different regions to understand 

the impact of climate change on water quality. The data can 

also be integrated with water and meteorological data to 
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manage water, environmental and agricultural resources, 

predict drought or flooding, and improve water resource 

management decisions to improve agricultural crop production 

and reduce risks. 
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