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Although flow shop scheduling has been widely investigated, the Identical Parallel Flow 

Shop Scheduling Problem (IPFSSP) remains largely overlooked, particularly in multi-

objective optimization contexts. This study addresses this gap by formulating a bi-

objective mathematical model that minimizes makespan and earliness–tardiness under 

strict waiting time constraints. To solve it, a dynamic Load Balancing Procedure (LBP) is 

embedded within two established metaheuristics: NSGA-II and MOPSO. The proposed 

algorithms are evaluated across six benchmark instance scales with varying job–machine 

configurations. Results show that NSGA-II–LBP and MOPSO–LBP achieve average 

reductions of 13.7%–19.2% in makespan and 18.4%–22.8% in earliness–tardiness 

compared to their baseline counterparts. Statistical analyses using ANOVA and paired t-

tests confirm the significance of these improvements. NSGA-II–LBP delivers superior 

convergence, solution diversity, and scalability, while MOPSO–LBP offers higher 

computational efficiency, making it particularly well-suited for real-time scheduling in 

complex manufacturing systems.  
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1. INTRODUCTION

Parallel flow shop scheduling is a cornerstone of modern 

manufacturing systems, where the ability to execute jobs 

concurrently across multiple production lines is critical for 

meeting stringent efficiency and flexibility demands. While 

classical scheduling models such as the Flow Shop (FS) [1], 

Job Shop (JS) [2], and Hybrid Flow Shop (HFS) [3], have been 

extensively investigated, the Identical Parallel Flow Shop 

Scheduling Problem (IPFSSP) remains relatively 

understudied. This limited attention is primarily attributed to 

the structural complexity of the IPFSSP, which integrates 

elements of FS, HFS, and parallel machine configuration [4]. 

The problem entails two interrelated sub-tasks: Assigning jobs 

to lines and sequencing them within each line. 

Originally conceptualized by Graham (1969) in the context 

of parallel computing with identical processors [5], the 

IPFSSP has more recently attracted attention through the work 

of Ribas et al. [6-8], who proposed constructive heuristics for 

variants such as the Parallel Blocking Flow Shop Problem 

(PBFSP). Nonetheless, the bulk of existing research on 

IPFSSP has focused on single-objective formulations, 

predominantly aimed at minimizing makespan. 

However, real-world manufacturing environments, require 

multi-objective optimization (MOO) frameworks that address 

multiple, often conflicting, performance criteria. In such 

domains, quality-critical constraints, notably mandatory 

waiting times between consecutive operations, are 

indispensable. These waiting times are inherent to processes 

such as curing, cooling, or chemical stabilization and are 

essential to ensure product integrity and compliance with 

safety standards. Neglecting these constraints may 

compromise product quality and lead to operational failures. 

Although metaheuristics such as NSGA-II and MOPSO 

have demonstrated promising results in solving multi-

objective scheduling problems [4, 9], their direct application 

to the IPFSSP reveals two critical shortcomings. First, static 

job assignments can lead to load imbalances across production 

lines, reducing overall throughput. Second, naïve sequencing 

methods often fail to coordinate job flows effectively, 

resulting in idle periods, violations of wait-time constraints, 

and increased earliness–tardiness penalties. 

While dynamic load balancing strategies exist for parallel 

and distributed systems, such as workload-based dispatching 

heuristics that aim to optimize task-to-resource allocation [10], 

queue-length threshold-based resource configuration 

mechanisms that adjust allocations dynamically based on job 

queue backlogs [11], and decentralized agent-based 

techniques involving autonomous agents for local decision-

making and cooperative resource management [12]. These 

approaches typically do not model inter-stage temporal 

dependencies and lack strict enforcement of wait-time 

constraints. Moreover, they often rely on reactive 

mechanisms, which may limit their ability to handle highly 

constrained or time-sensitive jobs proactively. 

To address these limits, we propose a novel Load Balancing 

Procedure (LBP) that introduces three key advancements over 

conventional methods. First, LBP incorporates a proactive, 
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criticality-driven assignment mechanism, which calculates job 

criticality scores based on processing time and slack analysis. 

This enables the prioritized placement of constrained jobs into 

feasible wait-time windows, unlike traditional reactive 

methods that intervene only after imbalances arise. Second, 

LBP adopts a two-phase adaptive balancing approach, where 

critical jobs are pre-assigned, followed by the distribution of 

non-critical jobs using load variance minimization strategies. 

This contrasts with single-phase strategies that ignore job 

criticality and treat all jobs uniformly. Third, LBP includes a 

dedicated feasibility repair phase, which dynamically 

resequences jobs that violate wait-time constraints. This 

constraint-aware adjustment mechanism is notably absent in 

most classical load balancing algorithms. Through the 

structured integration of prioritization, adaptive load 

balancing, and constraint repair, LBP achieves synchronized 

scheduling across production lines while ensuring strict 

compliance with wait-time constraints and promoting 

equitable load distribution. 

To evaluate the effectiveness of this approach, the proposed 

LBP is integrated into both NSGA-II and MOPSO frameworks 

to enhance their performance in solving the Identical Parallel 

Flow Shop Scheduling Problem (IPFSSP). A bi-objective 

mathematical model is formulated to simultaneously minimize 

makespan and total earliness–tardiness, in conjunction with 

the LBP. Experimental results on multiple benchmark instance 

groups show that NSGA-II–LBP and MOPSO–LBP achieve 

average reductions of 13.7%–19.2% in makespan and 18.4%–

22.8% in total earliness–tardiness. These improvements are 

statistically validated using ANOVA and paired t-tests, with 

strong performance observed on large-scale instances. 

The paper is structured as follows: Section 2 reviews related 

literature on the IPFSSP and identifies existing research gaps. 

Section 3 details the proposed bi-objective mathematical 

formulation. Section 4 introduces the Load Balancing 

Procedure and its integration with MOO algorithms. Section 5 

outlines the experimental design, and Section 6 discusses the 

computational results. Finally, Section 7 concludes the study.  

 

 

2. RELATED WORK AND RESEARCH GAPS 
 

2.1 Existing methods and models 

 

Most existing studies in flow shop and parallel flow shop 

scheduling adopt single-objective formulations, primarily 

focusing on makespan minimization due to its mathematical 

tractability and long-standing use as a benchmark in 

scheduling research. A comparative simulation study was 

conducted to evaluate production scheduling strategies in 

hybrid and parallel flow shop environments using the General 

Shifting Bottleneck Routine (SBR). The study assessed the 

effectiveness of several dispatching rules, including First 

Come First Served (FCFS), Longest Processing Time (LPT), 

and Shortest Processing Time (SPT), in managing workflow 

and improving throughput [13]. Complementing this line of 

research, a multi-phase heuristic algorithm was developed, 

comprising a constructive heuristic for initial job sequencing 

and an improvement heuristic aimed at balancing workloads 

by exchanging jobs between production lines [14]. 

Building on prior work, subsequent studies introduced 

methodological advancements centered on approximation 

techniques. One study proposed a 3/2-approximation 

algorithm for scheduling jobs in a two-stage parallel flow shop 

with multiple identical machines. A 12/7-approximation 

algorithm was also developed for a three-stage configuration 

[15]. Subsequently, a pseudo-polynomial time dynamic 

programming algorithm was introduced to generate exact 

solutions. This algorithm served as a core subroutine in 

constructing a Fully Polynomial-Time Approximation 

Scheme (FPTAS) [16]. In a related study, the FPTAS was 

further refined by classifying jobs into large and small 

categories. Schedules for large jobs were enumerated, while 

small jobs were allocated using a linear programming model 

combined with a sliding window technique [17]. In a later 

enhancement, the FPTAS was extended by scaling arbitrary 

instances into restricted forms and solving them using a 

Mixed-Integer Linear Programming (MILP) model, resulting 

in near-optimal solutions with bounded approximation errors 

[18]. 

Recently, Ribas et al. [7] conducted several studies focusing 

on the Parallel Flow Shop Scheduling Problem (PFSSP) under 

blocking constraints. The initial work introduced the use of 

Iterated Local Search (ILS) and Iterated Greedy Algorithm 

(IGA), integrated with two types of Variable Neighborhood 

Search (VNS), in conjunction with constructive and 

improvement heuristics. A MILP model was also proposed for 

solving small-scale instances. In subsequent work, an Iterated 

Greedy (IG) algorithm was developed, beginning with a high-

quality initial solution and refining it through perturbation and 

local search, using a simulated annealing-based acceptance 

criterion to escape local optima [8]. More recently, 36 

constructive heuristics were evaluated, combining seven 

sequencing rules with five lines allocation methods. From this 

set, the RCP0 heuristic was proposed, prioritizing the line with 

the earliest available machine and the job that minimizes 

machine idle time [6]. 

Some studies have addressed other alternative objectives 

using diverse heuristic and optimization techniques. In another 

study, total tardiness was minimized using an Iterated Greedy 

Algorithm (IGA), which enhanced initial solutions through 

Variable Neighborhood Search (VNS) and job reassignment 

mechanisms [19]. Additionally, total flow time was targeted 

through the application of priority rule-based heuristics, the 

NEH algorithm, and IGA to obtain near-optimal schedules 

[20]. 

Multi-objective optimization aligns more closely with 

practical manufacturing needs by simultaneously optimizing 

conflicting performance criteria. A simheuristic algorithm was 

proposed for stochastic, non-Identical Parallel Flow Shop 

Scheduling, integrating a biased-randomized NEH heuristic, 

local search, and Monte Carlo simulation to evaluate 

deterministic and expected makespan values [21]. Another 

study addressed the bicriteria objective of minimizing total 

earliness and tardiness using a hybrid approach that combines 

a Greedy Randomized Adaptive Search Procedure (GRASP) 

with Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO), demonstrating superior performance 

over individual strategies [22]. A further contribution focused 

on minimizing total flow time and the number of tardy jobs in 

a two-machine, non-identical parallel flow shop. The proposed 

Multi-Objective Evolutionary Algorithm (MOEA) 

incorporated local search into the NSGA-II framework, 

proving more effective and efficient than conventional 

MOEAs [23]. 

Task sequencing has long been a cornerstone of flow shop 

scheduling research, with foundational works such as 

Johnson’s (1954) rule for two-machine optimization [24], the 
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Nawaz-Enscore-Ham (NEH) algorithm (1983) for 

permutation flow shops [25], and the Campbell-Dudek-Smith 

(CDS) method (1970) for multi-machine scheduling 

establishing key heuristics [26]. Over time, substantial 

progress has been made in addressing sequencing under 

complex constraints, particularly in dynamic and data-driven 

manufacturing environments. Recent studies reflect a shift 

toward intelligent, adaptive methods. One approach applies 

deep reinforcement learning (DRL) to dynamic parallel 

machine scheduling, using a modified Transformer model and 

a variable-length state matrix to capture job and machine data. 

The DRL agent autonomously extracts features and selects 

jobs for idle machines to improve scheduling performance 

[27]. Another study builds on the NEH algorithm, adapting it 

for the satellite industry by sorting jobs based on processing 

times and enhancing it with a discrete-event simulation model 

that reflects real workshop conditions, improving both 

adaptability and practicality [28]. Another study introduces a 

dynamic knowledge graph to represent distributed 

manufacturing resources, combined with an AI scheduler 

trained through DRL and optimized using a dueling Deep Q-

Network (DQN). Semantic matching aligns resources with 

subtasks, while meta-heuristic methods support near-optimal 

scheduling decisions [29]. 

Despite advances in task sequencing, load balancing is still 

underdeveloped in manufacturing. Most current approaches 

rely on static or predefined job-to-line assignments, leading to 

workload imbalances. In contrast, domains like cloud 

computing have advanced adaptive load balancing techniques 

to address similar challenges. Recent studies have explored 

intelligent optimization methods to enhance task scheduling 

and resource allocation. One approach uses deep learning 

models, specifically Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs), to cluster virtual 

machines (VMs) into overloaded and underloaded groups. It 

combines Reinforcement Learning with a Hybrid Lyrebird 

Falcon Optimization (HLFO) algorithm, which merges 

Lyrebird and Falcon Optimization strategies to improve 

system performance [30]. Another hybrid model, QMPSO, 

integrates Modified Particle Swarm Optimization (MPSO) 

with improved Q-learning, adjusting MPSO’s velocity based 

on Q-learning policies to balance VM loads and optimize 

resource use [31]. Similarly, Load Balancing Modified PSO 

(LBMPSO), a tailored variant of PSO, updates fitness values 

and tracks particle positions while continuously monitoring 

VM loads for efficient task assignment [32]. 

 

2.2 Research gaps and study motivations 

 

A review of parallel flow shop scheduling literature reveals 

several key research gaps: 

Current research remains heavily focused on single-

objective formulations, with a predominant emphasis on 

makespan minimization. While this objective offers 

mathematical tractability and benchmarking consistency, it 

fails to capture the multi-dimensional trade-offs encountered 

in real-world manufacturing. Multi-objective models are 

significantly underexplored in IPFSSP contexts. 

The prevailing focus on proportional parallel flow shop 

configurations limits the generalizability of many existing 

approaches. In these systems, job-to-line assignment is often 

simplified by performance asymmetries across lines. 

However, this assumption does not apply in identical 

configurations, where all lines have uniform capabilities. 

Effective job allocation in such systems requires more 

sophisticated load balancing strategies. 

Challenges related to heterogeneous job priorities in 

identical parallel flow shops remain insufficiently addressed. 

The absence of line hierarchies and the mix of critical and non-

critical tasks increase scheduling complexity. These 

conditions highlight the need for adaptive, real-time load 

balancing mechanisms. 

Existing load balancing strategies in IPFSSP are typically 

static or heuristic-based and lack the flexibility to respond to 

system dynamics. This rigidity often results in inefficient 

resource utilization and the emergence of operational 

bottlenecks. 

The scheduling literature continues to prioritize task 

sequencing, often treating it independently from job-to-line 

assignment. This separation creates fragmented decision-

making, despite growing evidence that integrated approaches 

yield more balanced and efficient schedules in identical 

parallel environments. 

Cross-disciplinary knowledge transfer between cloud 

computing and manufacturing scheduling remains limited. 

Proven concepts from computing—such as decentralized load 

balancing and adaptive resource allocation—are rarely applied 

in production scheduling, despite their relevance. 

In response to these gaps, this study proposes a novel 

dynamic load balancing strategy embedded within NSGA-II 

and MOPSO frameworks, specifically designed for multi stage 

identical parallel flow shop systems. The approach jointly 

optimizes job-to-line assignment and sequencing while 

minimizing makespan and total earliness–tardiness, under 

inter-machine waiting time constraints. 

 

 

3. MATHEMATICAL MODEL 
 

The IPFSS problem is a variant of the classical flow shop 

problem, which is known to be NP-hard. To address this, we 

propose a Mixed Integer Linear Programming (MILP) model 

that incorporates job-specific constraints, such as release 

times, waiting time limits, and due dates, alongside machine-

level precedence constraints. The notation and symbol 

definitions used in the proposed model are summarized in 

Table 1. The objective is to minimize both makespan and total 

earliness/tardiness. 
 

Table 1. Notation and symbol definitions 

 
Symbol Description 

Sets and indices  

𝐽 = {1,2, . . . , 𝑛} Set of jobs 

𝐿 = {1,2,3} Set of identical parallel production lines 

𝑀 = {1,2, . . . , 𝑚} Set of machines per line 

𝑗, 𝑖 ∈ 𝐽 Job indices 

𝑙 ∈ 𝐿 Production line index 

𝑘 ∈ 𝑀 Machine index 
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Parameters  

𝑝𝑗𝑘 ≥ 0 Processing time of job j on machine k 

𝑝𝑖𝑘 ≥ 0 Processing time of job i on machine k 

𝑝𝑗1 ≥ 0 Processing time of job j on the first machine 

𝑑𝑗 ≥ 0 Due date of job j 

𝛼𝑗 , 𝛽𝑗 ≥ 0 Weight coefficient for earliness and tardiness of job j 

𝑟𝑗 ≥ 0 Release time of job j 

𝑊𝑚𝑎𝑥 Maximum allowable wait time before job j starts 

𝐺 ≫ 0 Large positive constant 

Decision variables  

𝑥𝑗𝑙 ∈ {0,1} Binary variable equal to 1 if job j is assigned to line l; 0 otherwise 

𝑥𝑖𝑙 ∈ {0,1} Binary variable equal to 1 if job i is assigned to line l; 0 otherwise 

𝑦𝑗𝑖𝑘𝑙 ∈ {0,1} Binary variable equal to 1 if job j precedes job i on machine k in line l; 0 otherwise 

𝑦𝑖𝑗𝑘𝑙 ∈ {0,1} Binary variable equal to 1 if job i precedes job j on machine k in line l; 0 otherwise 

𝑐𝑗𝑘𝑙 ≥ 0 Completion time of job j on machine k in line l 

𝑐𝑗1𝑙 ≥ 0 Completion time of job j on the first machine in line l 

𝑐𝑗𝑚𝑙 ≥ 0 Completion time of job j on the last machine in line l 

𝑠𝑗𝑙 ≥ 0 Start time of job j on the first machine in line l 

𝐸𝑗 , 𝑇𝑗 ≥ 0 Earliness and tardiness of job j 

𝐶𝑚𝑎𝑥 Makespan (latest job completion time across all lines) 

 

Objective functions 

(1) Minimize Makespan. 

 

maxmin C  (1) 

 

(2) Minimize total earliness and tardiness. 

 

( )min j j j j

j J

E T 


+  (2) 

 

Constraints 

(3) Job assignment: Each job is assigned to exactly one 

line. 

 

1   jl

l L

x j J


=    (3) 

 

(4) Makespan definition: Makespan is at least the latest 

completion time on the last machine. 

 

( )max 1    ,jml jlc c G x j J l L − −     (4) 

 

(5) Release time and wait time constraint. 

Completion time on the first machine is linked to job start 

time and processing duration. 

 

( )1 1 1    ,j l jl j jlc s p G x j J l L + − −     (5) 

 

Start time is bounded by job release time and maximum 

allowable wait time. 

 

max    ,j jl jr s r W j J l L  +     

 

(6) Sequential machine processing: job j
 

must be 

completed on machine 𝑘−1 before starting on machine 𝑘 on 

the same line. 

 

( )
 

, 1, 1    

, ,    1

jkl j k l jk jlc c p G x

j J l L k M

− + − −

   
 (6) 

 

(7) Machine precedence:  

If job j
 
precedes i, if job j precedes job i, job j must finish 

before 𝑖 starts on the same machine and line. 

 

( )1    , ,ikl jkl ik jiklc c p G y i j J l L k M + − −       (7) 

 

Precedence enforcement only if both jobs are assigned to 

the same line. 

 

    , ,jikl ijkl jl ily y x x i j J l L k M+         

 

(8) Earliness and tardiness calculation: based on 

completion time on the last machine and due date.  

 

    j j jml jl

l L

E d c x j J


 −     

    j jml jl j

l L

T c x d j J


  −    
(8) 

 

(9) Non-negativity for all time-related variables. 

 

max, , , ,C 0   , ,jkl jl j jc s E T j J l L k M      (9) 

 

 

4. METHODOLOGY  

 

This section presents the methodological framework 

developed to address the proposed scheduling problem. 

 

4.1 Load Balancing Procedure (LBP) 

 

The Load Balancing Procedure (LBP) is a multi-phase 

scheduling heuristic specifically designed to address the load 

imbalance problem in parallel flow shop environments with 

multiple machines per line. It aims to minimize the makespan 

and total earliness/tardiness while strictly enforcing a 

maximum wait time constraint before job processing begins. 

The procedure starts by evaluating each job’s criticality score, 

derived from processing time and slack, to prioritize urgent 

and resource-intensive jobs. This phase has a time complexity 

of 𝑂(𝑛 log 𝑛 + 𝑛. 𝐿. 𝑚) , accounting for criticality scoring, 

sorting, and constraint-aware assignment. The remaining non-
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critical jobs are then distributed to balance the load across all 

lines, with a complexity of 𝑂(𝑛. 𝐿) , based on comparative 

workload evaluation across lines. A final feasibility repair 

phase reorders and adjusts job start times to ensure full 

compliance with the wait time constraint; this step involves 

resequencing within lines and has a worst-case complexity of 

𝑂(𝐿. 𝑛2. 𝑚) . Overall, the LBP achieves efficient and 

constraint-aware scheduling with an upper-bound complexity 

of 𝑂(𝐿. 𝑛2. 𝑚), ensuring computational scalability for large, 

constrained production environments and demonstrating 

strong practical applicability in real-world industrial systems 

characterized by high complexity and scale. The steps of the 

proposed procedure are detailed in the pseudo code shown in 

Table 2.  

 

Table 2. Pseudo-code for proposed LBP 

 

Algorithm: Load Balancing Procedure (LBP) 

Input: Job set J, production lines L, machines M, 

maximum wait time Wmax 

Output: Job sequences S, makespan Cmax, total 

earliness/tardiness E/T 

 

// Phase 1: Job Classification 

for all job j ∈ J do 

    Pj ← ∑ pj,k
|M|
k=1  

Pmax = maxj ∈ JPj 

for all job j ∈ J do 

    slackj ← max(0, dj− (rj+ Pj)) 

    critj← (Pj/ Pjmax) + (1 / (slackj + 1)) 

Jsorted ← jobs sorted by critj (descending) 

Jcrit← top ⌈0.4 . |J|⌉ jobs from Jsorted  

for all line ℓ ∈ L do 

    CTℓ← 0, TLℓ ← 0,  S[ℓ] ← ∅ 

// Phase 2: Critical Job Assignment 

for all job j ∈ Jcrit do 

    F ← { ℓ ∈ L | max(CTℓ, rj) − rj ≤ Wmax} 

    if F ≠ ∅ then 

        ℓ* ← arg minl∈F (max(CTℓ, rj) + Pj) 

    else 

        ℓ* ← arg minl∈L (CTℓ + Pj) 

    S[ℓ*] ← S[ℓ*] ∪ {j} 

    CTℓ* ← max(CTℓ*, rj) + Pj 

    TLℓ* ← TLℓ* + Pj 

// Phase 3: Non-Critical Job Assignment 

for all job j ∈ J\ Jcrit  do 

    F ← { ℓ ∈ L | max(CTℓ*, rj) − rj ≤ Wmax} 

    if F ≠ ∅ then 

        ℓ* ← arg minl∈F TLℓ 

    else 

        ℓ* ← arg minl∈L TLℓ 

    S[ℓ*] ← S[ℓ*] ∪ {j} 

    CTℓ* ← max(CTl, rj) + Pj 

    TLℓ* ← TLℓ* + Pj 

// Phase 4: Feasibility Repair 

for all line ℓ in L do 

    sort S[ℓ] by release time rj 

    prev_comp[1..|M|] ← 0 

    for all job j in S[ℓ] do 

        for k = 1 to |M| do 

            if k = 1 then 

                sj,1← max(r_j, prev_comp[1]) 

                if sj,1 −rj > Wmax then 

                    sj,1 ← rj+ Wmax 

            else 

               sj,k ← max(prev_comp[k], sj,k−1 + pj,k−1) 

            prev_comp[k] ← sj,k + pj,k 

        CTℓ ← prev_comp[|M|] 

// Phase 5: Objective Evaluation 

Cmax ← maxℓ ∈ L CTℓ 

E/T ← 0 

for all line ℓ ∈ L do 

    for all job j ∈ S[ℓ]  do 

        Cj ← sj,|M| + pj,|M| 

        E/T ← E/T + max(0, dj − Cj) + max(0, Cj − dj) 

return S, C_max, E/T 

 

4.2 Integration with MOO algorithms 

 

In the proposed approach, the Load Balancing Procedure 

(LBP) is embedded within both NSGA-II and MOPSO as a 

constraint-aware decoding mechanism. In NSGA-II, LBP is 

applied during the fitness evaluation steps, specifically in Step 

2 to decode each randomly generated individual in the initial 

population, and Step 6 to evaluate the offspring population 

after crossover and mutation. Similarly, in MOPSO, LBP is 

applied in Step 2 to evaluate the initial swarm and in Step 7 to 

assess each particle after position updates. In both algorithms, 

LBP constructs feasible schedules by assigning jobs to parallel 

production lines while enforcing the maximum wait time 

constraint (𝑊max) and then computes the makespan and total 

earliness/tardiness to form the objective vector. As shown in 

Figure 1, this consistent application of LBP ensures that all 

candidate solutions, regardless of their origin, are decoded into 

valid, constraint-compliant schedules. This enables both 

NSGA-II and MOPSO to maintain feasibility throughout the 

search process and effectively converge toward well-

distributed, Pareto-optimal fronts in the solution space. 

 

4.3 Taguchi method for parameter tuning 

 

The Taguchi Method, developed by Dr. Genichi Taguchi, 

employs orthogonal arrays and signal-to-noise (S/N) ratios 

[33], to systematically optimize algorithm parameters, S/N 

ratios were computed using the smaller-the-better formula 

(−10 𝑙𝑜𝑔10(
1

𝑛
∑ 𝑦𝑖

2))  to align with our minimization 

objectives. Sensitivity analysis using (𝛥𝑆/N = max − min) 

revealed that mutation type had the strongest influence on 

Enhanced NSGA-II-LBP performance, with swap operations 

outperforming other operators by 9.9%. Population size and 

crossover type also showed notable effects, while crossover 

probability had a comparatively limited impact. 

For the Enhance MOPSO-LBP algorithm, the specific 

configuration of the nGrid parameter demonstrated the highest 

level of influence among all the factors that were evaluated. In 

particular, the finer settings—specifically those set at values 

of 0.1, 5, and 3.0—were observed to significantly improve the 

overall algorithm performance, resulting in a measurable 

enhancement of approximately 25 to 26 percent. Additionally, 

the adjustment of velocity limits, as well as the cognitive 

coefficient, also exhibited considerable influence on the 

behavior and outcomes of the algorithm. In contrast, however, 

the social coefficient consistently showed much weaker 

sensitivity throughout the testing process, which was notably 

contrary to our initial expectations and earlier assumptions. 
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Figure 1. Flowcharts of enhanced algorithms 

 

Table 3 summarizes optimal parameters for NSGA-II 

variants, with sensitivity rankings confirming the critical role 

of mutation type. Enhanced NSGA-II requires a larger 

population size (100 vs. baseline 80) to improve Pareto front 

coverage, higher crossover probability (0.9 vs. 0.85) to 

maintain diversity under workload imbalance, and swap 

mutation to preserve schedule feasibility, structural choices 

proving more impactful than probability tuning. PMX 

crossover and tournament selection maintained consistent 

superiority across configurations, though with moderate 

sensitivity. Table 4 outlines Enhanced MOPSO's settings, 

where sensitivity analysis justified larger swarm sizes (100 vs. 

80) for solution diversity, elevated inertia weight (0.75 vs. 

0.45) for exploration balance, expanded velocity limits (12 vs. 

10) to reduce machine idle time, and stronger cognitive 

coefficient (c₁=1.1) for particle coordination. 

Figure 2 represents main effects plots visually corroborate 

these findings through slope steepness. 

 

 
 

Figure 2. Main effects plot for S/N ratios of each algorithm 
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Table 3. Optimal parameters for NSGA-II and enhanced NSGA-II 

 

Parameter Level 1 Level 2 Level 3 
Optimal Level for 

NSGA II  

Optimal Level for Enhanced 

NSGA II 

ΔS/N 

(db) 
Rank 

Population Size 

(NPop) 
50 80 100 80 100 400 2 

Selection Type 
Rank-

Based 
Tournament 

Roulette 

Wheel 
Tournament Tournament 200 4 

Crossover Type 
Single-

Point 
Two-Point PMX PMX PMX 270 3 

Crossover 

Probability 
0.75 0.85 0.9 0.85 0.9 200 4 

Mutation Type Swap Shift Inversion Swap Swap 700 1 

Mutation 

Probability 
0.12 0.18 0.22 0.12 0.18 200 4 

 

Table 4. Optimal parameters for MOPSO and enhanced MOPSO 

 

Parameter Level 1 Level 2 Level 3 
Optimal Level for 

MOPSO  

Optimal Level for Enhanced 

MOPSO 

ΔS/N 

(db) 
Rank 

Swarm Size (NSwarm) 50 80 100 80 100 300 4 

Inertia Weight (Ww) 0.45 0.75 0.95 0.45 0.75 200 5 

Cognitive Coefficient 

(c1) 
0.5 0.85 1.1 1.1 1.1 500 3 

Social Coefficient 

(c2) 
0.45 0.65 1.05 0.65 1.05 200 5 

Velocity Limits (Vv) 8 10 12 10 12 700 2 

nGrid 
(0.07, 3, 

1.0) 

(0.09, 4, 

2.0) 

(0.1, 5, 

3.0) 
(0.09, 4, 2.0) (0.1, 5, 3.0) 2000 1 

 

 

5. EXPERIMENTAL SETUP 

 

This part presents the experimental setup used to evaluate 

the proposed approach. 

 

5.1 Benchmark instances 

 

The computational study used six benchmark instances 

obtained from https://github.com/chneau/go-

taillard/tree/master/instances (accessed on 16 December 2024) 

to evaluate algorithm performance under varying job–machine 

configurations. Instance sizes included: 20_05, 20_10, 20_20, 

50_05, 50_10, and 50_20. All scenarios used three identical 

parallel production lines. 

Experiments were conducted using MATLAB R2018b on a 

computer with an Intel® Core™ i7-1185G7 CPU (3.00/1.80 

GHz) and 32 GB RAM.  

Each instance comprised 10 cases with variations in 

processing times, due dates, release dates, and wait-time 

constraints. For each case, 100 iterations were executed. The 

10 best performing runs were selected and averaged to obtain 

a representative performance value for each case. Instance 

characteristics are summarized in Table 5. 

 

Table 5. Instance characteristics 
 

Instances 

Groups 

Jobs 

(n) 

Machines 

(m) 

Parallel 

Lines (k) 

Processing 

Time Range 

Due Date 

Range 

Release 

Date Range 

Wait Time 

(Wmax) 

Processing Time 

Variance (σ²) 

20_05 20 5 3 [5, 40] [100,600] [0, 20] 8 102.1 

20_10 20 10 3 [8, 50] [150,800] [0, 30] 12 144.0 

20_20 20 20 3 [10, 60] [200,1000] [0, 40] 15 208.3 

50_05 50 5 3 [5, 40] [200,1200] [0, 20] 8 102.1 

50_10 50 10 3 [8, 50] [300,1600] [0, 30] 12 144.0 

50_20 50 20 3 [10, 60] [400,2000] [0, 40] 15 208.3 

 

5.2 Performance metrics 

 

Performance metrics are critical to impartially evaluate 

trade-offs between conflicting objectives in multi-objective 

optimization [34]. They quantify convergence (proximity to 

optimal solutions), diversity (spread across objectives), and 

uniformity (balanced distribution) [34]. For parallel flow 

shops, these performance metrics assess how effectively 

algorithms resolve workload imbalance while simultaneously 

minimizing objective functions. 

 

5.2.1 Number of Pareto Solutions (NPS) 

Counts non-dominated solution 𝑥 ∈ 𝑄 , where no 𝑦 ∈
𝑄 dominates 𝑥(𝑦 ≺ 𝑥) , Higher NPS indicates broader 

diversity, as defined in Eq. (10): 

 

  NPS    such that y xx Q y Q=     (10) 

 

5.2.2 Hypervolume (HV) 

Measures the volume in the objective space covered by the 

obtained Pareto front relative to a reference point a (nadir 

point). Higher HV reflects a better balance of convergence and 
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diversity, as shown by Eq. (11): 

 

( ) ( ) ( )1 1 2 2HV Volume , ,
x PF

Q f x a f x a


 
=        

 
 (11) 

 

5.2.3 Inverted Generational Distance (IGD) 

Measures the proximity of the obtained Pareto front to the 

true Pareto front O*, Lower IGD corresponds to superior 

convergence, as presented in Eq. (12): 

 

( )
1

IGD ,  min 
q Q

o O

Q O o q
O 



 


= −  (12) 

 

where, Q represents the obtained Pareto front, O* is the 

reference (true) Pareto front, and ‖𝑜 − 𝑞‖  defines the 

Euclidean distance between solutions o and q. 

 

5.2.4 Spread (Δ) 

Assesses the distribution uniformity of solutions across the 

Pareto front. It’s formulated in Eq. (13) to quantify the spread. 

 

( )

1

1

1

N

f l i

i

f l

h h h h

h h N h

−

=

+ + −

 =
+ + −


 

(13) 

 

where, ℎ𝑓  and ℎ𝑙  are distances to extreme solutions of the 

Pareto front. 
ih  is distance between consecutive solutions, ℎ is 

the average of all ℎ𝑖 and 𝑁 is the number of solutions. 

 

 

6. RESULTS AND DISCUSSION 

 

Figure 3 presents the performance distributions across four 

key metrics NPS, HV, IGD and Δ, comparing baseline 

algorithms with their enhanced counterparts. 

(1) Number of Pareto Solutions (NPS): Enhanced 

NSGA-II generates 40–70% more non-dominated solutions 

than the baseline (5.8–10.5 vs. 3.5–7.6), while enhanced 

MOPSO achieves a 40–50% increase (5.2–10 vs. 3.5–7.3). 

This indicates that both improved algorithms sustain 

significantly larger and more diverse Pareto sets. A strong 

negative correlation with IGD (r = –0.92 for NSGA-II-LBP; r 

= –0.94 for MOPSO-LBP) further confirms that increased 

diversity contributes to better convergence. 

(2) Hypervolume (HV): Both enhanced algorithms show 

a 30–35% increase in HV compared to their respective 

baselines (0.41–0.84 vs. 0.30–0.65 for NSGA-II; 0.37–0.78 

vs. 0.28–0.59 for MOPSO), reflecting stronger convergence–

diversity performance. This is supported by a strong negative 

correlation with IGD (r = –0.93), indicating that broader 

coverage of the Pareto front coincides with closer proximity to 

the true front. 

(3) Inverted Generational Distance (IGD): Enhanced 

NSGA-II and MOPSO achieve IGD reductions of 45–65% and 

40–65%, respectively, indicating significant gains in 

convergence (e.g., 3.88–6.35 vs. 7.31–18.41 for NSGA-II; 

4.10–7.30 vs. 6.68–20.58 for MOPSO). A strong positive 

correlation with Spread (r = 0.89 for NSGA-II-LBP; r = 0.91 

for MOPSO-LBP) reveals that convergence improvements are 

accompanied by more uniform solution distributions. 

(4) Spread (Δ): LBP reduces Spread by 10–25%, with 

NSGA-II-LBP ranging from 0.26–0.49 (vs. 0.35–0.55) and 

MOPSO-LBP from 0.28–0.50 (vs. 0.38–0.56). This reflects 

improved distribution uniformity, essential for balanced 

scheduling. A strong negative correlation with HV (r = –0.85 

for NSGA-II-LBP; r = –0.88 for MOPSO-LBP) confirms that 

uniformity enhances coverage quality. 

The correlation coefficients were calculated based on 

Spearman’s rank correlation approach, as presented in Eq. 

(14): 

 

( )

2

2

6 
1

1

i

n n

d = −
−


 (14) 

 

 

 
 

Figure 3. Boxplots of comparative performance metrics 
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These relationships highlight LBP’s ability to reconcile 

historically conflicting objectives. The strong HV–IGD 

correlation (r ≈ –0.93) confirms that convergence and 

coverage improve jointly, driven by LBP’s criticality scoring, 

which selects jobs that enhance both. The positive IGD–Δ 

correlation (r > 0.89) reflects LBP’s capacity to produce 

evenly distributed, high-quality solutions through constraint-

aware sequencing. Finally, the weak NPS–Δ correlation (r ≈ –

0.40) demonstrates that diversity and distribution can improve 

concurrently a direct result of LBP’s two-phase structure, 

which decouples job selection from load balancing. 

Together, these findings confirm that the proposed approach 

resolves the convergence, diversity, and distribution trade-off, 

offering a coherent multi-objective optimization framework 

for complex scheduling environments. 

The Pareto front visualization in Figure 4 provides valuable 

insight into solution quality for the 50_20 instance, illustrating 

how the proposed heuristic enhancements reshape the 

distribution of trade-offs between makespan and earliness–

tardiness. Enhanced NSGA-II achieves the most balanced 

compromise, delivering solutions particularly well-suited for 

practical scheduling environments where both efficiency and 

due-date compliance are critical. These solutions reflect 

marginal trade-offs, making them highly operationally 

relevant. Enhanced MOPSO follows closely, also achieving a 

balance between objectives, though with a slight preference 

toward minimizing makespan. Collectively, the enhanced 

algorithms expand the Pareto front by 31.5% in hypervolume 

compared to baseline methods, indicating broader solution 

diversity and improved exploration of extreme trade-offs. The 

Pareto front of the enhanced methods forms a clear convex 

shape, reinforcing the soundness of the proposed Load 

Balancing Procedure (LBP). 

 

 
 

Figure 4. Pareto front for instance 50_20 

 

 
 

Figure 5. Comparative analysis of makespan and total earliness/tardiness 

 

Figure 5 presents a comparative analysis of makespan and 

total earliness/tardiness performance. Figure 5(a) illustrates 

makespan values, while Figure 5(b) displays total 

earliness/tardiness. The results in Figure 5(a) confirm that 

Enhanced NSGA-II-LBP achieves an average makespan 

reduction of 19.2% relative to conventional NSGA-II, with 

improvements reaching 28.9% in large-scale instances (e.g., 

Instance 20_20_10: 1667 → 1350). These gains are consistent 

across complexity levels, ranging from 8.3% to 28.9%. In 

parallel, Enhanced MOPSO-LBP yields an average makespan 

reduction of 13.7%, with peak improvements of 22.4% (e.g., 

Instance 50_20_8: 2518 → 2191), and a tighter performance 

spread (3.1% to 22.4%), reflecting uniform scalability. 

Figure 5(b) highlights similar trends for total 

earliness/tardiness. Enhanced NSGA-II-LBP achieves a 

22.8% average reduction, with maximum gains of 39.2% in 

high-tardiness scenarios (e.g., Instance 50_20_5: 2421 → 

2058), underscoring its strength in mitigating due-date 

violations through effective load balancing. Likewise, 

Enhanced MOPSO-LBP provides a robust 18.4% reduction, 

with peak improvements of 38.2% (e.g., Instance 50_20_6: 

2462 → 2191), and demonstrates consistent performance 
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across instance groups. These results emphasize the benefits 

of LBP integration in both algorithms, offering notable 

improvements in convergence quality and scheduling stability. 

The runtime analysis CPU (Central Processing Unit) in 

Figure 6 reveals Enhanced NSGA-II and NSGA-II exhibit 

comparable computational times (1.1–2.8 seconds), indicating 

minimal overhead from the load-balancing heuristic. MOPSO 

consistently outperforms both NSGA-II variants, with 30–

50% faster execution (e.g., 0.484–1.588 vs. 1.1–2.8 seconds 

for NSGA-II), attributed to swarm-based parallelism. 

Enhanced MOPSO incurs a marginal runtime increase over 

MOPSO (e.g., 0.614–1.792 vs. 0.484–1.786 seconds). 

Notably, all algorithms scale linearly with instance complexity 

(e.g., 20_05: ~1.1 seconds; 50_20: ~2.8 seconds), but 

MOPSO’s lower absolute times highlight its suitability for 

real-time scheduling. 

 

6.1 Algorithm comparison 

 

This demonstrative example, shown in Figure 7, is based on 

a small instance of three parallel flow shop lines, each with 

five machines and a total of 21 jobs. The Gantt charts illustrate 

the impact of the Load Balancing Procedure (LBP) on job 

scheduling. Figure 7(a) represents the schedule generated by 

Enhanced NSGA-II, while Figure 7(b) corresponds to the 

baseline NSGA-II.  

 

 
 

Figure 6. Comparative CPU time 

 

In Figure 7(a), all three lines exhibit compact, well-

coordinated job sequences, with operations tightly packed 

across machines. Final operations complete near a unified 

makespan threshold (~800), as indicated by the red dashed 

line, reflecting effective synchronization and load balancing. 

In contrast, Figure 7(b) displays fragmented scheduling with 

visible idle gaps and poor load distribution, particularly in 

Flow Shop Lines 2 and 3, where machine inactivity extends 

the makespan beyond 890. The rightward-pointing dashed 

arrows highlight delays in completing final operations. 

Furthermore, job sequencing lacks continuity, resulting in 

inefficient resource utilization and disrupted flow. Final job 

completion times vary substantially across lines, ranging from 

600 to nearly 900, indicating a significant imbalance. This 

discrepancy results in early completions on some lines, leading 

to premature inventory and delays on others, ultimately 

compromising overall schedule stability. 

Figure 8 illustrates the load distribution performance of the 

enhanced algorithms across three identical parallel production 

lines. Both enhanced approaches produce tightly clustered 

workload values (e.g., Enhanced NSGA-II: [771.5, 757.5, 

757.5]; Enhanced MOPSO: [854.0, 830.5, 819.0]), with inter 

line variance remaining below 5%. This outcome reflects the 

effectiveness of the integrated heuristic in achieving balanced 

utilization across resources. In contrast, the baseline 

algorithms exhibit pronounced disparities in workload 

allocation (e.g., NSGA-II: [484.5, 417.5, 258.5]; MOPSO: 

[1250, 1625, 1300]), with deviations exceeding 40–60%, 

thereby highlighting the limitations of conventional methods 

in achieving load balance. 

 

6.2 Statistical validation 

 

To evaluate the effectiveness of the proposed heuristic 

enhancements, statistical analyses were performed using 

Analysis of Variance (ANOVA) and paired t-tests across 

multiple benchmark instances (Tables 6 and 7). The ANOVA 

results include partial eta-squared (η²) values and 95% 

confidence intervals (CIs) to quantify the effect size of 

algorithmic differences. Paired t-tests are further supported by 

Cohen’s d to indicate the magnitude of observed differences. 

Table 6 presents the ANOVA outcomes across all evaluated 

metrics. The p-values were consistently below 0.001, leading 

to the rejection of the null hypothesis of equal performance 

among algorithms. Large effect sizes (η² = 0.38–0.93) with 

tight confidence intervals suggest that algorithm choice 

substantially influences performance across benchmark 

instances. Notably, hypervolume (HV) and inverted 

generational distance (IGD) show strong discriminative 

power, with η² reaching 0.72 [0.67, 0.77] for IGD, indicating 

that the enhancements significantly improved convergence 

and diversity. The most pronounced values were observed for 

CPU time (η² > 0.83), reflecting measurable runtime 

differences due to the Load Balancing. 

Following the ANOVA results, which decisively rejected 

the null hypothesis H₀, post-hoc paired t-tests were conducted 

to evaluate whether the mean performance of two related 

algorithmic approaches differs significantly. To control the 

family-wise error rate (FWER) arising from multiple 

comparisons, the Bonferroni correction was applied, adjusting 

the significance threshold, as in Eq. (15): 

 

adjusted

0.05
0.0083

 of comparisions 6

desired

number


 = =   (15) 

 

As shown in Table 7, statistically significant results (α = 

0.0083) are accompanied by large or very large effect sizes in 

most cases (|d| > 0.8). For example, Enhanced NSGA-II 

exhibited strong gains in solution quantity (NPS) over the 

baseline (Cohen’s d = 1.19–2.59), while Enhanced MOPSO 

achieved substantial reductions in CPU time compared to 

NSGA-II (d = –3.55 to –12.61). Differences between 

Enhanced MOPSO and its baseline were negligible (|d| < 0.2), 

confirming comparable efficiency. Enhanced NSGA-II also 

maintained similar computational times to its baseline, with 

small effect sizes (d = –0.27 to 0.99), suggesting the added 

procedures introduce only minor runtime variation. 

Overall, these findings demonstrate that the proposed 

enhancements significantly improve solution quality across 

multiple objectives. While some increase in computational 

time is observed, the overall benefits in convergence, 

diversity, and robustness clearly outweigh the cost, 

particularly in applications where scheduling quality is a 

critical requirement. 

1412



 

 
 

Figure 7. Gantt chart comparison of NSGA II–LBP and NSGA-II 

 

 
 

Figure 8. Comparison of load distribution between enhanced and conventional algorithms 

  

Table 6. ANOVA summury table 

 

Instance 

Groups 

Metrics 

NPS HV Δ IGD CPU 

F-

stat 

P-

value 

η² 

[95% 

CI] 

F-

stat 

P-

value 

η² 

[95% 

CI] 

F-

stat 

P-

value 

η² 

[95% 

CI] 

F-

stat 

P-

value 

η² 

[95% 

CI] 

F-stat 
P-

value 

η² 

[95% 

CI] 

20_05 10.85 
3.2E-

05 

0.48 

[0.43, 

0.53] 

16.20 
7.9E-

07 

0.57 

[0.52, 

0.62] 

9.21 0.0001 

0.43 

[0.38, 

0.48] 

30.45 
5.55E-

10 

0.72 

[0.67, 

0.77] 

129.47 
2.4E-

19 

0.92 

[0.89, 

0.95] 

1413



 

20_10 11.31 
2.3E-

05 

0.49 

[0.44, 

0.54] 

15.07 
1.6E-

06 

0.56 

[0.51, 

0.61] 

9.49 
9.3E-

05 

0.44 

[0.39, 

0.49] 

19.50 
1.11E-

07 

0.62 

[0.57, 

0.67] 

60.34 
4E-

14 

0.83 

[0.79, 

0.87] 

20_20 10.44 
4.4E-

05 

0.47 

[0.42, 

0.52] 

10.11 
5.7E-

05 

0.46 

[0.41, 

0.51] 

7.56 0.0005 

0.39 

[0.34, 

0.44] 

15.31 
1.39E-

06 

0.56 

[0.51, 

0.61] 

135.08 
1.2E-

19 

0.92 

[0.89, 

0.95] 

50_05 8.76 0.0002 

0.42 

[0.37, 

0.47] 

7.49 0.0005 

0.38 

[0.33, 

0.43] 

9.63 
8.3E-

05 

0.45 

[0.40, 

0.50] 

22.27 
2.50E-

08 

0.65 

[0.60, 

0.70] 

75.22 
1.4E-

15 

0.86 

[0.82, 

0.90] 

50_10 9.43 
9.7E-

05 

0.44 

[0.39, 

0.49] 

8.89 0.0002 

0.43 

[0.38, 

0.48] 

11.83 
1.5E-

05 

0.50 

[0.45, 

0.55] 

27.65 
1.87E-

09 

0.70 

[0.65, 

0.75] 

167.55 
3.3E-

21 

0.93 

[0.90, 

0.96] 

50_20 15.75 1E-06 

0.57 

[0.52, 

0.62] 

10.42 
4.4E-

05 

0.46 

[0.41, 

0.51] 

15.80 1E-06 

0.57 

[0.52, 

0.62] 

14.58 
2.24E-

06 

0.55 

[0.50, 

0.60] 

134.77 
1.3E-

19 

0.92 

[0.89, 

0.95] 

 

Table 7. Paired t-test results 

 

Algorithm 

Comparison   
Metrics 

Instances Groups 

20_05 20_10 20_20 50_05 50_10 50_20 

  
P-

value 
Cohen’s 

d 

P-

value 
Cohen’s 

d 

P-

value 
Cohen’s 

d 

P-

value 
Cohen’s 

d 

P-

value 
Cohen’s 

d 

P-

value 
Cohen’s 

d 

Improved 

NSGA-II vs. 

NSGA-II 

NPS 0.0002 2.59 0.0005 1.19 0.0001 –1.33 0.0002 1.59 0.0002 1.73 0.0001 1.56 

HV 0.0001 1.88 0.0001 1.57 0.0009 1.41 0.0003 1.37 0.0019 1.02 0.0036 1.23 

Δ 0.0028 -1.85 0.0002 -1.90 0.0001 -1.45 0.0001 -1.88 0.0001 -1.26 0.0001 -2.05 

IGD 0.0006 -1.86 0.0001 -2.28 0.0002 -2.40 0.0002 -1.83 0.0001 -2.10 0.0002 -1.27 

CPU 0.0197 0.77 0.0178 0.72 0.0453 0.72 0.6136 0.43 0.3996 -0.27 0.0194 0.99 

MOPSO vs. 

NSGA-II 

NPS 1.0000 0.00 0.6410 –0.12 0.8536 –0.08 0.2778 -0.43 0.6600 -0.15 0.6236 -0.19 

HV 0.2417 -0.68 0.6158 -0.16 0.8200 -0.10 0.4576 -0.18 0.5566 -0.23 0.5684 -0.19 

Δ 0.3836 0.36 0.7419 0.14 0.1934 0.42 0.3826 0.33 0.3344 0.46 0.7206 -0.15 

IGD 0.1309 0.40 0.0347 1.02 0.2336 -0.43 0.1355 -0.41 0.3237 1.02 0.1396 0.704 

CPU 
1.6E-

14 
-5.77 

4.1E-

10 
-3.55 

2.7E-

12 
-5.39 

2.4E-

11 
-6.88 

3.5E-

09 
-5.82 

7.2E-

19 
-12.61 

Improved 

MOPSO vs. 

NSGA-II 

NPS 0.0055 1.17 0.0021 0.97 0.0036 –1.05 0.0315 0.78 0.0080 1.02 0.0021 1.16 

HV 0.0037 1.00 0.0004 1.68 0.0013 0.92 0.0081 0.53 0.0106 0.80 0.0347 0.88 

Δ 0.0055 -1.06 0.0036 -1.26 0.0026 -0.98 0.0074 -1.10 0.0058 -0.91 0.0004 -1.84 

IGD 0.0010 -1.63 0.0002 -2.13 0.0030 -1.12 0.0004 -1.81 0.0002 -1.91 0.0006 -1.31 

CPU 
5.6E-

09 
-3.21 

2.6E-

05 
-1.66 

4.8E-

08 
-2.78 

1.5E-

10 
-5.08 

5.9E-

09 
-5.41 

1.7E-

07 
-5.29 

Improved 

NSGA-II vs. 

MOPSO 

NPS 0.0001 1.26 0.0002 1.41 0.0003 1.25 0.0001 1.36 0.0001 1.74 0.0000 1.61 

HV 0.0001 2.31 0.0001 1.54 0.0000 1.84 0.0001 2.07 0.0006 1.47 0.0000 1.94 

Δ 0.0008 -1.86 0.0004 -1.69 0.0018 -2.01 0.0009 -1.44 0.0000 -1.64 0.0002 -2.05 

IGD 0.0000 -3.33 0.0007 -1.53 0.0000 -2.63 0.0001 -2.08 0.0000 -2.27 0.0002 -1.51 

CPU 
8.6E-

13 
5.52 

7.4E-

12 
4.19 

1.6E-

16 
4.76 

1.7E-

06 
3.85 

2.7E-

08 
5.03 

2.3E-

08 
-5.85 

Improved 

NSGA-II vs. 

Improved 

MOPSO 

NPS 0.2895 0.42 0.6669 0.11 0.4093 0.28 0.4143 0.24 0.7907 0.11 0.3860 0.27 

HV 0.0023 1.47 0.0601 0.61 0.4962 0.20 0.1962 0.55 0.3404 1.18 0.1356 0.52 

Δ 0.4164 -0.34 0.9318 0.06 0.8658 -0.09 0.8579 0.08 0.3500 -0.30 0.1399 -0.72 

IGD 0.1511 -1.17 0.0994 -0.57 0.0111 -1.39 0.0569 -0.74 0.0392 -0.61 0.0130 -0.85 

CPU 
4.0E-

09 
3.17 

8.2E-

07 
2.13 

1.1E-

07 
2.43 

5.6E-

06 
3.14 

7.2E-

08 
3.81 

2.5E-

09 
-5.39 

Improved 

MOPSO vs. 

MOPSO 

NPS 0.0041 1.04 0.001 1.59 0.0058 1.01 0.0080 1.46 0.0044 1.72 0.0001 1.65 

HV 0.0011 1.50 0.0005 1.27 0.0015 0.95 0.0474 0.64 0.0027 1.18 0.0000 2.78 

Δ 0.0014 1.21 0.0042 -1.44 0.0092 -1.62 0.0056 -1.15 0.0021 -1.18 0.0001 -2.12 

IGD 0.0000 -3.30 0.0008 -1.56 0.0052 -1.25 0.0003 -1.72 0.0001 -2.00 0.0003 -1.51 

CPU 0.0131 1.29 0.0203 0.97 0.0146 0.97 0.0087 1.06 
1.2E-

06 
3.43 0.2245 -0.49 

 

 

7. CONCLUSION AND FUTURE WORK 

 

This study addressed the Identical Parallel Flow Shop 

Scheduling Problem (IPFSSP) using a bi-objective model that 

minimizes makespan and total earliness–tardiness under 

waiting time constraints. A dynamic load-balancing heuristic 

was integrated into NSGA-II and MOPSO to improve solution 

quality. The enhanced algorithms, NSGA-II–LBP and 

MOPSO–LBP, showed clear gains in convergence, diversity, 

and workload distribution, as confirmed by numerical results 

and statistical tests. MOPSO–LBP, in particular, achieved 

better computational efficiency, making it suitable for real-

time scheduling in manufacturing systems. 

Future work should adapt these approaches to dynamic 

settings with uncertain job arrivals, machine failures, or 

varying processing times. In such cases, predictive and 
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adaptive strategies may support real-time decision-making. 

The efficiency of MOPSO–LBP also suggests potential for use 

in time-constrained industrial environments. Overall, the 

proposed method offers a strong and scalable solution for 

complex scheduling problems. 
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