
Multi-Objective Identical Parallel Flow Shop Scheduling Using NSGA-II and MOPSO with

a Novel Load Balancing Procedure

Milad Mansouri* , Hacene Smadi, Younes Bahmani

Laboratory of Automation and Manufacturing, Department of Industrial Engineering, Faculty of Technology, University of

Batna 2 – Mostefa Ben Boulaïd, Batna 05000, Algeria

Corresponding Author Email: milad.mansouri@univ-batna2.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580709 ABSTRACT

Received: 20 May 2025

Revised: 28 June 2025

Accepted: 6 July 2025

Available online: 31 July 2025

Although flow shop scheduling has been widely investigated, the Identical Parallel Flow

Shop Scheduling Problem (IPFSSP) remains largely overlooked, particularly in multi-

objective optimization contexts. This study addresses this gap by formulating a bi-

objective mathematical model that minimizes makespan and earliness–tardiness under

strict waiting time constraints. To solve it, a dynamic Load Balancing Procedure (LBP) is

embedded within two established metaheuristics: NSGA-II and MOPSO. The proposed

algorithms are evaluated across six benchmark instance scales with varying job–machine

configurations. Results show that NSGA-II–LBP and MOPSO–LBP achieve average

reductions of 13.7%–19.2% in makespan and 18.4%–22.8% in earliness–tardiness

compared to their baseline counterparts. Statistical analyses using ANOVA and paired t-

tests confirm the significance of these improvements. NSGA-II–LBP delivers superior

convergence, solution diversity, and scalability, while MOPSO–LBP offers higher

computational efficiency, making it particularly well-suited for real-time scheduling in

complex manufacturing systems.

Keywords:

enhanced heuristics, Identical Parallel Flow

Shop Scheduling (IPFSSP), Load Balancing

Procedure (LBP), multi-objective

optimization, waiting time constraint

1. INTRODUCTION

Parallel flow shop scheduling is a cornerstone of modern

manufacturing systems, where the ability to execute jobs

concurrently across multiple production lines is critical for

meeting stringent efficiency and flexibility demands. While

classical scheduling models such as the Flow Shop (FS) [1],

Job Shop (JS) [2], and Hybrid Flow Shop (HFS) [3], have been

extensively investigated, the Identical Parallel Flow Shop

Scheduling Problem (IPFSSP) remains relatively

understudied. This limited attention is primarily attributed to

the structural complexity of the IPFSSP, which integrates

elements of FS, HFS, and parallel machine configuration [4].

The problem entails two interrelated sub-tasks: Assigning jobs

to lines and sequencing them within each line.

Originally conceptualized by Graham (1969) in the context

of parallel computing with identical processors [5], the

IPFSSP has more recently attracted attention through the work

of Ribas et al. [6-8], who proposed constructive heuristics for

variants such as the Parallel Blocking Flow Shop Problem

(PBFSP). Nonetheless, the bulk of existing research on

IPFSSP has focused on single-objective formulations,

predominantly aimed at minimizing makespan.

However, real-world manufacturing environments, require

multi-objective optimization (MOO) frameworks that address

multiple, often conflicting, performance criteria. In such

domains, quality-critical constraints, notably mandatory

waiting times between consecutive operations, are

indispensable. These waiting times are inherent to processes

such as curing, cooling, or chemical stabilization and are

essential to ensure product integrity and compliance with

safety standards. Neglecting these constraints may

compromise product quality and lead to operational failures.

Although metaheuristics such as NSGA-II and MOPSO

have demonstrated promising results in solving multi-

objective scheduling problems [4, 9], their direct application

to the IPFSSP reveals two critical shortcomings. First, static

job assignments can lead to load imbalances across production

lines, reducing overall throughput. Second, naïve sequencing

methods often fail to coordinate job flows effectively,

resulting in idle periods, violations of wait-time constraints,

and increased earliness–tardiness penalties.

While dynamic load balancing strategies exist for parallel

and distributed systems, such as workload-based dispatching

heuristics that aim to optimize task-to-resource allocation [10],

queue-length threshold-based resource configuration

mechanisms that adjust allocations dynamically based on job

queue backlogs [11], and decentralized agent-based

techniques involving autonomous agents for local decision-

making and cooperative resource management [12]. These

approaches typically do not model inter-stage temporal

dependencies and lack strict enforcement of wait-time

constraints. Moreover, they often rely on reactive

mechanisms, which may limit their ability to handle highly

constrained or time-sensitive jobs proactively.

To address these limits, we propose a novel Load Balancing

Procedure (LBP) that introduces three key advancements over

conventional methods. First, LBP incorporates a proactive,

Journal Européen des Systèmes Automatisés
Vol. 58, No. 7, July, 2025, pp. 1403-1416

Journal homepage: http://iieta.org/journals/jesa

1403

https://orcid.org/0009-0001-1276-9525
https://orcid.org/0009-0005-0476-5523
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580709&domain=pdf

criticality-driven assignment mechanism, which calculates job

criticality scores based on processing time and slack analysis.

This enables the prioritized placement of constrained jobs into

feasible wait-time windows, unlike traditional reactive

methods that intervene only after imbalances arise. Second,

LBP adopts a two-phase adaptive balancing approach, where

critical jobs are pre-assigned, followed by the distribution of

non-critical jobs using load variance minimization strategies.

This contrasts with single-phase strategies that ignore job

criticality and treat all jobs uniformly. Third, LBP includes a

dedicated feasibility repair phase, which dynamically

resequences jobs that violate wait-time constraints. This

constraint-aware adjustment mechanism is notably absent in

most classical load balancing algorithms. Through the

structured integration of prioritization, adaptive load

balancing, and constraint repair, LBP achieves synchronized

scheduling across production lines while ensuring strict

compliance with wait-time constraints and promoting

equitable load distribution.

To evaluate the effectiveness of this approach, the proposed

LBP is integrated into both NSGA-II and MOPSO frameworks

to enhance their performance in solving the Identical Parallel

Flow Shop Scheduling Problem (IPFSSP). A bi-objective

mathematical model is formulated to simultaneously minimize

makespan and total earliness–tardiness, in conjunction with

the LBP. Experimental results on multiple benchmark instance

groups show that NSGA-II–LBP and MOPSO–LBP achieve

average reductions of 13.7%–19.2% in makespan and 18.4%–

22.8% in total earliness–tardiness. These improvements are

statistically validated using ANOVA and paired t-tests, with

strong performance observed on large-scale instances.

The paper is structured as follows: Section 2 reviews related

literature on the IPFSSP and identifies existing research gaps.

Section 3 details the proposed bi-objective mathematical

formulation. Section 4 introduces the Load Balancing

Procedure and its integration with MOO algorithms. Section 5

outlines the experimental design, and Section 6 discusses the

computational results. Finally, Section 7 concludes the study.

2. RELATED WORK AND RESEARCH GAPS

2.1 Existing methods and models

Most existing studies in flow shop and parallel flow shop

scheduling adopt single-objective formulations, primarily

focusing on makespan minimization due to its mathematical

tractability and long-standing use as a benchmark in

scheduling research. A comparative simulation study was

conducted to evaluate production scheduling strategies in

hybrid and parallel flow shop environments using the General

Shifting Bottleneck Routine (SBR). The study assessed the

effectiveness of several dispatching rules, including First

Come First Served (FCFS), Longest Processing Time (LPT),

and Shortest Processing Time (SPT), in managing workflow

and improving throughput [13]. Complementing this line of

research, a multi-phase heuristic algorithm was developed,

comprising a constructive heuristic for initial job sequencing

and an improvement heuristic aimed at balancing workloads

by exchanging jobs between production lines [14].

Building on prior work, subsequent studies introduced

methodological advancements centered on approximation

techniques. One study proposed a 3/2-approximation

algorithm for scheduling jobs in a two-stage parallel flow shop

with multiple identical machines. A 12/7-approximation

algorithm was also developed for a three-stage configuration

[15]. Subsequently, a pseudo-polynomial time dynamic

programming algorithm was introduced to generate exact

solutions. This algorithm served as a core subroutine in

constructing a Fully Polynomial-Time Approximation

Scheme (FPTAS) [16]. In a related study, the FPTAS was

further refined by classifying jobs into large and small

categories. Schedules for large jobs were enumerated, while

small jobs were allocated using a linear programming model

combined with a sliding window technique [17]. In a later

enhancement, the FPTAS was extended by scaling arbitrary

instances into restricted forms and solving them using a

Mixed-Integer Linear Programming (MILP) model, resulting

in near-optimal solutions with bounded approximation errors

[18].

Recently, Ribas et al. [7] conducted several studies focusing

on the Parallel Flow Shop Scheduling Problem (PFSSP) under

blocking constraints. The initial work introduced the use of

Iterated Local Search (ILS) and Iterated Greedy Algorithm

(IGA), integrated with two types of Variable Neighborhood

Search (VNS), in conjunction with constructive and

improvement heuristics. A MILP model was also proposed for

solving small-scale instances. In subsequent work, an Iterated

Greedy (IG) algorithm was developed, beginning with a high-

quality initial solution and refining it through perturbation and

local search, using a simulated annealing-based acceptance

criterion to escape local optima [8]. More recently, 36

constructive heuristics were evaluated, combining seven

sequencing rules with five lines allocation methods. From this

set, the RCP0 heuristic was proposed, prioritizing the line with

the earliest available machine and the job that minimizes

machine idle time [6].

Some studies have addressed other alternative objectives

using diverse heuristic and optimization techniques. In another

study, total tardiness was minimized using an Iterated Greedy

Algorithm (IGA), which enhanced initial solutions through

Variable Neighborhood Search (VNS) and job reassignment

mechanisms [19]. Additionally, total flow time was targeted

through the application of priority rule-based heuristics, the

NEH algorithm, and IGA to obtain near-optimal schedules

[20].

Multi-objective optimization aligns more closely with

practical manufacturing needs by simultaneously optimizing

conflicting performance criteria. A simheuristic algorithm was

proposed for stochastic, non-Identical Parallel Flow Shop

Scheduling, integrating a biased-randomized NEH heuristic,

local search, and Monte Carlo simulation to evaluate

deterministic and expected makespan values [21]. Another

study addressed the bicriteria objective of minimizing total

earliness and tardiness using a hybrid approach that combines

a Greedy Randomized Adaptive Search Procedure (GRASP)

with Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO), demonstrating superior performance

over individual strategies [22]. A further contribution focused

on minimizing total flow time and the number of tardy jobs in

a two-machine, non-identical parallel flow shop. The proposed

Multi-Objective Evolutionary Algorithm (MOEA)

incorporated local search into the NSGA-II framework,

proving more effective and efficient than conventional

MOEAs [23].

Task sequencing has long been a cornerstone of flow shop

scheduling research, with foundational works such as

Johnson’s (1954) rule for two-machine optimization [24], the

1404

Nawaz-Enscore-Ham (NEH) algorithm (1983) for

permutation flow shops [25], and the Campbell-Dudek-Smith

(CDS) method (1970) for multi-machine scheduling

establishing key heuristics [26]. Over time, substantial

progress has been made in addressing sequencing under

complex constraints, particularly in dynamic and data-driven

manufacturing environments. Recent studies reflect a shift

toward intelligent, adaptive methods. One approach applies

deep reinforcement learning (DRL) to dynamic parallel

machine scheduling, using a modified Transformer model and

a variable-length state matrix to capture job and machine data.

The DRL agent autonomously extracts features and selects

jobs for idle machines to improve scheduling performance

[27]. Another study builds on the NEH algorithm, adapting it

for the satellite industry by sorting jobs based on processing

times and enhancing it with a discrete-event simulation model

that reflects real workshop conditions, improving both

adaptability and practicality [28]. Another study introduces a

dynamic knowledge graph to represent distributed

manufacturing resources, combined with an AI scheduler

trained through DRL and optimized using a dueling Deep Q-

Network (DQN). Semantic matching aligns resources with

subtasks, while meta-heuristic methods support near-optimal

scheduling decisions [29].

Despite advances in task sequencing, load balancing is still

underdeveloped in manufacturing. Most current approaches

rely on static or predefined job-to-line assignments, leading to

workload imbalances. In contrast, domains like cloud

computing have advanced adaptive load balancing techniques

to address similar challenges. Recent studies have explored

intelligent optimization methods to enhance task scheduling

and resource allocation. One approach uses deep learning

models, specifically Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs), to cluster virtual

machines (VMs) into overloaded and underloaded groups. It

combines Reinforcement Learning with a Hybrid Lyrebird

Falcon Optimization (HLFO) algorithm, which merges

Lyrebird and Falcon Optimization strategies to improve

system performance [30]. Another hybrid model, QMPSO,

integrates Modified Particle Swarm Optimization (MPSO)

with improved Q-learning, adjusting MPSO’s velocity based

on Q-learning policies to balance VM loads and optimize

resource use [31]. Similarly, Load Balancing Modified PSO

(LBMPSO), a tailored variant of PSO, updates fitness values

and tracks particle positions while continuously monitoring

VM loads for efficient task assignment [32].

2.2 Research gaps and study motivations

A review of parallel flow shop scheduling literature reveals

several key research gaps:

Current research remains heavily focused on single-

objective formulations, with a predominant emphasis on

makespan minimization. While this objective offers

mathematical tractability and benchmarking consistency, it

fails to capture the multi-dimensional trade-offs encountered

in real-world manufacturing. Multi-objective models are

significantly underexplored in IPFSSP contexts.

The prevailing focus on proportional parallel flow shop

configurations limits the generalizability of many existing

approaches. In these systems, job-to-line assignment is often

simplified by performance asymmetries across lines.

However, this assumption does not apply in identical

configurations, where all lines have uniform capabilities.

Effective job allocation in such systems requires more

sophisticated load balancing strategies.

Challenges related to heterogeneous job priorities in

identical parallel flow shops remain insufficiently addressed.

The absence of line hierarchies and the mix of critical and non-

critical tasks increase scheduling complexity. These

conditions highlight the need for adaptive, real-time load

balancing mechanisms.

Existing load balancing strategies in IPFSSP are typically

static or heuristic-based and lack the flexibility to respond to

system dynamics. This rigidity often results in inefficient

resource utilization and the emergence of operational

bottlenecks.

The scheduling literature continues to prioritize task

sequencing, often treating it independently from job-to-line

assignment. This separation creates fragmented decision-

making, despite growing evidence that integrated approaches

yield more balanced and efficient schedules in identical

parallel environments.

Cross-disciplinary knowledge transfer between cloud

computing and manufacturing scheduling remains limited.

Proven concepts from computing—such as decentralized load

balancing and adaptive resource allocation—are rarely applied

in production scheduling, despite their relevance.

In response to these gaps, this study proposes a novel

dynamic load balancing strategy embedded within NSGA-II

and MOPSO frameworks, specifically designed for multi stage

identical parallel flow shop systems. The approach jointly

optimizes job-to-line assignment and sequencing while

minimizing makespan and total earliness–tardiness, under

inter-machine waiting time constraints.

3. MATHEMATICAL MODEL

The IPFSS problem is a variant of the classical flow shop

problem, which is known to be NP-hard. To address this, we

propose a Mixed Integer Linear Programming (MILP) model

that incorporates job-specific constraints, such as release

times, waiting time limits, and due dates, alongside machine-

level precedence constraints. The notation and symbol

definitions used in the proposed model are summarized in

Table 1. The objective is to minimize both makespan and total

earliness/tardiness.

Table 1. Notation and symbol definitions

Symbol Description

Sets and indices

𝐽 = {1,2, . . . , 𝑛} Set of jobs

𝐿 = {1,2,3} Set of identical parallel production lines

𝑀 = {1,2, . . . , 𝑚} Set of machines per line

𝑗, 𝑖 ∈ 𝐽 Job indices

𝑙 ∈ 𝐿 Production line index

𝑘 ∈ 𝑀 Machine index

1405

Parameters

𝑝𝑗𝑘 ≥ 0 Processing time of job j on machine k

𝑝𝑖𝑘 ≥ 0 Processing time of job i on machine k

𝑝𝑗1 ≥ 0 Processing time of job j on the first machine

𝑑𝑗 ≥ 0 Due date of job j

𝛼𝑗 , 𝛽𝑗 ≥ 0 Weight coefficient for earliness and tardiness of job j

𝑟𝑗 ≥ 0 Release time of job j

𝑊𝑚𝑎𝑥 Maximum allowable wait time before job j starts

𝐺 ≫ 0 Large positive constant

Decision variables

𝑥𝑗𝑙 ∈ {0,1} Binary variable equal to 1 if job j is assigned to line l; 0 otherwise

𝑥𝑖𝑙 ∈ {0,1} Binary variable equal to 1 if job i is assigned to line l; 0 otherwise

𝑦𝑗𝑖𝑘𝑙 ∈ {0,1} Binary variable equal to 1 if job j precedes job i on machine k in line l; 0 otherwise

𝑦𝑖𝑗𝑘𝑙 ∈ {0,1} Binary variable equal to 1 if job i precedes job j on machine k in line l; 0 otherwise

𝑐𝑗𝑘𝑙 ≥ 0 Completion time of job j on machine k in line l

𝑐𝑗1𝑙 ≥ 0 Completion time of job j on the first machine in line l

𝑐𝑗𝑚𝑙 ≥ 0 Completion time of job j on the last machine in line l

𝑠𝑗𝑙 ≥ 0 Start time of job j on the first machine in line l

𝐸𝑗 , 𝑇𝑗 ≥ 0 Earliness and tardiness of job j

𝐶𝑚𝑎𝑥 Makespan (latest job completion time across all lines)

Objective functions

(1) Minimize Makespan.

maxmin C (1)

(2) Minimize total earliness and tardiness.

()min j j j j

j J

E T 


+ (2)

Constraints

(3) Job assignment: Each job is assigned to exactly one

line.

1 jl

l L

x j J


=   (3)

(4) Makespan definition: Makespan is at least the latest

completion time on the last machine.

()max 1 ,jml jlc c G x j J l L − −    (4)

(5) Release time and wait time constraint.

Completion time on the first machine is linked to job start

time and processing duration.

()1 1 1 ,j l jl j jlc s p G x j J l L + − −    (5)

Start time is bounded by job release time and maximum

allowable wait time.

max ,j jl jr s r W j J l L  +   

(6) Sequential machine processing: job j

must be

completed on machine 𝑘−1 before starting on machine 𝑘 on

the same line.

()
 

, 1, 1

, , 1

jkl j k l jk jlc c p G x

j J l L k M

− + − −

   
 (6)

(7) Machine precedence:

If job j

precedes i, if job j precedes job i, job j must finish

before 𝑖 starts on the same machine and line.

()1 , ,ikl jkl ik jiklc c p G y i j J l L k M + − −      (7)

Precedence enforcement only if both jobs are assigned to

the same line.

 , ,jikl ijkl jl ily y x x i j J l L k M+       

(8) Earliness and tardiness calculation: based on

completion time on the last machine and due date.

 j j jml jl

l L

E d c x j J


 −   

 j jml jl j

l L

T c x d j J


  −  
(8)

(9) Non-negativity for all time-related variables.

max, , , ,C 0 , ,jkl jl j jc s E T j J l L k M     (9)

4. METHODOLOGY

This section presents the methodological framework

developed to address the proposed scheduling problem.

4.1 Load Balancing Procedure (LBP)

The Load Balancing Procedure (LBP) is a multi-phase

scheduling heuristic specifically designed to address the load

imbalance problem in parallel flow shop environments with

multiple machines per line. It aims to minimize the makespan

and total earliness/tardiness while strictly enforcing a

maximum wait time constraint before job processing begins.

The procedure starts by evaluating each job’s criticality score,

derived from processing time and slack, to prioritize urgent

and resource-intensive jobs. This phase has a time complexity

of 𝑂(𝑛 log 𝑛 + 𝑛. 𝐿. 𝑚) , accounting for criticality scoring,

sorting, and constraint-aware assignment. The remaining non-

1406

critical jobs are then distributed to balance the load across all

lines, with a complexity of 𝑂(𝑛. 𝐿) , based on comparative

workload evaluation across lines. A final feasibility repair

phase reorders and adjusts job start times to ensure full

compliance with the wait time constraint; this step involves

resequencing within lines and has a worst-case complexity of

𝑂(𝐿. 𝑛2. 𝑚) . Overall, the LBP achieves efficient and

constraint-aware scheduling with an upper-bound complexity

of 𝑂(𝐿. 𝑛2. 𝑚), ensuring computational scalability for large,

constrained production environments and demonstrating

strong practical applicability in real-world industrial systems

characterized by high complexity and scale. The steps of the

proposed procedure are detailed in the pseudo code shown in

Table 2.

Table 2. Pseudo-code for proposed LBP

Algorithm: Load Balancing Procedure (LBP)

Input: Job set J, production lines L, machines M,

maximum wait time Wmax

Output: Job sequences S, makespan Cmax, total

earliness/tardiness E/T

// Phase 1: Job Classification

for all job j ∈ J do

 Pj ← ∑ pj,k
|M|
k=1

Pmax = maxj ∈ JPj

for all job j ∈ J do

 slackj ← max(0, dj− (rj+ Pj))

 critj← (Pj/ Pjmax) + (1 / (slackj + 1))

Jsorted ← jobs sorted by critj (descending)

Jcrit← top ⌈0.4 . |J|⌉ jobs from Jsorted

for all line ℓ ∈ L do

 CTℓ← 0, TLℓ ← 0, S[ℓ] ← ∅

// Phase 2: Critical Job Assignment

for all job j ∈ Jcrit do

 F ← { ℓ ∈ L | max(CTℓ, rj) − rj ≤ Wmax}

 if F ≠ ∅ then

 ℓ* ← arg minl∈F (max(CTℓ, rj) + Pj)

 else

 ℓ* ← arg minl∈L (CTℓ + Pj)

 S[ℓ*] ← S[ℓ*] ∪ {j}

 CTℓ* ← max(CTℓ*, rj) + Pj

 TLℓ* ← TLℓ* + Pj

// Phase 3: Non-Critical Job Assignment

for all job j ∈ J\ Jcrit do

 F ← { ℓ ∈ L | max(CTℓ*, rj) − rj ≤ Wmax}

 if F ≠ ∅ then

 ℓ* ← arg minl∈F TLℓ

 else

 ℓ* ← arg minl∈L TLℓ

 S[ℓ*] ← S[ℓ*] ∪ {j}

 CTℓ* ← max(CTl, rj) + Pj

 TLℓ* ← TLℓ* + Pj

// Phase 4: Feasibility Repair

for all line ℓ in L do

 sort S[ℓ] by release time rj

 prev_comp[1..|M|] ← 0

 for all job j in S[ℓ] do

 for k = 1 to |M| do

 if k = 1 then

 sj,1← max(r_j, prev_comp[1])

 if sj,1 −rj > Wmax then

 sj,1 ← rj+ Wmax

 else

 sj,k ← max(prev_comp[k], sj,k−1 + pj,k−1)

 prev_comp[k] ← sj,k + pj,k

 CTℓ ← prev_comp[|M|]

// Phase 5: Objective Evaluation

Cmax ← maxℓ ∈ L CTℓ

E/T ← 0

for all line ℓ ∈ L do

 for all job j ∈ S[ℓ] do

 Cj ← sj,|M| + pj,|M|

 E/T ← E/T + max(0, dj − Cj) + max(0, Cj − dj)

return S, C_max, E/T

4.2 Integration with MOO algorithms

In the proposed approach, the Load Balancing Procedure

(LBP) is embedded within both NSGA-II and MOPSO as a

constraint-aware decoding mechanism. In NSGA-II, LBP is

applied during the fitness evaluation steps, specifically in Step

2 to decode each randomly generated individual in the initial

population, and Step 6 to evaluate the offspring population

after crossover and mutation. Similarly, in MOPSO, LBP is

applied in Step 2 to evaluate the initial swarm and in Step 7 to

assess each particle after position updates. In both algorithms,

LBP constructs feasible schedules by assigning jobs to parallel

production lines while enforcing the maximum wait time

constraint (𝑊max) and then computes the makespan and total

earliness/tardiness to form the objective vector. As shown in

Figure 1, this consistent application of LBP ensures that all

candidate solutions, regardless of their origin, are decoded into

valid, constraint-compliant schedules. This enables both

NSGA-II and MOPSO to maintain feasibility throughout the

search process and effectively converge toward well-

distributed, Pareto-optimal fronts in the solution space.

4.3 Taguchi method for parameter tuning

The Taguchi Method, developed by Dr. Genichi Taguchi,

employs orthogonal arrays and signal-to-noise (S/N) ratios

[33], to systematically optimize algorithm parameters, S/N

ratios were computed using the smaller-the-better formula

(−10 𝑙𝑜𝑔10(
1

𝑛
∑ 𝑦𝑖

2)) to align with our minimization

objectives. Sensitivity analysis using (𝛥𝑆/N = max − min)

revealed that mutation type had the strongest influence on

Enhanced NSGA-II-LBP performance, with swap operations

outperforming other operators by 9.9%. Population size and

crossover type also showed notable effects, while crossover

probability had a comparatively limited impact.

For the Enhance MOPSO-LBP algorithm, the specific

configuration of the nGrid parameter demonstrated the highest

level of influence among all the factors that were evaluated. In

particular, the finer settings—specifically those set at values

of 0.1, 5, and 3.0—were observed to significantly improve the

overall algorithm performance, resulting in a measurable

enhancement of approximately 25 to 26 percent. Additionally,

the adjustment of velocity limits, as well as the cognitive

coefficient, also exhibited considerable influence on the

behavior and outcomes of the algorithm. In contrast, however,

the social coefficient consistently showed much weaker

sensitivity throughout the testing process, which was notably

contrary to our initial expectations and earlier assumptions.

1407

Figure 1. Flowcharts of enhanced algorithms

Table 3 summarizes optimal parameters for NSGA-II

variants, with sensitivity rankings confirming the critical role

of mutation type. Enhanced NSGA-II requires a larger

population size (100 vs. baseline 80) to improve Pareto front

coverage, higher crossover probability (0.9 vs. 0.85) to

maintain diversity under workload imbalance, and swap

mutation to preserve schedule feasibility, structural choices

proving more impactful than probability tuning. PMX

crossover and tournament selection maintained consistent

superiority across configurations, though with moderate

sensitivity. Table 4 outlines Enhanced MOPSO's settings,

where sensitivity analysis justified larger swarm sizes (100 vs.

80) for solution diversity, elevated inertia weight (0.75 vs.

0.45) for exploration balance, expanded velocity limits (12 vs.

10) to reduce machine idle time, and stronger cognitive

coefficient (c₁=1.1) for particle coordination.

Figure 2 represents main effects plots visually corroborate

these findings through slope steepness.

Figure 2. Main effects plot for S/N ratios of each algorithm

1408

Table 3. Optimal parameters for NSGA-II and enhanced NSGA-II

Parameter Level 1 Level 2 Level 3
Optimal Level for

NSGA II

Optimal Level for Enhanced

NSGA II

ΔS/N

(db)
Rank

Population Size

(NPop)
50 80 100 80 100 400 2

Selection Type
Rank-

Based
Tournament

Roulette

Wheel
Tournament Tournament 200 4

Crossover Type
Single-

Point
Two-Point PMX PMX PMX 270 3

Crossover

Probability
0.75 0.85 0.9 0.85 0.9 200 4

Mutation Type Swap Shift Inversion Swap Swap 700 1

Mutation

Probability
0.12 0.18 0.22 0.12 0.18 200 4

Table 4. Optimal parameters for MOPSO and enhanced MOPSO

Parameter Level 1 Level 2 Level 3
Optimal Level for

MOPSO

Optimal Level for Enhanced

MOPSO

ΔS/N

(db)
Rank

Swarm Size (NSwarm) 50 80 100 80 100 300 4

Inertia Weight (Ww) 0.45 0.75 0.95 0.45 0.75 200 5

Cognitive Coefficient

(c1)
0.5 0.85 1.1 1.1 1.1 500 3

Social Coefficient

(c2)
0.45 0.65 1.05 0.65 1.05 200 5

Velocity Limits (Vv) 8 10 12 10 12 700 2

nGrid
(0.07, 3,

1.0)

(0.09, 4,

2.0)

(0.1, 5,

3.0)
(0.09, 4, 2.0) (0.1, 5, 3.0) 2000 1

5. EXPERIMENTAL SETUP

This part presents the experimental setup used to evaluate

the proposed approach.

5.1 Benchmark instances

The computational study used six benchmark instances

obtained from https://github.com/chneau/go-

taillard/tree/master/instances (accessed on 16 December 2024)

to evaluate algorithm performance under varying job–machine

configurations. Instance sizes included: 20_05, 20_10, 20_20,

50_05, 50_10, and 50_20. All scenarios used three identical

parallel production lines.

Experiments were conducted using MATLAB R2018b on a

computer with an Intel® Core™ i7-1185G7 CPU (3.00/1.80

GHz) and 32 GB RAM.

Each instance comprised 10 cases with variations in

processing times, due dates, release dates, and wait-time

constraints. For each case, 100 iterations were executed. The

10 best performing runs were selected and averaged to obtain

a representative performance value for each case. Instance

characteristics are summarized in Table 5.

Table 5. Instance characteristics

Instances

Groups

Jobs

(n)

Machines

(m)

Parallel

Lines (k)

Processing

Time Range

Due Date

Range

Release

Date Range

Wait Time

(Wmax)

Processing Time

Variance (σ²)

20_05 20 5 3 [5, 40] [100,600] [0, 20] 8 102.1

20_10 20 10 3 [8, 50] [150,800] [0, 30] 12 144.0

20_20 20 20 3 [10, 60] [200,1000] [0, 40] 15 208.3

50_05 50 5 3 [5, 40] [200,1200] [0, 20] 8 102.1

50_10 50 10 3 [8, 50] [300,1600] [0, 30] 12 144.0

50_20 50 20 3 [10, 60] [400,2000] [0, 40] 15 208.3

5.2 Performance metrics

Performance metrics are critical to impartially evaluate

trade-offs between conflicting objectives in multi-objective

optimization [34]. They quantify convergence (proximity to

optimal solutions), diversity (spread across objectives), and

uniformity (balanced distribution) [34]. For parallel flow

shops, these performance metrics assess how effectively

algorithms resolve workload imbalance while simultaneously

minimizing objective functions.

5.2.1 Number of Pareto Solutions (NPS)

Counts non-dominated solution 𝑥 ∈ 𝑄 , where no 𝑦 ∈
𝑄 dominates 𝑥(𝑦 ≺ 𝑥) , Higher NPS indicates broader

diversity, as defined in Eq. (10):

  NPS such that y xx Q y Q=    (10)

5.2.2 Hypervolume (HV)

Measures the volume in the objective space covered by the

obtained Pareto front relative to a reference point a (nadir

point). Higher HV reflects a better balance of convergence and

1409

diversity, as shown by Eq. (11):

() () ()1 1 2 2HV Volume , ,
x PF

Q f x a f x a


 
=        

 
 (11)

5.2.3 Inverted Generational Distance (IGD)

Measures the proximity of the obtained Pareto front to the

true Pareto front O*, Lower IGD corresponds to superior

convergence, as presented in Eq. (12):

()
1

IGD , min
q Q

o O

Q O o q
O 



 


= − (12)

where, Q represents the obtained Pareto front, O* is the

reference (true) Pareto front, and ‖𝑜 − 𝑞‖ defines the

Euclidean distance between solutions o and q.

5.2.4 Spread (Δ)

Assesses the distribution uniformity of solutions across the

Pareto front. It’s formulated in Eq. (13) to quantify the spread.

()

1

1

1

N

f l i

i

f l

h h h h

h h N h

−

=

+ + −

 =
+ + −



(13)

where, ℎ𝑓 and ℎ𝑙 are distances to extreme solutions of the

Pareto front.
ih is distance between consecutive solutions, ℎ is

the average of all ℎ𝑖 and 𝑁 is the number of solutions.

6. RESULTS AND DISCUSSION

Figure 3 presents the performance distributions across four

key metrics NPS, HV, IGD and Δ, comparing baseline

algorithms with their enhanced counterparts.

(1) Number of Pareto Solutions (NPS): Enhanced

NSGA-II generates 40–70% more non-dominated solutions

than the baseline (5.8–10.5 vs. 3.5–7.6), while enhanced

MOPSO achieves a 40–50% increase (5.2–10 vs. 3.5–7.3).

This indicates that both improved algorithms sustain

significantly larger and more diverse Pareto sets. A strong

negative correlation with IGD (r = –0.92 for NSGA-II-LBP; r

= –0.94 for MOPSO-LBP) further confirms that increased

diversity contributes to better convergence.

(2) Hypervolume (HV): Both enhanced algorithms show

a 30–35% increase in HV compared to their respective

baselines (0.41–0.84 vs. 0.30–0.65 for NSGA-II; 0.37–0.78

vs. 0.28–0.59 for MOPSO), reflecting stronger convergence–

diversity performance. This is supported by a strong negative

correlation with IGD (r = –0.93), indicating that broader

coverage of the Pareto front coincides with closer proximity to

the true front.

(3) Inverted Generational Distance (IGD): Enhanced

NSGA-II and MOPSO achieve IGD reductions of 45–65% and

40–65%, respectively, indicating significant gains in

convergence (e.g., 3.88–6.35 vs. 7.31–18.41 for NSGA-II;

4.10–7.30 vs. 6.68–20.58 for MOPSO). A strong positive

correlation with Spread (r = 0.89 for NSGA-II-LBP; r = 0.91

for MOPSO-LBP) reveals that convergence improvements are

accompanied by more uniform solution distributions.

(4) Spread (Δ): LBP reduces Spread by 10–25%, with

NSGA-II-LBP ranging from 0.26–0.49 (vs. 0.35–0.55) and

MOPSO-LBP from 0.28–0.50 (vs. 0.38–0.56). This reflects

improved distribution uniformity, essential for balanced

scheduling. A strong negative correlation with HV (r = –0.85

for NSGA-II-LBP; r = –0.88 for MOPSO-LBP) confirms that

uniformity enhances coverage quality.

The correlation coefficients were calculated based on

Spearman’s rank correlation approach, as presented in Eq.

(14):

()

2

2

6
1

1

i

n n

d = −
−


 (14)

Figure 3. Boxplots of comparative performance metrics

1410

These relationships highlight LBP’s ability to reconcile

historically conflicting objectives. The strong HV–IGD

correlation (r ≈ –0.93) confirms that convergence and

coverage improve jointly, driven by LBP’s criticality scoring,

which selects jobs that enhance both. The positive IGD–Δ

correlation (r > 0.89) reflects LBP’s capacity to produce

evenly distributed, high-quality solutions through constraint-

aware sequencing. Finally, the weak NPS–Δ correlation (r ≈ –

0.40) demonstrates that diversity and distribution can improve

concurrently a direct result of LBP’s two-phase structure,

which decouples job selection from load balancing.

Together, these findings confirm that the proposed approach

resolves the convergence, diversity, and distribution trade-off,

offering a coherent multi-objective optimization framework

for complex scheduling environments.

The Pareto front visualization in Figure 4 provides valuable

insight into solution quality for the 50_20 instance, illustrating

how the proposed heuristic enhancements reshape the

distribution of trade-offs between makespan and earliness–

tardiness. Enhanced NSGA-II achieves the most balanced

compromise, delivering solutions particularly well-suited for

practical scheduling environments where both efficiency and

due-date compliance are critical. These solutions reflect

marginal trade-offs, making them highly operationally

relevant. Enhanced MOPSO follows closely, also achieving a

balance between objectives, though with a slight preference

toward minimizing makespan. Collectively, the enhanced

algorithms expand the Pareto front by 31.5% in hypervolume

compared to baseline methods, indicating broader solution

diversity and improved exploration of extreme trade-offs. The

Pareto front of the enhanced methods forms a clear convex

shape, reinforcing the soundness of the proposed Load

Balancing Procedure (LBP).

Figure 4. Pareto front for instance 50_20

Figure 5. Comparative analysis of makespan and total earliness/tardiness

Figure 5 presents a comparative analysis of makespan and

total earliness/tardiness performance. Figure 5(a) illustrates

makespan values, while Figure 5(b) displays total

earliness/tardiness. The results in Figure 5(a) confirm that

Enhanced NSGA-II-LBP achieves an average makespan

reduction of 19.2% relative to conventional NSGA-II, with

improvements reaching 28.9% in large-scale instances (e.g.,

Instance 20_20_10: 1667 → 1350). These gains are consistent

across complexity levels, ranging from 8.3% to 28.9%. In

parallel, Enhanced MOPSO-LBP yields an average makespan

reduction of 13.7%, with peak improvements of 22.4% (e.g.,

Instance 50_20_8: 2518 → 2191), and a tighter performance

spread (3.1% to 22.4%), reflecting uniform scalability.

Figure 5(b) highlights similar trends for total

earliness/tardiness. Enhanced NSGA-II-LBP achieves a

22.8% average reduction, with maximum gains of 39.2% in

high-tardiness scenarios (e.g., Instance 50_20_5: 2421 →

2058), underscoring its strength in mitigating due-date

violations through effective load balancing. Likewise,

Enhanced MOPSO-LBP provides a robust 18.4% reduction,

with peak improvements of 38.2% (e.g., Instance 50_20_6:

2462 → 2191), and demonstrates consistent performance

1411

across instance groups. These results emphasize the benefits

of LBP integration in both algorithms, offering notable

improvements in convergence quality and scheduling stability.

The runtime analysis CPU (Central Processing Unit) in

Figure 6 reveals Enhanced NSGA-II and NSGA-II exhibit

comparable computational times (1.1–2.8 seconds), indicating

minimal overhead from the load-balancing heuristic. MOPSO

consistently outperforms both NSGA-II variants, with 30–

50% faster execution (e.g., 0.484–1.588 vs. 1.1–2.8 seconds

for NSGA-II), attributed to swarm-based parallelism.

Enhanced MOPSO incurs a marginal runtime increase over

MOPSO (e.g., 0.614–1.792 vs. 0.484–1.786 seconds).

Notably, all algorithms scale linearly with instance complexity

(e.g., 20_05: ~1.1 seconds; 50_20: ~2.8 seconds), but

MOPSO’s lower absolute times highlight its suitability for

real-time scheduling.

6.1 Algorithm comparison

This demonstrative example, shown in Figure 7, is based on

a small instance of three parallel flow shop lines, each with

five machines and a total of 21 jobs. The Gantt charts illustrate

the impact of the Load Balancing Procedure (LBP) on job

scheduling. Figure 7(a) represents the schedule generated by

Enhanced NSGA-II, while Figure 7(b) corresponds to the

baseline NSGA-II.

Figure 6. Comparative CPU time

In Figure 7(a), all three lines exhibit compact, well-

coordinated job sequences, with operations tightly packed

across machines. Final operations complete near a unified

makespan threshold (~800), as indicated by the red dashed

line, reflecting effective synchronization and load balancing.

In contrast, Figure 7(b) displays fragmented scheduling with

visible idle gaps and poor load distribution, particularly in

Flow Shop Lines 2 and 3, where machine inactivity extends

the makespan beyond 890. The rightward-pointing dashed

arrows highlight delays in completing final operations.

Furthermore, job sequencing lacks continuity, resulting in

inefficient resource utilization and disrupted flow. Final job

completion times vary substantially across lines, ranging from

600 to nearly 900, indicating a significant imbalance. This

discrepancy results in early completions on some lines, leading

to premature inventory and delays on others, ultimately

compromising overall schedule stability.

Figure 8 illustrates the load distribution performance of the

enhanced algorithms across three identical parallel production

lines. Both enhanced approaches produce tightly clustered

workload values (e.g., Enhanced NSGA-II: [771.5, 757.5,

757.5]; Enhanced MOPSO: [854.0, 830.5, 819.0]), with inter

line variance remaining below 5%. This outcome reflects the

effectiveness of the integrated heuristic in achieving balanced

utilization across resources. In contrast, the baseline

algorithms exhibit pronounced disparities in workload

allocation (e.g., NSGA-II: [484.5, 417.5, 258.5]; MOPSO:

[1250, 1625, 1300]), with deviations exceeding 40–60%,

thereby highlighting the limitations of conventional methods

in achieving load balance.

6.2 Statistical validation

To evaluate the effectiveness of the proposed heuristic

enhancements, statistical analyses were performed using

Analysis of Variance (ANOVA) and paired t-tests across

multiple benchmark instances (Tables 6 and 7). The ANOVA

results include partial eta-squared (η²) values and 95%

confidence intervals (CIs) to quantify the effect size of

algorithmic differences. Paired t-tests are further supported by

Cohen’s d to indicate the magnitude of observed differences.

Table 6 presents the ANOVA outcomes across all evaluated

metrics. The p-values were consistently below 0.001, leading

to the rejection of the null hypothesis of equal performance

among algorithms. Large effect sizes (η² = 0.38–0.93) with

tight confidence intervals suggest that algorithm choice

substantially influences performance across benchmark

instances. Notably, hypervolume (HV) and inverted

generational distance (IGD) show strong discriminative

power, with η² reaching 0.72 [0.67, 0.77] for IGD, indicating

that the enhancements significantly improved convergence

and diversity. The most pronounced values were observed for

CPU time (η² > 0.83), reflecting measurable runtime

differences due to the Load Balancing.

Following the ANOVA results, which decisively rejected

the null hypothesis H₀, post-hoc paired t-tests were conducted

to evaluate whether the mean performance of two related

algorithmic approaches differs significantly. To control the

family-wise error rate (FWER) arising from multiple

comparisons, the Bonferroni correction was applied, adjusting

the significance threshold, as in Eq. (15):

adjusted

0.05
0.0083

 of comparisions 6

desired

number


 = =  (15)

As shown in Table 7, statistically significant results (α =

0.0083) are accompanied by large or very large effect sizes in

most cases (|d| > 0.8). For example, Enhanced NSGA-II

exhibited strong gains in solution quantity (NPS) over the

baseline (Cohen’s d = 1.19–2.59), while Enhanced MOPSO

achieved substantial reductions in CPU time compared to

NSGA-II (d = –3.55 to –12.61). Differences between

Enhanced MOPSO and its baseline were negligible (|d| < 0.2),

confirming comparable efficiency. Enhanced NSGA-II also

maintained similar computational times to its baseline, with

small effect sizes (d = –0.27 to 0.99), suggesting the added

procedures introduce only minor runtime variation.

Overall, these findings demonstrate that the proposed

enhancements significantly improve solution quality across

multiple objectives. While some increase in computational

time is observed, the overall benefits in convergence,

diversity, and robustness clearly outweigh the cost,

particularly in applications where scheduling quality is a

critical requirement.

1412

Figure 7. Gantt chart comparison of NSGA II–LBP and NSGA-II

Figure 8. Comparison of load distribution between enhanced and conventional algorithms

Table 6. ANOVA summury table

Instance

Groups

Metrics

NPS HV Δ IGD CPU

F-

stat

P-

value

η²

[95%

CI]

F-

stat

P-

value

η²

[95%

CI]

F-

stat

P-

value

η²

[95%

CI]

F-

stat

P-

value

η²

[95%

CI]

F-stat
P-

value

η²

[95%

CI]

20_05 10.85
3.2E-

05

0.48

[0.43,

0.53]

16.20
7.9E-

07

0.57

[0.52,

0.62]

9.21 0.0001

0.43

[0.38,

0.48]

30.45
5.55E-

10

0.72

[0.67,

0.77]

129.47
2.4E-

19

0.92

[0.89,

0.95]

1413

20_10 11.31
2.3E-

05

0.49

[0.44,

0.54]

15.07
1.6E-

06

0.56

[0.51,

0.61]

9.49
9.3E-

05

0.44

[0.39,

0.49]

19.50
1.11E-

07

0.62

[0.57,

0.67]

60.34
4E-

14

0.83

[0.79,

0.87]

20_20 10.44
4.4E-

05

0.47

[0.42,

0.52]

10.11
5.7E-

05

0.46

[0.41,

0.51]

7.56 0.0005

0.39

[0.34,

0.44]

15.31
1.39E-

06

0.56

[0.51,

0.61]

135.08
1.2E-

19

0.92

[0.89,

0.95]

50_05 8.76 0.0002

0.42

[0.37,

0.47]

7.49 0.0005

0.38

[0.33,

0.43]

9.63
8.3E-

05

0.45

[0.40,

0.50]

22.27
2.50E-

08

0.65

[0.60,

0.70]

75.22
1.4E-

15

0.86

[0.82,

0.90]

50_10 9.43
9.7E-

05

0.44

[0.39,

0.49]

8.89 0.0002

0.43

[0.38,

0.48]

11.83
1.5E-

05

0.50

[0.45,

0.55]

27.65
1.87E-

09

0.70

[0.65,

0.75]

167.55
3.3E-

21

0.93

[0.90,

0.96]

50_20 15.75 1E-06

0.57

[0.52,

0.62]

10.42
4.4E-

05

0.46

[0.41,

0.51]

15.80 1E-06

0.57

[0.52,

0.62]

14.58
2.24E-

06

0.55

[0.50,

0.60]

134.77
1.3E-

19

0.92

[0.89,

0.95]

Table 7. Paired t-test results

Algorithm

Comparison
Metrics

Instances Groups

20_05 20_10 20_20 50_05 50_10 50_20

P-

value
Cohen’s

d

P-

value
Cohen’s

d

P-

value
Cohen’s

d

P-

value
Cohen’s

d

P-

value
Cohen’s

d

P-

value
Cohen’s

d

Improved

NSGA-II vs.

NSGA-II

NPS 0.0002 2.59 0.0005 1.19 0.0001 –1.33 0.0002 1.59 0.0002 1.73 0.0001 1.56

HV 0.0001 1.88 0.0001 1.57 0.0009 1.41 0.0003 1.37 0.0019 1.02 0.0036 1.23

Δ 0.0028 -1.85 0.0002 -1.90 0.0001 -1.45 0.0001 -1.88 0.0001 -1.26 0.0001 -2.05

IGD 0.0006 -1.86 0.0001 -2.28 0.0002 -2.40 0.0002 -1.83 0.0001 -2.10 0.0002 -1.27

CPU 0.0197 0.77 0.0178 0.72 0.0453 0.72 0.6136 0.43 0.3996 -0.27 0.0194 0.99

MOPSO vs.

NSGA-II

NPS 1.0000 0.00 0.6410 –0.12 0.8536 –0.08 0.2778 -0.43 0.6600 -0.15 0.6236 -0.19

HV 0.2417 -0.68 0.6158 -0.16 0.8200 -0.10 0.4576 -0.18 0.5566 -0.23 0.5684 -0.19

Δ 0.3836 0.36 0.7419 0.14 0.1934 0.42 0.3826 0.33 0.3344 0.46 0.7206 -0.15

IGD 0.1309 0.40 0.0347 1.02 0.2336 -0.43 0.1355 -0.41 0.3237 1.02 0.1396 0.704

CPU
1.6E-

14
-5.77

4.1E-

10
-3.55

2.7E-

12
-5.39

2.4E-

11
-6.88

3.5E-

09
-5.82

7.2E-

19
-12.61

Improved

MOPSO vs.

NSGA-II

NPS 0.0055 1.17 0.0021 0.97 0.0036 –1.05 0.0315 0.78 0.0080 1.02 0.0021 1.16

HV 0.0037 1.00 0.0004 1.68 0.0013 0.92 0.0081 0.53 0.0106 0.80 0.0347 0.88

Δ 0.0055 -1.06 0.0036 -1.26 0.0026 -0.98 0.0074 -1.10 0.0058 -0.91 0.0004 -1.84

IGD 0.0010 -1.63 0.0002 -2.13 0.0030 -1.12 0.0004 -1.81 0.0002 -1.91 0.0006 -1.31

CPU
5.6E-

09
-3.21

2.6E-

05
-1.66

4.8E-

08
-2.78

1.5E-

10
-5.08

5.9E-

09
-5.41

1.7E-

07
-5.29

Improved

NSGA-II vs.

MOPSO

NPS 0.0001 1.26 0.0002 1.41 0.0003 1.25 0.0001 1.36 0.0001 1.74 0.0000 1.61

HV 0.0001 2.31 0.0001 1.54 0.0000 1.84 0.0001 2.07 0.0006 1.47 0.0000 1.94

Δ 0.0008 -1.86 0.0004 -1.69 0.0018 -2.01 0.0009 -1.44 0.0000 -1.64 0.0002 -2.05

IGD 0.0000 -3.33 0.0007 -1.53 0.0000 -2.63 0.0001 -2.08 0.0000 -2.27 0.0002 -1.51

CPU
8.6E-

13
5.52

7.4E-

12
4.19

1.6E-

16
4.76

1.7E-

06
3.85

2.7E-

08
5.03

2.3E-

08
-5.85

Improved

NSGA-II vs.

Improved

MOPSO

NPS 0.2895 0.42 0.6669 0.11 0.4093 0.28 0.4143 0.24 0.7907 0.11 0.3860 0.27

HV 0.0023 1.47 0.0601 0.61 0.4962 0.20 0.1962 0.55 0.3404 1.18 0.1356 0.52

Δ 0.4164 -0.34 0.9318 0.06 0.8658 -0.09 0.8579 0.08 0.3500 -0.30 0.1399 -0.72

IGD 0.1511 -1.17 0.0994 -0.57 0.0111 -1.39 0.0569 -0.74 0.0392 -0.61 0.0130 -0.85

CPU
4.0E-

09
3.17

8.2E-

07
2.13

1.1E-

07
2.43

5.6E-

06
3.14

7.2E-

08
3.81

2.5E-

09
-5.39

Improved

MOPSO vs.

MOPSO

NPS 0.0041 1.04 0.001 1.59 0.0058 1.01 0.0080 1.46 0.0044 1.72 0.0001 1.65

HV 0.0011 1.50 0.0005 1.27 0.0015 0.95 0.0474 0.64 0.0027 1.18 0.0000 2.78

Δ 0.0014 1.21 0.0042 -1.44 0.0092 -1.62 0.0056 -1.15 0.0021 -1.18 0.0001 -2.12

IGD 0.0000 -3.30 0.0008 -1.56 0.0052 -1.25 0.0003 -1.72 0.0001 -2.00 0.0003 -1.51

CPU 0.0131 1.29 0.0203 0.97 0.0146 0.97 0.0087 1.06
1.2E-

06
3.43 0.2245 -0.49

7. CONCLUSION AND FUTURE WORK

This study addressed the Identical Parallel Flow Shop

Scheduling Problem (IPFSSP) using a bi-objective model that

minimizes makespan and total earliness–tardiness under

waiting time constraints. A dynamic load-balancing heuristic

was integrated into NSGA-II and MOPSO to improve solution

quality. The enhanced algorithms, NSGA-II–LBP and

MOPSO–LBP, showed clear gains in convergence, diversity,

and workload distribution, as confirmed by numerical results

and statistical tests. MOPSO–LBP, in particular, achieved

better computational efficiency, making it suitable for real-

time scheduling in manufacturing systems.

Future work should adapt these approaches to dynamic

settings with uncertain job arrivals, machine failures, or

varying processing times. In such cases, predictive and

1414

adaptive strategies may support real-time decision-making.

The efficiency of MOPSO–LBP also suggests potential for use

in time-constrained industrial environments. Overall, the

proposed method offers a strong and scalable solution for

complex scheduling problems.

REFERENCES

[1] Komaki, G.M., Sheikh, S., Malakooti, B. (2018). Flow

shop scheduling problems with assembly operations: A

review and new trends. International Journal of

Production Research, 57(10): 2926-2955.

https://doi.org/10.1080/00207543.2018.1550269

[2] Lachtar, N., Driss, I. (2023). Application of ant colony

optimization for job shop scheduling in the

pharmaceutical industry. Journal Européen des Systèmes

Automatisés, 56(5): 713-723.

https://doi.org/10.18280/jesa.560501

[3] Bedhief, A.O. (2021). Comparing mixed-integer

programming and constraint programming models for

the hybrid flow shop scheduling problem with dedicated

machines. Journal Européen des Systèmes Automatisés,

54(4): 591-597. https://doi.org/10.18280/jesa.540408

[4] Ren, J.F., Ye, C.M., Li, Y. (2020). A two-stage

optimization algorithm for multi-objective job-shop

scheduling problem considering job transport. Journal

Européen des Systèmes Automatisés, 53(6): 915-924.

https://doi.org/10.18280/jesa.530617

[5] Graham, R.L. (1969). Bounds on multiprocessing timing

anomalies. SIAM Journal on Applied Mathematics,

17(2): 416-429. https://doi.org/10.1137/0117039

[6] Ribas, I., Companys, R. (2021). A computational

evaluation of constructive heuristics for the parallel

blocking flow shop problem with sequence-dependent

setup times. International Journal of Industrial

Engineering Computations, 12(3): 321-328.

https://doi.org/10.5267/j.ijiec.2021.1.004

[7] Ribas, I., Companys, R., Tort-Martorell, X. (2017).

Efficient heuristics for the parallel blocking flow shop

scheduling problem. Expert Systems with Applications,

74: 41-54. https://doi.org/10.1016/j.eswa.2017.01.006

[8] Ribas, I., Companys, R., Tort-Martorell, X. (2021). An

iterated greedy algorithm for the parallel blocking flow

shop scheduling problem and sequence-dependent setup

times. Expert Systems with Applications, 184.

https://doi.org/10.1016/j.eswa.2021.115535

[9] Kamarposhti, M.A., Lorenzini, G., Solyman, A.A.A.

(2021). Locating and sizing of distributed generation

sources and parallel capacitors using multiple objective

particle swarm optimization algorithm. Mathematical

Modelling of Engineering Problems, 8(1): 10-24.

https://doi.org/10.18280/mmep.080102

[10] Xhafa, F., Abraham, A. (2010). Computational models

and heuristic methods for grid scheduling problems.

Future Generation Computer Systems, 26(4): 608-621.

https://doi.org/10.1016/j.future.2009.11.005

[11] Lama, P., Zhou, X.B. (2012). Aroma: Automated

resource allocation and configuration of mapreduce

environment in the cloud. In Proceedings of the 9th

International Conference on Autonomic Computing, pp.

63-72. https://doi.org/10.1145/2371536.2371547

[12] Krauter, K. Buyya, R. Maheswaran, M. (2002). A

taxonomy and survey of grid resource management

systems for distributed computing. Software: Practice

and Experience, 32(2): 135-164.

https://doi.org/10.1002/spe.432

[13] Varela, M.L.R., Trojanowska, J., Carmo-Silva, S., Costa,

N.M.L., Machado, J. (2017). Comparative simulation

study of production scheduling in the hybrid and the

parallel flow. Management and Production Engineering

Review, 8(2): 69-80. https://doi.org/10.1515/mper-2017-

0019

[14] Al-Salem, A. (2004). A heuristic to minimize makespan

in proportional parallel flow shops. International Journal

of Computing & Information Sciences, 2(2): 98.

[15] Zhang, X.D., Velde, S.V.D. (2012). Approximation

algorithms for the parallel flow shop problem. European

Journal of Operational Research, 216(3): 544-552.

https://doi.org/10.1016/j.ejor.2011.08.007

[16] Dong, J.M., Tong, W.T., Luo, T.B., Wang, X.S., Hu,

J.L., Xu, Y.F., Lin, G.H. (2017). An FPTAS for the

parallel two-stage flowshop problem. Theoretical

Computer Science, 657: 64-72.

https://doi.org/10.1016/j.tcs.2016.04.046

[17] Tong, W.T., Miyano, E. Goebel, R. Lin, G.H. (2018). An

approximation scheme for minimizing the makespan of

the parallel identical multi-stage flow-shops. Theoretical

Computer Science, 734: 24-31.

https://doi.org/10.1016/j.tcs.2017.09.018

[18] Dong, J.M., Jin, R.Y., Luo, T.B., Tong, W.T. (2020). A

polynomial-time approximation scheme for an arbitrary

number of parallel two-stage flow-shops. European

Journal of Operational Research, 281(1): 16-24.

https://doi.org/10.1016/j.ejor.2019.08.019

[19] Ribas, I., Companys, R., Tort-Martorell, X. (2019). An

iterated greedy algorithm for solving the total tardiness

parallel blocking flow shop scheduling problem. Expert

Systems with Applications, 121: 347-361.

https://doi.org/10.1016/j.eswa.2018.12.039

[20] Kim, M.G., Yu, J.M., Lee, D.H. (2014). Scheduling

algorithms for remanufacturing systems with parallel

flow-shop-type reprocessing lines. International Journal

of Production Research, 53(6): 1819-1831.

https://doi.org/10.1080/00207543.2014.962112

[21] Hatami, S., Calvet, L., Fernández-Viagas, V., Framiñán,

J.M., Juan, A.A. (2018). A simheuristic algorithm to set

up starting times in the stochastic parallel flowshop

problem. Simulation Modelling Practice and Theory, 86:

55-71. https://doi.org/10.1016/j.simpat.2018.04.005

[22] Rajeswari, N., Shahabudeen, P. (2008). Bicriteria

parallel flow line scheduling using hybrid population-

based heuristics. The International Journal of Advanced

Manufacturing Technology, 43: 799-804.

https://doi.org/10.1007/s00170-008-1754-4

[23] Wang, H.F., Fu, Y.P., Huang, M., Huang, G.Q., Wang,

J.W. (2017). A NSGA-II based memetic algorithm for

multiobjective parallel flowshop scheduling problem.

Computers & Industrial Engineering, 113: 185-194.

https://doi.org/10.1016/j.cie.2017.09.009

[24] Johnson, S.M. (1954). Optimal two‐and three‐stage

production schedules with setup times included. Naval

Research Logistics Quarterly, 1(1): 61-68.

https://doi.org/10.1002/nav.3800010110

[25] Nawaz, M., Enscore Jr, E.E., Ham, I. (1983). A heuristic

algorithm for the m-machine, n-job flow-shop

sequencing problem. Omega, 11(1): 91-95.

https://doi.org/10.1016/0305-0483(83)90088-9

1415

[26] Campbell, H.G., Dudek, R.A., Smith, M.L. (1970). A

heuristic algorithm for the n job, m machine sequencing

problem. Management Science, 16(10): B630-B637.

http://www.jstor.org/stable/2628231.

[27] Li, F.N., Lang, S., Tian, Y., Hong, B.Y., Rolf, B.,

Noortwyck, R., Schulz, R., Reggelin, T. (2024). A

transformer-based deep reinforcement learning approach

for dynamic parallel machine scheduling problem with

family setups. Journal of Intelligent Manufacturing.

https://doi.org/10.1007/s10845-024-02470-8

[28] Li, G.Z., Zhang, L. (2024). Discrete-event simulation

integrates an improved NEH algorithm for practical

flowshop scheduling problems in the satellite industry.

Applied Sciences, 14(21): 9755.

https://doi.org/10.3390/app14219755

[29] Razali, L.F., Nawawi, A. (2024). Optimization of

Permutation Flowshop Schedulling Problem (PFSP)

using First Sequence Artificial Bee Colony (FSABC)

algorithm. Progress in Engineering Application and

Technology, 5(1): 369-377.

https://doi.org/10.30880/peat.2024.05.01.039

[30] Khan, A.R. (2024). Dynamic load balancing in cloud

computing: Optimized RL-based clustering with multi-

objective optimized task scheduling. Processes, 12(3):

519. https://doi.org/10.3390/pr12030519

[31] Jena, U.K., Das, P.K., Kabat, M.R. (2022). Hybridization

of meta-heuristic algorithm for load balancing in cloud

computing environment. Journal of King Saud

University - Computer and Information Sciences, 34(6):

2332-2342. https://doi.org/10.1016/j.jksuci.2020.01.012

[32] Pradhan, A., Bisoy, S.K. (2022). A novel load balancing

technique for cloud computing platform based on PSO.

Journal of King Saud University - Computer and

Information Sciences, 34(7): 3988-3995.

https://doi.org/10.1016/j.jksuci.2020.10.016

[33] Aswal, A., Jha, A., Tiwari, A., Modi, Y.K. (2019). CNC

turning parameter optimization for surface roughness of

aluminium-2014 alloy using Taguchi methodology.

Journal Européen des Systèmes Automatisés, 52(4): 387-

390. https://doi.org/10.18280/jesa.520408

[34] Najlaoui, B., Basha, M.S., Raouf, E.A., El-Hafez, H.A.

(2024). An improved multi-objective approach based on

competitive optimization algorithm and its engineering

design application. Journal Européen des Systèmes

Automatisés, 57(5): 1337-1347.

https://doi.org/10.18280/jesa.570509

1416

