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Accurate and timely poverty estimation is fundamental for the formulation of effective policies 

aimed at eradicating poverty in accordance with Sustainable Development Goal 1 (SDG-1). 

Traditional methods such as censuses and household surveys, though widely adopted, are 

limited by infrequency, high costs, and potential reporting errors. In contrast, satellite-derived 

data offer scalable and cost-effective alternatives. In this study, district-level poverty in 

Madhya Pradesh, India, was estimated using a Deep Learning (DL) framework that leverages 

Night-Time Light (NTL) satellite imagery in conjunction with environmental variables—

specifically the Air Quality Index (AQI) and radiance intensity. Two modeling strategies were 

employed. First, a baseline approach was implemented using a pre-trained Squeeze-and-

Excitation Network (SENet) architecture to extract visual features from NTL imagery, 

followed by classification via three Machine Learning (ML) algorithms: Support Vector 

Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Second, a 

modified SENet-154 model was developed by integrating structured environmental features 

(AQI and radiance) directly into the classification pipeline, enabling joint learning from both 

visual and environmental modalities. The modified SENet-154 model demonstrated superior 

predictive performance, achieving an overall classification accuracy of 93.60%. Spatial 

autocorrelation analysis, conducted using Local Indicators of Spatial Association (LISA), 

confirmed the geographical coherence of the predicted poverty clusters across districts, thereby 

validating the model's spatial reliability. The findings underscore the utility of NTL imagery 

as a proxy for socio-economic assessment and highlight the substantial gains in predictive 

accuracy obtained through the incorporation of environmental indicators. This integrative 

approach not only enhances the spatial granularity of poverty mapping but also emphasizes 

the interconnectedness of environmental degradation and economic deprivation. The results 

provide compelling evidence to support the design of policy interventions that concurrently 

address environmental sustainability and poverty alleviation. 
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1. INTRODUCTION

Economic well-being remains one of the most critical issues 

in socio-economic planning and policy-making, as it directly 

impacts resource allocation, welfare programs, and long-term 

development strategies. SDGs, led by the United Nations [1], 

aim to ensure prosperity for all by the year 2030. As illustrated 

in Figure 1, “no poverty” holds the first position in 17 SDGs. 

Figure 1. SDGs by the United Nations [1] 

Poverty is a multidimensional phenomenon characterized 

by the deprivation of basic human needs, including food, 

shelter, education, healthcare, and economic opportunity. It is 

commonly classified into two main types: absolute and 

relative poverty. 

• Absolute poverty: A person living on less than $2.15 per

day (2022 purchasing power parity) [2], as given by the World 

Bank. 

• Relative poverty: Inequality compared to a society’s

average standard of living by the United Nations’ 

Multidimensional Poverty Index (MPI), which defines poverty 

not only in terms of money but also in education, health, and 

living standards, highlighting disparities in access to clean 

water, electricity, and sanitation [3]. 

Timely estimation of poverty levels is the first step toward 

achieving SDG-1. The lack of real-time and accurate poverty 

estimation makes it difficult to implement timely interventions 

International Journal of Sustainable Development and 
Planning 

Vol. 20, No. 7, July, 2025, pp. 2877-2888 

Journal homepage: http://iieta.org/journals/ijsdp 

2877

https://orcid.org/0009-0005-1237-0804
https://orcid.org/0000-0002-6028-8187
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsdp.200712&domain=pdf


and assess the effectiveness of policies. Traditional methods 

for poverty estimation rely on national censuses and household 

surveys like demographic and health surveys which rely on 

collecting data from individuals. Manually analyzing collected 

data is time-consuming and not cost-effective. In a country 

like India, frequent surveys are often not feasible, especially 

in remote or conflict-affected regions. There is a recent 

advancement in the methods for measuring poverty. With the 

increasing usage of Remote Sensing (RS), Artificial 

Intelligence (AI) [4], and ML [5], various real-time and 

accurate data sources for analysis are available. Satellite 

imagery has emerged as a valuable proxy for assessing 

economic activity [6]. It provides indicators, such as urban 

expansion, road and building density, and night-time 

illumination, which reflect infrastructure growth, electricity 

access, and population distribution that in turn state the socio-

economic conditions. 

Environmental factors play a very important role in the day-

to-day living and working conditions of people. Recently, 

these factors have emerged as important indicators of socio-

economic status, particularly in regions where reliable ground-

level data is not available. Variables such as air quality [7], 

NTL intensity [8], land use patterns, and vegetation indices 

like Normalized Difference Vegetation Index (NDVI) [9] offer 

insights into living conditions, infrastructure availability, and 

development levels. Poor air quality, low radiance, limited 

green cover, and proximity to environmental hazards often 

result in poor living conditions. By analyzing these spatial and 

environmental parameters, researchers state the disparities in 

access to resources, housing quality, and overall well-being, 

thus supporting data-driven poverty assessment in 

underserved or remote areas. While some studies have used 

NTL satellite data or environmental indicators independently 

for socio-economic prediction, limited research integrates 

both features. Moreover, few studies have validated these 

models through spatial correlation and regional relevance. 

This research presents a novel study that integrates the 

capabilities of NTL satellite image data along with 

environmental features in estimating poverty levels. Out of the 

numerous environmental indicators explored in the literature, 

this study concentrates on AQI and radiance due to their strong 

correlation with urban infrastructure, economic activity, and 

public health. This study aims to: 

• Assess the role of AQI and night-time radiance in

enhancing the accuracy of poverty prediction models derived 

from satellite imagery. 

• Evaluate the effect of integrating environmental variables

on the classification performance of poverty levels. 

• Validate the spatial consistency of predicted poverty

clusters using spatial correlation techniques such as LISA. 

2. RELATED WORK

Traditional data-gathering techniques like household 

surveys and census reports have long been used to predict and 

map poverty. These methods are time-consuming and 

resource-intensive and have a limited scope in terms of both 

space and time. With the introduction of new techniques to 

evaluate socio-economic situations using data-driven, scalable 

techniques because of the growing availability of RS data, 

especially NTL satellite imaging and environmental indicators 

like AQI, there is a major change in terms of poverty mapping. 

A common proxy for economic expansion, urbanization, 

and human activity is NTL imaging. NTL images are indirect 

but important indicators of wellness, developed infrastructure, 

and resource accessibility, offering insights into human 

development observable at night. Recently, air quality has 

become an important factor in determining urban inequality 

and public health, particularly in areas that are quickly 

urbanizing. Research indicates a strong correlation between 

low-income communities and poor air quality, which makes 

AQI a possible environmental indicator of underdevelopment 

and poverty. This literature review examines significant 

research contributions in the areas of NTL analysis, the use of 

air quality as an indicator for poverty mapping, and AI-based 

poverty prediction models. 

NTL data has emerged as an important tool for evaluating 

sustainable development indicators. In the 1970s, Croft [10] 

identified faint emissions, including urban lighting, auroras, 

and gas flares, in photographs captured by the Defense 

Meteorological Satellite Program’s Operational Linescan 

System (DMSP/OLS). Initially deployed to monitor cloud-top 

temperatures, DMSP/OLS laid the groundwork for Earth 

observation. In 1992, the National Oceanic and Atmospheric 

Administration/National Geophysical Data Center 

(NOAA/NGDC) established an open-access digital archive, 

enabling systematic analysis of DMSP/OLS data collected 

over two decades (1992-2013). The data was processed into 

four distinct datasets: daily and monthly time series, cloud-free 

composites, stable NTL composites, and average visible light 

products [11]. These datasets are publicly available through 

multiple repositories [12-14] and have facilitated diverse 

applications in socio-economic and environmental research 

[15]. 

2.1 NTL imagery in socio-economic and poverty analysis 

Jean et al. [16] used publicly available satellite images for 

poverty prediction. Using transfer learning, a convolutional 

neural network (CNN) was trained to predict NTL intensity 

from day-time satellite images, which served as a proxy for 

economic activities. The features extracted by CNN were then 

used to model household consumption and asset wealth across 

five African countries. Ni et al. [17] integrated both day- and 

night-time satellite data with DL models. Four DL algorithms 

were applied to day-time images, using NTL data as a proxy 

to guide the extraction of deep features from the day-time 

imagery. Then, regression models were applied to predict 

poverty. 

Castro and Álvarez [18] applied transfer learning to both 

day- and night-time images to estimate average income and 

Gross Domestic Product (GDP) per capita and calculated 

water index at the city level in cities of Bahia and Rio in Brazil 

as indicators of poverty. Ayush et al. [19] proposed another 

innovative approach, leveraging transfer and reinforcement 

learning to reduce the need for high-resolution satellite 

imagery by 80%, thereby offering a cost-effective poverty 

mapping solution for Uganda. A reinforcement learning 

approach was used, in which features from low-resolution 

imagery were extracted and used to dynamically identify the 

areas to acquire costly high-resolution images for poverty 

prediction in Uganda. The number of high-resolution images 

needed was reduced by 80%. 

Yeh et al. [20] explored the role of DL in understanding 

economic well-being using ResNet-18, a residual CNN, where 

satellite imagery effectively estimated socio-economic 

indicators and urbanization levels in Africa. An effective way 
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was identified to measure the urbanization degree of any 

country. Further advancements in DL improved the accuracy 

for poverty prediction. By extracting features using Visual 

Geometry Group Network (VGGNet), Inception Network, 

Residual Network (ResNet), and Densely Connected 

Convolutional Network (DenseNet), Saeed and Turkoglu [21] 

analyzed structural and visual patterns (road networks, built-

up areas, and vegetation) to estimate economic status. 

The use of spatial features in RS data is also a key focus 

area. In China, Yin et al. [22] extracted 23 spatial features, 

including NTL imagery and geographical data, to identify 

poverty regions at a county level in Guizhou. RF, SVM, and 

artificial neural network (ANN) were applied to classify 

poverty levels. ML has transformed poverty estimation and 

economic forecasting, providing automated and scalable 

alternatives to traditional surveys [23-25]. RF and XGBoost 

have been widely used for non-linear socio-economic 

modeling, as they can handle structured data, missing values, 

and complex feature interactions. These models have proven 

effective in wealth prediction, economic inequality assessment, 

and urbanization studies, but they lack deep spatial feature 

learning capabilities. 

2.2 AQI and environmental indicators 

In recent years, AQI has increased above the expected 

levels. One of the main issues in the subject of environmental 

justice for a long time has been the connection between 

poverty and air quality. The idea that pollution affects poor 

communities is supported by a good amount of research that 

indicates these populations are more vulnerable to 

environmental risks, have less access to clean resources, and 

experience negative health effects. Environmental pollution-

related health differences have the potential to worsen already 

existing socio-economic inequities, entangling communities in 

cycles of ill health and poverty. Due to the exposure to 

pollutants like lead and particulate matter, children in these 

locations may suffer from developmental problems and poorer 

academic performance, which may have an impact on their 

future economic prospects. Adults may experience higher 

medical expenses and decreased productivity as a result of 

illnesses linked to air pollution, further taxing their already 

meager financial resources. 

Evans and Kantrowitz [26] explored the link between socio-

economic status and environmental risks, highlighting how 

lower-income individuals face greater exposure to hazards 

such as pollution, poor water quality, noise, overcrowding, 

substandard housing, and unsafe work environments. These 

environmental risks negatively impact health and well-being, 

which impacts the socio-economic health gradient. The study 

suggested that environmental justice is so important, as health 

consequences are largely driven by exposure to various 

environmental factors, underscoring the need for research and 

policy interventions. Rentschler and Leonova [27] examined 

the link between air pollution exposure and poverty across 211 

countries. Using 2021 PM2.5 thresholds of the World Health 

Organization (WHO), it was found that 7.3 billion people are 

exposed to unsafe air pollution levels, with 80% residing in 

low- and middle-income countries. Additionally, 716 million 

of the world’s poorest people (earning less than $1.90/day) 

live in high-pollution areas, particularly in Sub-Saharan 

Africa. Lower- and middle-income countries face the highest 

pollution due to reliance on polluting industries. These 

findings are based on high-resolution air pollution data, 

population maps, and subnational poverty estimates from 

household surveys. 

Magesh and Geng [28] introduced an alternative approach 

by leveraging Lasso regularization and polynomial feature 

expansion to improve feature selection and increase model 

interpretability. The study aims to analyze the correlation 

between poverty and air pollution in the contiguous United 

States using advanced ML techniques. Contrary to common 

assumptions, no significant direct correlation between poverty 

levels and air pollution indices was found, challenging 

established beliefs in environmental justice. Clark et al. [29] 

found that low-income communities often experience higher 

levels of pollutants like PM2.5, NO2, and O3, leading to greater 

health risks which result in low productivity. The study was 

conducted in North Carolina, and it was found that lower-

income neighborhoods have weaker regulatory enforcement of 

pollution control. 

The deteriorating air quality and elevated pollutant levels 

have significantly impacted public health and daily life in 

India. A stark example occurred in December 2017, when 

extreme pollution forced a temporary shutdown in Delhi, 

underscoring the urgent need for effective pollution control 

strategies [30]. India's air quality is among the worst globally, 

with severe health implications for its population. Addressing 

this issue requires comprehensive policy interventions, 

regional cooperation, and public awareness to mitigate the 

adverse effects of air pollution. There is no study done till now 

for assessing the impact of air pollution on the economic status 

in Indian states. By using different ML techniques and a 

critical analysis of the existing literature, this study seeks to 

provide a deep understanding of the relationship between 

poverty and air pollution. 

AQI is a standardized metric developed to quantify and 

communicate the severity of ambient air pollution. It 

aggregates concentrations of key pollutants—such as PM₂.₅, 

PM₁₀, NO₂, SO₂, CO, and O₃—into a single dimensionless 

score. According to the United States Environmental 

Protection Agency (US EPA), AQI values are classified into 

six categories: good (0-50), satisfactory (51-100), moderate 

(101-200), poor (201-300), very poor (301-400), and severe 

(401-500), each corresponding to varying levels of health 

concern. 

AQI for a particular pollutant is calculated using the 

following equation: 

AQI=(
Ihigh-Ilow

Chigh-Clow
) (C-Clow)+Ilow (1) 

where, C is the observed concentration of the pollutant, Clow is 

the breakpoint concentration (≤C), Chigh  is the breakpoint 

concentration (≥C), Ilow  is the AQI value corresponding to 

Clow, and Ihigh is the AQI value corresponding to Chigh. 

3. STUDY AREA AND DATASET COLLECTION

3.1 Study area 

This study focuses on the state of Madhya Pradesh, India. 

Figure 2 shows all 50 districts, which form the administrative 

boundaries of Madhya Pradesh. The state is located at the heart 

of India and is the second-largest state by area and the fifth-

largest by population. Having a diverse range of ecological, 

cultural, and economic landscapes, Madhya Pradesh is an 
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agricultural area, where the substantial proportion of the 

population is engaged in primary-sector activities, particularly 

in rural districts. Urban areas, such as the cities of Bhopal, 

Indore, Jabalpur, and Gwalior, have experienced rapid 

industrialization and expansion of service-based sectors in 

recent years. 

Figure 2. Districts of Madhya Pradesh, India [31] 

3.2 Data collection 

To create a comprehensive dataset for poverty prediction, 

multiple sources of data were integrated, covering 

environmental, geospatial and multi-dimensional indicators, 

as shown in Figure 3. 

Figure 3. Integration of various data sources for the poverty 

prediction model 

3.2.1 NTL images 

Downloading the NTL images requires the region 

boundaries. Shapefiles containing boundaries of all districts of 

Madhya Pradesh for spatial filtering were obtained from the 

official Geographic Information System (GIS) repository of 

the state [32]. The shapefile for Ashoknagar District in 

Madhya Pradesh is shown in Figure 4. The NTL brightness 

data used in this study was derived from the Visible Infrared 

Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) 

sensor, taken through the Suomi National Polar-orbiting 

Partnership (Suomi NPP) satellite, operated by the National 

Oceanic and Atmospheric Administration (NOAA) [33]. The 

dataset is accessible via Google Earth Engine (GEE). The 

VIIRS DNB sensor captures radiance values in the 500-900 

nm spectral range, offering higher radiometric sensitivity, 

reduced saturation effects, and finer spatial resolution (~500m 

per pixel at nadir) compared to its predecessor, DMSP-OLS. 

The dataset provides daily, monthly, and annual composites, 

enabling temporal analysis of artificial illumination patterns. 

Figure 4. NTL image of Ashoknagar District as a boundary 

given by the shapefile 

Figure 5. NTL intensity visualization over Bhopal, India, for 

the year 2023 

The VIIRS NTL dataset was chosen due to its high temporal 

and spatial resolution, improved radiometric sensitivity, and 

its ability to serve as a proxy for economic activities and 

electrification. Figure 5 represents the average radiance values 

in Bhopal, India, for the year 2023 generated using VIIRS 

DNB data via GEE, with higher light emissions shown in 

green to red hues, indicating urban and economically active 

zones. A 10km buffer was applied around the Bhopal region 

to extract and export the spatial subset. 

3.2.2 AQI data 

The AQI dataset covers district-level AQI values between 

2020 and 2023 from the Madhya Pradesh Pollution Control 

Board [34], which provides data about air quality trends. AQI 

is a measure of air pollution that takes into account various 

pollutants, including particulate matter (PM2.5 and PM10), O3, 

NO2, and SO2. Higher AQI values correspond to poorer air 

quality and greater levels of pollution [34]. The AQI dataset 

was aggregated at the district level, with each data point 

representing an average AQI score for a specific district and 

year. The geographic scope includes districts within the state 

of Madhya Pradesh, India, focusing on regions where poverty 

is a pressing issue. The temporal range of the dataset spans 

multiple years, allowing the model to capture changes in air 

quality over time. This dataset is particularly useful in 

assessing how changes in environmental quality correlate with 

economic conditions. 
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Figure 6. Air quality standards by the Pollution Control 

Board [35] 

To prepare the AQI data for analysis, several pre-processing 

steps were undertaken: 

Step 1: District-level aggregation. AQI values were 

averaged for each district across each year to smooth out short-

term fluctuations and focus on long-term trends. 

Step 2: Handling missing data. In districts where AQI data 

was missing for certain years, imputation techniques were 

applied and the K-nearest neighbors (KNN) imputation was 

used to ensure data completeness. 

Step 3: Normalization. To ensure compatibility with other 

datasets, the AQI values were normalized by scaling the data 

using min-max normalization, bringing all values to a range 

between 0 and 1. 

In this research, the AQI values were treated as a proxy for 

the economic and industrial development of a district. It is 

hypothesized that higher levels of pollution, while detrimental 

to health, may correlate with industrial activities and 

potentially higher economic outputs, thus influencing poverty 

levels in unexpected ways. Figure 6 shows the standard values 

of AQI given by the Pollution Control Board. 

3.2.3 VIIRS radiance data 

This study used night-time radiance data derived from 

satellite imagery collected by the VIIRS instrument aboard the 

Suomi NPP satellite of the National Aeronautics and Space 

Administration (NASA). The data was obtained via Bhuvan 

[36], a geoportal developed by the Indian Space Research 

Organization (ISRO) [37]. 

The radiance data is spatially disaggregated at the district 

level, similar to the AQI data. The dataset covers the same time 

range (2020-2023) and includes all districts within Madhya 

Pradesh. The spatial resolution of the radiance data is typically 

around 500 meters, meaning that radiance values are available 

at a fine granularity, which can be averaged or summed at the 

district level. 

3.2.4 MPI data 

This study used MPI data, which is the ground-truth 

measure for socio-economic conditions given by NITI Aayog 

[38]. MPI data defines poverty in terms of various aspects to 

understand the poverty reality of the place. In the MPI 

framework, headcount ratio and intensity are two critical 

components that provide insights into the extent and depth of 

poverty. 

Table 1. Categorization of MPI scores and corresponding 

interpretations 

Category MPI Range Interpretation 

Non-poor 0.00-0.099 Minimal or no deprivation 

Moderately poor 0.10-0.199 
Moderate 

multidimensional poverty 

Poor 0.20 and above 
Severe multidimensional 

poverty 

• Headcount ratio (H): The proportion of the population that

is multidimensionally poor. The headcount ratio measures the 

percentage of people who are deprived in at least one-third of 

the weighted indicators of health, education, and standard of 

living used in MPI. A higher headcount ratio indicates a larger 

share of the population living in multidimensional poverty. 

• Intensity (A): Intensity reflects the severity of poverty, i.e.,

how deprived poor people are across the multiple indicators. 

A higher intensity means that poor individuals experience 

more severe deprivations. As for the relationship between 

headcount ratio and intensity, MPI is calculated as MPI=H×A. 

The threshold for poverty classification is 33.33% deprivation 

by NITI Aayog, equivalent to an MPI score of around 0.10-

0.15. Table 1 gives MPI scores and corresponding 

interpretations. The thresholds are used to classify regions into 

non-poor, moderately poor, and poor categories based on the 

extent of multidimensional deprivation experienced. 

4. PROPOSED METHODOLOGY

This section outlines the proposed multimodal approach for 

poverty prediction, which combines DL-based image feature 

extraction with environmental indicators (AQI and radiance). 

The proposed methodology is modular, consisting of three 

steps: (a) deep feature extraction from satellite imagery, (b) 

integration of environmental features, and (c) model training 

and evaluation. Each component is described in detail in the 

subsequent subsections. A detailed description of the datasets 

used, including their sources and structure, is provided in the 

preceding section to establish the understanding of inputs for 

the model. 

4.1 Deep feature extraction 

In order to extract deep features from the images, SENet-

154 was employed [39]. The SENet-154 architecture, as 

shown in Figure 7, was developed by integrating Squeeze-and-

Excitation (SE) blocks into a modified version of the 64×4d 

ResNeXt-152 backbone, which extends the ResNeXt-101 

design by adopting the block stacking configuration of 

ResNet-152. First, the number of channels in the initial 1×1 

convolution within each bottleneck block was halved to reduce 

the computational cost with minimal accuracy degradation. 

Second, the standard 7×7 convolutional layer at the network 

input was replaced by three consecutive 3×3 convolutions to 

facilitate better spatial feature extraction. Third, to preserve 

more informative features during down-sampling, the 

traditional stride-2 1×1 projection was substituted with a 3×3 

stride-2 convolution. District-wise images were resized to 

224×224 pixels and normalized. The pre-processed images 

were passed through the SENet-154 architecture. Features 

from the last layer were extracted, yielding a 2048-

dimensional feature vector for each district. 
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Figure 7. SENet architecture [39] 

4.2 Feature integration 

The 2048-dimensional image features extracted from the 

SENet-154 were combined with two environmental factors: 

AQI and radiance. AQI and radiance values were standardized 

using z-score normalization to ensure compatibility with the 

image features. For each sample, the normalized AQI and 

radiance values were concatenated with the image feature 

vector, resulting in a fused 2050-dimensional feature vector 

(2048+2). This merged data was used to predict poverty labels 

as per MPI. Algorithm 1 states the steps involved in pre-

processing the extracted features from images and merging 

them with AQI and radiance data. 

Algorithm 1. Data pre-processing for multimodal poverty 

classification 

Input: 

-NTL image metadata

-AQI, radiance, and MPI datasets

Output:

- Cleaned and merged feature matrix (X), label vector (y)

Start

Step 1: Load the datasets

Load the NTL image metadata

Load AQI, radiance, and MPI datasets

Step 2: Handle missing values

For each numerical feature x_ij:

x_ij=x̄_j if x_ij is missing, else x_ij

For each categorical feature:

Replace missing values with the most frequent value

(mode)

Step 3: Encode and normalize

Encode the binary poverty label:

y_i=1 if 'Poor', else y_i=0

Normalize numerical columns using z-score normalization:

x_ij=(x_ij-x̄_j)/σ_j

Step 4: Merge data

Merge image metadata with AQI, radiance, and MPI

datasets using district-year keys

End

4.3 Training model architecture 

To integrate AQI and radiance with image-based DL 

features, this study explored two distinct training approaches 

for poverty prediction. In the first approach of the baseline 

SENet-154, features extracted from satellite images using a 

pretrained SENet-154 model were concatenated with 

normalized AQI and radiance values after the feature 

extraction stage. This combined multimodal feature vector 

was then fed into three ML models, i.e., SVM, RF and 

XGBoost, for classification. In the second approach of the 

modified SENet-154, AQI and radiance were directly 

integrated within the SENet architecture by incorporating AQI 

and radiance values into the network at the final fully 

connected (FC) layer for poverty classification. The 

methodology for each model is outlined step-by-step using 

algorithmic representations below. Algorithm 2 presents the 

training workflow for the baseline SENet-154. Algorithm 3 

details the modified SENet-154. These structured algorithms 

highlight the key stages of data pre-processing, feature fusion, 

and model training for each approach. 

Algorithm 2. Baseline SENet-154 with ML classifiers 

Input: 

- Pre-processed NTL image dataset for 50 districts for three

years

- AQI data, radiance data, MPI data

Output:

- Trained classifiers (SVM, RF, XGBoost)

-Poverty labels for districts

- Performance metrics

Start

Step 1: Feature extraction using SENet-154

Load the pre-trained SENet-154 model from the TIMM

library

Remove the final FC layer

Pre-process images:

- Resize to 224×224

- Normalize using ImageNet mean and std

For each image xi ∈ dataset:

Extract 2048-dimensional feature vector:

f_img=SENet-154

Step 2: Merge AQI, radiance and MPI data to form a

merged dataset

Step 3: Train classification algorithms

Split the merged dataset into training and testing sets

For each classifier Alg_i∈{SVM, RF, XGBoost} do:

Initialize Alg_i with chosen parameter 00

Train Alg_i on the training set

Step 4: Predict on testing set

For each trained classifier Alg_i:

Predict labels on the test set:

ŷ_i=Alg_i(X_test)

Step 5: Evaluate performance metrics

Compute the following metrics using ŷ_i and y_test:

- Accuracy

- Precision

- Recall

- F1-score

Step 6: Select the best model

Compare the performance of all models and select the best

one

End
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Algorithm 3. Modified SENet-154 model 

Input: 

- I: Pre-processed NTL image tensor

- R: AQI and radiance feature matrix

- Y: Binary poverty labels

Output:

- Trained classification model

- Performance metrics on test set

Start

Step 1: Load and modify SENet-154

Load the pre-trained SENet-154 model from the TIMM

library

Remove the final FC layer: SENet-154.fc ← Identity ()

Add a parallel FC layer for auxiliary inputs: Define

FC_aux: ℝ² → ℝ²⁰⁴⁸ with ReLU activation

Step 2: Feature extraction and fusion

For each image xi∈I:

Extract deep features:

f_img=SENet-154(xi)∈ℝ²⁰⁴⁸

For each auxiliary vector ri ∈R:

Transform with auxiliary FC layer:

f_aux=ReLU(FC_aux(ri)) ∈ℝ²⁰⁴⁸

Fuse features:

f_combined=f_img+f_aux∈ℝ²⁰⁴⁸

Step 3: Classification layer

Pass f_combined through a ReLU-activated FC layer:

f'=ReLU(W f_combined+b)

Apply Softmax/Logits to obtain predictions:

ŷ=Softmax(W_final f'+b_final)

Step 4: Train the model

Initialize the optimizer (Adam) and loss function

(CrossEntropy)

For each epoch e∈{1, 2, ..., E}:

Perform forward pass on training data

Compute training loss:

ℒ=CrossEntropy(ŷ, Y_true)

Backpropagate the gradients 

Update model weights 

Log loss and accuracy 

End for 

Step 5: Evaluate the model 

Predict labels on the test dataset 

Calculate evaluation metrics: accuracy, precision, recall, 

F1-score 

End 

A 2050-dimensional feature vector that integrates image 

features and environmental attributes was created. This dense 

layer can project the 2050-dimensional input to a 512-

dimensional latent space. A final linear layer mapping was 

performed to a two-dimensional output space corresponding 

to the binary poverty classification labels (poor/non-poor). 

5. EXPERIMENTAL RESULTS AND DISCUSSION

Performance evaluation of models was conducted using ML 

metrics and spatial validation techniques. Table 2 gives the 

results by the baseline model in terms of accuracy, precision, 

recall, F1-score, and Receiver Operating Characteristic-Area 

Under the Curve (ROC-AUC). As “poor” was the minority 

class in the dataset, in order to address this class imbalance, 

Synthetic Minority Over-sampling Technique (SMOTE) [40] 

was applied during the training phase. SMOTE generates 

synthetic samples for the minority class which prevents model 

bias towards the majority class, helping in better 

generalization across both classes. After applying SMOTE, the 

models exhibited improved performance metrics, particularly 

in terms of recall and F1-score for the minority class. The use 

of SMOTE thus ensured a more balanced training dataset, 

contributing to more equitable and robust poverty 

classification outcomes. 

Figure 8. Performance comparison of SVM, RF, and XGBoost classifiers with and without SMOTE 
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Figure 9. Performance comparison of SVM, RF, and XGBoost classifiers with and without SMOTE application 

Table 2. Performance of the baseline SENet-154 model with 

and without SMOTE 

Classifier 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

ROC-

AUC 

(%) 

SVM 85.20 82.10 79.80 80.90 88.30 

SMOTE SVM 87.40 84.60 82.30 83.40 90.20 

RF 86.90 83.70 80.50 81.90 89.70 

SMOTE RF 89.10 86.20 84.10 85.10 91.50 

XGBoost 88.30 85.50 83.20 84.30 90.80 

SMOTE XGBoost 90.70 88.00 86.50 87.20 93.10 

Table 3. Performance of the modified SENet-154 model with 

and without SMOTE 

Classifier Accuracy (%) 
Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

ROC-

AUC 

(%) 

SVM 88.10 85.30 83.10 84.20 91.20 

SMOTE 

SVM 
90.40 87.60 85.90 86.70 93.50 

RF 89.80 86.90 84.70 85.80 92.10 

SMOTE RF 92.10 89.50 87.60 88.50 94.80 

XGBoost 91.20 88.70 86.90 87.80 93.90 

SMOTE 

XGBoost 
93.60 91.10 89.40 90.20 96.10 

Figure 8 shows the performance comparison histograms of 

SVM, RF, and XGBoost classifiers with and without SMOTE 

application. The results demonstrate consistent performance 

improvements with SMOTE for the minority class. Table 3 

shows the performance of the modified SENet-154 model with 

and without SMOTE. Figure 9 shows the performance 

comparison histograms of SVM, RF, and XGBoost classifiers 

with and without SMOTE application for the modified SeNet 

model across five evaluation metrics. 

5.1 Comparative analysis of the baseline and proposed 

modified models 

Tables 4 and 5 show the differences between the baseline 

model and the modified SENet-154 model. 

Table 4. Baseline SENet-154 model 

Classifier SMOTE 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

ROC-

AUC 

(%) 

SVM Yes 87.40 84.60 82.30 83.40 90.20 

RF Yes 89.10 86.20 84.10 85.10 91.50 

XGBoost Yes 90.70 88.00 86.50 87.20 93.10 

Table 5. Modified SENet-154 

Classifier SMOTE 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

ROC-

AUC 

(%) 

SVM Yes 90.40 87.60 85.90 86.70 93.50 

RF Yes 92.10 89.50 87.60 88.50 94.80 

XGBoost Yes 93.60 91.10 89.40 90.20 96.10 

Figure 10 shows the performance comparison of the 

baseline SENet154 model and the modified SENet-154 model 

with SMOTE application across five evaluation metrics. To 

validate the observed performance improvements of the 

proposed model, paired t-tests [41] were conducted on results 

from 5-fold cross-validation, comparing the baseline and 

modified models. The modified model consistently 

outperformed the baseline model across all key metrics. The 

improvement in accuracy was statistically significant 

(t(4)=4.32, p=0.012), with a large effect size (Cohen’s 

d=1.93). Similarly, the F1-score showed a significant increase 

(t(4)=3.85, p=0.018, d=1.72), and the AUC also improved 
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(t(4)=5.12, p=0.007, d=2.29). These results confirm that 

integrating environmental variables directly within the feature 

learning framework can statistically improve the model 

performance. Table 6 shows the statistical significance testing 

between models. 

Figure 10. Performance comparison of the baseline  

SENet-154 model and the modified SENet-154 model with 

SMOTE 

Table 6. Comparison of the baseline and modified models 

with statistical significance testing 

Metric 
Baseline 

(Mean±SD) 

Modified 

(Mean±SD) 

Mean Δ 

(%) 

T 

(4) 

P-

Value 

Cohen’s 

D 

Accuracy 0.782±0.028 0.840±0.024 +5.8 4.32 0.012 1.93

F1-score 0.750±0.032 0.812±0.027 +6.2 3.85 0.018 1.72

AUC 0.800±0.025 0.865±0.022 +6.5 5.12 0.007 2.29

5.2 Spatial analysis 

To further validate this study, spatial clustering techniques 

were applied to analyze the geographic distribution of poverty 

levels. The LISA hotspot analysis [42] was applied, which 

refers to the use of LISA to detect localized patterns of spatial 

clustering in geographic data. It identifies hotspots (clusters of 

high values), cold spots (clusters of low values), and spatial 

outliers (locations whose values are quite different from their 

neighbors). The LISA analysis was applied to the MPI scores 

given by the government and the Predicted Poverty Index 

(PPI), which were calculated by the proposed model. 

Algorithm 4 gives an outline of the LISA hotspot analysis. 

Algorithm 4. LISA hotspot analysis for poverty 

Input: 

- x[1 ... N]: PPI values for N spatial units (districts)

- W[N][N]: Spatial weights matrix (e.g., adjacency: 1 if

neighbor, 0 otherwise)

Output:

- Local Moran’s I value for each district

- Cluster type for each district: high-high, low-low, high-

low, low-high, or not significant

Begin:

1. Compute global mean poverty value:

mean_x←(1/N)*SUM(x[i] for i=1 to N)

2. Compute standard deviation of poverty:

std_x←sqrt ( SUM((x[i]-mean_x)^2)/(N-1))

3. for each district i=1 to N:

a. Initialize local_moran_i ←0

b. For each neighbor j=1 to N:

  local_moran_i ← local_moran_i+W[i][j]*(x[j]-

mean_x) 

c. Standardize:

z_i ← (x[i]-mean_x)/std_x

 LISA[i] ← z_i*local_moran_i 

4. Perform significance test (e.g., permutation test) for each

LISA [i]

- If p-value < threshold (e.g., 0.05), mark as significant

- Else, mark as not significant

5. Determine cluster type:

If significant:

        If z_i>0 and 

local_moran_i>0→ClusterType[i]←'High-High' 

        If z_i<0 and 

local_moran_i<0→ClusterType[i]←'Low-Low' 

        If z_i>0 and 

local_moran_i<0→ClusterType[i]←'High-Low' 

        If z_i<0 and 

local_moran_i>0→ClusterType[i]←'Low-High' 

    Else: 

        ClusterType[i]←'Not Significant' 

6. Output LISA[i] and ClusterType[i] for each district

End

5.2.1 District-level LISA cluster interpretation using MPI 

The districts were categorized into high-, moderate-, and 

low-poverty clusters based on their spatial characteristics by 

MPI values: 

• High-poverty clusters (red): Jhabua, Alirajpur, and

Barwani 

• Moderate-poverty clusters (yellow): Gwalior, Satna, and

Rewa 

• Low-poverty clusters (green): Indore, Bhopal, and Dewas

As shown in Figure 11, the remaining districts in blue are

baseline areas not classified under the selected thresholds. 

Figure 11. District-wise poverty classification map of 

Madhya Pradesh based on MPI values, generated using QGIS 

Table 7. LISA statistics and cluster types for selected 

Madhya Pradesh districts 

District PPI Local Moran's I Z-Score P-Value Cluster Type 

Shajapur 0.058 0.557 1.627 0.104 Not significant 

Rajgarh 0.107 -0.197 -1.856 0.064 Not significant

Ujjain 0.061 0.614 2.095 0.036 Low-low 

Sehore 0.049 0.826 2.125 0.034 Low-low 

Dewas 0.054 0.971 2.533 0.011 Low-low 

Dhar 0.077 -0.32 -1.925 0.054 Not significant

Alirajpur 0.192 3.234 2.754 0.006 High-high 
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Figure 12. District-wise poverty classification map of 

Madhya Pradesh based on PPI values, generated using QGIS 

5.2.2 District-level LISA cluster interpretation using PPI 

The LISA analysis based on PPI scores revealed key spatial 

poverty patterns across districts in Madhya Pradesh, as shown 

in Figure 12. A single significant high-high cluster was 

identified in Alirajpur, indicating a spatial poverty hotspot, 

similar to the cluster analysis done by MPI. In contrast, five 

districts, including Dewas, Ujjain, and Sehore, were classified 

as low-low clusters, representing cold spots of poverty 

surrounded by similarly low-poverty regions. 

Local Moran’s I values for each district were computed to 

detect spatial autocorrelation in predicted PPI scores. Each 

district’s result was evaluated for statistical significance by 

permutation testing (999 permutations). Districts with p-

values less than 0.05 were labeled as spatially significant 

clusters and assigned cluster types, as shown in Table 7. 

District-level cluster interpretations were performed on the 

basis of these values as follows: 

Hotspots: Alirajpur 

• PPI score: 0.192, local Moran’s I: 3.23, and p-value:

0.010

• Classified as high-high → a significant poverty

hotspot, with both it and its neighbors having extreme

poverty levels

Cold spots (low-low clusters): Dewas, Sehore, and Ujjain 

These districts show statistically significant low poverty 

clusters: 

• Low PPI scores: 0.04–0.06 range, and significant p-

values: <0.05

• Surrounded by similarly low-score neighbors →

zones of socio-economic advantages

6. DISCUSSION

The proposed modified SENet-154 (NTL + AQI + radiance) 

with the XGBoost classifier outperforms all other models, 

achieving an accuracy of 93.6%. NTL brightness features 

remain the strongest predictor but the AQI and radiance 

integration in the last layer significantly enhance prediction 

accuracy. With the spatial analysis, it was found that high-

poverty clusters, namely Jhabua, Alirajpur, and Barwani, are 

characterized by low NTL intensity, elevated AQI values, and 

MPI scores exceeding 0.6, indicating severe deprivation and 

limited infrastructural development. Moderate poverty regions 

such as Gwalior, Satna, and Rewa exhibit medium NTL 

intensity, with AQI values averaging around 100, reflecting an 

intermediate socio-environmental profile with moderate 

access to services and infrastructure. Low-poverty districts, 

including Indore, Bhopal, and Dewas, are associated with high 

NTL emissions, low MPI values, and relatively cleaner air 

quality, suggesting better economic conditions and urban 

infrastructure. These patterns highlight the strong correlation 

between RS indicators and multidimensional poverty, 

supporting the utility of integrated geospatial-environmental 

frameworks for localized poverty assessment. 

While the result shows the potential of combining 

environmental and deep image features for poverty prediction, 

the method has some limitations. First, MPI, used for 

comparison of results, was derived from survey data that was 

reported by the government. Therefore, the data may contain 

reporting errors that result in biases. In addition, sampling 

differences could affect how model performance is 

interpreted. Second, the deep features extracted from the NTL 

satellite imagery using SENet-154 depend on the image 

quality of satellite images such as cloud cover, temporal 

variation, and sensor quality, which impacts feature 

consistency. Lastly, the environmental features (AQI and 

radiance) were aggregated at the district level and, in some 

cases, approximated, limiting the model’s ability to capture 

minute spatial disparities in poverty conditions. 

7. CONCLUSION AND FUTURE WORK

This study demonstrates the effectiveness of integrating the 

satellite-based NTL imagery with environmental and socio-

economic indicators, specifically AQI and MPI for district-

level poverty classification in Madhya Pradesh. The use of DL 

architectures for feature extraction from NTL data, combined 

with ML classifiers (SVM, RF, and XGBoost), helped to find 

out spatial poverty patterns. The application of SMOTE helped 

in addressing class imbalance and further improved 

classification performance across key metrics. The results 

highlight clear segregations, with high-poverty clusters 

residing in low radiance, poor air quality, and elevated MPI 

scores. In contrast, districts with high radiance and lower AQI 

levels were classified as low-poverty zones. The proposed 

integrated framework not only improves prediction accuracy 

but also offers actionable insights for policymakers, 

supporting the formulation of targeted and environmentally 

informed poverty alleviation strategies. The approach 

highlights how regional development planning and SDG 

monitoring at the sub-national level may be strengthened by 

integrating RS, environmental monitoring, and AI-driven 

analytics. 

Future research could focus on multiple factors associated 

with this study. First, the integration of additional 

environmental variables such as land surface temperature, 

vegetation indices (NDVI), water availability, and noise 

pollution metrics could provide a better representation of 

environmental stress factors influencing poverty. Second, 

incorporating higher-resolution satellite imagery from 

Sentinel-2, etc., along with socio-demographic census data 

could further refine poverty prediction at the district level. 

Employing advanced modeling approaches, including 

ensemble DL models, graph neural networks (GNNs), or 

transformer-based architectures, could enhance prediction 

accuracy by better capturing spatial dependencies. Third, the 

framework could be extended to other states for analysis, 

enabling comparative poverty assessments and spatial 
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prioritization for resource allocation. Real-time integration of 

pollution monitoring and disaster risk indices could make the 

model more dynamic, assisting policymakers in adaptive 

planning. Lastly, closer collaboration with governmental 

agencies could facilitate validation against the ground-truth 

survey data, enhancing the reliability of the RS-based poverty 

mapping for practical policy making. 
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