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 The detection of focal Electroencephalogram (EEG) signal in the human brain is important 

to detect and diagnose Epilepsy disease. In this work, the EEG signals can be differentiated 

into Focal Signal (FS) and Non-Focal Signal (NFS) for Epileptic Seizure detection in the 

human brain. This proposed system has been designed with preprocessing, signal 

decomposition module, intrinsic features computations and its optimization with 

classification and severity diagnosis module.  The Chebyshev filter is used in preprocessing 

stage which suppresses the noise components in the acquired EEG signals and the 

preprocessed signals are decomposed using Weighted Empirical Mode Decomposition 

(WEMD). The textural intrinsic features have been computed from the decomposed Intrinsic 

Mode Function (IMF) sub bands and they are classified by the proposed EEGNet 

classification architecture, which classifies the test EEG signal into either FS or NFS. Then, 

FS can be diagnosed into three severity level cases as mild, moderate and severe using the 

EEGNet architecture. This proposed system has been tested with two independent EEG 

datasets in order to analyze the stability and robustness of the EEG classification process. 
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1. INTRODUCTION 

 

The diseases in the human brain can be detected using either 

imaging modality techniques such as Computer Tomography 

(CT) or Magnetic Resonance Imaging (MRI) or signaling 

modality techniques [1-3]. The earlier techniques are mostly 

used for detecting the tumors or Alzheimer diseases which are 

relating to brain region. The later technique is used for 

detecting the Epilepsy disease which is relating to human brain 

and it is identified as one of the neurological disorders. The 

EEG electrodes are placed over the human brain and the EEG 

signals are captured through these electrodes from various 

regions of the human brain. The cells in the human brain are 

damaged which produces the FS from the epileptic region of 

the brain. The NFS are captured from the non-epileptic region 

of the brain [4-7]. Both EEG signals are analog in nature and 

the Epileptic disease can be detected by analysing these FS and 

NFS. The World Health Organization (WHO) report 2023 

states that approximately 70 million of humans are affected by 

this Epilepsy disease around the world. The EEG capturing 

module captured the long-term EEG signals or recordings 

from the patients and these long-term EEG recordings have 

been analyzed by the experts or neurologist to locate the 

occurrence of these abnormal spikes in the brain region. The 

Epilepsy detection through the neurologist consumed more 

time, which is not appropriate for identifying this disease for 

the larger population groups or countries [8, 9].  

Hence, the automatic detection of the epilepsy through FS 

detection process has been done by the Artificial Intelligence 

(AI) techniques. These AI techniques extract the features 

directly from the time series, frequency series or time-

frequency series EEG signals which are captured by the 

various channels of the electrodes. These features are fed into 

either machine learning algorithm or deep learning algorithm 

to detect FS from the NFS. The machine learning algorithms 

such as Support Vector Machine (SVM), Random Forest (RF), 

Decision trees, K-Nearest Neighbour (KNN) used frequency 

series for identifying the FS for Epileptic seizure detection. 

The non-linear properties of the frequency series affect the 

classification rate of the machine learning algorithms [10]. 

Hence, deep learning algorithm has been developed and used 

by many researchers from the past decade for the automatic 

classification of FS over NFS. The frequently used deep 

learning algorithms are LeNet, AlexNet, GoogleNet, Inception 

and Visual Geometry Group (VGG). These deep learning 

algorithms are mostly used time series or time-frequency 

series signals for obtaining the higher EEG signal 

classification rate. This research work proposes a novel 

EEGNet deep learning architecture for classifying FS and NFS 

for epileptic seizure detection. Figure 1(a) is FS representation 

and Figure 1(b) is NFS representation. 

In present research studies, there are numerous FS and NFS 

automatic detection methods and these works are mainly 

focuses to perform the automatic classification process. 

However, these works have certain limitations: not involved 

any critical clinical diagnosis process and higher algorithm 
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design complexity. Therefore, the proposed aim of this 

research work is to develop novel fully automated methods for 

FS and NFS signal classifications. 

 

 
(a) 

 
(b) 

 

Figure 1. (a) EEG-FS (b) EEG-NFS 

 

By utilising an advanced deep learning and cutting-edge 

technologies for early seizure prediction and individual 

treatment planning, the suggested approaches proposed in this 

research work seek to solve unmet clinical needs in the 

management of Epilepsy. This entails recognising preictal 

patterns in EEG signals to offer prompt intervention warnings 

and modifying treatment plans in accordance with the traits 

and reactions of each unique patient. By providing more 

precise and individualised solutions for managing Epilepsy, 

these strategies fill unmet clinical needs and open the door to 

better patient outcomes. 

The contributions of this proposed research work are 

highlighted in the following points. 

• To perform the preprocessing process on the input EEG 

signals using the even degree-based Chebyshev filter for 

filtering the signals. 

• To propose a Weighted Empirical Mode Decomposition 

(WEMD) Algorithm for decomposing the EEG signals 

into Intrinsic Mode Feature (IMF) and residual 

components.  

• To extract the most relevant Intrinsic Pattern Features 

(IPF) and more suitable features using optimization 

method. 

• To construct the EEGNet architecture by designing the 

internal layers as parallel structuring method which 

produce a greater number of significant features with less 

computational time period.  

• To improve the performance of the FS and NFS 

classification system by improving its classification 

accuracy on different signal datasets. 

• The entire performance of the proposed model will be 

validated by comparing its computational values with 

other similar research works. 

The contents of this research paper have been organized into 

various sections. In section 2, various FS and NFS detection 

conventional methods are analyzed with their limitations. The 

proposed EEG signal classification method has been stated in 

section 3 and the results are analyzed and discussed in section 

4. In section 5, conclusion is finally depicted. 

 

 

2. LITERATURE SURVEY 

 

This section states the literature survey of the traditional 

works which are related to the EEG signal classification 

process using various focused machine learning and artificial 

intelligence techniques. Moreover, this section investigates the 

advantages and limitations of each traditional methods for 

framing the problem related with EEG signal classifications. 

Abenn et al. [11] used band pass filter to filter the noise 

frequency components in the EEG signals. Then, the non-

linear classification architecture such as Light Gradient 

Boosting Machine (LGBM) based on the Gradient boosting 

algorithm has been used in this work to perform the 

classification of the EEG signal into either FS or NFS. The 

authors obtained 96.5% SDSe, 96.1% SDSp, 96.3% SP, 

95.7%SA and 95.1% FS on BEBA database and also attained 

96.5% SDSe, 96.3% SDSp, 95.8% SP, 95.6%SA and 96.3% 

FS on CHB-MIT database. Ahmad et al. [12] used Butterworth 

filter to suppress the noise components from the obtained EEG 

signals through various electrode channels. Then, DWT was 

applied on these filtered signals to obtain the decomposed 

coefficients at various stages. Then, Fractal Dimension-based 

Non-Linear (FDNL) transformation method was involved in 

this work to obtain the decomposition coefficients and these 

FDNL coefficients were classified by the proposed Bagged 

Tree Based Classifier (BTBC). The authors obtained 97.1% 

SDSe, 97.3% SDSp, 97.1% SP, 96.4%SA and 96.9% FS on 

BEBA database and also attained 97.1% SDSe, 97.1% SDSp, 

96.8% SP, 96.2%SA and 97.1% FS on CHB-MIT database. 

Kantipudi et al. [13] performed the EEG signal 

classification using the feature enhanced classification 

algorithm. This method used Finite Linear Haar wavelet-based 

Filtering (FLHF) approach for detecting and removing the 

noise contents from the signal and then Fractal Dimension 

(FD) decomposition method has been used to decompose the 

filtered signals into various number of lower and higher sub 

bands. The coefficients in these sub bands were optimized 

using the proposed Grasshopper Bio-Inspired Swarm 

Optimization (GBSO) method which optimized the fine-tuned 

features from the signal components. These optimized fine-

tuned components were further classified by the Temporal 

Activation Expansive Neural Network (TAENN) 

classification algorithm. The authors obtained 97.2% SDSe, 

97.9% SDSp, 97.4% SP, 97.0%SA and 97.4% FS on BEBA 

database and also attained 97.8% SDSe, 97.2% SDSp, 97.1% 

SP, 97.4%SA and 97.5% FS on CHB-MIT database.  

Mathe et al. [14] used two different types of classification 

algorithms as Customized Deep Network (CDN) and the 

Support Vector Machine (SVM) classifier. The CDN classifier 

has been used for detecting and removing the artifact 

components from the source EEG signal. The artifact removed 

EEG signals were classified further through the SVM 

classification algorithm which classified the signal into either 

FS or NFS. For this classification process by SVM, the 
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intrinsic mode decomposition was used and applied on the 

artifact removed signals for extracting the intrinsic features. 

The authors obtained 96.9% SDSe, 96.5% SDSp, 96.9% SP, 

96.1%SA and 95.3% FS on BEBA database and also attained 

96.8% SDSe, 96.8% SDSp, 96.3% SP, 96.0%SA and 96.9% 

FS on CHB-MIT database.  

Akbari et al. [15] decomposed the EEG signal using 

Empirical Wavelet Transform (EWT) which produced both 

lower order and higher order decomposition filter coefficients. 

This EWT exhibited the properties of Discrete Wavelet 

Transform (DWT) for obtaining lower component losses 

during the signal decomposition. The authors obtained 95.3% 

SDSe, 94.8% SDSp, 95.1% SP, 94.7%SA and 94.9% FS on 

BEBA database and also attained 96.1% SDSe, 95.2% SDSp, 

95.2% SP, 95.2%SA and 95.9% FS on BEBA database. 

Hussain et al. [16] used Long Short-Term Memory Neural 

Networks (LSTMNN) method for detecting the epileptic 

seizure. The memory module of the existing system has been 

modified using dynamic mode of memory elements which 

were used for extracting the fine-tuned features from the 

source signals. These fine-tuned features were fed into the 

LSTMNN classifier for performing the classification of EEG 

signals. The authors obtained 93.9% SDSe, 93.7% SDSp, 

94.2% SP, 93.2%SA and 94.8% FS on BEBA database [17] 

and also attained 95.3% SDSe, 94.8% SDSp, 94.9% SP, 

94.8%SA and 94.7% FS on CHB-MIT database [18]. 

Mahsa Zeynali et al. [19] used transformer-based model for 

signal decomposition in a focal and non-focal signal 

classification system. This transformer-based decomposition 

model used the Power Spectral Density (PSD) approach for 

obtaining the decomposition coefficients with respect to the 

frequency domain patterns in this work. This method further 

uses a binary deep learning algorithm to differentiate the 

decomposed frequency domain patterns for EEG signal 

classification process. Si et al. [20] used a transformer 

decomposition algorithm-based ensemble deep learning 

model for the EEG signals classifications. This transformer 

decomposition algorithm produced frequency domain features 

and these features were classified using an ensemble deep 

learning algorithm. The authors obtained 95% average 

classification accuracy using this transformer decomposition 

algorithm in this work.  

 

 
(a) 

 

 
(b) 

 

Figure 2. (a) FS and NFS classification system in learning stage (b) EEG signal classification and FS severity estimation systems 

in testing stage 
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Mathe et al. [14] used two different types of classification 

algorithms as Customized Deep Network (CDN) and the 

Support Vector Machine (SVM) classifier. The CDN classifier 

has been used for detecting and removing the artifact 

components from the source EEG signal. The artifact removed 

EEG signals were classified further through the SVM 

classification algorithm which classified the signal into either 

FS or NFS. For this classification process by SVM, the 

intrinsic mode decomposition was used and applied on the 

artifact removed signals for extracting the intrinsic features. 

The authors obtained 96.9% SDSe, 96.5% SDSp, 96.9% SP, 

96.1%SA and 95.3% FS on BEBA database and also attained 

96.8% SDSe, 96.8% SDSp, 96.3% SP, 96.0%SA and 96.9% 

FS on CHB-MIT database. Abenn et al. [11] used band pass 

filter to filter the noise frequency components in the EEG 

signals. Then, the non-linear classification architecture such as 

Light Gradient Boosting Machine (LGBM) based on the 

Gradient boosting algorithm has been used in this work to 

perform the classification of the EEG signal into either FS or 

NFS. The authors obtained 96.5% SDSe, 96.1% SDSp, 96.3% 

SP, 95.7%SA and 95.1% FS on BEBA database and also 

attained 96.5% SDSe, 96.3% SDSp, 95.8% SP, 95.6%SA and 

96.3% FS on CHB-MIT database. 

Akbari et al. [15] decomposed the EEG signal using 

Empirical Wavelet Transform (EWT) which produced both 

lower order and higher order decomposition filter coefficients. 

This EWT exhibited the properties of Discrete Wavelet 

Transform (DWT) for obtaining lower component losses 

during the signal decomposition. The authors obtained 95.3% 

SDSe, 94.8% SDSp, 95.1% SP, 94.7%SA and 94.9% FS on 

BEBA database and also attained 96.1% SDSe, 95.2% SDSp, 

95.2% SP, 95.2%SA and 95.9% FS on BEBA database. 

Hussain et al. [16] used LSTMNN method for detecting the 

epileptic seizure. The memory module of the existing system 

has been modified using dynamic mode of memory elements 

which were used for extracting the fine-tuned features from 

the source signals. These fine-tuned features were fed into the 

LSTMNN classifier for performing the classification of EEG 

signals. The authors obtained 93.9% SDSe, 93.7% SDSp, 

94.2% SP, 93.2% SA and 94.8% FS on BEBA database and 

also attained 95.3% SDSe, 94.8% SDSp, 94.9% SP, 94.8%SA 

and 94.7% FS on CHB-MIT database. 

In accordance with the existing studies in literature survey 

section, it is observed that most of the methods used artificial 

intelligence techniques to obtain the higher positive signal 

classification rate with a minimum number of input signal 

patterns. If the traditional system is tested with a higher 

number of EEG signals, the classification rate is reduced. 

Therefore, the limitations of these traditional signal 

classification process have been overcome by developing a 

novel EEG signal classification system in this work. 

 

 

3. PROPOSED METHODOLOGIES 

 

In this work, the EEG signals can be differentiated into FS 

and NFS for Epileptic Seizure detection in the human brain. 

This proposed system has been designed with preprocessing, 

signal decomposition module, intrinsic features computations 

and its optimization with classification and severity diagnosis 

module. The Chebyshev filter is used in preprocessing stage 

which suppresses the noise components in the acquired EEG 

signals and the preprocessed signals are decomposed using 

WEMD. The textural intrinsic features have been computed 

from the decomposed IMF sub bands and they are classified 

by the proposed EEGNet classification architecture, which 

classifies the test EEG signal into either FS or NFS. Then, FS 

can be diagnosed into three severity level cases as mild, 

moderate and severe using the EEGNet architecture.  

Figure 2(a) is the FS and NFS classification system in 

learning stage and Figure 2(b) is the EEG signal classification 

and FS severity estimation systems in testing stage. 

(1) Preprocessing with Scaled Chebyshev Filter (SCF) 

The EEG signals which are captured by the set of electrodes 

with respect to various channels are affected by the noise 

components. The noise contents and its variations in the 

acquired EEG signals create the greater impact in achieving 

the higher signal classification rate. Hence, it is important to 

suppress the noise contents in the acquired EEG signals before 

it has been processed by the classification module of the 

proposed EEG signal classification system. 

For noise suppression process in signal, Finite Impulse 

Response (FIR) and Infinite Impulse Response (IIR) filters 

have been used by many researchers from the past decades. 

The IIR filter has faster responses than the FIR filtering 

process for signals. The recursive behaviour of the IIR system 

has been designed with a feedback system where the present 

output of the filtering system has been depending on the past 

input and output of the filtering system. This filter has been 

used to select one band frequency of the signal from the set of 

band frequencies. The functional speed of the Chebyshev filter 

is more than the Butterworth filter and other signal processing 

filters due to their recursion mode process during filtering of 

signals where the other mode process during filtering of 

signals whereas the other signal filters used a convolution 

mode process for filtering. Moreover, the functional transition 

between pass to stop bands is relatively higher in Chebyshev 

filter than in the other signal processing filters. This sharper 

transition process between the stop and pass bands can be 

achieved even in lower orders which produces small frequency 

synthesis errors. The odd and even degrees have been used for 

designing the Chebyshev filter with polynomial curve. The 

maximum power is required for odd degree-based Chebyshev 

filter. This drawback can be resolved by using even even-

degree-based based Chebyshev filter for filtering the signals. 

Hence, this work uses SCF for filtering both FS and NFS.  

The polynomial of even degree based SCF is depicted in the 

following equation. 

 

𝑝𝑛(𝜔) = cos(𝑛 ∗ arccos(𝜔)) (1) 

 

The frequency of the SCF has been deployed in this 

following equation. 

 

𝜔 = √𝜔2(1 − 𝑝2) + 𝑝2 (2) 

 

where, 𝑝 is SCF polynomial root factor and it is determined 

with the order of the SCF which is given in the following 

equation. 
 

𝑝 = ± cos (
𝑛 − 1

2𝑛
𝜋) (3) 

 

This SCF has been applied on both FS and NFS in order to 

suppress the noise contents in the acquired EEG signals. 

Figure 3(a) and Figure 3(b) are the illustrations of FS before 

and after applying the SCF, Figure 3(c) and Figure 3(d) are the 

illustrations of NFS before and after applying the SCF. 
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(2) WEMD algorithm 

It is a technique which is used to decompose the non-

stationary signals for computing the fine-tuned intrinsic set of 

features. The decomposition process produces a number of 

intrinsic modes at various stages of the decomposition. This 

method uses multi-resolution process to obtain the intrinsic 

modes from the non-linear and non-stationary signals. It 

produces the intrinsic modes which are based on the different 

resolutions. The conventional multi resolution process such as 

Discrete Wavelet Decomposition (DWD), Contourlet 

Decomposition (CD) decomposes the signal and produces the 

intrinsic modes with the same resolution. Hence, the same set 

of intrinsic features has been extracted from their intrinsic 

modes which cannot be used for classifying the signal into 

various types, in order to eliminate such issues in conventional 

multi resolution process.  

Most of the researchers used traditional Empirical Mode 

Decomposition (EMD) and Empirical Wavelet Transform 

(EWT) methods to decompose the EEG signals for 

classification process. During the decomposition of the signal 

into intrinsic modes and residual modes through the traditional 

EMD method, the errors of the residual modes in the 

decomposed coefficients are high and also it exhibits the 

minimum differences between the decomposed intrinsic 

modes. Hence, the signal differentiation rate through the EMD 

and EWT are low which is identified as the main limitation of 

this traditional decomposition models. This limitation has 

been overcome by proposing the WEMD method which is the 

modification of the traditional EMD method through the 

weighting modes. The weighted index is computed from the 

EEG signals through the local maxima and local minima and 

this weighted index is used to reduce the residual mode errors 

and exhibits the significant differences between the 

decomposed intrinsic modes. This increases the signal 

detection accuracy, which is the main advantage of this 

proposed WEMD. 

 

  

(a) (b) 

  

  
(c) (d) 

 

Figure 3. (a) FS before applying SCF (b) FS after applying SCF (c) NFS before applying SCF (d) NFS after applying SCF 

 

The WEMD has been used in this work to produce different 

and variational intrinsic sub bands which are based on 

different resolution for the computation of the variational 

intrinsic features. 

The WEMD algorithm for signal decomposition uses sifting 

function which is used to produce the number of intrinsic 

modes. The WEMD produces IMF and residual components. 

The IMF represents the decomposed coefficients of the time 

series signal and the residual component represents the trend 

of the EEG signal. 

The WEMD algorithm for EEG signal decomposition 

process can be explained through the following steps. 

Step 1: 

Find the local maxima (𝐿𝑚𝑎) and the local minima (𝐿𝑚𝑖) of 

the EEG signal and the EEG signal is represented by the 

following equation: 

 

𝑥(𝑡) = ∑ ℎ𝑖(𝑡)

𝐿

𝑖=1

+ 𝑟(𝑡) (4) 
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whereas, 𝑥(𝑡) is the EEG signal, ℎ𝑖(𝑡) is the decomposed IMF 

and 𝑟(𝑡) is the residual band. 

Step 2:  

Compute weighted local maxima and weighted local 

minima of the EEG signal using the number of samples in 

upper envelope and lower envelope. 
 

𝑊𝐿𝑚𝑎 = 𝑁1 ∗ 𝐿𝑚𝑎 (5) 
 

𝑊𝐿𝑚𝑖 = 𝑁2 ∗ 𝐿𝑚𝑖  (6) 
 

Step 3:  

Compute Weighted local index (𝑊𝐿𝑖) from the obtained 

weighted local maxima and local minima using the following 

equations. 
 

𝑊𝐿𝑖 =
𝑊𝐿𝑚𝑎 ∗ 𝑊𝐿𝑚𝑖

𝑁1 + 𝑁2
 (7) 

 

Step4: 

Find the weighted threshold between the weighted local 

maxima and weighted local minima using the following 

equation. 
 

𝑊𝑡1 =
𝑊𝐿𝑚𝑎 + 𝑊𝐿𝑚𝑖

2
∗ 𝑊𝐿𝑖  (8) 

 

Pseudocode for IPF optimization by GA 

Input: IPF by N*N matrix; 

Output: Optimized IPF; 

1. Start; 

2. Initialize hyper parameters such as population count, size, chromosome count, size; 

3. Incorporate IPF by N*N matrix; 

4. For i=1 to N1 Do 

 (a). Load IPF elements in first chromosome; 

            (b). Load IPF elements in second chromosome; 

5. Call single point crossover and mutation functions. 

  Invoke crossover (chromosome1, chromosome2); 

   If (crossover) is done 

    Invoke mutation (chromosome1, chromosome2); 

     If (mutation) is done 

      Compute fitness function; 

      Else 

       Repeat step 5; 

      Endif 

     Endif 

6. Compute minimum Energy between chromosomes. 

(a) Call Euclidean distance (elements of chromosome1) 

 Compute E1=Minimum (Euclidean distances) 

(b) Call Euclidean distance (elements of chromosome2) 

 Compute E2=Minimum (Euclidean distances) 

7. Determine E=Minimum (E1, E2) 

  If (E==E1) 

   Select patterns in chromosome1 and discard patterns in    

  chromosome2; 

  Else 

   Select patterns in chromosome2 and discard patterns in    

  chromosome2; 

 

8. Return<----- IPF; 

9. End for; 

10. Stop; 

 

Step 5:  

The IMF bands can be now separated from the EEG signal 

using the weighted threshold using the following equation: 

 

𝐼𝑀𝐹1 = 𝑥(𝑡) − 𝑊𝑡1 (9) 

 

After obtaining IMF1, step 1 to step 4 are repeated in order 

to get the new weighted threshold(𝑊𝑡2) at stage 2 as depicted 

by: 

 

𝐼𝑀𝐹2 = 𝐼𝑀𝐹1 − 𝑊𝑡2 (10) 

 

Similarly, the remaining IMF bands can be obtained using 

the following equations. 

 

𝐼𝑀𝐹3 = 𝐼𝑀𝐹2 − 𝑊𝑡3 (11) 

 

𝐼𝑀𝐹4 = 𝐼𝑀𝐹3 − 𝑊𝑡4 (12) 

 

𝐼𝑀𝐹5 = 𝐼𝑀𝐹4 − 𝑊𝑡5 (13) 

 

𝐼𝑀𝐹6 = 𝐼𝑀𝐹5 − 𝑊𝑡6 (14) 

 

After computing IMF6 band, there are no local maxima and 

local minima for computing the weighted threshold. Hence, 

the iteration has been stopped at this decomposition stage.
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(3) Computation of IPF and its optimization 

All the coefficients in six IMF bands are now formatted in 

two-dimensional matrix (IMF feature matrix) which is further 

used for computing the IPF. In this article, Skewness, Kurtosis, 

Energy and Entropy features have been computed from the 

IMF feature matrix for the differentiation of FS from NFS. 

Skewness and Kurtosis 

These features illustrate the shape behaviour of the signals. 

Hence, FS can be differentiated from the NFS through these 

textural features. The asymmetry distribution of the amplitude 

coefficients is represented by Skewness (third order texture 

feature) and the flat distribution of the amplitude coefficients 

are represented by Kurtosis (fourth order texture feature). The 

computational values of these texture features may vary from 

negative to positive index as illustrated by the following 

equations. 
 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝑠(𝑥) = 𝐸 [(
𝑥 − 𝐸(𝑥)

√𝑣𝑎𝑟 (𝑥)
)

3

] (15) 

 

where, 𝑥 is the two-dimensional feature matrix which has N 

rows and N columns respectively. 

E(x) and var(x) are the mean and variance of the feature 

matrix and they have been computed using the following 

equations. 

whereas, 
 

𝐸(𝑥) =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (16) 

 

𝑉𝑎𝑟(𝑥) =
1

𝑁 − 1
∑(𝑥𝑖 − 𝐸(𝑥))2

𝑁

𝑖=1

 (17) 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝐾(𝑥) = 𝐸 [(
𝑥 − 𝐸(𝑥)

√𝑣𝑎𝑟 (𝑥)
)

4

] (18) 

 

Entropy and Energy 

The disorder of the EEG signal can be found by measuring 

the entropy and energy of the signal. The disorder of the signal 

is direct proportional to the energy and entropy of the signal 

and they are depicted in the following equations. 
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐻(𝑥) = − ∑ 𝑝(𝑥) ∗ 𝑙𝑜𝑔(𝑝(𝑥))

𝑥

 (19) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸(𝑥) = ∑ 𝑥(𝑡)2

∞

𝑡=−∞

 (20) 

 

Table 1 is the illustration of computed IPF on both FS and 

NFS and it clearly shows that there are significant textural 

pattern differences between FS and NFS. These variation of 

the IPF are used by the classifier to classify whether the given 

test EEG signal is belonging to FS or NFS. 
 

Table 1. Illustration of computed IPF on both FS and NFS 
 

IPF 
EEG Signal Type 

FS NFS 

Skewness -0.60 -1.67 

Kurtosis 6.17 12.25 

Entropy 7.6*103 9.56*103 

Energy 8.0*104 1.3*105 

The IPF have been computed for all the FS and NFS 

available in training dataset and hence the size of the computed 

IPF is high, which cannot be directly feed into the classifier 

for further classification process. Hence, they have to be 

optimized before it is fed into the classifier. Though there are 

numerous optimization algorithm available for features 

optimization, GA have been used in this work to optimize the 

computed IPF features. This IPF optimization process through 

GA has been explained in the following Algorithm. 
 

(4) Classification 

The classification module in the proposed EEG signal 

detection system is important which performs the 

classification of the input optimized features into either FS or 

NFS. In past decades, the EEG signals were differentiated by 

many researchers using machine learning algorithms such as 

Support Vector Machine (SVM) and Decision trees. These 

machine learning algorithms exhibits certain limitations that 

they require a larger number of EEG signals in both FS and 

NFS case which consumed more time period for the 

classification process. Hence, the deep learning algorithms has 

been developed and used by the researchers in the EEG signal 

classification process. There is numerous conventional deep 

learning algorithms are available for EEG signal classification 

process such as LeNet, AlexNet and Inception networks. 

These are non-customizable architectures where the internal 

layering modules are not able to modify. This brings this 

research work to propose the novel EEGNet architecture 

which is the extension of the conventional deep learning 

architecture.  

The classification module of the EEGNet architecture can 

be operated in both training and testing phases. During training 

phase of the classification module, the optimized features are 

individually computed from FS and NFS and they are fed into 

the classifier in order to produce the individual training 

patterns for both FS and NFS. During testing phase of the 

classification module, the optimized features from the test 

EEG signal are fed into the classifier along with the individual 

training patterns which are obtained through the training phase 

of the classifier. 

In this work, EEGNet deep learning architecture is proposed 

for the classification of the optimized features from the test 

EEG signal. The proposed EEGNet architecture for the feature 

classification process has been illustrated in Figure 4. This 

EEGNet architecture has been designed with Optimized 

Module1 (OM1) and Optimized Module2 (OM2). This 

proposed EEGNet architecture has been derived from the 

conventional AlexNet deep learning architecture where the 

number of internal layers has been enhanced in order to 

produce a greater number of significant set of features. The 

number of significant internal features decides the 

classification rate performance, where the number of 

significant internal features is directly proportional to the 

classification rate performance. The conventional AlexNet 

architecture was designed with 5 Convolutional layers and 3 

pooling layers with Fully Connected Neural Networks 

(FCNN). The number of Convolutional layers in the 

conventional AlexNet has been improved by including a 

greater number of Convolutional layers. Moreover, the 

conventional AlexNet architecture functions as serial mode 

where the response of each internal layer is depending on the 

previous layer and hence it consumes more time period for the 

production of the internal features. This limitation has been 

resolved in the proposed EEGNet architecture by designing 
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the internal layers as parallel structuring method which 

produce a greater number of significant features with less 

computational time period.  

The IM1 constitutes with 3 Convolutional layers along with 

two pooling layers as described by the following equations. 

 

𝐼𝑀1 = {

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠: 𝐶11 𝑙𝑎𝑦𝑒𝑟,
 𝐶12 𝑙𝑎𝑦𝑒𝑟 𝑎𝑛𝑑 𝐶13 𝑙𝑎𝑦𝑒𝑟
𝑃𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟𝑠: 𝑃11 𝑙𝑎𝑦𝑒𝑟

 𝑎𝑛𝑑 𝑃12 𝑙𝑎𝑦𝑒𝑟

 (21) 

 

𝐶11 𝑙𝑎𝑦𝑒𝑟: 128 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 5 ∗ 5 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 

 

𝐶12 𝑙𝑎𝑦𝑒𝑟: 256 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 7 ∗ 7 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 

 

𝐶13 𝑙𝑎𝑦𝑒𝑟: 512 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 9 ∗ 9 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 

 

The IM2 constitutes with 3 Convolutional layers along with 

two pooling layers as described by the following equations. 

 

𝐼𝑀2 = {

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑎𝑦𝑒𝑟𝑠: 𝐶21 𝑙𝑎𝑦𝑒𝑟,
𝐶22 𝑙𝑎𝑦𝑒𝑟 𝑎𝑛𝑑 𝐶23 𝑙𝑎𝑦𝑒𝑟

𝑃𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟𝑠: 𝑃21 
𝑙𝑎𝑦𝑒𝑟 𝑎𝑛𝑑 𝑃22 𝑙𝑎𝑦𝑒𝑟

 (22) 

 

𝐶21 𝑙𝑎𝑦𝑒𝑟: 32 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 3 ∗ 3 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 

 

𝐶22 𝑙𝑎𝑦𝑒𝑟: 64 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 5 ∗ 5 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 

 

𝐶23 𝑙𝑎𝑦𝑒𝑟: 128 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 7 ∗ 7 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 

 

The output responses from both IM1 and IM2 are combined 

and fed into the FCNN layer which has been followed by 

SoftMax layer in order to produce the EEG signal 

classification results as either FS or NFS. In this EEGNet, the 

FCNN layer has been designed with three layering where 

layering 1 contains 4096 neurons, layering 2 contains 2048 

neurons and layering 3 contains 2 neurons. The neurons in 

layering 3 of the FCNN can be summed up which produces the 

classification results. 

The Hyper Parameters (HP) of the proposed EEGNet 

architecture decides the initial set up of the internal layers and 

they are given in Table 2. 

Further, the FS can be diagnosed into three distinct classes 

as Mild, Moderate and Severe for estimating their severity 

levels. The severity levels determine the mode of operation for 

Epileptic seizure. The same EEGNet architecture has been 

used for the diagnosis process also. During EEGNet training, 

mild, moderate and severe FS are individually trained by this 

architecture which produces the training patterns individually. 

During EEGNet testing, the classified FS can be diagnosed 

into any one of the three severity classes with respect to the 

individually trained patterns. 

 

Table 2. HP specified values of the EEGNet architecture 

 

HP Specified Values 

Momentum 0.7 

Learning rate 0.1 

# of epochs 100 

Batches 30 

Dropout rate 0.4 

Regularization Dropout 

Activation function ReLU 

 

 
 

Figure 4. Proposed EEGNet classification architecture 
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4. RESULTS AND DISCUSSIONS 

 

This research work uses two individual and independent 

EEG signal dataset which can be used for analyzing the 

performance computation of the FS and NFS detection system. 

The databases used in this research work are Bern-Barcelona 

(BEBA) and CHB-MIT. The EEG signals in these two 

databases are open access and any researcher in this field can 

directly use these signals for their academic research activities. 

These two individual databases contain FS and NFS only for 

the identification of seizure in the brain region.  

The BEBA database is constructed with the 7500 EEG 

signals which can be categorized into two individual FS and 

NFS subsets. The FS subset contains 3750 EEG signals which 

are belonging to the FS category and the NFS subset contains 

3750 EEG signals which are belonging to NFS category. All 

these signals available in this database are acquired from the 

two channel EEG electrodes and these signals are filtered by 

the higher order Butterworth Filter (BF). The low frequency 

unbiased frequencies in these captured EEG signals are 

detected and removed by this BF and it passes the captured 

EEG signal frequencies in the range between 0.5Hz and 150Hz. 

All these signals are decimated for 512 Hz frequency 

component. In this article, the classifier has been designed 

with 60%-40% ratio split up of the signals which are available 

in the database. Therefore, 2250 FS and 2250 NFS are 

belonging to 60% of training phase of the classifier and the 

remaining 1500 FS and 1500 NFS are belonging to 40% of 

testing phase of the classifier in this research work. The EEG 

signals in this BEBA dataset were obtained in the age group 

between 20 and 70 irrespective of the gender in the European 

countries. The 16-channel EEG electrodes were placed over 

the scalp of the patients and the analog EEG signals were 

captured through these channels. These obtained analog 

signals were converted into digital signals through the A/D 

converter and these digital signals are stored as a raw material 

in the storage device for further evaluation process.  

The CHB-MIT database is another database which has been 

used in this research work for computing the performance of 

the proposed EEG classification system. This database has 

been constructed by collecting the EEG signals from various 

age groups and sex of patients in Children’s Hospital Boston 

(CHB) and further this database has been maintained by the 

researchers in Massachusetts Institute of Technology (MIT) 

university. All the EEG signals in this database were sampled 

at the rate of 256 samples/second with 16-bit pixel resolution 

for each EEG signals. Totally, 6000 EEG signals are available 

in this database in the form of FS and NFS. The FS category 

consists of 3000 signals and the NFS category consists of 3000 

signals. As the signals split up in BEBA dataset, 60%-40% 

ratio has been used on the signals in this database also. 

Therefore, 1800 FS and 1800 NFS are belonging to 60% of 

training phase of the classifier and the remaining 1200 FS and 

1200 NFS are belonging to 40% of testing phase of the 

classifier in this research work. The EEG signals in this BEBA 

dataset were obtained in the age group between 35 and 85 

irrespective of the gender in the European countries. The 32-

channel EEG electrodes were placed over the scalp of the 

patients and the analog EEG signals were captured through 

these channels. These obtained analog signals were converted 

into digital signals through the A/D converter and these digital 

signals are stored as a raw material in the storage device for 

further evaluation process.  

The EEG signals in these two datasets are license free and 

hence they can be used for any research activities throughout 

the world. Hence, there is no need for ethical approval for the 

data usage from these two datasets. 

The EEG signal classification system has been performance 

evaluated by correctly detected FS and NFS in corresponding 

database. This research work performance is evaluated by the 

parameters FS Classification Rate (FSCR) and NFS 

Classification Rate (NFSCR) and these parameters have been 

stated in the following Equations. The FSCR is defined as the 

ratio between correctly classified FS and total count of FS and 

it is measured in terms of % with the values varied between 0 

and 100.The NFSCR is defined as the ratio between correctly 

classified NFS and total count of NFS and it is measured in 

terms of % with the values varied between 0 and 100. 

 

Table 3. FSCR estimation and analysis for BEBA and CHB-

MIT databases 

 

Databases # of FS 
Correctly  

Classified FS 
FSCR in % 

BEBA 1500 1491 99.4 

CHB-MIT 1200 1191 99.2 

 

𝐹𝑆𝐶𝑅 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑  𝐹𝑆

𝑁1
×100% (23) 

 

𝑁𝐹𝑆𝐶𝑅 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑   𝑁𝐹𝑆

𝑁2
×100% (24) 

 

whereas, N1 corresponds to total FS count and N2 corresponds 

to total NFS count. 

Table 3 is the FSCR Estimation and analysis for BEBA and 

CHB-MIT databases. The proposed system correctly classifies 

1491 FS over 1500 FS on BEBA database and obtains 99.4% 

FSCR. The proposed system correctly classifies 1191 FS over 

1200 FS on CHB-MIT database and obtains 99.2% FSCR. 

Table 4 is the NFSCR Estimation and analysis for BEBA 

and CHB-MIT databases. The proposed system correctly 

classifies 1490 NFS over 1500 NFS on BEBA database and 

obtains 99.3% NFSCR. The proposed system correctly 

classifies 1188 FS over 1200 FS on CHB-MIT A database and 

obtains 99% NFSCR. 

 
Table 4. NFSCR estimation and analysis for BEBA and 

CHB-MIT databases 

 

Databases 
# of 

NFS 

Correctly classified 

NFS 

NFSCR 

in % 

BEBA 1500 1490 99.3 

CHB-MIT 1200 1188 99 

 

In order to evaluate the computational efficiency of the 

proposed EEG signal classification system with respect to the 

ground truth EEG signals in both FS and NFS case, the 

following mathematical Equations has been used in this 

research work to analyse the efficiency of the developed EEG 

classification system. 

 
𝑆𝑖𝑔𝑛𝑎𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐷𝑆𝑒)

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 

(25) 

 
𝑆𝑖𝑔𝑛𝑎𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝐷𝑆𝑝)

=
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100% 

(26) 
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𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑆𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (27) 

 

𝑆𝑖𝑔𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆𝐴)

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% 

(28) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 (𝐹𝑆) =
1∗𝑆𝐷𝑆𝑒∗𝑆𝐷𝑆𝑝

𝑆𝐷𝑆𝑒+𝑆𝐷𝑆𝑝
 × 100% (29) 

 

whereas, TP is the FS count which has been identified as 

TRUE in total FS count, TN is NFS count which has been 

identified as TRUE in total NFS count, FP is the FS count 

which has been identified as FALSE in total FS count and FN 

is NFS count which has been identified as FALSE in total NFS 

count. 

These computational efficiency parameters have been 

measured with respect to ground truth EEG signals in both FS 

and NFS on both databases and they have been computed in %. 

Hence, the values in these computational parameters have 

been varied between 0 and 100. 

 

Table 5. Analysis of computational parameters of EEG 

signals in both BEBA and CHB-MIT databases 

 

Computational Efficiency 

Parameters in % 

Databases 

BEBA 
CHB-

MIT 

SDSe 99.3 99.1 

SDSp 99.1 99.2 

SP 98.7 98.6 

SA 98.9 98.8 

FS 98.5 98.7 

 

Table 5 is the analysis of computational parameters of EEG 

signals in both BEBA and CHB-MIT databases. The proposed 

EEG classification system obtains 99.3% SDSe, 99.1% SDSp, 

98.7% SP, 98.9% SA and 98.5% FS on the EEG signals of 

BEBA database. The proposed EEG classification system 

obtains 99.1% SDSe, 99.2% SDSp, 98.6% SP, 98.8% SA and 

98.7% FS on the EEG signals of CHB-MIT database. The 

proposed system provides optimum signal classification 

results on both BEBA and CHB-MIT databases. 

The implementation of Chebyshev Filter (CF) on the source 

EEG signals creates the huge impact on the signal 

classification rate and it also affects the performance 

efficiency of the entire EEG signal classification system. In 

order to check the proposed system in unbiased manner, the 

EEG classification system has been tested with CF and 

Butterworth Filter (BF) along with other signal filters with 

respect to the performance efficiency parameters SDSe, SDSp, 

SP, SA and FS on both BEBA and CHB-MIT databases in this 

research work. 

Table 6 is the impact analysis of signal filters on BEBA and 

CHB-MIT databases with respect to performance efficiency 

parameters. The proposed EEG classification system with CF 

obtains 99.3% SDSe, 99.1% SDSp, 98.7% SP, 98.9% SA and 

98.5% FS on the EEG signals of BEBA database. The 

proposed EEG classification system with CF obtains 99.1% 

SDSe, 99.2% SDSp, 98.6% SP, 98.8% SA and 98.7% FS on 

the EEG signals of CHB-MIT database. In order to evaluate 

the impact of the CF with respect to other signal filters on EEG 

signals, various existing signal filters BF, Spatial filter and 

Notch filter have been applied on the same EEG signals (both 

FS and NFS) on both BEBA and CHB-MIT databases. The 

implementation of BF in EEG classification system obtains 

97.2% SDSe, 97.3% SDSp, 96.9% SP, 96.4% SA and 95.9% 

FS on the EEG signals of BEBA database and also obtains 

96.2% SDSe, 96.4% SDSp, 96.2% SP, 95.9% SA and 95.3% 

FS on the EEG signals of CHB-MIT database. The 

implementation of spatial filter in EEG classification system 

obtains 96.5% SDSe, 96.7% SDSp, 95.4% SP, 95.3% SA and 

95.1% FS on the EEG signals of BEBA database and also 

obtains 95.1% SDSe, 95.3% SDSp, 95.3% SP, 94.3% SA and 

94.1% FS on the EEG signals of CHB-MIT database. The 

implementation of Notch filter in EEG classification system 

obtains 95.9% SDSe, 95.1% SDSp, 94.3% SP, 94.9% SA and 

94.3% FS on the EEG signals of BEBA database and also 

obtains 94.9% SDSe, 94.1% SDSp, 94.9% SP, 93.8% SA and 

94.3% FS on the EEG signals of CHB-MIT database. By 

analyzing all the signal filters on EEG signals with respect to 

various performance efficiency parameters, the proposed EEG 

classification system with CF provides the optimum 

classification results while comparing with other signal filters 

on both databases in this research work. 

Table 7 is the impact analysis of signal decomposition on 

BEBA and CHB-MIT databases with respect to performance 

efficiency parameters. The proposed EEG classification 

system with WEMD obtains 99.3% SDSe, 99.1% SDSp, 

98.7% SP, 98.9% SA and 98.5% FS on the EEG signals of 

BEBA database. The proposed EEG classification system with 

WEMD obtains 99.1% SDSe, 99.2% SDSp, 98.6% SP, 98.8% 

SA and 98.7% FS on the EEG signals of CHB-MIT database. 

In order to evaluate the impact of the WEMD with respect to 

other signal decomposition methods on EEG signals, various 

existing signal decomposition methods non-sub sampled 

Curvelet Transform (NSCT), Curvelet and Empirical Wavelet 

Transform (EWT) have been applied on the same EEG signals 

(both FS and NFS) on both BEBA and CHB-MIT databases. 

By analyzing all the signal decomposition methods on EEG 

signals with respect to various performance efficiency 

parameters, the proposed EEG classification system with 

WEMD provides the optimum classification results while 

comparing with other signal decomposition methods on both 

databases in this research work. 

 

Table 6. Impact analysis of signal filters on BEBA and CHB-MIT databases with respect to performance efficiency parameters 

 

Database Filter Type 
Performance Efficiency Parameters in % 

SDSe SDSp SP SA FS 

BEBA 

CF (in this work) 99.3 99.1 98.7 98.9 98.5 

BF 97.2 97.3 96.9 96.4 95.9 

Spatial Filter 96.5 96.7 95.4 95.3 95.1 

Notch Filter 95.9 95.1 94.3 94.9 94.3 

CHB-MIT 

CF (in this work) 99.1 99.2 98.6 98.8 98.7 

BF 96.2 96.4 96.2 95.9 95.3 

Spatial Filter 95.1 95.3 95.3 94.3 94.1 

Notch Filter 94.9 94.1 94.9 93.8 94.3 
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Table 7. Impact analysis of signal decomposition on BEBA and CHB-MIT databases with respect to performance efficiency 

parameters 
 

Database Filter Type 
Performance Efficiency Parameters in % 

SDSe SDSp SP SA FS 

BEBA 

WEMD 

(Proposed in this work) 
99.3 99.1 98.7 98.9 98.5 

NSCT 95.2 96.3 96.3 96.3 96.2 

Curvelet transform 94.1 95.2 95.1 95.1 95.7 

EWT 93.9 94.9 94.7 94.7 94.3 

CHB-MIT 

WEMD 

(Proposed in this work) 
99.1 99.2 98.6 98.8 98.7 

NSCT 96.3 96.1 95.8 95.2 95.3 

Curvelet transform 95.1 95.8 94.2 94.9 94.8 

EWT 94.9 94.2 94.8 94.1 93.9 

 

Table 8. Comparative estimation and analysis of the proposed WEMD-CNN method with other existing methods on BEBA 

database 

 

References Methodologies 
Performance Efficiency Parameters in % 

SDSe SDSp SP SA FS 

In this paper Proposed WEMD-CNN 99.3 99.1 98.7 98.9 98.5 

Kantipudi et al. [13] GBSO-TAENN 97.2 97.9 97.4 97.0 97.4 

Ahmad et al. [12] BTBC 97.1 97.3 97.1 96.4 96.9 

Mathe et al. [14] IMD-CNN 96.9 96.5 96.9 96.1 95.3 

Abenn et al. [11] LGBM classifier 96.5 96.1 96.3 95.7 95.1 

Akbari et al. [15] EWD 95.3 94.8 95.1 94.7 94.9 

Hussain et al. [16] Long short-term memory neural networks (LSTMNN) 93.9 93.7 94.2 93.2 94.8 

 

Table 9. Comparative estimation and analysis of the proposed WEMD-CNN method with other existing methods on CHB-MIT 

database 

 

References Methodologies 
Performance Efficiency Parameters in % 

SDSe SDSp SP SA FS 

In this paper Proposed WEMD-CNN 99.1 99.2 98.6 98.8 98.7 

Kantipudi et al. [13] GBSO-TAENN 97.8 97.2 97.1 97.4 97.5 

Ahmad et al. [12] BTBC 97.1 97.1 96.8 96.2 97.1 

Mathe et al. [14] IMD-CNN 96.8 96.8 96.3 96.0 96.9 

Abenn et al. [11] LGBM classifier 96.5 96.3 95.8 95.6 96.3 

Akbari et al. [15] EWD 96.1 95.2 95.2 95.2 95.9 

Hussain et al. [16] Long short-term memory neural networks (LSTMNN) 95.3 94.8 94.9 94.8 94.7 

 

Table 10. Comparative detection time estimation analysis of EEG signals on BEBA database 

 

References Methodologies 
Number of EEG 

Signals 

Detection Time (ms) per 

Signal 

In this paper Proposed WEMD-CNN 7500 0.7 

Kantipudi et al. [13] GBSO-TAENN 7500 1.1 

Ahmad et al. [12] BTBC 7500 1.5 

Mathe et al. [14] IMD-CNN 7500 1.4 

Abenn et al. [11] LGBM classifier 7500 1.9 

Akbari et al. [15] EMD 7500 2.1 

Hussain et al. [16] Long short-term memory neural networks (LSTMNN) 7500 2.3 

 

Table 11. Comparative detection time estimation analysis of EEG signals on CHB-MIT database 

 

References Methodologies 
Number of EEG 

Signals 

Detection Time (ms) per 

Signal 

In this paper Proposed WEMD-CNN 7500 0.5 

Kantipudi et al. [13] GBSO-TAENN 7500 0.9 

Ahmad et al. [12] BTBC 7500 1.2 

Mathe et al. [14] IMD-CNN 7500 1.7 

Abenn et al. [11] LGBM classifier 7500 1.9 

Akbari et al. [15] EMD 7500 2.4 

Hussain et al. [16] Long short-term memory neural networks (LSTMNN) 7500 2.7 

 

Table 8 is the comparative estimation and analysis of the 

proposed WEMD-CNN method with other existing methods 

on BEBA database. The performance comparisons have been 

carried out for the EEG signals in BEBA database between the 

proposed WEMD-CNN method with the other existing EEG 

signal classification methods Kantipudi et al. [13], Ahmad et 
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al. [12], Mathe et al. [14], Abenn et al. [11], Akbari et al. [15] 

and Hussain et al. [16]. It is observed that the proposed 

WEMD-CNN method on EEG signal classification system 

provides superior performance efficiency when compared 

with the other existing EEG signal classification method on 

BEBA database. 

Table 9 is the comparative estimation and analysis of the 

proposed WEMD-CNN method with other existing methods 

on CHB-MIT database. The performance comparisons has 

been carried out for the EEG signals in CHB-MIT database 

between the proposed WEMD-CNN method with the other 

existing EEG signal classification methods Kantipudi et al. 

[13], Ahmad et al. [12], Mathe et al. [14], Abenn et al. [11], 

Akbari et al. [15] and Hussain et al. [16]. It is observed that 

the proposed WEMD-CNN method on EEG signal 

classification system provides superior performance 

efficiency when compared with the other existing EEG signal 

classification method on CHB-MIT database. 

Detection Time (DT) is an important time-based 

performance analysis parameter which is the time 

consumption by the proposed method to correctly classify the 

single EEG signal (either FS or NFS). It is measured in milli 

second (ms). The lower DT shows that the proposed EEG 

classification system consumed lesser signal classification 

time and it is useful for the large signal classification system 

in real time environment. The DT has been measured in this 

article for both database EEG signals and the experimental 

results have been compared with other existing method. 

Table 10 is the comparative detection time estimation 

analysis of EEG signals on BEBA database with respect to 

other existing EEG classification methods. The proposed 

WEMD-CNN method consumed 0.7 ms for classification of 

single EEG signal on BEBA database. 

Table 11 is the comparative detection time estimation 

analysis of EEG signals on CHB-MIT database with respect to 

other existing EEG classification methods. The proposed 

WEMD-CNN method consumed 0.5 ms for classification of 

single EEG signal on BEBA database. 

It is significantly observed that the proposed WEMD-CNN 

method for EEG signal classification system consumed less 

DT on both database EEG signals. 

The computational cost with respect to inference time 

period and memory usage of the proposed method (algorithm) 

is used in this work to process of making predictions using a 

trained model. The inference time period is the time consumed 

by the proposed algorithm to obtain the classification result as 

either FS or NFS and the memory usage is the memory 

requirement for storing the proposed algorithm. The inference 

time period is measured in milli second (ms) and the memory 

consumption is measured in Mega Bytes (MB). The proposed 

WEMD-CNN method consumed 0.7 ms inference time period 

and also consumed 126 MB memory for classification of 

single EEG signal on BEBA database. The proposed WEMD-

CNN method consumed 0.5 ms inference time period and also 

consumed 135 MB memory for classification of single EEG 

signal on BEBA database. 

In this work, k-fold cross validation algorithm is used to test 

the experimental results of the proposed algorithm on the 

diverse dataset TUG EEG Corpus. From this dataset, 60 EEG 

signals are obtained (30 EEG signals are belonging to FS case 

and another 30 EEG signals are belonging to NFS case) and 

tested with the 6-fold cross validation algorithm, where each 

iteration contains 6 folds and each fold contains 6 modules and 

each module contains 10 EEG signals, as illustrated in the 

Figure 5. At fold 1 (k=1), the signals in A are tested where the 

signals in the remaining modules are trained. At fold 2 (k=2), 

the signals in B are tested where the signals in the remaining 

modules are trained. At fold 3 (k=3), the signals in C are tested 

where the signals in the remaining modules are trained. At fold 

4 (k=4), the signals in D are tested where the signals in the 

remaining modules are trained. At fold 5 (k=5), the signals in 

E are tested where the signals in the remaining modules are 

trained. At fold 6 (k=6), the signals in F are tested where the 

signals in the remaining modules are trained.  

For each fold, the experimental results of the proposed 

algorithm on the diverse dataset is measured. By taking the 

average value of all 6 folds, the experimental results on the 

diverse dataset using the proposed algorithm is similar to the 

experimental results of the proposed algorithm on BEBA and 

CHB-MIT datasets. 

 

 
 

Figure 5. Cross validation on diverse dataset TUG EEG Corpus using the proposed algorithm 
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5. CONCLUSIONS 

 

This research work proposes a novel EEGNet deep learning 

architecture for the detection of FS over NFS EEG signals in 

order to detect the epileptic seizure. The implementation 

impact of the WEMD has been analyzed with respect to 

various existing decomposition methods. This proposed 

system has been tested with two independent EEG datasets in 

order to analyze the stability and robustness of the EEG 

classification process. Finally, the FS can be diagnosed into 

three severity level classes using the trained EEGNet 

architecture. The proposed system correctly classifies 1491 FS 

over 1500 FS on BEBA database and obtains 99.4% FSCR. 

The proposed system correctly classifies 1191 FS over 1200 

FS on CHB-MIT database and obtains 99.2% FSCR. The 

proposed system correctly classifies 1490 NFS over 1500 NFS 

on BEBA database and obtains 99.3% NFSCR. The proposed 

system correctly classifies 1188 FS over 1200 FS on CHB-

MIT database and obtains 99% NFSCR. The proposed EEG 

classification system obtains 99.3% SDSe, 99.1% SDSp, 

98.7% SP, 98.9% SA and 98.5% FS on the EEG signals of 

BEBA database. The proposed EEG classification system 

obtains 99.1% SDSe, 99.2% SDSp, 98.6% SP, 98.8% SA and 

98.7% FS on the EEG signals of CHB-MIT database. Though 

the present methodologies stated in this work for FS and NFS 

classification process provided higher and optimum 

classification rate, these methods have been tested only on 

dataset signals and hence its stability and robustness have not 

been analyzed in this work which are identified as the 

limitations of this paper. The real time EEG signals can be 

used in future by the proposed methodologies stated in this 

research work to provide the adaptability of the algorithms to 

test the stability and robustness performance with large signal 

count. 
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