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The main goal is to develop a deep panoptic segmentation model specifically for medical 

image analysis, with an emphasis on recognizing common neurological disorders. The 

model aims to precisely identify and categorize various regions in brain scans by integrating 

sophisticated segmentation techniques with an autoencoder-based deep neural network, 

thereby aiding in the identification and diagnosis of neurodegenerative neurological 

disorders. This method has the potential to improve patient outcomes in neurological 

healthcare by increasing the accuracy of medical image interpretation. The proposed 

methodology is designed to provide precise and efficient automated detection and 

segmentation of neurological irregularities, including lesions in medical imagery using brain 

scan images. Valuable support to healthcare practitioners in their diagnostic and therapeutic 

efforts potentially in a web-based format for neurological disorders. The proposed model is 

aimed at supporting healthcare diagnosis by providing a reliable and effective system for the 

automatic recognition and categorization of neurological disorders using brain imaging 

techniques. By leveraging the specially designed U-NeuroSegNet infused with big data 

Spark processing, the model achieved exceptional accuracy and efficiency in identifying 

neurological abnormalities. In the proposed U-NeuroSegNet, the focus is on contributing 

significantly to advancements in neuro-oncology and personalized patient care ultimately 

benefiting individuals affected by neurological disorders. The study utilized large datasets 

of brain scan images. The U-NeuroSegNet model achieved an F1-score of 95.6%, a high 

accuracy of 98.2%, precision of 97.8%, sensitivity of 93.7%, and a recall rate of 98.0%. 

These results demonstrate the effectiveness of the U-NeuroSegNet model in accurately 

detecting neurological disorders, lesions, and tumors.  
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1. INTRODUCTION

Neuroimaging has become an integral component of 

modern clinical practice, largely due to significant 

advancements in medical imaging technologies. It enables 

visualization of anatomical and physiological features that are 

otherwise hidden, allowing clinicians to extract imaging 

biomarkers and gather critical diagnostic information. This 

capability has revolutionized the field of radiology, 

contributing to improved diagnosis and patient care [1]. 

Several neuroimaging modalities are currently in use, 

including Magnetic Resonance Imaging (MRI), 

Magnetoencephalography (MEG), Electroencephalogram 

(EEG), Computed Tomography (CT), Diffusion Tensor 

Imaging (DTI), and Positron Emission Tomography (PET). Of 

these, MRI is the most frequently employed technique for 

identifying and evaluating neurological conditions. 

Neuroimaging is used both in clinical diagnostics and in 

neurological research, providing insights into the structural 

and functional aspects of the brain [2]. MRI stands out for its 

ability to generate high-resolution images with exceptional 

soft tissue contrast, making it a preferred method in 

neuroimaging. Unlike CT scans that utilize ionizing radiation, 

MRI uses powerful magnetic fields and radiofrequency pulses 

to produce images, offering a safer alternative with no 

radiation exposure [3]. MRI signal generation is influenced by 

two primary relaxation parameters: longitudinal relaxation 

time (T1) and transverse relaxation time (T2). T1 indicates the 

time it takes for protons to realign with the magnetic field after 

excitation, while T2 represents the time for protons to lose 

phase coherence. These distinct relaxation properties produce 

signal differences that contribute to image contrast [4]. MRI 

techniques are broadly categorized into Structural MRI 

(sMRI), which captures detailed anatomical features, and 

Functional MRI (fMRI), which maps brain activity. The brain 

can be viewed in multiple orientations—Axial, Coronal, and 

Sagittal planes—as depicted in Figure 1 [5]. 

The study focuses on the implementation of panoptic 

instance segmentation for the automated analysis of medical 

images, particularly neurological conditions using brain scans. 

It involves a trained deep learning model designed to identify 

and precisely delineate neurological anomalies and lesions. 
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The model provides real-time results enabling healthcare 

professionals to make faster and more accurate diagnoses [6]. 

The dataset sourced from Kaggle's public repository and the 

Chennai Brain and Spine Centre. This work employs deep 

learning algorithms specifically enhanced and modified U-Net 

is to analyse medical images and detect patterns indicative of 

various brain abnormalities. Existing manual analysis of 

medical images is labour-intensive and prone to human error 

[7]. To address these challenges, propose a panoptic 

segmentation model based on a modified U-Net to automate 

and improve the accuracy of identifying and segmenting 

neurological abnormalities in brain scans. This research 

highlights the critical importance of precise and efficient 

medical image analysis in neurology [8]. Neurological 

disorders such as lesions, require prompt diagnosis and 

meticulous delineation to facilitate effective treatment 

planning. The proposed approach utilizes deep learning 

methodology is to enhance automation and accuracy in 

identifying and segmenting neurological abnormalities [9]. 

This model represents a significant advancement in the 

domain of medical image analysis, contributing to improved 

diagnostic workflows and patient outcomes [10]. 

These diseases have been found to affect various parts of 

the nervous system and, in severe cases, can lead to dementia. 

Neurodegenerative diseases (NDDs) currently affect more 

than 50 million people worldwide, a number expected to rise 

to 130 million by 2050. NDDs typically manifest in 

individuals between the ages of 60 and 80. NDDs are generally 

diagnosed by comparing atypical symptoms and biomarker 

expressions against the patient’s medical history [11]. Since 

NDDs progress slowly, clinical symptoms often remain 

undetectable even after decades of neurodegenerative 

processes. As there are currently no effective drugs or 

therapeutic strategies to prevent or delay the progression of 

neurodegeneration, early diagnosis of NDDs with maximum 

accuracy is critical [12]. This research primarily focuses on the 

neurodegenerative diseases: Arnold Chiari malformation 
disease, Encephalocele disease, Ventriculomegaly, 
Holoprosencephaly, etc. The subsequent sections will provide 

an in-depth explanation of these diseases [13]. 

This research endeavor holds immense potential to 

significantly elevate the standard of care for patients grappling 

with neurological conditions. The initial exploration of this 

kind of initiative highlights the critical and meticulous role that 

medical imaging plays in neurology [14]. Conditions affecting 

the nervous system particularly within the brain require swift 

and precise diagnosis to inform and develop effective 

treatment strategies shown in Table 1. This approach 

automates and enhances the process of identifying and 

delineating neurological anomalies in brain scans [15]. This 

innovative research initiative promises to significantly 

improve the quality of healthcare services provided to 

individuals suffering from neurological disorders [16]. 
 

 
 

Figure 1. MRI image 
 

1.1 Problem statement 
 

The early detection and accurate prediction of 

neurodegenerative neurological disorders—such as Arnold 

Chiari malformation, Cisterna Magna, Colphocephaly, 

Porencephaly, Ventriculomegaly—pose significant challenges 

due to the complex, progressive, and heterogeneous nature of 

these conditions. Existing diagnostic techniques largely 

depend on clinical assessments, neuroimaging, and biomarker 

evaluations, which are often invasive, time-intensive, and 

prone to subjective interpretation. Existing AI and machine 

learning models, while promising, face key limitations 

including inadequate handling of heterogeneous neuroimaging 

data, limited segmentation precision in distinguishing 

overlapping or diffuse brain regions, lack of scalability for 

large datasets, and insufficient integration with clinical 

workflows. Moreover, most models lack explainability 

restricts their utility in real-world medical settings. These 

critical gaps highlight the need for a robust, scalable, and 

interpretable deep learning-based segmentation framework 

that can efficiently process diverse brain imaging data and 

provide accurate, automated support for the diagnosis and 

monitoring of neurodegenerative neurological disorders. 
 

Table 1. The neurodegenerative disorders description 
 

Neurodegenerative 

Disorders 
Description 

Arnold Chiari malformation Arnold Chiari malformation occur when brain tissues are pressed down to spinal cord due to skull being 

small at one side. This affects neuromuscular function. 

Arachnoid Cyst Arachnoid cysts are fluid-filled growths in the brain and spinal cord that, when they enlarge beyond 3cm or 

bleed internally, result in permanent damage to nerves. 

Cerebellah Hypoplasia Cerebellar hypoplasia is a congenital problem when cerebellum is small in size. Less than the 10th 

percentile of gestational age for cerebellar diameter is considered harmful. For instance, the average TPD 

measurements range from 16.6 mm to 23.1 mm at 20.4 weeks of gestation and from 32.2 mm to 41.6 mm at 

31weeks of gestation 

Cisterna Magna Enlarged cerebellar region causes cisterna magna. It is a space in the posterior fossa dorsal to the medulla 

and caudal that is filled with cerebrospinal fluid. When larger than 10mm, they are usually dangerous 

causing neurological issues. 

Colphocephaly Colpocephaly is an uncommon genetic disorder characterized by lateral ventricle enlargement in two brain 

cavities. It is a congenital abnormality that results in the posterior brain ventricles growing larger than 10cc. 

Encephalocele A condition known as encephalocele results in brain tissue growing outside of a skull due to bone defect or 

any opening in skull causing neurological disorders. 

Holoprosencephaly When the human brain by birth is not predominately partitioned appropriately as right and left hemispheres 

people suffer from Holoprosencephaly problem and it is identified only in later stages of life. 

Hydranencephaly Hydranencephaly is an uncommon congenital condition in which there is no cerebral hemisphere. 

Ventriculomegaly Ventriculomegaly is a disorder where a build-up of cerebrospinal fluid (CSF) causes the brain to enlarge. 

Ventriculomegaly is categorized into mild, moderate, and severe based on the degree of enlargement.  
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1.2 Motivation 

 

Neurodegenerative disorders such as Arnold-Chiari 

malformation, Cisterna Magna abnormalities, Colpocephaly, 

Porencephaly, and Ventriculomegaly pose significant and 

increasing challenges to patients, families, and global 

healthcare systems. These conditions are marked by a 

progressive deterioration in motor and cognitive abilities, 

often resulting in substantial disability, a decline in life quality, 

and rising demands for long-term medical and personal care. 

Timely and accurate diagnosis is essential to initiate treatment 

strategies that may help slow the progression and improve 

clinical outcomes. However, the subtle onset of symptoms and 

the drawbacks of existing diagnostic techniques—which are 

frequently invasive, time-intensive, and subject to 

interpretation—contribute to delayed or missed diagnoses, 

particularly in early stages. 

Advancements in Artificial Intelligence (AI) and Machine 

Learning (ML) are offering new solutions to overcome these 

limitations. These technologies can process and interpret vast, 

multidimensional datasets from various sources such as 

neuroimaging, genetic information, and clinical records. By 

identifying intricate patterns and early biomarkers that 

traditional approaches may overlook, AI and ML support the 

development of more accurate, non-invasive, and scalable 

diagnostic systems. Predictive algorithms also have the 

capacity to flag individuals at risk before symptoms become 

clinically apparent, allowing for earlier intervention and 

personalized care planning. The pressing need to improve 

early detection methods, reduce diagnostic latency, and 

alleviate the societal impact of these diseases underscores the 

importance of AI-powered frameworks in transforming 

neurological care and integrating seamlessly into routine 

clinical workflows. 

 

 

2. RELATED WORKS 

 

A novel Convolutional Neural Networks (CNN) model was 

developed for object identification and word segmentation for 

medical image analysis is presented for the identification and 

mapping of diseases' locations and regions are crucial for 

precise diagnosis. The utilization of computing and its 

practicality in medical advancements [17]. Employing 

computer vision and machine learning, extensive analysis was 

carried out for medical image analysis. The use of artificial 

intelligence and advanced neural networks in medical imaging 

was explored probably offering a detailed summary of the 

subject. Concentrated on contrasting CNNs and its application 

in various medical diagnostic tasks [18]. Addressed a new 

method for enhancing the adaptability of deep learning models 

for analyzing medical images. Their system consists of a 

collection of deep learning model parts and elements designed 

for specific tasks might simplify the creation and modification 

of AI models for different medical imaging activities [19]. 

This could lead to more customized answers and quicker 

adjustments to particular diagnostic requirements. Introduced 

E-Res U-Net for image segmentation, this model improved the 

accuracy of the model using ultrasonic muscle images. This 

model's structure was altered from the basic U-Net to enhance 

performance in three aspects, the dilated convolution 

component the E-Res layer and the E-Res [20]. 

Proposed a brand-new density-regression-based multi-scale 

convolutional UNet Multi-scale Contextual Attention 

(MSCA-UNet), and when compared it with other sophisticated 

density regression techniques, revealed two significant 

advances. The encoder component used an MSCA block with 

multi-scale interaction capabilities [21]. A dual-attention-

based dense R-CNN model was presented. In this work 

involved a versatile and all-purpose instance segmentation 

framework Mask R-CNN. It can recognize objects in the 

image with good level of accuracy and produce superior 

segmentation labels for each occurrence [22]. To determine 

the performance of the designed CNN used AUC which tells 

how well the model can distinguish between classes across 

several thresholds. It showed the area under curve, assessed 

the accuracy of segmented regions compared with ground 

truth and showed how superficial it is compared to pixel 

accuracy [23]. To control side-effects of over-segmentation 

developed a neural network model retained only the minimum 

value of the objective area requiring edges of the object to be 

identified was safeguarded while the MRI image was being 

filtered and denoised [24].  

The 3D UNet architecture proposed shows great potential 

as a volumetric segmentation tool, especially when applied to 

brain scans. It is possible to capture spatial information 

throughout the entire volume of the brain scans by extending 

the U-Net architecture into three dimensions. This is an 

important development for precise segmentation [25]. The 

work focused on the automatic classification of brain 

abnormalities using integration of VGG-16 NN technique with 

Fast R-CNN algorithm. Fast R-CNN is an improvement over 

the original R-CNN method designed for faster and more 

accurate object detection. It involves two main stages: 

generating region proposals and then classifying these 

proposals using a deep learning network [26]. Incorporating 

uncertainty quantification helps in understanding the 

reliability of the model’s predictions. This is crucial in medical 

imaging, where decisions based on automated segmentation 

need to account for potential variability and errors [27]. 

Proposed framework focused on segmenting brain 

abnormalities and other quantifying uncertainties in 

biomedical images, particularly useful for conditions such as 

traumatic brain injuries, stroke, and multiple sclerosis. Used 

whole brain imaging and a gray level confrontation matrix to 

build a deep k-means fuzzy CNN for the detection of glioma 

in brain scan images [28, 29].  

A set of twelve Cohen class kernel functions processed EEG 

data for performing time frequency analysis. A feature vector 

containing modular energy values resulted from the data 

transformation process which was then provided to an 

Artificial Neural Network (ANN) classifier [30]. A new 

feature extraction method was created to handle time window 

observation variation through the optimum allocation 

approach [31]. The research applied Multiclass Least Square 

Support Vector Machine (MLS-SVM), which served to 

examine epileptic EEG signals; the application also monitored 

epileptic patient classification development. Researchers 

divided the classification process between partial and primary 

generalized epilepsy through the use of RBFNN and 

Multilayer Perceptron Neural Network (MLPNNs) [32]. 

A supervised clustering algorithm enables modeling 

historic clinical data which leads to predictions of patient 

survival based on the assigned cluster. Supervised learning 

strategies find combination with unsupervised learning 

through semi-supervised learning methods. Semi-supervised 

learning enhances limited labelled data by integrating 

additional unlabeled data to enable clustering (unsupervised) 
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techniques which boost the classification (supervised) 

methods while employing additional data for predictive model 

regularization. In transductive learning, the test data serves as 

unlabeled input to enhance standard supervised classification 

approaches without causing data leakage, as the true labels 

remain unshared. This approach delivers improved outcomes, 

especially in scenarios with limited available labeled data. 

 

 

3. MATERIALS AND METHODS 

 

 
 

Figure 2. Apache Spark framework for NeuroSegNet 
 

A Spark based DNN Model, U-NeuroSegNet Architecture, 

was specially designed for segmentation a modified Neuro-

Intrinsic Watershed (NIWatershed) algorithm was utilized for 

the work done. Proposed system U- NeuroSegNet. When the 

neural network is fed with brain images as inputs, it classifies 

images by instances and identifies several classes of 

neurological abnormalities shown in Figure 2. The U-

NeuroSegNet extracts relevant features from the input image 

and then projects them into segmentation masks. Spark is a 

data processing framework used for big data workloads that 

processes huge data sets using cluster computing. Spark 

Framework supports machine learning and big data processing 

in its engine. Using panoptic segmentation, which combines 

instance and semantic segmentation, created a unique U-

NeuroSegNet to capture intricacy pixel by pixel. The proposed 

model utilized Apache Spark IDE for processing. In the Spark 

framework utilized Apache MXNet, it is a module in the 

framework that supports machine and deep learning 

processing. Automatic scaling is supported by multiple GPU 

servers and multi-node clusters. NVIDIA Spark framework 

supports accelerated computing through the RAPIDS 

component to support pipeline processing. 

 

3.1 Dataset description 

 

The dataset for U-NeuroSegNet is a comprehensive 

collection designed to support deep learning and big data-

driven research in the detection and segmentation of 

neurodegenerative neurological disorders shown in Table 2. 

This combination provides a rich and diverse dataset 

consisting of approximately 10,500 patients. The imaging 

modalities used include both MRI and CT scans, capturing 

various perspectives and conditions relevant to neurological 

disorders. The dataset spans a wide age range from 20 to 85 

years and maintains a relatively balanced gender distribution 

of approximately 52% male and 48% female. It encompasses 

a variety of neurodegenerative and neurological conditions, 

including Arnold Chiari malformation, Cisterna Magna, 

Colphocephaly, Porencephaly, Ventriculomegaly, and brain 

tumors, with cases representing both early and advanced 

stages of disease progression. Kaggle dataset offers a global 

mix of samples, while the medical center data reflects a more 

localized population. Several potential biases must be 

considered, such as limited representation of pediatric and 

very elderly populations, variations in imaging standards 

across institutions, and underrepresentation of certain ethnic 

groups. Planned subgroup analysis will evaluate model 

performance across different population segments to ensure 

fairness and robustness in real-world applications. Access is 

restricted to approved research institutions to maintain data 

security and ethical compliance and sample data’s shown in 

Table 3. 

 

Table 2. Dataset description 

 
Attribute Description 

Sources 
- Kaggle (public neuroimaging dataset) 

- Partner medical center (clinical brain scans) 

Modalities Used MRI and CT brain scans 

Total Subjects ~10,500 patients (combined datasets) 

Age Distribution 20–85 years 

Gender Distribution ~52% Male, ~48% Female 

Disease Stages Early to advanced stages 

Geographic Representation 
- Kaggle: Mixed (global) 

- Medical center: Regional (single location) 

Potential Biases 

- Limited pediatric and elderly samples 

- Possible regional imaging standards 

- Underrepresentation of ethnic diversity 

Mitigation Strategies 
- Future inclusion of globally representative data 

- Subgroup performance analysis planned 

 

 

2350



 

Table 3. Sample data 

 
Patient ID Age Gender Modality Image Type Scan Size Tumor/Lesion Present Segmentation Mask 

P001 67 Male MRI T1-weighted 256×256×150 No NA 

P002 72 Female MRI T2-weighted 240×240×120 No NA 

P003 58 Male CT Axial 512×512×80 Yes Provided 

P004 45 Female MRI FLAIR 256×256×128 Yes (lesions) Provided 

P005 69 Female CT Coronal 512×512×90 No NA 

3.2 Image pre-preprocessing  

 

Preprocessing neuroimaging data is critical to ensure 

consistent, high-quality inputs for the deep learning model. 

The following steps outline the preprocessing pipeline for U-

NeuroSegNet. 

 

3.2.1 Noise reduction (Denoising) 

Gaussian Filter for Noise Reduction: The Gaussian filter 

𝐺(𝑖, 𝑗) is defined as: 

 

𝐺(𝑖, 𝑗) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑖2+𝑗2

2𝜎2 )  (1) 

 

where, σ is the standard deviation of the Gaussian distribution, 

controlling the filter's smoothness. (i,j) are the spatial 

coordinates of the pixel. The kernel size typically depends on 

σ, with a larger σ leading to a larger kernel and more 

smoothing. To apply the Gaussian filter, we perform a 

convolution of the filter with the image X(i,j): 

 

𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑖, 𝑗) = ∑ ∑ 𝐺(𝑥, 𝑦). 𝑋(𝑖 + 𝑥, 𝑗 + 𝑦)𝑘
𝑦=−𝑘

𝑘
𝑥=−𝑘   (2) 

 

where, 𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑖, 𝑗) is the denoised pixel value at position 

(𝑖, 𝑗). X(i,j) is the original noisy image. 𝐺(𝑥, 𝑦) is the Gaussian 

kernel at the relative position (𝑥, 𝑦) from the pixel (𝑖, 𝑗). k is 

the size of the kernel, typically k=σ×3 times. This process 

smooths out high-frequency noise while preserving the 

image's structure. 
 

3.2.2 Image resizing 

Resizing images to a uniform size is essential in deep 

learning applications to ensure that the input dimensions 

match the model's requirements. A common technique for 

resizing images is bicubic interpolation, which uses a weighted 

average of the nearest 16 pixels (4×4 grid) for a higher quality 

result compared to bilinear interpolation. Bicubic 

Interpolation: The equation for bicubic interpolation is given 

by: 
 

𝑋𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑖′, 𝑗′) = ∑ ∑ 𝑤(𝑥, 𝑖′). 𝑤(𝑦, 𝑗′). 𝑋(𝑖 + 𝑥, 𝑗 +3
𝑦=0

3
𝑥=0

𝑦)  
(3) 

 

where, 𝑋𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑖′, 𝑗′) is the resized pixel value at the new 

coordinates (𝑖′, 𝑗′) ; 𝑤(𝑥, 𝑖′) and 𝑤(𝑦, 𝑗′)  are the bicubic 

interpolation weights that are calculated based on the distance 

from the original pixel to the new pixel. X(i,j) is the original 

image pixel value at position (𝑖, 𝑗). The sums over x and y 

range from 0 to 3, as bicubic interpolation considers a 4×4 

neighborhood of pixels. The bicubic interpolation weights 

𝑤(𝑥, 𝑖′) for each pixel are typically calculated using the 

following cubic spline function:  

 

𝑤(𝑡) = {
1 − 2|𝑡| + |𝑡|3                  𝑓𝑜𝑟 0 ≤ |𝑡| < 1

4 − 8|𝑡| + 5|𝑡|2 − |𝑡|3 𝑓𝑜𝑟 0 ≤ |𝑡| < 1
   0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

  (4) 

Noise Reduction (Gaussian Filter): Applies a Gaussian 

kernel to smooth the image and reduce high-frequency noise, 

improving the quality of medical images for analysis. Image 

Resizing (Bicubic Interpolation): Resizes the image to a fixed 

resolution while maintaining sharpness and minimizing 

distortion by using a weighted average of nearby pixels.  

 

3.3 Data augmentation 

 

Data augmentation is a crucial step in medical image 

processing, especially when working with neuroimaging data 

like MRI scans, to increase the diversity and size of the dataset. 

Since medical datasets can be limited, augmentation 

techniques help the model generalize better by introducing 

variations that preserve the underlying structure of the image. 

These variations might include transformations like rotation, 

scaling, flipping, and elastic deformations. 

 

3.3.1 Rotation 

It involves rotating the image by an angle θ to simulate 

different orientations.  

 

[
𝑖′
𝑗′

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑖
𝑗
]  (5) 

 

where, θ is the angle of rotation (usually between −180∘ and 

180∘); (𝑖′, 𝑗′) are the coordinates of the rotated pixel. (𝑖, 𝑗) are 

the original pixel coordinates. By applying this transformation 

to the whole image, each pixel is repositioned based on the 

rotation angle, allowing the network to learn from different 

perspectives of the brain structures in neuroimaging. 

 

3.3.2 Flipping 

It is a simple and effective augmentation method, especially 

flipping images horizontally or vertically. Horizontal flipping 

is represented by: 

 

𝑋𝑓𝑙𝑖𝑝𝑝𝑒𝑑(𝑖, 𝑗) = 𝑋(𝑊 − 𝑖, 𝑗) (6) 

 

where, W is the width of the image. 𝑋𝑓𝑙𝑖𝑝𝑝𝑒𝑑(𝑖, 𝑗) is the pixel 

value after horizontal flipping. 𝑋(𝑖, 𝑗)  is the original image 

pixel value at coordinates (𝑖, 𝑗).  Similarly, vertical flipping 

can be done by reflecting the image along the vertical axis. 

 

𝑋𝑓𝑙𝑖𝑝𝑝𝑒𝑑(𝑖, 𝑗) = 𝑋(𝑖, 𝐻 − 𝑗) (7) 

 

where, H is the height of the image. This transformation swaps 

the pixel values in a vertical manner. Flipping images helps 

the model learn from different mirrored perspectives, which is 

crucial in tasks like brain lesion segmentation, where spatial 

orientation is not fixed. 

 

3.3.3 Scaling (Resizing) 

It alters the size of the image, either by zooming in or out, 

which simulates varying levels of focus or distances. The 
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scaling transformation is represented by: 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑(𝑖′, 𝑗′) = 𝑋(𝛿𝑖 . 𝑖, 𝛿𝑗. 𝑗) (8) 

 

where, 𝑋𝑠𝑐𝑎𝑙𝑒𝑑(𝑖′, 𝑗′)  is the pixel value at the scaled 

coordinates. 𝛿𝑖(𝑖) and 𝛿𝑗(𝑗) are scaling factors in the i and j 

directions. (𝑖, 𝑗) are the original pixel coordinates. Scaling can 

help the model learn spatial invariance, ensuring the model 

recognizes structures irrespective of their size in the image. 

 

3.3.4 Elastic deformation 

Introduces random deformations in the image, mimicking 

the variability found in biological tissues, such as the brain's 

elasticity. This method is particularly useful in neuroimaging 

as it preserves anatomical structures while introducing more 

variability. The deformation can be represented by the 

following equation: 

 

𝑋𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑(𝑖′) = 𝑋(𝑖 + 𝛿𝑖(𝑖)), 𝑗 + 𝛿𝑗(𝑗)) (9) 

 

where, 𝑋𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑(𝑖′)  is the pixel value after applying the 

deformation. 𝛿𝑖(𝑖) and 𝛿𝑗(𝑗) are random displacements based 

on a Gaussian distribution. The displacement fields 𝛿𝑖(𝑖) and 

𝛿𝑗(𝑗)  are usually generated from a random noise field, and 

their values are scaled based on the desired magnitude of 

deformation. Elastic deformations simulate slight distortions 

in the neuroimaging data, allowing the model to learn more 

generalized features and improve robustness to such variations. 

 

3.3.5 Brightness and contrast adjustments 

Adjusting the brightness and contrast of images helps 

simulate different imaging conditions. The pixel intensities 

can be modified as follows: 

Brightness Adjustment:  

 

𝑋𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛𝑒𝑑(𝑖, 𝑗) = 𝑋(𝑖, 𝑗) + ∆𝑋 (10) 

 

where, Δ is a constant added to all pixel intensities to adjust 

the brightness. 

Contrast Adjustment:  

 

𝑋𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑒𝑑(𝑖, 𝑗) = 𝛼. (𝑋(𝑖, 𝑗) − 𝜇) + 𝜇 (11) 

 

where, α is the contrast scaling factor (typically α>1 for 

increasing contrast). μ is the mean intensity value of the image. 

𝑋𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑒𝑑(𝑖, 𝑗) is the adjusted pixel value. 

Brightness and contrast adjustments help the model learn 

from variations in the image quality due to different scanners 

or acquisition conditions. 

 

3.3.6 Shearing  

It involves applying a shear matrix that distorts the image in 

one direction, typically along the horizontal or vertical axis. 

The equation for horizontal shearing is: 
 

[
𝑖′
𝑗′

] = [
1 ⋋
0 1

] [
𝑖
𝑗
]  (12) 

 

where, λ is the shear factor, controlling the amount of 

distortion. (𝑖′, 𝑗′)  are the transformed pixel coordinates. 

(𝑖, 𝑗) are the original coordinates. Shearing helps simulate 

perspective shifts in the images, which may occur due to 

different angles of data collection or movement of the subject. 

These data augmentation methods significantly enhance the 

model's ability to generalize, improving performance in 

detecting and segmenting neurodegenerative neurological 

disorders from neuroimaging datasets. 
 

3.4 NIWatershed algorithm 
 

The modified NIWatershed algorithm is a technique used 

for image segmentation, particularly for separating 

overlapping objects or regions. NIWatershed algorithm is 

utilized to segment the brain images into individual regions or 

components, facilitating the identification and analysis of 

distinct anatomical structures and pathological abnormalities 

shown in Figure 3. NIWatershed Algorithm has been utilized 

to address challenges such as heterogeneity and irregular 

shape can complicate existing segmentation approaches. By 

applying the algorithm to preprocessed brain scan images, we 

were able to effectively partition the regions, enabling precise 

measurements of volume and facilitating quantitative analysis 

of abnormalities. 
 

 
 

Figure 3. Watershed basins 
 

NIWatershed algorithm is a variation of the classical 

Watershed algorithm for segmenting brain scan images. The 

algorithm treats pixel intensities as a terrain where higher 

intensities represent peaks and lower intensities represent 

valleys shown in Figure 4. The algorithm then "floods" the 

map from the valleys (pixels with the lowest intensities) and 

lets the watershed markers converge at the peaks (pixels with 

the highest intensities). If refinement of bounding regions is 

necessary NIWatershed algorithm auto-adjusts the bounds. 

Once the U-NeuroSegNet predicts potential bounding boxes 

for objects in an image, the NIWatershed algorithm can be 

applied to better separate objects that are close together or 

overlapping conveniently which helps in increasing accuracy 

effectively. NIWatershed Segmentation works by grouping 

pixels based on similar intensities. It separates the abnormal 

region from the rest of the normal region of the brain scan 

image shown in Figure 5. The NIWatershed Segmentation is a 

morphological operation to double-check the predicted output. 

The NIWatershed Segmentation algorithm is an advanced 

technique used to segment regions of interest in neuroimaging 

data, such as MRI scans by identifying and isolating specific 

structures, lesions, or abnormalities related to 

neurodegenerative disorders (e.g., Arnold Chiari 

malformation, Arachnoid Cysts). The Watershed algorithm is 

inspired by the topographic analogy of a watershed, where the 

image intensity is treated such as landscape, and "flooding" is 

simulated to identify regions of interest. The NIWatershed 

algorithm incorporates normalized intensity values to improve 

segmentation accuracy, especially for medical images where 

intensity distributions can vary due to different acquisition 

methods or conditions. 
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Figure 4. NIWatershed processing 

 

 
 

Figure 5. NIWatershed algorithm processing 

 

3.5 Algorithm of Watershed segmentation 

 

3.5.1 Step 1: Pre-processing of image 

Before applying the Watershed algorithm, an initial pre-

processing step is required to enhance the contrast and remove 

noise, ensuring the features are well-defined. Common pre-

processing steps include smoothing (Gaussian filtering), 

histogram equalization, and noise reduction. 

Gaussian filtering: 

 

𝑋𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑(𝑖, 𝑗) = ∑ ∑ 𝐺(𝑥, 𝑦). 𝑋(𝑖 + 𝑥, 𝑗 +𝑘3
𝑦=−𝑘

𝑘
𝑥=−𝑘

𝑦)  
(13) 

 

where, 𝐺(𝑥, 𝑦)  is the Gaussian kernel, and 𝑋(𝑖, 𝑗)  is the 

original image. 
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3.5.2 Step 2: Gradient calculation 

The next step involves computing the gradient of the image. 

The gradient magnitude is used to identify the boundaries of 

regions (edges). In the context of neuroimaging, these 

gradients highlight boundaries between different brain regions 

or lesions. The gradient of an image 𝑋(𝑖, 𝑗) is computed as: 

 

𝑮(𝒙, 𝒚) = √(
𝜕𝑋

𝜕𝑖
)

2

+ (
𝜕𝑋

𝜕𝑗
)

2

  (14) 

 

where, 𝐺(𝑥, 𝑦) is the gradient magnitude at the point (𝑖, 𝑗) and 
𝜕𝑋

𝜕𝑖
 and 

𝜕𝑋

𝜕𝑗
 are the partial derivatives of the image intensity with 

respect to the spatial coordinates. 

 

3.5.3 Step 3: Normalization of intensity 

Normalizing the intensity values is crucial to reduce the 

impact of varying intensities from different imaging 

conditions. The normalized intensity 𝑋𝑛𝑜𝑟𝑚(𝑖, 𝑗) at each pixel 

can be calculated as: 

 

𝑋𝑛𝑜𝑟𝑚(𝑖, 𝑗) =
𝑋(𝑖,𝑗)−𝑋𝑚𝑖𝑛

Xmax−Xmin
  (15) 

 

where, min(X) and max(X) are the minimum and maximum 

intensity values of the X, respectively. In this expression, 

Xmin and Xmax represent the lowest and highest intensity 

values found in matrix. 

This normalization ensures the intensity values are scaled to 

a [0, 1] range, making it easier for the watershed algorithm to 

distinguish between different intensity regions. 

 

3.5.4 Step 4: Watershed transformation 

The algorithm "floods" this surface starting from low points 

(local minima) and grows regions until boundaries (edges) are 

reached. 

The flooding process can be modeled as: 

 

𝑋𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑(𝑖, 𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑟(𝑑𝑖𝑠𝑡(𝑋(𝑖, 𝑗), 𝑟) (16) 

 

where, r represents regions of the image, which start from seed 

points; 𝑑𝑖𝑠𝑡(𝑋(𝑖, 𝑗), 𝑟)  measures the distance between the 

pixel's intensity 𝑋(𝑖, 𝑗)  and the region's intensity r. The 

flooding process continues until all pixels are assigned to a 

region, and boundaries are formed based on the intensity 

gradients. 

 

3.5.5 Step 5: Markers and seed point initialization 

The algorithm requires markers or seed points to initiate the 

watershed process. These markers typically correspond to 

areas of high interest, such as a lesion or a specific anatomical 

region in the brain (e.g., gray matter, white matter). Markers 

can be placed manually, or an automatic method (like 

thresholding) can be used to select initial points: 
 

𝑀𝑎𝑟𝑘𝑒𝑟(𝑖, 𝑗) =

{
1,   𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    
  

(17) 

 

3.5.6 Step 6: Segmentation and region labelling 

After the flooding process, each pixel will be assigned to a 

specific region, labelled according to the watershed labels. The 

output of the watershed algorithm is a segmented 

image  𝑋𝑠𝑒𝑔(𝑖, 𝑗) where distinct regions corresponding to 

different brain structures or abnormalities are separated. The 

segmentation result can be represented as: 

 

𝑋𝑠𝑒𝑔(𝑖, 𝑗) = 𝑟𝑒𝑔𝑖𝑜𝑛 𝑙𝑎𝑏𝑒𝑙 𝑎𝑡 (𝑖, 𝑗) (18) 

 

where, each region corresponds to a specific anatomical or 

pathological feature (e.g., a lesion or an area of atrophy). 

 

Pseudo Code 

Input: Original Image I(x, y) 

Preprocess image using Gaussian filter 

Compute gradient G(x, y) 

Normalize image intensity I_norm(x, y) 

Generate markers (seeds) for watershed (could be based 

on thresholding) 

Apply Watershed transformation: 

    For each pixel (x, y): 

        Compute flooding distance and assign to region 

based on intensity gradient 

    Assign regions based on flooding process and boundary 

detection 

Output: Segmented image I_seg(x, y) with labeled regions 

 

The NIWatershed Segmentation Algorithm for 

Neurodegenerative Neurological Disorders relies on the 

concept of watershed flooding applied to normalized intensity 

images to identify regions of interest, such as lesions or 

atrophied areas in neuroimaging data. It includes 

preprocessing, gradient computation, intensity normalization, 

and region labeling steps. The algorithm's mathematical basis 

involves gradient and intensity calculations, normalization, 

and region labeling, making it suitable for the segmentation of 

complex medical images such as MRIs in the diagnosis and 

study of neurodegenerative diseases. 

 

3.6 Panoptic segmentation 

 

A comprehensive strategy that combines instance and 

semantic segmentation referred to as panoptic segmentation. 

Semantic segmentation offers an in-depth knowledge of the 

discrete characteristics found in brain images, while instance 

segmentation assigns a distinct label to each pixel. Object 

detection and segmentation are merged into a single, cohesive 

framework through panoptic segmentation. With this 

technique, regions of interest are identified using the output of 

an object detector, and object boundaries are then precisely 

delineated using a segmentation module. 

 

3.6.1 IoU and ABD in panoptic segmentation 

The proposed model, NeuroSegNet uses panoptic 

segmentation shown in Figure 6. The two most important 

factors affecting panoptic segmentation are Intersection over 

Union and Accurate Boundary Detection. The confidence 

score over the projected bounding box and predicted object 

class is directly impacted by the intersection over union. A 

modified edge detection technique is used for Accurate 

Boundary Detection (ABD) to predict boundaries with high 

precision. 

 

3.6.2 Panoptic segmentation is dependent on ground truth 

For complex tasks of panoptic segmentation, it requires 

solid Ground Truth data. The training images have been 

accurately annotated to indicate the exact boundaries of 

objects. The model uses this for testing its output predictions 

against the ground truths to decide and improve accuracy.  
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Figure 6. Flow of panoptic segmentation 

 

 
 

Figure 7. Neuro intensive lightweight panoptic segmentation 

 

Panoptic segmentation uses Gaussian filters with Laplacian 

transformation for edge detection, shown in Figure 7. This is 

particularly useful in medical imaging for tasks such as the 

identification of specific regions in the brain or lesions related 

to neurodegenerative disorders. The ground truth in the 

context of panoptic segmentation is manually annotated data 

that provides the true label for each pixel in an image. For 

effective training and evaluation, the ground truth must 

contain both semantic and instance-level annotations. In 

panoptic segmentation, the ground truth is typically 

represented in the following format: 

 

𝐺𝑇𝑝𝑎𝑛𝑜𝑝𝑡𝑖𝑐 = {(𝑝𝑥 , 𝐶𝑥, 𝑟𝑥)} (19) 

where, 𝑝𝑥 represents the pixel positions in the image; 𝐶𝑥  is the 

semantic class label assigned to pixel 𝑝𝑥 (e.g., "lesion," "gray 

matter," etc.). 𝑟𝑥 is the instance-specific label, distinguishing 

between different objects of the same class (e.g., lesion 1, 

lesion 2). 

Semantic Segmentation Ground Truth: For semantic 

segmentation, the ground truth is a map where each pixel is 

assigned a class label: 
 

𝐺𝑇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑖, 𝑗) = 𝐶(𝑖, 𝑗) (20) 

 

where, 𝐺𝑇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑖, 𝑗) 𝑖𝑠 the class label at pixel (𝑖, 𝑗); 𝐶(𝑖, 𝑗) 

is the class label for the pixel at position (𝑖, 𝑗) ; such as 

“background,” “lesion,” “gray matter,” etc. 

Instance Segmentation Ground Truth: In instance 

segmentation, each object (or region of interest) in the image 

needs to be labeled separately, even if they belong to the same 

class. This is done using a unique instance ID 𝐺𝑇𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗). 

 

𝐺𝑇𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) = 𝑟(𝑖, 𝑗) (21) 

 

An instance label that distinguishes between different 

objects of the same class. 

 

3.6.3 Panoptic segmentation loss function 

In panoptic segmentation, the loss function is typically a 

combination of losses for semantic segmentation and instance 

segmentation. The overall loss 𝐿𝑝𝑎𝑛𝑜𝑝𝑡𝑖𝑐 can be defined as: 

 

𝐿𝑝𝑎𝑛𝑜𝑝𝑡𝑖𝑐 =⋋𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 +⋋𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐿𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (22) 

 

where, 𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐  is the loss associated with semantic 

segmentation (e.g., cross-entropy loss between predicted and 

ground truth class labels); 𝐿𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒is the loss associated with 

instance segmentation (e.g., a distance-based loss between 

predicted and ground truth instance .labels). ⋋𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐  and 

⋋𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒  re-balancing weights for the semantic and instance 

segmentation losses. 

Semantic Loss Function: The semantic loss can be 

expressed as 

 

𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 =
− ∑ ∑ 1{𝐶𝑥=𝐶(𝑖,𝑗)} log 𝑝(𝐶𝑥|𝑋(𝑖, 𝑗))𝐶𝑥∈𝐶𝑖,𝑗   

(23) 

 

where, C is the set of all possible class labels. 1{𝐶𝑥=𝐶(𝑖,𝑗)} is the 

indicator function that is 1 if the class 𝐶𝑥  matches the class 

label at pixel (𝑖, 𝑗); 𝑝(𝐶𝑥|𝑋(𝑖, 𝑗))is the predicted probability of 

class 𝐶𝑥 for the pixel (𝑖, 𝑗).  

Instance Loss Function: For instance, segmentation, a 

typical loss function involves the prediction of unique instance 

labels and boundaries. A common approach is the Hungarian 

algorithm for instance matching, and the loss can be defined 

as: 

 

𝐿𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ ∑ (‖𝑋𝑝𝑟𝑒𝑑(𝑖, 𝑗) − 𝑋𝑔𝑡(𝑖, 𝑗)‖
2

)𝑖,𝑗
𝑁
𝑥=1   (24) 

 

where, 𝑋𝑝𝑟𝑒𝑑(𝑖, 𝑗) is the predicted instance label at pixel (𝑖, 𝑗); 

𝑋𝑔𝑡(𝑖, 𝑗) is the ground truth instance label at pixel (𝑖, 𝑗); N is 

the total number of instances. 

 

3.6.4 Evaluation metrics for panoptic segmentation 

To evaluate the performance of a panoptic segmentation 

model, various metrics are used. The two main components 
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are semantic segmentation accuracy and instance 

segmentation accuracy. 

Panoptic Quality (PQ): The Panoptic Quality metric 

combines both segmentation and instance accuracy: 

 

𝑃𝑄 =
1

|𝑃|
∑

|𝑇𝑃𝑝|

|𝐺𝑇𝑝|+|𝐹𝑃𝑝|𝑝𝜖𝑃   (25) 

 

where, P is the set of panoptic predictions. 𝑇𝑃𝑝 , 𝐹𝑃𝑝 , and 

𝐺𝑇𝑝  are the true positives, false positives, and ground truth 

pixels in panoptic prediction ppp, respectively. 

Semantic Accuracy (mIoU): Mean Intersection over Union 

(IoU) for semantic segmentation: 

 

𝑚𝐼𝑜𝑈 =
1

|𝐶|
∑

|𝐺𝑇𝐶𝑥∩𝑃𝑟𝑒𝑑𝐶𝑥|

𝐺𝑇𝐶𝑥∪𝑃𝑟𝑒𝑑𝐶𝑥
𝐶𝑥∈𝐶   (26) 

 

where, C is the set of semantic classes. 𝐺𝑇𝐶𝑥
and 𝑃𝑟𝑒𝑑𝐶𝑥

 are 

the ground truth and predicted regions for class 𝐶𝑥. 

Instance Segmentation Quality (SQ): Measures the 

instance-level accuracy: 

 

𝑆𝑄 =
1

|𝑋|
∑

|𝑇𝑃𝑥|

|𝐺𝑇𝑥|+|𝐹𝑃𝑥|𝑥𝜖𝑋   (27) 

 

where, X is the set of instances. 𝑇𝑃𝑥 , 𝐹𝑃𝑥, and 𝐺𝑇𝑥 are the true 

positives, false positives, and ground truth pixels for instance 

x, respectively. 

The ground truth in panoptic segmentation involves both 

semantic and instance-level annotations. Panoptic 

segmentation aims to provide a comprehensive segmentation 

map by assigning both class labels and instance IDs to each 

pixel. The ground truth equations define how these labels are 

assigned, and the loss functions and evaluation metrics ensure 

that the model can be trained and assessed for both aspects. 

These methods are particularly useful in medical imaging 

tasks, such as segmenting and identifying lesions or other 

areas affected by neurodegenerative disorders. 

 

3.7 U-NeuroSegNet encoder/decoder 

 

The U-NeuroSegNet comprises an encoder-decoder 

network structure augmented with skip connections, which 

play a vital role in preserving spatial information throughout 

the segmentation process. In proposed U-NeuroSegNet is 

based on the principle of the encoding and decoding process. 

The encoder in U-NeuroSegNet extracts detailed features from 

the input medical image, capturing relevant patterns indicative 

of abnormalities presence. Subsequently, the decoder 

reconstructs the segmented output, utilizing the extracted 

features to delineate boundaries accurately. While no specific 

formula governs this process, the architecture's design 

incorporates principles related to convolutional operations, 

skip connections, and activation functions to facilitate 

effective brain segmentation.  

 

3.7.1 Subnet division 

It involves dividing the neural network architecture into 

smaller, manageable subnetworks. Divide the neural network 

into multiple subnetworks to facilitate parallel processing and 

optimize computational efficiency. 

 

3.7.2 Category brain slicing 

This method focuses on segmenting the brain into different 

categories or regions based on specific criteria. Categorically, 

brain slicing is used to partition the brain images into distinct 

regions corresponding to different anatomical structures and 

pathological features, aiding in the accurate detection and 

classification of brain images. 

 

3.7.3 Narrow object region  

Narrow object region detection aims to identify and 

delineate small or thin structures within the images. This 

method is employed to detect narrow regions within the brain 

images that correspond to abnormality boundaries or blood 

vessels, enabling precise segmentation and analysis. The 

reason why encoder and decoders are relevant to designing 

Deep U-NeuroSegNet is that output results must have the same 

dimension as the input. In the Panoptic Segmentation task 

done ensures output image Pyramid Backbone Network Input 

Instance Head Semantic Head Semantic Logits Mask Logits 

Box Class Panoptic Head Panoptic logits is of same dimension 

as the original input. Proposed DeepU-NeuroSegNet uses a 

modified panoptic segmentation that is suitable for ultrasound 

images. The neural network is fed brain scan images as inputs, 

and classifies objects pixel by pixel. 

 

 
 

Figure 8. U-NeuroSegNet architecture 
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In the encoder-decoder architecture all pixels are classified 

as abnormal/normal. The encoder takes the required features 

from images shown in Figure 8. The encoder contains conv 

layers, Relu and Maxpool to extract relevant features for each 

class. The decoder creates feature maps and takes the extracted 

vectors and reconstructs a segmentation mask. Skip 

Connection is added to decoder to ensure decoder works with 

specific features rather than general ones. The loss function is 

an intrinsic cross-entropy loss function used in the U-

NeuroSegNet model to compare the predicted output for each 

class against the ground truth value.  

 

𝐿𝑜𝑠𝑠 = − ∑ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ(𝑘) ⊙ log (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑘))𝑛   (28) 

 

where, 𝑔𝑟𝑡𝑟𝑢𝑡ℎ(𝑘) represents the ground truth value for class 

k. ⊙ is the element-wise multiplication 

operator. 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑘) is the predicted probability 

distribution for class k generated by the softmax function. 

Here, 𝑍𝑘 represents the raw scores (logits) from the neural 

network before applying the softmax function. The softmax 

function calculates the probability distribution for each class 

by normalizing the logits across all n classes: 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑘) =
𝑒𝑥𝑝(𝑍𝑘)

∑ 𝑒𝑥𝑝(𝑍𝑦)𝑛
𝑦=1

  (29) 

 

where, 𝑍𝑘  is the score for class k (logit). n is the number of 

classes. The denominator normalizes the exponentiated logits 

to give a probability distribution across all classes. 

This loss function helps the model adjust its weights and 

improve accuracy by penalizing incorrect predictions based on 

the difference between the predicted probability and the 

ground truth. In U-NeuroSegNet the dice loss is a loss function 

that weighs the imbalance between the intersection area and 

total area in similar kind of images. The dice loss will be less 

when dice coefficient is high. Dice loss represents the 

imbalance in segmentation mask. The 𝛹 represents the 

smoothing factor and is used both in numerator and 

denominator. The combined Cross-Entropy Loss and Dice 

Loss function is expressed as: 

 
𝐿𝑜𝑠𝑠 = 2 ∑ (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑘) ⊙ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ(𝑘) + 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠)𝑛   (30) 

 

where, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑘) is the predicted probability distribution 

for class k generated by the softmax function. 𝑔𝑟𝑡𝑟𝑢𝑡ℎ(𝑘) is 

the ground truth for class k. The Dice Loss is added to penalize 

the difference between the predicted segmentation mask and 

the ground truth mask. The Dice similarity coefficient is 

commonly used to measure the overlap between two sample 

sets. It is defined as: 

 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 −
2 ∑ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ(𝑘)⊙𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑘)𝑛

𝑙=1

∑ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ(𝑘)+∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑘)𝑛
𝑙=1

𝑛
𝑙=1

  (31) 

 

𝑆𝑛(𝑖) =
exp (𝑓𝑚(𝑖))

∑ exp (𝑓𝑚𝑘(𝑖))𝑛
𝑙=1

  (32) 

 

where, 𝑆𝑛(𝑖) represents the probability of class n for the pixel 

x. 𝑓𝑚(𝑖) is the feature map function at position i for the kth 

class. The sum in the denominator is the normalization factor 

ensuring that the probabilities for all classes sum to 1, and the 

feature map function 𝑓𝑚(𝑖)  corresponds to the activation 

function output for the pixel at position i. Proposed model also 

features an innovative mechanism for weight pre-computation 

based on the pixel frequency across the different classes in the 

training dataset. This pre-processing strategy helps the model 

to focus more effectively on class imbalances during training, 

enabling better segmentation performance for 

underrepresented classes. The equation for the modified 

morphological operation in U-NeuroSegNet is given as: 

 

Ω(𝑥) = Ω𝐶(𝑥) + Ω0log (
1

2
∫ [𝐾1(𝐼) − 𝐾2(𝐼)]2∞

−∞
𝑑𝜁)  (33) 

 

where, Ω(𝑥)  is the precomputed weight for pixel x in the 

image. Ω𝐶(𝑥) represents the weight map for pixel x.  Ω0 is a 

constant that acts as a scaling factor for the precomputed 

weight. 𝐾1(𝐼)  is the distance to the nearest pixel's border, 

which refers to the proximity to the nearest boundary of a 

specific object or structure within the image. This is associated 

with the pixel I. 𝐾2(𝐼) represents the distance to the second 

closest pixel's border, which helps in determining separation 

between different regions or objects within the image. ζ is the 

integration variable, indicating the spatial relationship 

between the pixels being considered in the morphological 

operation. dζ represents the differential element of integration 

over the entire spatial domain of the image. 

This morphological operation is key to adjusting the 

weights based on the distances between pixels and their 

separation borders in the image shown in Figure 9. By 

computing the distance to the nearest and second-nearest 

borders, the model can assign higher weights to pixels near 

object boundaries, which are often the most critical for 

accurate segmentation. The logarithmic term and the scaling 

factors are designed to refine these weight adjustments, 

enabling the model to focus more on important regions while 

suppressing less relevant ones. This operation enhances the U-

NeuroSegNet model's ability to identify specific structures and 

conditions in neurodegenerative neurological disorder images 

by emphasizing the correct regions and improving 

segmentation accuracy. 

 

Algorithm  

The U-NeuroSegNet algorithm is a Deep Learning and Big 

Data-Driven Panoptic Segmentation framework specifically 

designed for identifying specific conditions in 

neurodegenerative neurological disorders. Below is a high-

level description of the algorithm, broken into key stages: 

 

Step 1: Data preprocessing 

Step 1.1: Image acquisition: Collect neuroimaging data 

such as MRI, Ultrasound, CT, or PET scans related to 

neurodegenerative disorders (e.g., the dataset should include 

both labeled ground truth data and images corresponding to 

the various stages of neurodegenerative conditions. 

Step 1.2: Noise Reduction: Apply Gaussian filters or 

Median filters to remove any noise from the images. 

 

𝐺(𝑖, 𝑗) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑖2+𝑗2

2𝜎2 )  (34) 

 

where, σ is the standard deviation that controls the filter's 

strength. 

Step 1.3: Resizing: Standardize the image size for the 

neural network by resizing all images to a fixed size W×H 

times. Use interpolation techniques like bilinear interpolation 

for resizing. 

Step 1.4: Normalization: Normalize pixel values to a range 

between 0 and 1 or mean-variance normalization to enhance 

learning. For each pixel p: 
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Figure 9. U-NeuroSegNet processing 

 

𝑝′ =
𝑝−𝑢

𝜎
  (35) 

 

where, μ is the mean pixel value and σ is the standard deviation 

of the pixel values. 

Step 1.5: Data augmentation: Apply augmentation 

techniques such as rotation, flipping, and scaling to diversify 

the dataset. This ensures that the model generalizes better and 

avoids overfitting. 

Step 2: U-Net architecture setup (encoder-decoder 

structure) 

Step 2.1: Contracting path (encoder): The contracting 

path consists of multiple convolutional layers followed by a 

ReLU activation function and max pooling for down-sampling. 

The number of filters is doubled at each down-sampling step. 

Bottleneck Layer 2.2: A central layer between the 

contracting and expansive paths. Contains bottleneck 

convolutions that help in better feature extraction from 

complex patterns. 

Expanding Path (Decoder) 2.3: The expanding path 

consists of up-sampling and convolutions. Uses skip 

connections from the contracting path to provide better 

localization information. 

Convolutional Layer 2.4: Apply 3×3 convolutions with a 

ReLU activation function after each layer in the encoder and 

decoder. Use Batch Normalization after each convolution 

layer to reduce internal covariate shift. 

Step 3: Panoptic segmentation 

Step 3.1: Feature Map generation: Generate feature maps 

by extracting high-level features from different levels of the 

encoder. Use the SoftMax Activation Function to normalize 

the outputs of the final layer, as in Eq. (36) 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑘) =
exp (𝑓𝑚(𝑍𝑘))

∑ 𝑒𝑥𝑝 (𝑓𝑚𝑘(𝑖))𝑛
𝑦=1

  (36) 

 

where, 𝑓𝑚(𝑖) represents the feature map at pixel position i and 

n is the number of classes. 

Step 3.2: Pixel classification: 

Each pixel is classified as belonging to a specific condition 

(e.g., Arnold Chiari malformation, Arachnoid Cysts). Use 

Cross-Entropy Loss and Dice Loss to penalize incorrect 

classifications and reward correct ones: 

 

𝐿𝑜𝑠𝑠 = − ∑ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ(𝑗). log (𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑓𝑚(𝑖)))𝑛   (37) 

 

where, 𝑔𝑟𝑡𝑟𝑢𝑡ℎ(𝑗) represents the ground truth label. 

Step 3.3: Boundary separation and object segmentation: 

The model also identifies boundaries between different 

2358



 

regions using border separation methods. This aids in 

segmenting distinct regions associated with specific 

conditions in the brain. 

Step 4: Separation border refinement 

Step 4.1: Morphological operations: Dilation and Erosion 

operations refine the segment boundaries for clearer 

delineation of different structures. 

 

Ω(𝑥) = Ω𝐶(𝑥) + Ω0log (1 − ∫[𝐾1(𝑖) − 𝐾2(𝑖)]2 𝛿𝑧)  (38) 

 

where, Ω(𝑥) is the precomputd weight at pixel x, 𝐾1(𝑖) and 

𝐾2(𝑖) are distance functions for pixel separation, and δz\delta 

zδz is a small constant to adjust the weight. 

Step 5: Model training 

Step 5.1: Train the model: Use a dataset with ground truth 

labels for each neuroimaging scan. Apply Stochastic Gradient 

Descent (SGD) or Adam Optimizer to minimize the loss 

function. Monitor performance using accuracy, Dice score, 

and intersection-over-union (IoU). 

Step 5.2: Regularization and Hyperparameter Tuning: 

Apply Dropout, Early Stopping, and Data Augmentation to 

prevent overfitting. Fine-tune the model’s hyperparameters 

such as learning rate, batch size, and network depth. 

Step 6: Inference and post-processing 

Step 6.1 Inference: After training, use the model to perform 

segmentation on unseen neuroimaging data. The output is a 

panoptic segmentation mask for each input image. 

Step 6.2: Post-processing: Use morphological filtering to 

remove noise and improve the final segmentation map. Apply 

region-growing algorithms to further refine the segmented 

areas. 

Step 7: Evaluation and visualization 

Step 7.1 Evaluate model performance: Calculate metrics 

like Dice Similarity Coefficient (DSC), IoU, and Accuracy for 

evaluating segmentation performance. 

Step 7.2 Visualize the segmentation results: Overlay the 

predicted segmentation mask on the original image to visually 

inspect the model’s performance. 

U-NeuroSegNet leverages deep learning techniques 

combined with big data processing for precise segmentation of 

neurodegenerative conditions in brain images. The 

architecture uses a modified U-Net model for feature 

extraction and segmentation, combined with advanced loss 

functions (cross-entropy and dice loss) and boundary 

refinement methods to improve the accuracy of the model. The 

end result is a model capable of accurately identifying and 

segmenting regions associated with neurodegenerative 

disorders, aiding in diagnosis and monitoring of disease 

progression. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The selection of hyperparameters and training strategies for 

the proposed model is carefully tailored to promote effective 

learning and high performance. As outlined in Table 4, the 

training process begins with an initial learning rate of 0.001, 

which offers a balanced trade-off between convergence speed 

and model stability. A batch size of 32 is used to make efficient 

use of memory while maintaining steady learning dynamics. 

The model undergoes training for up to 82 epochs, with an 

early stopping mechanism activated if validation loss does not 

improve for 10 consecutive epochs, thus preventing overfitting 

and saving computational resources. 

To optimize weight updates, the RMSProp optimizer is 

utilized due to its adaptive learning rate capabilities, which are 

particularly beneficial for managing non-stationary and sparse 

gradients. For the loss function, cross-entropy is chosen, which 

is especially effective for classification-based segmentation 

tasks, particularly when dealing with class imbalance. Xavier 

initialization is used to initialize network weights, ensuring 

that gradients are neither too small nor too large during 

backpropagation. 

To further combat overfitting, dropout is applied at a rate of 

0.2, and L2 regularization is incorporated to discourage 

excessively large weights. Additionally, the training dataset is 

augmented using random rotations, horizontal and vertical 

flips, and elastic transformations. These augmentation 

techniques simulate variability in the data and enhance the 

model's ability to generalize to unseen cases. 

To evaluate the feasibility of real-time processing for 

clinical deployment, the model's inference time is 

approximately 50 milliseconds per scan, ensuring rapid 

analysis necessary for time-sensitive medical applications 

shown in Table 5. The model has a manageable size of 150 

MB, making it suitable for integration into healthcare systems 

with minimal storage requirements. It can efficiently run on 

systems with at least 8 GB of RAM and an Intel Xeon Gold 

5120 processor, ensuring compatibility with standard hospital 

infrastructure. For optimal performance, NVIDIA Tesla V100 

or equivalent GPUs are recommended, though the model can 

function on lower-end GPUs with a potential trade-off in 

processing time. The power consumption of 150 watts for 

GPU-based processing is within acceptable limits for 

healthcare settings. The model can handle batch processing of 

100 scans per minute, making it suitable for high-throughput 

environments such as hospitals, where rapid processing of 

multiple scans is essential. This configuration ensures the 

model is both scalable and practical for real-world clinical use, 

balancing speed, compatibility, and resource efficiency. The 

model’s low memory and storage footprint enable deployment 

even on modest hardware, while still delivering consistent 

accuracy and speed. Its robustness under continuous operation. 
 

Table 4. Hyperparameter settings 
 

Parameter Value 

The Learning Rate 0.001 

The Batch Size 32 

Total Training Epochs 82 

Optimization Algorithm RSMProp 

Objective Loss Function Cross-Entropy Loss 

Early Stopping Criteria Patience of 10 epochs 

Weight Initialization Xavier Initialization 

Dropout Rate 0.2 

Regularization Technique L2 Regularization 

Data Augmentation Methods Random rotations, flips, and 

elastic deformations 
 

Table 5. Inference time and computational resource 

requirements 
 

Attribute Value 

Inference Time 50 ms per scan (on average) 

Model Size 150 MB 

Required RAM 8 GB 

Required GPU NVIDIA Tesla V100 (or equivalent) 

Processor Intel Xeon Gold 5120 (or equivalent) 

Power Consumption 150 watts (GPU) 

Batch Inference 

Capacity 

100 scans per minute 
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The NeuroSegNet developed in the study yielded and 

effective results in predicting various types of abnormal 

neurological conditions. Figures 10 and 11 showcase the 

sample training and validation batches. 

Figure 12 shows the results of the designed multiclass 

NeuroSegNet model for various Neurological Conditions. 

Proposed work is a deep learning-based neuro panoptic 

segmentation object detection approach which processes and 

diagnoses big sets brain scan images to find neurological 

abnormalities, achieved an overall accuracy of 98.2%. 

The plotting of the precision-confidence curve depicts the 

achieved precision value against various confidence 

thresholds for all classes. It serves as a vital metric showcasing 

the model's precision at different confidence levels. The 

proposed model shows high level of precision of 95% as 

shown in Figure 13. A precision score of 1.00 indicates that 

the U-NeuroSegNet did not make any false-positive 

predictions. 

The curve illustrates the recall achieved against several 

threshold values of confidence. All classes 0.98 at 0.00 means 

that all classes exhibited recall rate of 98% based on true 

positives results as the graph-plot represents in Figure 14. The 

trade-off between recall and precision across a range of 

confidence thresholds is displayed by the Precision-Recall 

curve. Every class is showing 0.944 mAP@0.5. Figure 15 
illustrates that the proposed U-NeuroSegNet's precision at 

Intersection over Union (IoU) in ground truth at a 0.5 threshold 

is 94.4. 

The diagonal value of classes illustrates the correct 

classification and off diagonal values indicates wrong 

classification done. The overall classification performance 

across all classes is 98.2%, as illustrated in Figure 16. To 

quantify losses in the training data, the metrics 

Classification_Loss, Object_Loss, Segmentation_loss and 

Box_loss was used to evaluate the U-NeuroSegNet model. In 

this model, the performance of the deep NIWatershed 

algorithm over the training data is found to be optimal. In the 

proposed deep U-NeuroSegNet model, the training loss over 

dataset is typically measured after each iteration. The 

validation loss is measured over fresh, unknown data, while 

the training loss indicates how well the model performs, or 

how well it fits the trained data. Figure 17 illustrates very low 

to negligible loss of the proposed model experienced for all 

classes. 

The U-NeuroSegNet model was evaluated using the Mean 

Average Precision (mAP) metric, which serves as a widely 

adopted standard for measuring the performance of object 

detection and segmentation algorithms in computer vision. 

This metric is particularly effective for benchmarking models 

in complex segmentation tasks where accurate localization and 

classification of multiple classes are required. As shown in 

Figure 18, the evaluation was conducted at an Intersection 

over Union (IoU) threshold of 0.5, denoted as @mAP 0.5. This 

threshold provides a meaningful balance between localization 

precision and overlap tolerance, reflecting the model’s 

capability to accurately identify and segment target structures 

across the dataset. The results demonstrate the robustness and 

high detection accuracy of the U-NeuroSegNet framework in 

neuroimaging applications. 

Precision and Recall were further analysed to evaluate the 

model’s sensitivity and its ability to consistently identify 

relevant anatomical structures. Collectively, these metrics are 

summarized in Figure 19. The results demonstrate the 

robustness and high detection accuracy of the U-NeuroSegNet 

framework in handling complex neuroimaging data. 

The evaluation of the proposed U-NeuroSegNet model 

across a standardized set of test queries resulted in an 

impressive mean average precision of 97.3%, as reported in 

Figure 20. This high mAP score demonstrates the model's 

capability to consistently and accurately segment and detect 

neuroanatomical structures, outperforming several existing 

benchmark models. The consistent performance across 

various test scenarios highlights the adaptability and precision 

of U-NeuroSegNet in handling both structured and 

unstructured image data. 

 

 
 

Figure 10. Representation of training batches 

2360

mailto:mAP@0.5


 

 
 

Figure 11. Representation of valid prediction batches 

 

 
 

Figure 12. Multiclass U-NeuroSegNet prediction for various neurological conditions 
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Figure 13. Precision-confidence curve of the model over the classes 

 

 
 

Figure 14. Recall-confidence curve of the model over the classes 

 

 
 

Figure 15. The U-NeuroSegNet model’s precision-recall curve over the classes 
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Figure 16. Performance across various labels using confusion matrix 

 

  
  

  
  

Figure 17. Train dataset over loss functions 
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Figure 18. Validation dataset over loss function 

 

  
  

  
  

Figure 19. Metrics over recall, precision and mean average precision 

 

Table 6. Performance evaluation of various metrics 

 
Metrics/ Authors R-CNN Mask R- CNN MSCA UNet 3DUNet VGG-16 U-NEURO SEGNET 

Training Image 1000 800 1200 1500 900 15000 

Testing Image 300 200 400 250 350 500 

Splitting Ratio 70:30 80:20 75:25 60:40 65:35 70:30 

Testing Accuracy 85% 87% 84% 88% 83% 94% 

Optimizer Adam SGD SGD Adam Adam RMSProp 

Algorithm VGGNet ResNet Mobile Net LeNet Alex Net Watershed 

Final Layer Activation Method Sigmoid ReLU Tanh Sigmoid ReLU Softmax 

Specificity 0.85 0.88 0.82 0.86 0.83 0.95 

F1-Score 0.88 0.89 0.87 0.90 0.86 0.95 

Sensitivity 0.90 0.92 0.88 0.91 0.89 0.94 

Loss 5% 4% 6% 3% 5% 2% 

Speed 30 sec 25 sec 35 sec 40 sec  28 sec 20 sec 

Evaluation of the Model 77.81 90.11 62.74 88.52 77.98 96.81 

Precision 87 89 86 90 85 97 

Accuracy 0.88 0.90 0.87 0.91 0.86 0.98 
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Figure 20. Performance measures improved by using proposed system 

 

The performance metrics of proposed model includes F-

score, sensitivity, precision, accuracy, and testing accuracy, 

exceed those of all previous works. This indicates the superior 

capability of proposed model to accurately detect and classify 

abnormal neurological conditions shown in Table 6. The 

model evaluation demonstrates a low error rate of only 1.8%, 

indicating the robustness of our model in minimizing 

classification errors.  

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

U-NeuroSegNet was designed based on panoptic 

segmentation to identify abnormal neurological condition 

using medical images. The developed model was run over big 

data apache spark GPU based environment. In Spark clusters, 

the yolo files are placed in its data center folder. This model 

can identify thirteen types’ neurological conditions. Earlier 

research works only focused on one class like Arnold Chiari 

malformation and Ventriculomegaly but in proposed model 

that can detect hirteen types for neurodegenerative disorders. 

The system developed is highly efficient and robust, resulting 

in quicker and more precise identification and segmentation of 

degenerative neurological anomalies in medical images. By 

integrating real-time or near-real-time processing capabilities, 

the system significantly accelerates the diagnostic workflow, 

allowing healthcare professionals to make informed decisions 

more swiftly. The work on brain neurological abnormalities 

classification based on neuro oncology is a powerful tool. The 

system's high performance in rigorous evaluation and 

validation studies underscores its reliability and utility in 

clinical practice. To ensure the system's seamless integration 

into appropriate clinical workflows and its widespread 

adoption by healthcare professionals, ongoing efforts to refine 

and optimize it are vital. By combining technological 

innovation with practical application, proposed U-

NeuroSegNet model stands as a pivotal tool in improving 

advanced medical imaging procedures and the general 

standard of neurology care. The potential of proposed model 

is huge for changing the way brain imaging is used in 

diagnosing and treating neurological diseases. Future plans 

include expanding the proposed class offerings to serve as a 

comprehensive model for diagnosing neurological disorders. 

In the future there is lot of scope for improvement in model 

optimization, hardware acceleration, parallel processing and 

may be employed to further enhance computational speed and 

efficiency. 
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