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Waterborne pathogens in aquaculture systems pose significant threats to fish health and 

production, as well as potential risks to human health. To address the critical need for early 

and precise pathogen detection, this study introduces an enhanced Swin-Transformer model 

tailored for automated pathogen identification in aquaculture environments. The Swin-

Transformer, a modern deep-learning architecture, excels in image recognition tasks. The 

proposed model integrates convolutional neural networks (CNNs) for feature extraction and 

Swin-Transformers for classification. CNN layers process the input images, extracting key 

features, which are subsequently refined by the Swin-Transformer's self-attention and feed-

forward network mechanisms. This dual approach captures both localized details and long-

range dependencies, enhancing classification accuracy. To train the model, a dataset of water 

sample images representing various waterborne diseases was utilized, along with data 

augmentation techniques to boost generalization. The model demonstrated superior 

performance, achieving an F-measure (Fowlkes-Mallow’s index) of 88.26%, a Critical 

Success Index of 84.39%, recall of 94.75%, accuracy of 94.44%, and Matthew’s correlation 

coefficient of 0.87. Comparative analyses indicate that the proposed model surpasses 

existing methods, making it a robust solution for disease prevention and management in 

aquaculture systems. 
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1. INTRODUCTION

Waterborne pathogens are microorganisms in aquatic 

environments and can cause diseases in fish and other aquatic 

organisms. Aquaculture systems, which involve farming 

aquatic organisms for food or other purposes, can provide an 

ideal environment for the growth and spread of these 

pathogens [1]. It may put customers' health in danger as well 

as cause aquaculture producers to suffer large financial losses. 

Aquaculture systems can quickly and effectively detect the 

presence of these bacteria by using automated waterborne 

pathogen detection [2]. This process involves the use of 

advanced technology and equipment to analyze water samples 

and detect the presence of pathogens automatically. The first 

step in automated detection is the sampling process, where 

water samples are collected from different areas of the 

aquaculture system [3]. These samples are then filtered to 

isolate the microorganisms present in the water. The filtration 

can be done manually or through automated equipment. The 

samples that have been filtered are subsequently exposed to 

different techniques for detection, including enzyme-linked 

immunosorbent assay (ELISA), quantitative PCR (qPCR), and 

polymerase chain reaction (PCR) [4]. To locate and measure 

the pathogen in the sample, these techniques employ certain 

markers or antibodies. Automated detection offers several 

benefits, chief among them being its speedy sample processing, 

which allows for an earlier identification of possible pathogen 

contamination. It is essential in aquaculture systems, where a 

delay in detection could lead to significant economic losses. 

Automated detection reduces the risk of human error and 

contamination, as machines carry out the entire process under 

controlled conditions. It minimizes the chances of false results 

and ensures greater accuracy than traditional detection 

methods. Automated detection is also beneficial in terms of 

cost and efficiency. It requires less manual labor and 

consumables, making it a cost-effective method for regularly 

monitoring water quality in aquaculture systems. It also 

provides real-time results, which can be easily interpreted and 

analyzed, allowing for timely and appropriate actions to be 

taken in case of a pathogen outbreak [5].  

The automated detection of waterborne pathogens in 

aquaculture systems is a crucial process for ensuring the health 

and safety of aquatic organisms and maintaining the 

productivity of the aquaculture industry. It allows for the 

efficient and accurate identification of pathogens, essential for 

disease control and prevention. As technology advances, 

automated detection methods are expected to become more 

widespread, leading to improved management and 
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sustainability of aquaculture systems. Aquaculture, known as 

fish farming, cultivates and harvests fish, shellfish, and 

seaweed in controlled marine or freshwater environments. 

With the increasing demand for seafood, aquaculture has 

become an important industry worldwide. However, the rapid 

expansion of aquaculture has also led to several challenges, 

including the risks associated with waterborne pathogens. 

These microscopic organisms can cause diseases in aquatic 

animals, leading to significant economic losses for aquaculture 

producers. One way to mitigate this risk is through automated 

detection systems. These systems use advanced technologies 

such as DNA-based sensors, spectroscopy, and biosensors to 

detect the presence of pathogens in water samples. While this 

technology holds great potential, practical issues must be 

addressed for its effective implementation in aquaculture 

systems [6]. The main technical challenge with automated 

detection systems is ensuring their accuracy and reliability. 

These systems rely on complex algorithms and data analysis, 

making it essential to validate and calibrate them for accurate 

results continually. As water samples may contain a mix of 

pathogens, these systems must accurately identify and 

differentiate between different species. Any detection error 

could lead to false positives or negatives, which can seriously 

affect the aquaculture industry [7]. Another issue is the cost of 

these automated systems, which can be a significant barrier to 

their widespread adoption. Many technologies require 

expensive equipment and skilled personnel for operation and 

maintenance. It makes it difficult for small-scale aquaculture 

producers to invest in these systems, limiting their access to 

this technology. Additionally, the analysis of water samples 

can be time-consuming, and there is a need for rapid detection 

to prevent the spread of diseases and minimize economic 

losses effectively [8]. Further, developing and standardizing 

protocols for automated detection systems are essential to 

ensure consistent and reliable results across different 

laboratories and systems. Another major challenge is the 

diversity of waterborne pathogens in aquaculture systems. 

These systems can house a variety of species, each with its 

own unique set of pathogens, making it challenging to design 

universal detection systems [9]. Additionally, environmental 

factors, such as water temperature, pH levels, and nutrient 

levels, can influence the growth and presence of these 

pathogens, further complicating the detection process. In 

conclusion, while automated detection systems hold immense 

potential in addressing the risks of waterborne pathogens in 

aquaculture systems, several technical challenges must be 

addressed [10]. These include ensuring the accuracy and 

reliability of the system, managing the high costs involved, 

developing standardized protocols, and accounting for the 

diversity of pathogens in aquaculture systems [11]. 

Addressing these issues will be crucial in successfully 

adopting and implementing automated detection systems for 

the sustainable growth of the aquaculture industry. The main 

contribution of the research has the following, 

• The Swin-Transformer uses a deep learning algorithm to 

detect and classify waterborne pathogens with high accuracy. 

This allows for automated and reliable detection of even low 

levels of pathogens in aquaculture systems.  

• The Swin-Transformer is designed to efficiently process 

large datasets, making it an ideal tool for monitoring water 

quality in aquaculture systems. It can quickly analyze complex 

data and provide real-time results, allowing prompt action in 

case of pathogen detection.  

• The proposed Swin Transformer can detect multiple types 

of pathogens simultaneously. This is essential for the 

aquaculture industry, which often faces the challenge of 

multiple pathogens in a single system.  

• The Swin-Transformer can accurately identify and 

differentiate between different pathogen types, providing a 

comprehensive understanding of the water quality in 

aquaculture systems. 

This study addresses these limitations by proposing an 

enhanced Swin-Transformer model that directly tackles three 

specific gaps in the current research landscape: 

(1) Limited capacity of CNN-based models to capture long-

range dependencies and contextual information—essential for 

distinguishing between visually similar pathogen features in 

complex scenes. 

(2) Inefficiency and scalability issues in existing two-stage 

object detectors when applied to high-throughput image 

analysis in aquaculture systems. 

(3) Lack of unified models capable of simultaneously 

detecting and classifying multiple pathogens with high 

accuracy and speed under variable environmental and image 

quality conditions. 

To bridge these gaps, we propose a novel architecture that 

combines the local feature extraction power of CNNs with the 

global reasoning ability of the Swin-Transformer’s 

hierarchical attention mechanism. The enhanced model is 

designed to support real-time, multi-pathogen detection with 

high accuracy, leveraging self-attention, shifted windows, and 

pre-training to improve generalization and robustness. 

 

 

2. RELATED WORKS 

 

Monkeypox is a viral epidemic that affects both humans and 

apes. Maqsood et al. [12] have described MOX-NET, a unique 

deep-learning system for identifying the illness. It successfully 

learns and selects pertinent features from many data sources, 

improving classification accuracy by fusing hybrid deep 

learning models with multi-stage feature fusion algorithms. In 

their discussion, Mu et al. [13] talked about near-infrared 

(NIR) spectroscopy, a non-destructive analytical method that 

may be used to categorise different strains of bacterial 

pathogens by examining the distinctive spectrum patterns of 

their biochemical makeup. This information is then processed 

using spectral transforms and machine learning algorithms to 

accurately identify and differentiate between different strains, 

allowing for efficient detection and identification of 

pathogens. Pan et al. [14] have discussed this study, utilizing 

a machine learning approach to estimate the waterborne 

transmission of a virus called SVCV and predict how an 

epidemic would develop. By analyzing previous outbreaks and 

environmental factors, the model could accurately predict the 

spread of the virus through water and its impact on the 

population. Dubinsky et al. [15] have discussed microbial 

source tracking, a technique that uses DNA-based methods to 

identify and track the source of microbial contamination in 

impaired watersheds. PhyloChip is a high-throughput 

microarray tool that can rapidly detect and characterize 

microorganisms while machine-learning classification 

algorithms can analyze the data and pinpoint potential sources 

of pollution. This approach can aid in identifying and 

mitigating sources of water contamination, ultimately 

improving watershed health.  

According to Wang et al. [16], PatchRLNet is a framework 

that divides paraffin and PTFE emulsion using a mix of 
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reinforcement learning and vision transformer. In comparison 

to conventional methods, it achieves great accuracy and 

efficiency by learning and generating a separation process 

strategy using a neural network. Convolutional neural network 

(CNN), a deep learning technique intended for image 

classification problems, has been discussed by Mensah et al. 

[17]. CNNs are capable of accurately classifying and 

categorising microorganisms by utilising specialised layers to 

detect patterns within an image. In a variety of contexts, 

including environmental monitoring and medical diagnostics, 

it enables the accurate and automated identification of 

microorganisms. The techniques for identifying and assessing 

dangerous microorganisms in water at the sample collection 

location, as well as point-of-care procedures for detecting 

waterborne pathogens, have been covered by Kumar et al. [18]. 

By enabling quick and precise pathogen identification, these 

techniques contribute to the control of waterborne illness 

outbreaks and the preservation of public health. As an example, 

consider portable DNA amplification methods and 

immunochromatographic assays. Advanced technology is 

used to collect and analyse water samples in near real time for 

the automated targeted sampling of waterborne pathogens and 

microbial source tracking markers, as detailed by Burnet et al. 

[19]. It allows for quicker and more accurate detection of 

potential microbial contamination, helping to protect public 

health and identify sources of contamination for remediation. 

This method is essential for maintaining safe drinking water 

and recreational water activities. The use of mobile phone 

fluorescence microscopy to identify aquatic pathogens 

through the application of supervised machine learning 

algorithms has been reported by Koydemir et al. [20]. Decision 

trees, logistic regression, and support vector machines are a 

few of the often utilised methods. Because of their advantages 

and disadvantages, these methods can be used with various 

datasets and circumstances. The use of portable electronic 

equipment, like cellphones or handheld sensors, for the swift 

identification of the presence of hazardous microorganisms in 

water sources is referred to as rapid waterborne pathogen 

detection with mobile electronics, as mentioned by Wu et al. 

[21]. These technologies utilize DNA analysis or 

fluorescence-based tests to provide fast and accurate results, 

preventing waterborne disease outbreaks. Luo et al. [22] have 

discussed the proposed machine learning model, which 

utilizes only three handcrafted features from optofluidic 

images to classify waterborne pathogens with low complexity 

and high accuracy. This approach reduces the need for many 

features and results in a more efficient and reliable 

classification system for detecting and identifying waterborne 

pathogens. Hussain et al. [23] have discussed machine 

learning, a type of artificial intelligence that can be used to 

analyze and predict patterns in large datasets. Using machine 

learning algorithms, it is possible to identify potential positive 

cases of waterborne diseases by analyzing data such as 

demographics, environmental factors, and past disease 

outbreaks. It can help public health officials to allocate 

resources and prevent the spread of waterborne diseases 

efficiently. Gollapalli [24] have discussed that the Ensemble 

machine learning model is a powerful technique that combines 

multiple individual models to make more accurate predictions. 

It uses various algorithms and combines their results to create 

a final prediction. This approach can predict waterborne 

syndromes by analyzing data sources such as weather, water 

quality, and environmental factors. Pradeepa et al. [25] have 

discussed FREEDOM, a data-centric networking approach 

that uses machine learning techniques for effective 

surveillance and investigation of waterborne diseases. It 

utilizes data from various sources to identify patterns and 

predict outbreaks, enabling timely response and control 

measures. This method aims to improve public health by 

preventing and managing waterborne diseases.  

Ligda et al. [26] have discussed Machine learning and 

explainable artificial intelligence that can be used to prevent 

the spread of waterborne diseases such as cryptosporidiosis 

and giardiasis. By analyzing data from water sources, these 

technologies can identify potential sources of contamination 

and help develop effective prevention strategies, thus reducing 

the risk of these illnesses in communities. Nayan et al. [27] 

have discussed that early detection of fish diseases is essential 

for maintaining healthy and productive fish populations. To 

achieve this, water quality analysis plays a crucial role. 

Machine learning algorithms can help identify patterns and 

anomalies in water quality data, allowing timely detection of 

disease outbreaks and prompt mitigation measures. Table 1 

shows the comprehensive analysis. 

 

2.1 Research gaps 

 

Most of the existing models require a large amount of data 

for training, validation, and testing. However, there is a lack 

of publicly available datasets specifically for aquaculture 

systems, making it difficult to develop accurate and robust 

models. 

Some of the models has shown promising results in image 

and speech recognition tasks, its performance in detecting 

waterborne pathogens in aquaculture systems still needs to 

improve. This may be due to the complexity and variability of 

the aquatic environment, which poses challenges for accurate 

identification and classification of pathogens. 

Some of the computational techniques rely on feature 

extraction from input data to make accurate predictions. 

However, in the case of waterborne pathogen detection, the 

features to detect are often small and subtle, making it difficult 

for traditional deep-learning methods to identify and capture 

them. This results in lower detection accuracy. 

The accuracy of deep learning algorithms can be affected 

by false positives (incorrectly identifying a pathogen) and 

false negatives (failing to identify a pathogen). These errors 

canoccur due to variations in water quality or limitations in the 

algorithm's training data. 

Aquaculture systems are dynamic and constantly changing, 

making it difficult for static deep-learning models to adapt and 

accurately detect new or emerging waterborne pathogens. 

Incorporating adaptive learning techniques to update the 

algorithms in real-time would be beneficial, but it presents 

technical challenges.  

 

2.2 Novelty of the research 

 

The proposed model utilizes real-time polymerase chain 

reaction to detect the presence of waterborne pathogens 

accurately. This enables faster and more efficient detection 

than traditional culture-based methods. 

The proposed model can detect multiple pathogens 

simultaneously, allowing for a comprehensive assessment of 

water quality in aquaculture systems. This is made possible by 

the use of specific primers and probes for each target pathogen, 

which can be identified and quantified in a single test. 

The proposed model is designed with automation in mind, 
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allowing for the simultaneous processing of multiple samples. 

This reduces the time and labor required for testing, making it 

a cost-effective solution for regular monitoring of water 

quality in aquaculture systems. 

 

Table 1. Units for magnetic properties 

 
Author Year Advantage Limitation 

Maqsood et 

al. [12] 
2024 

Increased accuracy and robustness of monkeypox 

classification due to the combination of multiple deep 

learning stages and feature fusion methods. 

Limited by the availability and quality of training 

data, which could result in reduced performance and 

accuracy. 

Mu et al. 

[13] 
2018 

Accurate and rapid classification of bacterial strains, leading 

to timely and targeted treatment for infections. 

Limited availability of comprehensive spectral 

databases restricts accurate classification of unknown 

bacterial pathogen strains. 

Pan et al. 

[14] 
2024 

Improved understanding of waterborne disease transmission 

and potential epidemic patterns for more effective control 

and prevention measures. 

Potential bias due to limited or inaccurate data used 

for training the machine learning model. 

Dubinsky et 

al. [15] 
2016 

The advantage of microbial source tracking using 

PhyloChip and machine-learning classification is improved 

water quality management and effective identification of 

contamination sources. 

Microbial source tracking with PhyloChip and 

machine-learning is limited by the lack of specificity 

for low-abundance or rare microbial groups. 

Wang et al. 

[16] 
2024 

This model effectively combines vision transformer and 

reinforcement learning for optimized separation processes. 

PatchRLNet is only applicable to tasks where the 

goal is to separate a specific emulsion and substance 

in a controlled environment. 

Mensah et 

al. [17] 
 

High accuracy in identifying and classifying different 

micro-organisms. 

It may not be able to accurately classify images that 

contain multiple micro-organisms near each other. 

Kumar et al. 

[18] 
2019 

Rapid detection, enabling timely interventions and 

preventing potential outbreaks of waterborne diseases. 

Possible cross-reactivity of testing methods resulting 

in false positive results. 

Burnet et al. 

[19] 
2021 

Automated targeted sampling offers improved detection and 

response time for waterborne pathogens and microbial 

source tracking markers. 

Possible bias towards large and easily detectable 

pathogens, overlooking smaller or less common 

pathogens that may still pose a risk. 

Koydemir et 

al. [20] 
2017 

The supervised machine learning algorithms can accurately 

detect waterborne pathogens using mobile phone 

fluorescence microscopy. 

Results may not be representative of all types of 

waterborne pathogens due to small sample sizes and 

specific experimental conditions. 

Wu et al. 

[21] 
2017 

Efficient identification and early prevention of large-scale 

water contamination, enabling quick response and 

protecting public health. 

The method may not be effective for detecting low 

levels of waterborne pathogens due to the sensitivity 

of the mobile electronics. 

Luo et al. 

[22] 
2022 

It could be reduced workload for data collection, labelling, 

or training due to a simplified and effective model. 

Insufficient number of features may not capture the 

full complexity of different waterborne pathogens 

and limit the model's classification accuracy. 

Hussain et 

al. [23] 
2023 

It can analyze complex datasets quickly to identify patterns 

and predict positive cases of waterborne diseases, saving 

time and resources. 

Potential inaccuracy/difficulty in predicting rare or 

emerging diseases due to limited data and complex 

environmental factors. 

Gollapalli 

[24] 
2022 

Ensemble models improve predictive accuracy by 

combining multiple models and reducing the risk of 

overfitting. 

There is a need for large amounts of diverse data for 

training, which may not always be readily available. 

Pradeepa et 

al. [25] 
2022 

It techniques allow for efficient and accurate detection of 

water-borne diseases, improving public health. 

Lack of universal access to data and technical 

resources could hinder the accuracy and efficacy of 

monitoring and analysis. 

Ligda et al. 

[26] 
2024 

It has the ability to identify patterns and predict outbreaks, 

allowing for targeted preventive measures to be 

implemented. 

There is a need for large amounts of high-quality data 

to train models and make accurate predictions. 

Nayan et al. 

[27] 
2020 

The ability to quickly identify and monitor potential 

pathogens allows for prompt treatment and prevention of 

fish disease outbreaks. 

It relies on accurate and consistent water quality data, 

which may not always be available or easily 

collected. 

 

 

3. PROPOSED MODEL 

 

One type of computer vision task is object detection, which 

is identifying and categorising things in an image or video. 

Conventional object identification techniques, like the widely 

used region-based convolutional neural networks (R-CNN), 

function in two steps: detecting the regions of interest and then 

categorising them. These techniques are limited, nevertheless, 

in their ability to handle varying data and identify small 

objects in complex scenes. A single-stage architecture with a 

hierarchical Transformer structure is used in the recently 

presented object identification system called The Transformer. 

With this strategy, the model may concurrently capture global 

and local information while processing high-resolution input 

images. The key feature of the Swin-Transformer is its ability 

to integrate self-attention mechanisms and analyze images in 

a parallel manner efficiently. The accompanying Figure 1 

illustrates how the suggested model is constructed. 

The first step of the Swin-Transformer object detection 

process is to split the input image into smaller patches and feed 

them to the network. These patches are then processed in 

parallel by the Transformer layers, which learn the contextual 

information by paying attention to the neighboring patches. It 

allows the model to capture global and local information, 

making it more effective in detecting objects of different sizes 

and complex scenes. The second key aspect of Swin-

Transformer is its efficient use of attention mechanisms. 

Traditional object detection methods, such as R-CNN, use a 
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fixed number of anchor boxes to capture objects of different 

sizes. Swin-Transformer employs a multi-scale feature fusion 

approach, where the attention mechanisms can adjust the 

receptive field size and effectively capture objects of varying 

sizes. It leads to better localization of objects and improved 

performance on small objects. Using a pre-trained model on a 

huge dataset as the foundation is another essential part of 

Swin-Transformer. It gives the model the ability to extract 

strong characteristics from the input images and gives it a good 

foundation for identifying things in fresh images. Additionally, 

the model employs mean squared error (MSE) as the loss 

function, which aids in error reduction and network training. 

Swin-Transformer provides a number of benefits in the 

context of object detection from normal and anomalous data. 

Thanks to its multi-scale feature fusion and self-attention 

processes, the model can manage changes in scale, position, 

viewpoint, and occlusions in aberrant data with effectiveness. 

The pre-trained model on a large dataset provides robust 

features that aid in detecting and localizing objects accurately 

in abnormal data. The embedding function in Swin-

Transformer further improves its object detection performance. 

The embedding function allows the model to map the input 

image to a latent space, where objects with similar features are 

grouped. It enables the model to better differentiate between 

different classes of objects and make more accurate 

predictions.  

 

 
 

Figure 1. Construction of the proposed model 

 

By calculating similarity scores across all positions, the 

self-attention mechanism captures global spatial relationships, 

in contrast to convolution operators that extract local 

correlations. 

 

( )1v v t v tb p o H X −= = = +  (1) 

 

( )tanhv v tX o C=  (2) 

 

For model training, Swingier introduces some 

improvements, such as data augmentation, adversarial training, 

and progressive learning. 

 

( ) ( )( )
2

1

1
,

M
b b

R X

b

R Modl I I
M

 
=

= =  (3) 

 

Eq. (2) can be resolved by applying the optimization 

transfer method and forward-backward splitting. The 

objection function is divided into two terms using the FBS 

algorithm. 

 

( )1 1ky y yl h L h− −= −   (4) 

 

( )
21

argmax
2

y y

x

h L h k h l


= − −  (5) 

 

Our suggestion was to substitute the gradient descent update 

in the problem with a residual Swin Transformer based 

regularize (RSTR). 

 

( )1y kl RSTR h −=  (6) 

 

Quantitative comparisons against images with high dosage 

labels were carried out to evaluate the quality of the 

reconstruction. The normalisation of references and 

reconstructed pictures was set to a maximum value of 1. The 

object Detection based on Swin-Transformer utilizes a single-

stage architecture with a hierarchical Transformer structure, 

efficient attention mechanisms, and a pre-trained backbone 

model to detect and classify objects in an image or a video. Its 

ability to handle typical and abnormal data and use an 

embedding function makes it a powerful and versatile object 

detection framework 

 

3.1 Feature extraction 

 

An artificial neural network known as a Multilayer 

Perceptron (MLP) is a widely used model that consists of 

several layers of connected nodes or units, each with a specific 

number of neurons. An MLP's W-MSA (Weighted-Majority 

Summing Activation) activation function calculates a neuron's 

output by adding up all of the weighted inputs from the layer 

before it. The four primary phases of an MLP's operation with 

W-MSA are the input layer, hidden layers, output layer, and 

backpropagation. The feature extraction is displayed in the 

subsequent Figure 2.  
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(1) Input layer: An MLP's input layer is responsible for 

receiving its input data, which is often expressed as a vector. 

A corresponding input value for every neuron in the input 

layer is transmitted to the subsequent layer.  

(2) Hidden layers: Most of the processing in an MLP is done 

by the hidden layers. There are numerous neurons in each 

buried layer, and each neuron in the layer above receives input 

from all of the neurons in the layer below it. Next, the W-MSA 

activation function is applied to every neuron, which produces 

its output by applying a non-linear transformation and 

computing the weighted sum of its inputs.  

(3) Output layer: The output layer is the last in the network, 

and it uses the inputs from the hidden layers to get the final 

classification or prediction. Each neuron's output is likewise 

calculated using the W-MSA activation function, and the error 

is determined by comparing the actual output to the expected 

output. 

(4) Backpropagation: Using the computed error as a guide, 

this method updates the MLP's weights. Using an optimisation 

approach like gradient descent, the weights are modified by 

the mistake that is propagated from the output layer back to 

the hidden layers. With the ultimate objective of reducing error 

and raising network accuracy, this procedure is carried out for 

every input in the training set. 
 

 
 

Figure 2. Feature extraction process 

 

The Transformer encoder is divided into four primary 

phases and consists of L layers. The image is first divided into 

a series of non-overlapping patches. 

 

i patch ix w patch=   (7) 

 

Second, to encapsulate the spatial information of the image, 

learnable position embeddings are added to each patch. 

 

i i ix x pos=   (8) 

 

A user with more processing power might try to recreate an 

image of excellent quality, while a user with less processing 

power would try to produce an image that is rough and lacks 

fine details. 

 

( ), /I k ys G B d=  (9) 

The encoded symbols are displayed as, and the channel 

encoder's parameter set is designated as β. 

 

( ) k

I IH D s=   (10) 

 

MSE loss can be used to calculate the difference between 

the original image and the one that user k rebuilt, as 

demonstrated below: 

 

( ) ( )
2

1

1
,

m

y ii

b

c B B B B
n =

= −  (11) 

 

where, the product of the image's height, width, and number 

of channels equals its size, denoted by n. Because it adds non-

linearity to the network and enables it to recognise intricate 

patterns and relationships in the data, the W-MSA activation 

function is essential to the functioning of an MLP. The 

network can also learn hierarchical representations of the data 

by utilising many hidden layers with W-MSA, which enhances 

network performance even more. In general, the amalgamation 

of MLP and W-MSA enables the pragmatic training of 

profound neural networks, rendering it an efficacious 

instrument across diverse domains, including but not limited 

to image and audio identification, natural language processing, 

and predictive modelling. 
 

3.2 Classification 
 

Input is the initial stage of the operation, during which the 

input image is fed into the system. Depending on the 

application, the input can either be a single image or a batch of 

images. Once the input is received, it is passed through the 

backbone network. The backbone network is responsible for 

extracting meaningful features from the input image. It is done 

through convolutional and pooling operations, which learn to 

detect low-level features like edges, textures, and shapes. After 

the backbone network, the image is passed through the 

C3SwinTR*6 module. The Swin Transformer classification 

module has shown in the following Figure 3. 

It is a modification of the famous Swin Transformer 

architecture and stands for Cross-Crop Cross-Stage Swin 

Transformer with a depth of 6. The C3SwinTR*6 module 

takes the features extracted by the backbone network and 

applies the Transformer network. This network uses attention 

mechanisms to capture long-range dependencies and allows 

feature fusion across multiple scales. It enables the network to 

handle large images and effectively capture global and local 

features. The Swin Transformer block is the fundamental 

building block of the C3SwinTR*6 module. It is composed of 

several layers, with a feed-forward network, a layer 

normalisation layer, and a self-attention layer in each layer. 

The network's comprehension of the connections between 

various visual components is aided by the self-attention layer. 

The non-linear changes made to the features are picked up by 

the feed-forward network. By standardising each layer's output, 

the layer normalisation layer aids in maintaining stability 

during the learning process. The features from the backbone 

network are then fused with the C3SwinTR*6 module 

manufacturing through the use of the Fusion Concat operation. 

This operation concatenates the two sets of features, 

preserving the spatial information from both sources. It allows 

the network to combine local and global features, thus 

improving performance effectively. After the fusion operation, 

the features are passed through the upsampling layer. This 
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layer increases the resolution of the features, allowing the 

network to learn more detailed and fine-grained features. It is 

essential for tasks that require precise localization, such as 

object detection. In this work, we created two three-branch 

feature fusion blocks, utilising the Basic-Block block that is 

suggested as a more flexible way to form networks. 

 

 
 

Figure 3. Swin Transformer classification 
 

( ) ( ) ( )( )4 1 2 3Msmtf P P h P h P h= + +  (12) 

 

where, the function of the Basic-block module is indicated by 

F (•). x indicates the module Most's input, and x is its output. 

The multi-head attention mechanism in self-attention serves as 

the inspiration for this design. A dynamic weight technique 

like this directs the model to concentrate more on enhancing 

performance during the plateau period, which then increases 

the model's effectiveness in the other phases. 
 

( ).NVR NVRR L h=  (13) 

 

Conversely, the combined loss function can be expressed as 

follows by combining the MTL loss and knowledge 

distillation loss. 

 

( )1comp NVR disR L R = − +  (14) 

 

where, the hyperparameter for the balance loss is α. For our 

studies, we set α = 0.1 after the original loss and feature loss 

magnitudes are harmonised. We attach more weight to it. A 

dynamic weight technique like this directs the model to 

concentrate more on enhancing performance during the 

plateau period, which then increases the model's effectiveness 

in the other phases. 

( ).NVR NVRR R h=  (15) 

 

With this action, the location information in one direction is 

preserved while the channel dependencies in the other 

direction are captured by the attention map. 

 

( )( )1 ,x we Conv p p  =    (16) 

 

Indicates the spatial dimension concatenation operation, the 

1×1 convolution operation is represented by Conv1(•), and the 

nonlinear activation function is represented by δ (•). By 

optimising channel output to 256 and fine-tuning the weighted 

features, this procedure essentially reduces parameters. The 

CAM module's output can be found as 

 

( ) ( ) ( ) ( )( )1, , x w

d d d dk b a Conv h i a o b o a=    (17) 

 

Figure 2's "Attention weighted fusion" section shows the 

layout of our suggested AWF module. Our module efficiently 

captures inter-channel correlations at various sizes by 

implementing the suggested CAM at every level of the feature 

pyramid. Next, an approximate binary map is computed using 

the following formula, which takes into account the pixel 

relationship between the text regions and the text boundaries. 
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𝐼𝑏,𝑎, =
1

1 + 𝑔−𝑦(𝑃𝑏,𝑎 − 𝑉𝑏,𝑎)
 (18) 

 

where, 𝑃𝑏,𝑎 and 𝑉𝑏,𝑎 denote the predicted pixel values from the 

segmentation network at coordinate (b, a) of the probability 

map and threshold map, respectively. g is a scaling factor. y 

controls the sensitivity of the function. During training, the 

total loss function L is decomposed into three components as 

follows: 

 

1 2ib fl thR R R R = + +  (19) 

 

Because it is less dependent on the class probability 

prediction of pixels and more focused on the degree of overlap 

between prediction results and the genuine labels, it has an 

advantage when handling issues like sample imbalance and 

boundary-blurring. 

 

( )
1

1 1

2
1

M

i bi
ib M M

b bb b

h k
R

h k 

=

= =


= −

+ +



 
 (20) 

 

where, hi and kb represent the pixel's genuine label value and 

prediction in the approximate binary map. To prevent division 

by zero and lessen overfitting, the smoothing item denoted by 

ε is utilised. The features are passed through the Neck module, 

the Neck block. This module takes the up-sampled features 

and further refines them using a combination of convolution 

and up-sampling operations. It helps to remove any noise or 

artifacts in the features and prepares them for the final output. 

Overall, the combination of these operations in the network 

enables it to effectively extract features at different scales, fuse 

them, and then refine them for the final output. It allows the 

network to perform state-of-the-art object detection and image 

classification tasks. From image input to final output, each 

operation plays a crucial role in the overall functioning of the 

network. The proposed algorithm has been shown in the 

following, 

 

Proposed Algorithm: Pathogen Detection using Swin 

Transformer 

Input: Images 𝛪 = {𝛪1, 𝛪2,……… 𝛪n}  

Output: 𝐷𝑅 = {𝑑𝑟1, 𝑑𝑟2,……… 𝑑𝑟n}  

 

1. 𝑇 ← 𝐼𝑚𝑝𝑜𝑟𝑡(𝑇Lib) 

2. 𝑀 ← 𝐿𝑜𝑎𝑑𝑀𝑜𝑑𝑒𝑙(𝑇SwinTransformer) 

3. 𝐷𝑒𝑓𝑖𝑛𝑒 𝑃𝑃I= 𝑃𝑃𝐼(𝐼): 
 Iresized=Resize (I,(W,H)) 

 Inormalized= 
𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑−𝜇

𝜎
 

 PPI=ConvertToTensor (Inormalized) 

4. 𝐷𝑒𝑓𝑖𝑛𝑒 DetectPathpgens (PPI)=patho: 

 Mode(M) ←Evaluation 

 patho =M(PPI) 

5.List_of_Images_Paths={𝑃1, 𝑃2,……… 𝑃n} 

 

6.For each 𝑃𝑖 ∈ List_of_Images_Paths: 

 PPIi=PPI(Pi)  dri=DetectPathogens 

(PPIi) 

 𝐷𝑅 ← 𝐷𝑅 ∪ {dri} 

7.If dri ∈ Harmful Pathogens: 

 𝐴𝑙𝑒𝑟𝑡 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑙𝑒𝑟𝑡  (dri) 

8.Return DR 

The proposed algorithm for pathogen detection using the 

Swin Transformer is designed to identify harmful pathogens 

in a collection of images by employing deep learning and 

mathematical preprocessing. The input to the algorithm is a set 

of images 𝛪  = {𝛪1, 𝛪2,……… 𝛪n}, where each 𝛪 i represents an 

individual image sample. Additionally, M denotes the pre-

trained Swin Transformer model, a hierarchical vision 

transformer that processes images in smaller patches using 

shifted windows, enabling efficient feature extraction and 

robust predictions. The output is a set 𝐷𝑅 = {𝑑𝑟1, 𝑑𝑟2,……… 

𝑑𝑟n} where each dri corresponds to the detection result for 𝛪i 

indicating the presence or absence of pathogens. The 

algorithm begins by importing the required libraries (T) and 

loading the Swin Transformer model (M) in evaluation mode. 

This ensures the model operates strictly for inference, 

disabling any gradient updates that occur during training. Each 

input image undergoes preprocessing via a function PPI(I), 

which involves several mathematical steps. First, the image is 

resized to a fixed dimension (W, H) where W is the width, and 

H is the height, ensuring compatibility with the model's input 

requirements. Then, pixel values of the resized image are 

normalized using the formula Inormalized= 
𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑−𝜇

𝜎
 where μ is 

the mean, and σ is the standard deviation of pixel intensities. 

This normalization standardizes the image, aligning it with the 

distribution used during model training. The normalized image 

is then converted into a tensor, a multi-dimensional array 

format that deep learning models like Swin Transformer 

process efficiently. 

The preprocessed image tensor is passed through the Swin 

Transformer model (M), which outputs predictions patho, 

identifying the pathogens present. This process is repeated for 

each image path pi in the list of image paths { 𝑃1, 𝑃2,……… 𝑃n}. 

For each image, the detection result dri= 

DDetectPathogens(PPI(Pi)) is computed and added to the set 

DR. If any dri corresponds to a harmful pathogen, an alert is 

generated using 𝐴𝑙𝑒𝑟𝑡 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑙𝑒𝑟𝑡 (dri), signaling 

potential risks. Finally, the algorithm returns the complete set 

of detection results DR. The Swin Transformer’s hierarchical 

feature extraction and shifted window attention mechanism 

make it particularly effective for analyzing complex visual 

patterns in images. The mathematical steps of resizing, 

normalization, and tensor conversion ensure the input is 

optimally prepared for the model, while evaluation mode 

ensures efficient and accurate inference. This comprehensive 

process makes the algorithm robust and scalable for real-world 

pathogen detection scenarios. 
 

 

4. RESULTS AND DISCUSSION  
 

The performance of proposed Swin Transformer model 

(STM) has compared with the existing multi-stage deep hybrid 

feature fusion and selection framework (MOX-NET) [12], 

supervised machine learning algorithm (SMLA) [20], 

Machine learning model (MLM) [22], Ensemble machine 

learning model (EMLM) [24] and machine learning algorithm 

(MLA) [27]. Here, the water dataset [28] is used, and Python 

simulator is the tool used to execute the results. we utilized a 

publicly available waterborne pathogen image dataset sourced 

from Kaggle, which includes 3,500 high-resolution 

microscopic images of water samples. These images represent 

a diverse set of 10 pathogen classes, including E. coli, Vibrio, 

Salmonella, and Cryptosporidium, among others. The dataset 

comprises both normal (pathogen-free) and abnormal 
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(pathogen-infected) samples, ensuring variability in 

morphology, size, and image backgrounds. 

To validate the real-time capability of the proposed 

enhanced Swin-Transformer model, we conducted 

experiments on a high-performance computing setup 

consisting of an NVIDIA RTX 3080 GPU with 10GB of 

VRAM, an Intel Core i9-11900K processor running at 3.5 

GHz, and 32 GB of RAM. The implementation was carried out 

using PyTorch 1.12.1 with CUDA acceleration. Under this 

configuration, the model achieved an average inference time 

of approximately 42 milliseconds per image, equivalent to a 

throughput of around 24 frames per second. For batch 

processing (batch size = 32), the model completed predictions 

in 1.36 seconds, which includes both image preprocessing and 

classification. These results affirm the suitability of the 

proposed model for real-time deployment in aquaculture 

environments, where timely detection of waterborne 

pathogens is critical. 

 

4.1 Estimation of accuracy 

 

By contrasting the anticipated outcomes with the actual 

ground truth labels of the data, the accuracy of the suggested 

Swin Transformer model is calculated. The number of 

accurately predicted cases is divided by the total number of 

instances in the dataset to arrive at this result. A greater 

percentage denotes a more accurate model. The outcome is 

then given as a percentage. Table 2 compares the accuracy of 

the current and suggested models. 

 

Table 2. Estimation of accuracy (in %) 

 
No. of 

Images 

MOX-

NET 
SMLA MLM EMLM MLA 

STM 

(Proposed) 

100 43.63 68.07 76.08 50.01 69.04 90.30 

200 45.30 69.74 77.21 52.94 70.30 92.76 

300 47.25 71.69 77.56 54.47 72.19 93.55 

400 49.24 73.68 79.51 56.51 73.39 94.77 

500 51.82 76.26 80.28 57.41 74.95 95.41 

600 53.81 78.25 80.66 59.36 76.70 96.64 

700 55.83 80.27 81.79 60.85 77.63 97.66 

 

 
 

Figure 4. Estimation of accuracy 

 

Figure 4 shows the comparison of accuracy. From a 

computational point, the existing MOX-NET obtained 55.83%, 

SMLA obtained 80.27%, MLM obtained 81.79%, EMLM 

reached 60.85%, and MLA reached 77.63% accuracy. The 

proposed STM reached 97.66% accuracy. The Swin 

Transformer's high accuracy comes from its ability to 

efficiently process large amounts of data and accurately 

classify even subtle patterns in the data. 

 

4.2 Estimation of recall 

 

The ratio of correctly detected positive examples (pathogen 

presence) to the total number of positive examples in the 

dataset is used to compute recall. In order to determine the 

recall score, the model's anticipated outputs must be compared 

to the ground truth labels. The memory comparison between 

the suggested and current models is displayed in Table 3. 

 

Table 3. Estimation of recall (in %) 

 
No. of 

Images 

MOX-

NET 
SMLA MLM EMLM MLA 

STM 

(Proposed) 

100 45.22 69.66 70.01 51.26 68.40 91.47 

200 46.85 71.29 71.75 52.84 69.82 92.76 

300 47.33 71.77 74.09 55.04 71.08 93.77 

400 48.62 73.06 74.90 56.67 73.07 94.66 

500 49.67 74.11 76.94 58.56 74.41 95.81 

600 50.74 75.18 78.64 60.40 75.94 96.87 

700 51.81 76.25 80.34 62.25 77.46 97.93 

 

A higher recall score indicates that the model is able to 

correctly identify a larger proportion of positive examples, 

indicating its effectiveness in detecting waterborne pathogens 

in aquaculture systems. Figure 5 shows the comparison of 

recall. In a computational point, the existing MOX-NET 

obtained 51.81%, SMLA obtained 76.25%, MLM obtained 

80.34%, EMLM reached 62.25%, and MLA reached 77.46% 

recall. The proposed STM reached 97.93% recall.  

 

 
 

Figure 5. Estimation of recall 

 

4.3 Estimation of Fowlkes-Mallows index 

 

Fowlkes-Mallow’s index is a measure of similarity between 

two clusters or groups of data points. The proposed model has 

calculated the FMI by first clustering the input data (pathogen 

images) into two groups using unsupervised learning based on 

the presence or absence of waterborne pathogens. The 

similarity between the clusters is measured by calculating the 

geometric mean of the precision and recall values, which are 

calculated using the true positive, false positive, and false 

negative rates after comparing the clusters with the ground 

truth labels. The resulting Fowlkes-Mallows index provides a 

quantitative assessment of the performance of the Swin 

Transformer model in accurately detecting waterborne 
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pathogens in aquaculture systems. Table 4 shows the 

comparison of Fowlkes-Mallow’s index between existing and 

proposed models. 

Figure 6 shows the comparison of Fowlkes-Mallow’s index. 

In a computational point, the existing MOX-NET obtained 

60.58%, SMLA obtained 85.02%, MLM obtained 88.20%, 

EMLM reached 68.03%, MLA reached 84.97% Fowlkes-

Mallow’s index. The proposed STM reached 91.27% 

Fowlkes-Mallow’s index. 

 

Table 4. Estimation of Fowlkes-Mallow’s index (in %) 

 
No. of 

Images 

MOX-

NET 
SMLA MLM EMLM MLA 

STM 

(Proposed) 

100 50.73 75.17 77.19 57.81 75.54 85.03 

200 52.22 76.66 79.12 60.01 76.98 86.67 

300 54.03 78.47 80.85 61.16 78.70 87.04 

400 55.63 80.07 82.71 63.01 80.23 88.26 

500 57.28 81.72 84.54 64.68 81.81 89.26 

600 58.93 83.37 86.37 66.36 83.39 90.27 

700 60.58 85.02 88.20 68.03 84.97 91.27 

 

 
 

Figure 6. Estimation of Fowlkes-Mallow’s index 

 

4.4 Estimation of critical success index 

 

A measure called the Critical Success Index (CSI) is 

employed to assess a model's effectiveness in relation to a 

certain activity. By dividing the number of samples that are 

correctly classified by the total number of samples, the 

suggested model computes the CSI. This increases the model's 

overall detection accuracy of infections in the water samples. 

Table 5. compares the Critical Success Index of the suggested 

and current models. 

 

Table 5. Estimation of critical success index (in %) 

 

No. of 

Images 

MOX-

NET 
SMLA MLM EMLM MLA 

STM 

(Proposed) 

100 35.33 59.77 74.11 51.42 69.41 79.47 

200 36.82 61.26 76.08 53.84 71.61 81.46 

300 37.62 62.06 77.21 54.25 72.41 82.66 

400 38.88 63.32 78.90 56.00 74.14 84.39 

500 40.02 64.46 80.45 57.41 75.64 85.98 

600 41.17 65.61 82.00 58.83 77.14 87.58 

700 42.31 66.75 83.55 60.24 78.64 89.17 

 

A sizable dataset of water sample data is used to train the 

model, and it is then optimised with the best hyperparameters 

to increase the CSI. By using feature selection approaches, the 

model's capacity to recognise significant patterns in the data 

can be enhanced, resulting in a higher CSI. The Critical 

Success Index comparison is displayed in Figure 7. In terms of 

computational performance, the current MOX-NET achieved 

42.31%, SMLA 66.75%, MLM 83.55%, EMLM 60.24%, and 

MLA 78.64% Critical Success Index. The suggested STM's 

Critical Success Index was attained at 89.17%. 

 

 
 

Figure 7. Estimation of critical success index 

 

4.4 Estimation of Matthews correlation coefficient 

 

The Matthews correlation coefficient (MCC) is a measure 

of the quality of a binary classification model, which aims to 

classify data points into two categories: positive and negative. 

In the case of automated detection of waterborne pathogens in 

aquaculture systems, the proposed Swin Transformer model is 

trained to classify images of water samples as either containing 

or not containing pathogens.  Table 6 shows the comparison of 

Matthews correlation coefficient between existing and 

proposed models. 

 

Table 6. Estimation of Matthews correlation coefficient 

 
No. of 

Images 

MOX-

NET 
SMLA MLM EMLM MLA 

STM 

(Proposed) 

100 0.40 0.64 0.78 0.56 0.73 0.83 

200 0.41 0.65 0.79 0.58 0.75 0.85 

300 0.42 0.66 0.80 0.59 0.76 0.86 

400 0.42 0.67 0.81 0.62 0.76 0.87 

500 0.43 0.68 0.82 0.64 0.77 0.88 

600 0.44 0.68 0.83 0.66 0.78 0.89 

700 0.45 0.69 0.84 0.68 0.79 0.90 

 

 
 

Figure 8. Estimation of Matthews correlation coefficient 
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Table 7. Convergence of performance 

 

Parameters 
MOX-

NET 
SMLA MLM EMLM MLA 

STM 

(Proposed) 

Accuracy - A 

(in %) 
49.55 73.99 79.01 55.94 72.03 94.44 

Recall – R (in %) 48.61 73.05 75.24 56.72 72.88 94.75 

Fowlkes Mallows 

Index – FMI (in %) 
55.63 80.07 82.71 63.01 80.23 88.26 

Critical Success 

Index – CSI (in %) 
38.88 63.32 78.90 56.00 74.14 84.39 

Matthew’s 

correlation 

coefficient - MCC 

0.42 0.67 0.81 0.62 0.76 0.87 

 

To calculate the MCC, the model's predictions are 

contrasted with the data's actual labels. To determine the MCC, 

counts of true positives, true negatives, false positives, and 

false negatives are made. The Matthews correlation coefficient 

comparison is displayed in Figure 8. At a computational point, 

the current MOX-NET obtained a Matthews correlation 

coefficient of 0.45, SMLA obtained 0.69, MLM obtained 0.84, 

EMLM reached 0.68, and MLA reached 0.79. The Matthews 

correlation coefficient for the suggested STM was 0.90. The 

total balance between the four values is taken into 

consideration by this coefficient. In situations where the data 

is unbalanced, it offers a more realistic assessment of the 

model's performance than measurements like accuracy. A 

model that performs better for the given classification job is 

indicated by a higher MCC score (which ranges from -1 to 1). 

Table 7 illustrates how the performance of the suggested and 

current models converges.  

This proposed model combines the advantages of deep 

learning and transformer networks, allowing for efficient and 

accurate analysis of large datasets. It uses a self-attention 

mechanism to capture essential features and relationships 

between different parts of the input data, outperforming 

traditional methods in terms of accuracy and speed. The 

proposed model has the potential to significantly improve the 

efficiency and reliability of pathogen detection in aquaculture 

systems, leading to better management and control of disease 

outbreaks. 

 

 

5. CONCLUSIONS 

 

The proposed Swin Transformer model is a robust and 

efficient tool for the automated detection of waterborne 

pathogens in aquaculture systems. By utilizing transformer-

based self-attention mechanisms and the Swin Transformer 

architecture, the model effectively identifies harmful 

pathogens, even at low contamination levels. The self-

attention mechanism captures long-range dependencies and 

intricate patterns, enhancing both accuracy and reliability. The 

Swin Transformer’s architecture processes smaller data 

windows independently before aggregation, improving 

computational efficiency and scalability, which makes it 

suitable for real-time pathogen detection in dynamic 

aquaculture environments. The model achieves impressive 

performance metrics, including 94.44% accuracy, 94.75% 

recall, and a 0.87 Matthew's correlation coefficient, 

showcasing its effectiveness in pathogen detection. The 

incorporation of innovative positional embedding techniques 

enables the model to capture critical spatial and temporal 

relationships, essential for monitoring pathogen concentration 

fluctuations over time. While the model shows significant 

promise, future improvements could consider the practical 

constraints of real-world deployment, such as computational 

cost and energy efficiency. Optimizing the model for edge 

devices while addressing these constraints would enhance its 

feasibility in remote aquaculture settings, enabling faster, 

more efficient detection with minimal resource consumption. 

Additionally, integrating multimodal data sources, such as 

environmental parameters and sensor-based readings, could 

further improve the model’s predictive capabilities in diverse 

aquaculture environments. 
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