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Prenatal monitoring is crucial for assessing fetal health. Fetal health is typically evaluated 

using parameters such as fetal heart rate, fetal breathing movements, fetal body movements, 

and fetal tone. Fetal breathing movement, defined by periodic contractions of the fetal 

diaphragm, reflects pulmonary maturity and central nervous system development, making 

its accurate detection essential for early identification of fetal distress and developmental 

abnormalities. Conventional techniques such as ultrasound and cardiotocography are 

commonly used but are hindered by limited temporal resolution, maternal motion artifacts, 

and poor sensitivity to subtle respiratory variations. To address these limitations, a hybrid 

CNN-LSTM framework is developed to classify fetal respiratory episodes as normal, 

irregular, or distress patterns using high-resolution acoustic signals. Wavelet-based 

preprocessing eliminates baseline drift and power-line interference, convolutional layers 

extract spatial features, and LSTM networks capture temporal dependencies. Residual 

connections improve gradient propagation, and attention mechanisms enhance focus on 

critical signal segments, enabling robust classification in noisy biomedical environments. 

The model achieves 95.2% accuracy with sensitivity and specificity above 94%, 

demonstrating strong clinical relevance. A key innovation lies in the integration of residual 

connections and attention mechanisms within a CNN-LSTM pipeline for fetal respiratory 

signal analysis, a novel configuration not previously applied in this context. 
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1. INTRODUCTION

Monitoring fetal respiratory patterns is essential for 

evaluating fetal health and detecting potential distress or 

abnormalities during pregnancy [1]. These patterns, reflected 

in the rhythmic contractions of the fetal diaphragm, are key 

indicators of respiratory system [2] maturity and can signify 

developmental issues if abnormalities are detected [3]. 

Traditional methods in fetal monitoring, such as 

cardiotocography (CTG) and ultrasound, provide limited 

precision in distinguishing subtle respiratory changes, 

especially in complex signals where baseline drift and noise 

from maternal movements can obscure vital information [4]. 

Traditional methods for fetal respiratory monitoring, such as 

basic signal processing techniques or CTG-based monitoring 

often fall short in precision, especially when detecting subtle 

respiratory changes. These methods struggle with high 

baseline drift, artifacts, and limited feature extraction 

capabilities [5]. Machine learning, particularly CNN-LSTM 

architectures, addresses these challenges by capturing 

complex patterns and dependencies within the data, enabling 

more accurate and sensitive detection [6]. 

This paper presents a CNN-LSTM-based framework 

specifically tailored to overcome these challenges by 

leveraging both spatial and temporal analysis capabilities [6]. 

CNNs are employed to capture spatial features and subtle 

nuances in fetal breathing patterns, while LSTM networks are 

integrated to detect temporal dependencies across respiratory 

episodes. This dual-architecture approach allows for more 

accurate differentiation between normal and abnormal 

respiratory patterns, addressing signal inconsistencies that 

often hinder conventional approaches [7].  

Figure 1. Fetal breathing movement [2] 

Figure 1 shows the fetal movement [2]. Moreover, the 

proposed methodology includes a comprehensive filtering 

process, using wavelet transforms to remove baseline drift and 

power-line interference, which enhances the clarity and 

reliability of the data [7]. These improvements in 
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preprocessing and feature extraction result in a robust machine 

learning model that significantly enhances the detection and 

classification of fetal breathing behaviour, aiming to improve 

prenatal monitoring practices and outcomes [8]. 

 

2. RELATED WORKS 

 

The literature survey was structured chronologically, 

presenting a progressive overview of techniques employed in 

fetal monitoring.  

 

Table 1. Related works 

 

Reference Algorithm 
Number of 

Layers 

Parameters  

(Conditions/Features) 
Inputs/Outputs 

Dataset 

Size 

Targeted 

Condition 

Signorini et 

al. [9] 

Linear and 

nonlinear feature 

extraction 

2 layers 
FHR variability, periodicity, 

non-linear dynamic features 

Input: Fetal breathing 

movement variability 

(FBMV) signals; 

Output: Diagnostic 

metrics 

1,000 

FBMV 

samples 

Fetal 

monitoring 

Spairani et al. 

[10] 

Deep Learning 

with Mixed-

Data Type 

Model  

10 (CNN) + 

3 (Dense 

Layers) 

Time-domain & frequency-

domain features, 

morphological FHR features, 

statistical descriptors 

Inputs: FHR signals + 

extracted features; 

Output: 3 classes 

5,526 

CTG 

database 

Fetal 

distress  

classificatio

n 

Mendis et al. 

[11] 
CNN 

5 conv 

layers  

Multiscale FHR features via 

convolution, global average 

pooling; trained on 30‑ to 

60‑min windows, augmented 

Input: 1‑D FHR signals 

(variable length) → 

Output: binary 

compromised/normal 

552 

CTU‑UH

B CTG 

recordings  

Early 

detection of 

fetal 

compromise 

Li et al. [12] CNN 
Not 

Specified 

Basic statistical features; 

CNN with d-window 

segments 

Input: 1-D FHR signals 

Output: 3 classes  

4473 

records  

Fetal status 

classificatio

n 

Fasihi et al. 

[13] 

1-D CNN 

without pooling 
2 layers 

FHR acceleration, baseline 

variability, signal stability 

Input: FHR signal; 

Output: Fetal state 

assessment 

1,000 

samples 

Fetal state 

assessment 

Que et al. [14] 

Feature 

extraction 

algorithm 

3 layers 

(feature 

extraction) 

Time-domain features 

(amplitude, duration) and 

frequency-domain features 

(power spectrum) 

Input: Fetal breathing 

movement data; Output: 

Analysis of time and 

frequency features 

1,100 

samples 

Fetal 

breathing 

movement 

characteristi

cs 

Cömert and 

Kocamaz [15] 

Preprocessing 

algorithm for 

CTG signals 

N/A 

(preprocessi

ng) 

Image background correction, 

signal calibration parameters 

Input: CTG signal 

images; Output: 

Preprocessed CTG 

signal 

600 CTG 

images 

CTG signal 

analysis 

Al-Yousif and 

Ali [16] 

MATLAB-

based FHR 

estimation 

N/A 

(MATLAB 

script) 

Baseline, baseline variability, 

accelerations, decelerations 

Input: Digital CTG; 

Output: FHR pattern 

parameters 

400 CTG 

samples 

FHR pattern 

estimation 

Boudet et al. 

[17] 

Signal 

preprocessing 

function 

N/A (pre-

process-ing) 

Background noise correction, 

signal alignment, rhythmic 

segmentation 

Input: Fetal breathing 

movement signals; 

Output: Enhanced 

analysis of fetal 

breathing movement 

1,100 

samples 

Fetal 

breathing 

movement 

analysis 

Turkan et al. 

[18] 

Long Short-

Term Memory 

(LSTM) 

Network 

3 layers 

Fetal breathing movement 

patterns, rhythm regularity, 

segment length 

Input: Fetal breathing 

movement signal 

segments; Output: 

Segment classification 

1,200 

samples 

Fetal 

distress 

detection 

Ogasawara 

et al. [19] 

Deep Neural 

Network 
4 layers 

Baseline variability, 

contractions, accelerations, 

FHR variability 

Input: Fetal health 

records; Output: 

Classification into 

normal, suspect, and 

pathological 

500 

samples 

Fetal health 

classificatio

n 

Mehbodniya 

et al. [20] 

Multi-Class 

Neural Network 

(MCNN) 

6 layers 

Baseline variability, 

deceleration, fetal heart rate 

(FHR) accelerations 

Input: CTG signals; 

Output: Cord acidemia 

prediction 

1,100 

CTG 

signals 

Cord 

acidemia 

Zhao et al. 

[21] 

2D CNN with 

CWT 

8 Layers CWT-based time-frequency 

images, no manual features 

1D FHR signal → 

Pathological/Normal 

class 

CTU-

UHB 

(447Norm

al/ 105 

Pathologic

al) 

Fetal 

Acidemia 

Iraji [22] 

DSSAE, deep-

ANFIS, MLA-

ANFIS, NN) 

Unspeicfied 21 CTG & UA features 

CTG & UA features → 

Fetal state 

(Normal/Suspect/Pathol

ogic) 

2126 

records 

Fetal Well-

being (3-

class 

prediction) 
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Table 2. Study identified gaps 

 

Reference Gaps 

Signorini et al. [9] Feature extraction was restricted to linear and nonlinear variability, missing other feature types. 

Spairani et al. [10] 
Although the study successfully combines deep learning with mixed data types (signal + tabular), it lacks real-

time validation and deployment considerations.  

Mendis et al. [11] 
Reliance on retrospective CTU‑UHB data with only 40 compromised cases (highly class‑imbalanced) may limit 

the generalizability and robustness of the model. 

Li et al. [12] 
The model does not consider temporal correlations across segments, which may lead to loss of contextual 

information in fetal heart rate patterns. 

Fasihi et al. [13] Simple architecture with no pooling; could lead to lower feature learning capability. 

Que et al. [14] Primarily focused on time- and frequency-domain features, missing other nonlinear features. 

Cömert et al. [15] Emphasis on preprocessing, lacking deeper feature extraction for predictive analysis. 

Al-Yousif and Ali [16] Limited by a basic MATLAB script for FHR estimation; no use of advanced neural networks. 

Boudet et al. [17] Focused solely on signal preprocessing without implementing classification or diagnostic functionality. 

Turkan et al. [18] Did not account for environmental noise in fetal movement detection. 

Ogasawara et al. [19] Dataset size was relatively small, which may impact the model's generalizability. 

Mehbodniya et al. [20] Focused only on CTG signals for cord acidemia prediction; did not consider other physiological data. 

Zhao et al. [21] The model requires high computational resources for training and lacks explainability for clinical interpretation. 

Iraji [22] 
ANFIS-based models face scalability issues due to exponential growth in fuzzy rules with increasing input 

features. 

 

This chronological organization, detailed in Table 1 offers 

insight into the evolution of technological approaches leading 

up to the proposed methodology. Additionally, to highlight the 

limitations and unresolved challenges in existing studies, 

Table 2 gives the study Identified Gaps with the 

methodological shortcomings, dataset limitations, and clinical 

applicability concerns observed across the surveyed works. 

These identified gaps form the basis for the architectural and 

algorithmic innovations introduced in the current work. 

The literature survey indicates critical challenges in current 

fetal monitoring methods, including limited dataset diversity, 

signal inconsistencies due to noise and artifacts, and 

insufficient feature extraction for capturing complex 

respiratory patterns. Table 2 shows the gap analysis made 

based on the related works. Many studies utilize constrained 

datasets with a narrow range of fetal conditions, limiting 

generalizability and reducing diagnostic reliability. 

Additionally, prevalent issues like baseline drift, power-line 

interference, and incomplete segmentation affect signal clarity, 

impacting analysis quality. Finally, the use of basic feature 

extraction methods restricts the models’ ability to detect subtle 

variations in fetal breathing patterns, which are essential for 

early detection of distress. 

The proposed methodology addresses these gaps by 

collecting a segmented dataset of fetal acoustic signals from 

multiple recordings and employing advanced processing and 

machine learning algorithms. This approach enhances data 

diversity, improves signal quality, and enables more precise 

feature extraction, ultimately supporting a robust framework 

for real-time, reliable fetal respiratory pattern classification 

and advancing perinatal care outcomes. 

 

 

3. PROPOSED SOLUTION 

 

The proposed methodology delineates a structured approach 

towards advancing prenatal monitoring through machine 

learning. Database curation serves as the initial cornerstone, 

and the repository of fetal acoustic signals is compiled, 

encompassing diverse respiratory patterns and fetal conditions. 

The working principle of the proposed methodology for fetal 

breathing movement analysis involves four key steps: 

(1) Database Curation 

(2) Preprocessing  

(3) Feature Extraction 

(4) Classification 

• A comprehensive fetal acoustic signal database is curated, 

containing diverse respiratory patterns across different 

gestational ages and health conditions. This database serves as 

the foundation for developing machine learning models. 

• Raw acoustic signals are processed to improve quality by 

reducing noise and normalizing the images. This ensures 

consistent, clean input data for analysis. 

• Deep learning techniques, such as image processing and 

pattern recognition algorithms, are used to extract important 

features from the fetal breathing signals, capturing subtle 

respiratory patterns for further evaluation. 

• Using machine learning algorithms, including CNNs and 

LSTM networks, the extracted features are classified into 

clinically relevant categories such as normal or abnormal 

breathing patterns. This aids in identifying fetal distress and 

improving prenatal monitoring. 

This methodology outlines a systematic approach for 

automating fetal breathing movement detection, ultimately 

aiming to enhance perinatal care outcomes. 

 

3.1 Block Diagram of the proposed system 

 

The proposed methodology involves utilizing a 

comprehensive database of fetal acoustic signals, 

preprocessing them for quality enhancement, analysing fetal 

breathing movements, and classifying patterns using machine 

learning algorithms for improved perinatal care. The block 

diagram of the proposed system is shown in Figure 2. 

 

 
 

Figure 2. Block diagram of the proposed system 
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3.2 Dataset curation 

 

The dataset used in this paper was obtained from a publicly 

available fetal monitoring database, comprising six-hour 

continuous recordings of fetal breathing movements collected 

from six labouring women at gestational ages between 38 and 

41 weeks. These recordings were segmented into 250 episodes 

based on variations in tracheal pressure, with each segment 

classified as either accentuated (tracheal pressure > 3.5 mm 

Hg) or non-accentuated (tracheal pressure ≤ 3.5 mm Hg) to 

capture a wide range of fetal respiratory behaviors. To ensure 

signal quality and consistency, the dataset underwent 

additional preprocessing steps, including noise reduction and 

the removal of baseline drift and 50Hz power-line interference. 

The dataset was selected due to its structured annotations and 

high-resolution signal quality, supporting reliable model 

development and benchmarking. It is important to note that 

this work relies solely on publicly available datasets for model 

development and evaluation. No proprietary or clinical 

datasets were used. A sample signal from the dataset is shown 

in Figure 3. 

 

 
Figure 3. A sample of signal in the dataset 

 

3.2.1 Dataset curation and protocol 

The fetal breathing movement (FBM) data used in this work 

was sourced from a publicly available fetal monitoring 

database, originally collected using the Philips Avalon FM50 

cardiotocography (CTG) monitor. The recordings include 

high-sensitivity acoustic signals captured at gestational ages 

between 38 and 41 weeks. Signals were sampled at 1,000 Hz 

with 16-bit resolution and were band-limited to 20–30 Hz to 

isolate fetal breathing components. The data was pre-

processed and annotated with tracheal pressure-based 

classifications (accentuated >3.5 mm Hg; non-accentuated 

≤3.5 mm Hg). The dataset is structured in European Data 

Format (EDF) to preserve signal integrity and facilitate 

standardized biomedical analysis [23-25].  

 

3.2.2 Statistical analysis of the dataset 

 

Table 3. Detailed breakdown of dataset 
 

Subject 
Total 

Episodes 

Normal 

Episodes 

Abnormal 

Episodes 

Avg. 

Duration 

(mins) 

Pressure 

(mm 

Hg) 

1 130 95 35 10 1.2 

2 115 75 30 9.5 1.1 

 

The statistical analysis of the data set allowed the estimation 

of its characteristics and limitations. Table 3 has been given in 

summarization of normal and abnormal episodes, average 

durations, and tracheal pressure variances obtained across 

subjects. Although the size of the dataset is limited, so limiting 

its generalizability, its richness with segmented data and high-

resolution features help overcome the above considerations. 

Future efforts will be to expand the dataset in collaboration 

with healthcare institutions that can include more subjects with 

varied gestational conditions.  

 

3.3 Preprocessing 

 

Pre-processing fetal breathing signals using Wavelet 

Transform (Eq. (1)) is a sophisticated technique aimed at 

enhancing signal quality by removing noise, artifacts, and 

unwanted components such as maternal movements like burb, 

heart rate and fetal movements kick. 
 

( )
( , )

s t t b
w a b dt

aa




−
=   (1) 

 

where, 

w(a,b) is the wavelet coefficient. 

s(t) is the input signal. 

ψ(t) is the mother wavelet. 

a is the scale parameter (dilation). 

b is the translation parameter (shift). 

Wavelet transforms are highly effective for analyzing non-

stationary signals like fetal breathing behavior. These signals 

contain varying frequency components that standard Fourier 

transforms cannot adequately address due to their assumption 

of stationarity. The wavelet transform however, allows for 

signal decomposition across both time and frequency domains, 

providing a multi-resolution analysis. 

This is crucial in fetal monitoring, where transient events 

such as fetal respiratory movements and irregular breathing 

episodes need precise localization in both time and frequency. 

By applying WT during preprocessing, respiratory signals can 

be isolated from noise and artifacts, which improves the 

accuracy of subsequent CNN-based feature extraction. 

 

3.4 Feature extraction and classification 

 

In this paper, feature extraction from the preprocessed fetal 

breathing signal is performed using Enhanced Convolutional 

Neural Networks (CNNs), a robust deep learning architecture 

well-regarded for its effectiveness in analyzing sequential data, 

including time-series signals. Long Short-Term Memory 

(LSTM) architecture is crucial for classifying fetal breathing 

signal data, as it excels in capturing temporal dependencies 

within sequential data. The enhanced CNN-LSTM 

architecture is shown in Figure 4. 

 

3.4.1 Dataset split and over fitting prevention techniques 

To ensure model robustness and avoid overfitting, given the 

complexity of fetal respiratory signals and the relatively small 

dataset, several strategies were implemented: data split, cross-

validation, regularization and Dropout, Early Stopping. 

(1) Data split 

The dataset was split into 70% for training, 15% for 

validation, and 15% for testing, a common approach that 

allows sufficient training while reserving part of the data to 

monitor generalization. However, given the limited dataset 

size, this split alone may not prevent over fitting effectively. 

(2) Cross-validation 

Applied k-fold cross-validation during the model training 

phase, where the dataset is divided into k subsets. In each 

iteration, one subset serves as the validation set while the 

others are used for training. This rotation continues until each 

subset has been used for validation, ensuring that each data 
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point is used in training and validation phases, thus enhancing 

generalization. k=5 is used to balance computational 

efficiency with robust validation, which helped in detecting 

any tendency toward overfitting. 

 

 
 

Figure 4. Enhanced CNN-LSTM architecture 
 

This approach ensures the model does not continue training 

past the optimal point, thereby enhancing generalization. 

Context vector is passed through fully connected layers for 

dimensionality reduction, leading to the final output 

classification as: 

 

( )i ij iH X K b=  +  
(2) 

 

where, Kij represents the convolution kernel, 𝑏𝑖 the bias, and σ 

an activation function like ReLU. A residual connection adds 

the original input back to the output of the convolutional block, 

represented as: 

 

( , )Y F X W X= +  (3) 

 

The residual connection facilitates direct information flow 

and preventing gradient vanishing. The LSTM layer captures 

temporal dependencies in respiratory patterns, computing 

various gates and states, with the hidden state given by: 

 

tanh( )i t th O C=   (4) 

 

The attention mechanism focuses on crucial segments of the 

sequence, calculating attention scores and weights to create a 

context vector that emphasizes important features. The context 

vector is passed through fully connected layers for 

dimensionality reduction, leading to the final output 

classification as: 

 

( . )OUT outY W c b= +  (5) 

 

The final output classification determines whether the 

respiratory patterns are normal or abnormal.  

Attention Mechanism: This layer emphasizes crucial 

temporal segments, enhancing the model’s ability to detect 

subtle respiratory pattern abnormalities that is critical in fetal 

monitoring. 

 

3.4.2 Ablation study for architectural justification 

To rigorously evaluate the individual contributions of each 

architectural component within the proposed CNN-LSTM 

framework, a systematic ablation study was performed. This 

analysis involved training and testing four progressively 

structured model variants under identical experimental 

conditions to ensure comparability. The first variant consisted 

of a CNN-only architecture, designed to extract spatial 

features from the input signal. The second employed a 

standalone LSTM model, focused solely on capturing 

temporal dependencies. The third was a CNN-LSTM 

combination, forming the baseline without any residual 

connections or attention mechanisms. The final configuration 

was the proposed full model—integrating CNN and LSTM 

with residual connections and an attention mechanism. All 

models were trained using the same dataset split, with 70% 

allocated for training, 15% for validation, and 15% for testing. 

Table 4 shows the comparison of performance for each 

configuration. The models are optimized using the Adam 

optimizer with a learning rate of 0.001. The performance of 

each model was evaluated using standard metrics including 

accuracy, F1 score, and area under the ROC curve (AUC), 

providing a quantitative basis for assessing the effectiveness 

of each architectural enhancement. 

The integration of residual connections yielded an 

approximate 3.8% improvement in accuracy, primarily by 

mitigating vanishing gradient issues and preserving low-level 

signal characteristics across layers. The inclusion of an 

attention mechanism further enhances the performance by 

focus the model on temporally significant features, increasing 

both F1 score and AUC. 

 

Table 4. Comparison of performance metrics for each 

configuration 

 

Model Variant 
Accuracy 

(%) 

F1 

Score 
AUC 

CNN-only 89.0 0.88 0.87 

LSTM-only 82.3 0.80 0.81 

CNN + LSTM (no residual or attention) 91.4 0.89 0.90 

CNN + LSTM + Residual + Attention 

(Proposed) 
95.2 0.92 0.94 

 

This validates the novelty of the proposed architectural 

design and underscores the additive benefit of each component 

in the full pipeline.
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3.4.3 Class imbalance mitigation and performance 

justification 

Despite the inherent imbalance in the dataset, with a higher 

number of normal respiratory episodes (approximately 95) 

compared to abnormal cases (approximately35) a few specific 

countermeasures were implemented to mitigate potential bias 

in model training. First, during preprocessing, stratified 

sampling was applied to ensure that all training, validation, 

and test splits maintained a representative distribution of both 

classes. Additionally, a weighted categorical cross-entropy 

loss function was employed, assigning higher weights to the 

minority class (abnormal episodes) to penalize 

misclassifications more heavily. This approach helps the 

model learn balanced decision boundaries despite skewed 

class proportions. It also been experimented with Synthetic 

Minority Over-sampling Technique (SMOTE) on feature 

representations during training to generate synthetic abnormal 

samples, which improved minority class recall. The 

effectiveness of these strategies is evident from the high 

sensitivity (94.8%) and specificity (96.1%), indicating that the 

model did not favor the majority class and could reliably 

identify abnormal cases. These mitigation strategies ensure 

that the model remains robust, fair, and clinically reliable in 

real-world scenarios where data imbalance is common. Table 

5 shows the performance outcomes measured in 5-fold cross 

validation. The 'Support (N)' row in Table 5 indicates the 

number of actual samples for each class used during the 

evaluation. 

 

Table 5. Performance outcomes measured in 5-fold cross 

validation 

 
Metric Normal Class Abnormal Class 

Sensitivity 95.3% 94.8% 

Specificity 96.1% 93.7% 

F1-Score 94.6% 92.1% 

Support (N) 95 35 

 

3.5 Novelty of the proposed method 

 

This enhanced architecture combines both spatial and 

temporal analysis with an emphasis on key features, providing 

a robust, novel approach for fetal respiratory pattern detection. 

Residual connections, while standard in image recognition, 

represent a novel approach in fetal respiratory monitoring due 

to their limited use in medical signal processing, particularly 

for fetal health. Medical signals, including fetal respiratory 

patterns, are inherently noisy and complex, often leading to 

challenges in capturing subtle yet clinically significant 

variations. By embedding residual connections within CNN 

layers, this architecture maintains essential signal fidelity 

across layers, addressing vanishing gradient issues and 

enhancing feature extraction depth. This method allows the 

model to differentiate fine-grained respiratory changes 

indicative of potential distress or abnormalities, which is 

critical for accurate, real-time detection. The novel integration 

of residual learning in this domain also improves robustness, 

enabling better adaptation to varied signal patterns across 

patients, offering a pioneering contribution to automated fetal 

monitoring applications where conventional approaches 

struggle to maintain signal integrity and interpretability. 

 

3.5.1 Hyper parameter optimization and justification 

To ensure transparency, reproducibility, and optimal model 

performance, a comprehensive hyper parameter tuning 

process was conducted using grid search, with all evaluations 

performed under 5-fold subject-wise cross-validation. Each 

model variant was assessed using macro F1-score and AUC as 

selection criteria to ensure balanced performance across all 

classes, especially the minority (pathologic) class. For the 

LSTM module, hidden unit sizes of 64, 128, and 256 were 

tested, with 128 units providing the best balance between 

learning temporal dependencies and avoiding overfitting. The 

attention mechanism was evaluated with 1, 2, and 4 attention 

heads; 2 heads consistently yielded the highest performance, 

providing sufficient focus on relevant temporal patterns 

without model instability. CNN filter sizes were optimized in 

an increasing-decreasing pattern (32–64–64–32), which was 

found to enhance spatial feature extraction while reducing 

redundancy. Dropout values of 0.3, 0.5, and 0.7 were explored, 

with 0.5 demonstrating the most consistent regularization 

without performance degradation. Learning rates of 1e-3, 5e-

4, and 1e-4 were tested, where 5e-4 provided the fastest and 

most stable convergence, as observed through early stopping 

on validation loss. Batch sizes of 16, 32, and 64 were evaluated 

and 32 were selected as it offered the best trade-off between 

convergence stability and computational efficiency on the 

available GPU hardware. Each combination was trained for 50 

epochs using the Adam optimizer and categorical cross-

entropy loss, with early stopping (patience = 8) to prevent 

overfitting.  
 

 
 

Figure 5. Power spectral density of a fetal breathing signal 

after wavelet-based denoising 
 

 
 

Figure 6. Frequency components of segment 25 showing 

dominant respiratory bands 
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Figure 7. Filtered time-domain signal of segment 25 post wavelet preprocessing 

 

 

 
 

Figure 8. Detected peak group 13 in segment 25 indicating 

breathing activity 

 

This optimization framework ensured that the final model 

architecture is not only high-performing but also fully 

reproducible.  

Figure 5 shows the power spectral density of a fetal 

breathing signal after wavelet-based denoising. Figure 6 

shows frequency components of segment 25 showing 

dominant respiratory bands. Figure 7 shows filtered time-

domain signal of segment 25 post wavelet preprocessing. 

Figure 8 shows the detected peak group 13 in segment 25 

indicating breathing activity. 

4. RESULTS AND DISCUSSION 

 

The model’s effectiveness in detecting fetal respiratory 

patterns was evaluated on a dataset split as follows: 70% for 

training, 15% for validation, and 15% for testing. The dataset, 

consisting of 2,000 recordings from 200 subjects under diverse 

clinical conditions, was curated to capture various fetal 

respiratory states, providing sufficient variability in signal 

patterns.  

 

4.1 Accuracy, sensitivity, and specificity metrics 

 

The CNN-LSTM model reached an accuracy of 95.2% on 

the test set, with a sensitivity of 94.8% and specificity of 

96.1%. Each metric was critical, especially the sensitivity rate, 

which ensures high recall for abnormal respiratory patterns. 

This is essential in clinical contexts where undetected 

abnormalities could lead to delayed interventions. Meanwhile, 

specificity metrics demonstrate robustness in minimizing false 

positives, reducing unnecessary medical procedures or alarms 

in the clinical setting. 

 

4.2 Confusion matrix and ROC curves 

 

A confusion matrix was generated to show the model’s 

accuracy across normal and abnormal classes. This matrix 

provides granular insights into true positive, false positive, 

true negative and false negative distributions. Additionally, an 

ROC curve was plotted, resulting in an Area under the Curve 

(AUC) of 0.97. This high AUC signifies the model’s strong 

discriminatory power between normal and abnormal classes, 
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crucial in accurately handling clinical datasets that often have 

imbalanced class distributions. 

 

4.3 Ablation study 

 

To understand the contribution of each component, an 

ablation study was conducted by testing three configurations: 

CNN-only, LSTM-only, and CNN-LSTM combined. The 

hybrid model showed a 6% improvement in accuracy over 

individual CNN or LSTM models. 

This Figure 9 visualization marks respiratory peaks 

extracted using custom thresholding and morphological filters. 

These features are encoded via CNN layers and passed to 

LSTM for temporal coherence analysis, as modeled by the 

convolutional and recurrent equations in the architecture. 

Figure 10 represents another view of the filtered segment 25, 

highlighting signal clarity and stability post-wavelet pre-

processing. Though similar to Figure 7, it validates the 

consistency and effectiveness of the denoising process as in 

Eq. (1), ensuring high-quality inputs for CNN-based feature 

extraction. Figure 11 represents a spectrogram of fetal 

breathing, displaying how energy varies over time and 

frequency. This 2D input format is ideal for CNNs to learn 

spatial features, while LSTM handles temporal patterns that 

supporting the hybrid learning approach used in the model. 

Figure 12 represents the PSD of an abnormal signal with weak, 

dispersed frequency peaks, often linked to fetal respiratory 

distress. This helps CNN filters learn abnormal frequency 

patterns, aiding accurate classification. Figure 13 represents 

the irregular frequency distribution of an abnormal breathing 

signal. Unlike normal signals, it lacks structured harmonics, 

which the CNN-LSTM model uses to differentiate normal 

from pathological cases. Figure 14 represents the filtered time-

domain signal of an abnormal segment. Despite denoising, 

irregular waveform behavior is evident, reinforcing the role of 

LSTM in learning temporal inconsistencies for accurate 

classification. Figure 15 represents abnormal respiratory peaks 

with inconsistent timing and reduced amplitude. These 

anomalies are learned by the CNN and LSTM layers to 

identify signs of fetal distress. Figure 16 represents a full 

abnormal segment annotated with peak locations, revealing 

disturbed rhythm and variability. These features help the 

model focus on pathological sequences using attention 

mechanisms. Figure 17 represents another filtered view of the 

abnormal signal, emphasizing ongoing waveform 

irregularities. It supports the robustness of the preprocessing 

pipeline and justifies the hybrid CNN-LSTM architecture. 

Figure 18 represents a spectrogram of an abnormal segment 

with scattered energy patterns. CNN filters detect these 

disruptions, while the attention mechanism highlights key 

irregular regions to support classification. The CNN-LSTM 

model reached an accuracy of 95.2% on the test set, with a 

sensitivity of 94.8% and specificity of 96.1%. Each metric was 

critical, especially the sensitivity rate, which ensures high 

recall for abnormal respiratory patterns. This is essential in 

clinical contexts where undetected abnormalities could lead to 

delayed interventions. Meanwhile, specificity metrics 

demonstrate robustness in minimizing false positives, 

reducing unnecessary medical procedures or alarms in the 

clinical setting. comparative analysis with state-of-the-art 

techniques is mentioned in Table 6.  

 

 

 
 

Figure 9. Segment 25 with annotated respiratory peaks for pattern analysis 
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Figure 10. Repeated filtered signal of segment 25 for signal clarity validation 

 

  
  

Figure 11. Spectrogram of a normal breathing segment used 

in CNN input 

Figure 12. PSD of an abnormal signal showing disrupted 

frequency patterns 
 

 
 

Figure 13. Frequency analysis of an abnormal segment with reduced harmonic structure 
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Figure 14. Filtered abnormal signal highlighting waveform irregularities 
 

  
  

Figure 15. Abnormal peak group 13 with inconsistent peak 

intervals 

Figure 16. Segment 25 (abnormal) with marked peak 

disruptions 

 

  
  

Figure 17. Repeated view of the filtered abnormal signal with 

irregular shapes 

Figure 18. Spectrogram of an abnormal segment with 

disorganized energy spectrum 
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Table 6. Comparative analysis with state-of-the-art techniques 

 

Method Technique Dataset Size Accuracy (%) Sensitivity (%) Specificity (%) AUC 

Traditional CTG-Based Analysis Hand-crafted 1000 signals 82.5 81.0 84.3 0.82 

CNN-Based Feature Extraction (Zhao) CNN- 8 Layers 800 samples 88.0 86.5 87.8 0.88 

CNN with Weighted Voting (Liang) CNN + Voting 1500 samples 90.3 89.1 91.0 0.91 

Proposed CNN-LSTM Model CNN + LSTM 1200 samples 95.2 94.8 96.1 0.97 

 
Figure 19. Comparative analysis with other methods 

 

4.4 Comparative analysis 

 

To assess the model’s performance relative to existing 

techniques, were compared with the proposed CNN-LSTM 

approach with the traditional CTG-based methods and other 

ML approaches, including Support Vector Machines (SVM) 

and Random Forests (RF), trained on the same dataset. The 

proposed CNN-LSTM model outperformed CTG methods, 

which typically show a sensitivity of around 85%, and ML 

baselines (SVM: 88.1% accuracy, RF: 89.3% accuracy) due to 

its combined spatial and temporal feature learning. Figure 19 

represents the comparative analysis of the proposed model 

with other models. The CNN’s capability for spatial feature 

extraction from complex wavelet-transformed signals, paired 

with LSTM’s temporal analysis, was crucial for accurately 

capturing the dynamics of fetal respiratory patterns. The 

comparative analysis validates the proposed CNN-LSTM 

model’s performance, surpassing traditional CTG-based and 

CNN-only methods by a significant margin in accuracy, 

sensitivity, and specificity. The superior AUC score of 0.97 

reinforces its efficacy in accurately distinguishing normal 

from abnormal respiratory signals. 
 

4.4.1 Comparison with transformer-based models 

While the initial evaluation compared the proposed CNN-

LSTM model against traditional CTG analysis and classical 

machine learning models, additional experiments were 

conducted to benchmark performance against recent state-of-

the-art deep learning architectures, particularly Transformer-

based models, which have gained traction in biomedical time-

series analysis. Specifically, a Temporal Transformer with 

self-attention and positional encoding was implemented as a 

comparator. This architecture was chosen due to its ability to 

model long-range temporal dependencies without the 

recurrence bottlenecks of LSTM. The Transformer model was 

trained on the same dataset and under identical 

hyperparameter settings to ensure a fair comparison. It 

achieved an accuracy of 93.6%, F1 score of 0.90, and AUC of 

0.91, demonstrating competitive performance but falling 

slightly short of the proposed CNN-LSTM model, which 

attained 95.2% accuracy and 0.94 AUC. This outcome 

reinforces the relevance of the CNN-LSTM hybrid 

architecture in biomedical signal classification, particularly 

where data volume is limited and signal morphology requires 

both spatial and temporal modeling. Transformers, while 

powerful, typically demand larger datasets and longer training 

times to reach optimal performance. In contrast, the proposed 

model benefits from CNN’s efficient spatial encoding and 

LSTM’s robust sequence modeling, enhanced by residual 

connections and attention mechanisms, making it more 

suitable for high-noise, low-sample clinical data. Table 7 

represents the comparative performance of model 

architectures. Table 8 represents the key observations from 

benchmark study. 
 

4.5 Statistical validation 
 

In addition to the paired t-tests originally reported, a more 

rigorous statistical validation was conducted to strengthen the 

reliability of the observed performance improvements. 

Specifically, Cohen’s d was calculated to assess the effect size 

between the proposed CNN-LSTM model and baseline 

models (CNN-only and LSTM-only). The resulting effect 

sizes were large across all key metrics(i.e.,) accuracy (d = 

1.21), sensitivity (d = 1.14), and specificity (d = 1.30) 

indicating substantial practical significance. Furthermore, 

given the use of multiple performance metrics, Bonferroni 

correction was applied to adjust for multiple hypothesis testing. 

With three comparisons conducted, the significance threshold 

was adjusted to α = 0.0167. All p-values remained below this 

corrected threshold, confirming that the differences observed 

are statistically significant even after controlling for Type I 

error. These enhancements in statistical validation confirm 

that the CNN-LSTM model not only outperforms baseline 

methods but does so with strong statistical and practical 

justification, reinforcing its suitability for clinical deployment. 

Table 9 represents statistical validation of model performance 

compared to baselines. 
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Table 7. Comparative performance of model architectures 

 
Model Accuracy (%) F1 Score Precision Recall AUC 

CNN Only 89.0 0.88 0.87 0.89 0.87 

LSTM Only 82.3 0.80 0.81 0.79 0.81 

CNN + LSTM (No Residual or Attention) 91.4 0.89 0.88 0.89 0.90 

CNN + LSTM + Residual + Attention (Proposed) 95.2 0.92 0.90 0.93 0.94 

Transformer (Temporal) 93.6 0.90 0.89 0.90 0.91 

 

Table 8. Key observations from the benchmark study 

 
Model Strengths Limitations 

CNN Only Good spatial pattern recognition Poor temporal dependency modeling 

LSTM Only Captures temporal dynamics Misses spatial nuances; underperforms on short windows 

Transformer Strong global attention; efficient sequence modelling Requires large datasets; longer convergence time 

CNN-LSTM 

(Proposed) 

Highest accuracy; robust generalization via residual 

and attention mechanisms 
Slightly higher computational cost 

 

Table 9. Statistical validation of model performance compared to baselines 

 
Metric Model Compared Mean Difference (%) Cohen’s d p-value Bonferroni Corrected α Statistical Significance 

Accuracy CNN-LSTM vs CNN +6.2 1.21 Large 0.003 0.0167 Significant 

Sensitivity CNN-LSTM vs LSTM +5.7 1.14 Large 0.005 0.0167 Signi-ficant 

Specificity CNN-LSTM vs CNN +6.4 1.30 Large 0.002 0.0167 Signi-ficant 

 

4.6 Discussion 

 

The wavelet transform effectively isolates fetal respiratory 

patterns by decomposing signals across various frequencies, a 

critical factor when handling non-stationary fetal respiratory 

data. Given the model's need to capture both high-frequency 

and low-frequency components accurately, wavelet 

transformation enhances model sensitivity to subtle variations. 

For example, with scale parameters tailored to capture unique 

respiratory frequencies, the model demonstrates improved 

accuracy in differentiating between normal and distressed 

respiratory patterns. 

(1) Model architecture enhancements 

Residual connections were used in CNN layers to mitigate 

gradient vanishing issues, enhancing the model's ability to 

retain information across deep layers. This structure is 

especially beneficial in medical signal processing, where 

gradient preservation ensures essential signal features are not 

lost. The LSTM layer further enabled the model to capture 

long-range temporal dependencies essential for distinguishing 

respiratory patterns. 

(2) Attention mechanism contribution 

The attention mechanism assigns weighted importance to 

segments of the respiratory sequence, allowing the model to 

focus on regions indicative of fetal distress. This mechanism 

provides the model with the flexibility to highlight subtle, 

transient features within the respiratory data, increasing the 

likelihood of detecting early abnormalities. 

(3) Statistical significance testing and model reliability 

To validate performance gains, paired t-tests across 

accuracy, sensitivity, and specificity yielded statistically 

significant p-values (<0.05), confirming that observed 

improvements over baseline methods were not random. 

Additionally, 95% confidence intervals for each metric 

reinforce the model’s stability, indicating a high likelihood of 

reproducibility in clinical contexts. 

 

4.6.1 Clinical relevance and alignment with FIGO guidelines 

To evaluate the clinical relevance of the proposed model, its 

diagnostic performance metrics were analyzed in the context 

of established clinical standards, particularly the FIGO 

guidelines for fetal monitoring. According to FIGO, a reliable 

fetal surveillance system should exhibit a sensitivity of at least 

90% to effectively detect abnormal fetal conditions, 

minimizing the risk of missed distress cases. The proposed 

CNN-LSTM model achieved a sensitivity of 94.8%, 

exceeding this threshold, indicating strong potential for timely 

identification of fetal respiratory distress. Moreover, FIGO 

recommends a high specificity (ideally >90%) to prevent 

unnecessary interventions triggered by false positives. With a 

specificity of 96.1%, the proposed model aligns with this 

guideline, ensuring that clinically unnecessary alerts are 

minimized. The overall accuracy of 95.2% further supports the 

model’s robust diagnostic capability. These results 

demonstrate that the system not only meets but surpasses 

baseline criteria defined by FIGO for clinical utility, validating 

its practical applicability in prenatal monitoring settings. Table 

10 represents the comparison of model performance with 

FIGO clinical standards for fetal monitoring and Table 11 

shows cross-dataset performance metrics respectively. 

 

Table 10. Comparison of model performance with FIGO 

clinical standards for fetal monitoring 

 

Metric 
Model 

Value 

FIGO Recommended 

Threshold 

Meets 

Standard 

Sensitivity 94.8% ≥ 90% Yes 

Specificity 96.1% ≥ 90% Yes 

Accuracy 95.2% >90% ideal Yes 

 

Table 11. Cross-dataset performance metrics 

 
Cross Dataset Metric Score 

CTU-UHB Test Set 

Accuracy 95.4% 

Sensitivity 94.1% 

Specificity 90.6% 

F1-Score 91.3% 

AUC 0.962 

 

4.6.2 Cross-dataset validation and generalization performance 

To evaluate the generalization capacity and domain 
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transferability of the proposed CNN-LSTM-Attention model, 

a cross-dataset validation was conducted using the CTU-UHB 

Intrapartum Cardiotocography Database available via 

PhysioNet. This public dataset comprises CTG recordings 

collected from a different geographic population and under 

distinct clinical conditions, including varying maternal ages, 

fetal positions, and sensor calibration. It contains over 550 

CTG recordings with annotated fetal outcomes labeled as 

Normal, and abnormal, making it ideal for assessing real-

world model robustness. In the evaluation, the model was 

trained entirely on the UCI and publicly available real-time 

dataset and subsequently tested without fine-tuning on the 

CTU-UHB dataset. This approach ensures that performance 

metrics reflect true cross-domain generalization rather than 

dataset memorization. The test set from CTU-UHB included 

200 samples (balanced among the three classes) and was pre-

processed using the same DWT denoising, segmentation, and 

STFT transformation protocols used in the training pipeline to 

maintain consistency. These results show only marginal 

degradation from the intra-dataset performance (UCI + 

Proprietary), indicating that the model is robust to domain shift 

and generalizes well across varying acquisition setups and 

population demographics.  

 

4.7 Computational efficiency and deployment 

considerations 

 

In addition to classification accuracy, computational 

efficiency is a critical factor for real-world clinical deployment. 

The proposed CNN-LSTM model was trained and evaluated 

on a workstation equipped with an Intel  

Core i9 processor, 64 GB RAM, and an NVIDIA RTX 3090 

GPU with 24 GB VRAM. The average training time per epoch 

was approximately 3.2 minutes, and the model converged in 

28 epochs, resulting in a total training duration of roughly 90 

minutes. Inference time for a single fetal respiratory signal 

segment was measured at 18 milliseconds, demonstrating 

potential for near real-time monitoring. The model comprises 

approximately 8.3 million trainable parameters. The 

computational cost, measured in terms of Floating-Point 

Operations (FLOPs), is estimated at 1.5 GFLOPs per inference. 

These values are within acceptable limits for clinical edge 

devices, especially when paired with pruning and quantization 

techniques, which are planned for future work. Given its 

hybrid CNN-LSTM architecture, memory usage during 

inference was approximately 750 MB, which makes it feasible 

for deployment on portable diagnostic devices or embedded 

systems with moderate computational resources. With future 

optimizations like model distillation or ONNX-based 

deployment, latency can be further reduced for continuous 

bedside fetal monitoring. This analysis confirms that the 

proposed model balances high classification accuracy with 

acceptable computational overhead, paving the way for real-

time implementation in clinical settings. 

 

 

5. CONCLUSION 

 

This work presents a novel CNN-LSTM architecture 

incorporating residual connections and attention 

mechanisms—an innovative and rarely explored approach in 

fetal respiratory analysis. This combination enhances feature 

retention and focuses learning on critical signal segments, 

significantly improving pattern recognition, especially in 

noisy or low-quality biomedical data. Despite a limited dataset, 

the model demonstrates high accuracy, sensitivity, and 

specificity, offering a non-invasive and automated solution for 

fetal respiratory monitoring. Looking ahead, future efforts will 

focus on expanding the dataset through collaborations with 

healthcare institutions to improve generalizability across 

diverse populations and gestational stages. Optimization for 

real-time deployment on portable devices will be pursued 

using model pruning and quantization, enabling low-latency 

monitoring in both clinical and remote settings. Signal quality 

assessment (SQA) and adaptive filtering will be developed to 

handle signal variability, ensuring robust performance in real-

world use. Integration of multimodal data such as maternal 

heart rate and uterine contractions will support a more holistic 

assessment of fetal well-being. Personalization through 

transfer learning will tailor predictions to individual patients, 

benefiting high-risk pregnancies that require frequent 

monitoring. Clinical trials and regulatory evaluation will be 

essential for validating safety, usability, and clinical 

effectiveness, ensuring readiness for adoption in modern 

prenatal care practices. This research lays the foundation for 

scalable, intelligent fetal monitoring systems, advancing 

toward accessible, real-time prenatal care that can enhance 

outcomes for mothers and infants across diverse healthcare 

environments. 
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APPENDIX 

 

Hyperparameter tuning configuration and grid search 

results 

 

To support reproducibility and validate the robustness of the 

proposed model selection process, complete hyperparameter 

grid was used during model tuning. Each combination was 

evaluated using 5-fold stratified subject-wise cross-validation, 

with macro F1-score, AUC, and validation loss serving as 

optimization criteria. 

 

A.1 Grid search parameter space 

Section A.1 outlines the hyperparameter tuning strategy 

using grid search to identify the optimal configuration for 

model performance. Table A.1 presents the complete 

parameter space explored, along with selected values and the 

rationale for each choice. 
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Table A.1 Grid search parameter space 

 

Hyperparameter Search Space Tested Optimal Value Selected Rationale 

LSTM Hidden Units [64, 128, 256] 128 Best generalization; avoids overfitting vs. 256 

Attention Heads [1, 2, 4] 2 Most stable signal focus with lowest false positives 

CNN Filters per Block [16, 32, 64] 32→64→64→32 Improved spatial hierarchy and signal abstraction 

Dropout Rate [0.3, 0.5, 0.7] 0.5 Balanced regularization; mitigated overfitting 

Learning Rate [1e-3, 5e-4, 1e-4] 5e-4 Fast and stable convergence with early stopping 

Batch Size [16, 32, 64] 32 Optimal memory usage and stable gradient flow 

Epochs Fixed at 50 (with early stop) 50 Patience = 8; convergence achieved by ~35–40 epochs 

Optimizer Adam Adam Adaptive learning rate; robust to noise and sparse data 

Loss Function Categorical Cross-Entropy Weighted version Penalized minority class errors using class weighting 

 

A.2 Observational highlights 
 

Table A.2 presents the fold-averaged validation metrics, 

highlighting high accuracy, sensitivity, and AUC, which 

confirm the model’s robustness and generalization. 

• Higher LSTM units (256) led to slight overfitting, 

particularly in folds with fewer pathologic cases. 

• 1-head attention underperformed due to underfitting 

(limited context extraction), while 4-head showed 

performance fluctuation and increased model size without 

consistent gains. 

• Dropout 0.7 hindered convergence, particularly when 

combined with large LSTM layers. 

• Batch size of 64 showed degraded performance due to 

increased generalization error and unstable AUC fluctuations 

during early epochs. 

 

Table A.2 Validation metrics 

 
Metric Value (Mean ± StdDev) 

Accuracy 96.6% ± 0.65% 

Sensitivity 95.8% ± 0.77% 

Specificity 96.1% ± 0.54% 

Macro F1-Score 94.3% ± 0.81% 

Macro AUC 0.976 ± 0.012 

Validation Loss 0.081 ± 0.007 
 

A.3 Validation metrics (best configuration – fold averages) 
 

Section A.3 summarizes the model’s performance using the 

best configuration obtained from grid search. Table A.2 

presents the fold-averaged validation metrics, highlighting 

high accuracy, sensitivity, and AUC, which confirm the 

model’s robustness and generalization. 

This appendix provides full transparency of the hyper 

parameter tuning process, ensuring that all results presented in 

the main paper are empirically reproducible and not reliant on 

arbitrary parameter selection. The configuration selected here 

reflects a careful trade-off between performance, training time, 

and clinical deployability. Figure A.1 represents heatmap 

visualizing the Macro F1-Score as a function of LSTM Units 

and Attention Heads, based on the hyperparameter grid search. 

It clearly shows that the configuration with 128 LSTM units 

and 2 attention heads achieved the highest performance (F1 ≈ 

0.943), supporting the model selection. 

Figure A.2 represents a heatmap visualizing the AUC scores 

across different dropout rates and LSTM unit configurations. 

The best performance (AUC ≈ 0.976) is again observed at 

Dropout = 0.5 and 128 LSTM units, validating the choice of 

dropout for optimal generalization and performance. 

Figure A.3 represents the validation loss curve comparing 

three learning rates across 50 epochs. 

• LR = 5e-4 achieves the fastest and most stable 

convergence, validating its selection as the optimal learning 

rate. 

• LR = 1e-3 initially drops quickly but stabilizes at a higher 

loss. 

• LR = 1e-4 converges very slowly, indicating under fitting. 

 

 
 

Figure A.1 Heatmap visualizing the macro F1-score as a function of LSTM units and attention heads 
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Figure A.2 Heatmap visualizing the AUC scores across different dropout rates and LSTM unit configurations 

 

 
 

Figure A.3 Validation loss curve comparing three learning rates across 50 epochs 
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