
Signal Detection in Non-Cooperative Communications Using Federated Deep Learning 

Mohamed A. Abbas1* , Mohammed I. Al-Rayif2  

1 Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia 
2 Department of Applied Electrical Engineering, College of Applied Engineering, King Saud University,  

Riyadh 11421, Saudi Arabia 

Corresponding Author Email: mabas@kku.edu.sa

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420433 ABSTRACT 

Received: 25 November 2024 

Revised: 12 April 2025 

Accepted: 2 June 2025 

Available online: 14 August 2025 

This paper presents a novel framework for signal detection in non-cooperative 

communication environments using Federated Deep Learning (FDL). The increasing 

demand for robust signal detection in environments with multiple transmitters, such as 

cognitive radio networks, military communications, and unauthorized signal detection, 

necessitates advanced approaches that address privacy, adaptability, and computational 

efficiency. The proposed FDL framework combines the advantages of federated learning 

and deep learning to enhance the effectiveness of signal detection while maintaining data 

privacy. Federated learning allows distributed devices to collaboratively train a global model 

without sharing raw data. The decentralized approach is particularly suited for non-

cooperative environments, where channel dynamics are constantly changing, requiring 

adaptive and robust detection capabilities. By integrating deep learning models, the 

framework autonomously extracts complex features and learns from the vast, diverse 

datasets inherent to non-cooperative settings. The proposed FDL approach provides 

significant benefits, including enhanced adaptability, reduced network congestion, and 

improved robustness against interference. The paper also details the mathematical models 

and algorithms that underpin FDL, demonstrating its effectiveness in preserving data 

privacy. Results indicate that the FDL framework offers a scalable solution for real-time 

signal detection in dynamic environments, making it highly suitable for applications 

requiring secure and efficient communication. 
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1. INTRODUCTION

Modern era of wireless communications is characterized by

a significant rise in the number of connected devices and an 

increasing demand for seamless connectivity. This growth has 

created an urgent need for robust signal detection and 

classification techniques, particularly in non-cooperative 

communication environments [1]. Non-cooperative 

communication refers to scenarios in which multiple 

transmitters coexist in the communication channel, and their 

transmission parameters or behaviors are unknown or 

unpredictable. Such situations arise in various applications, 

including cognitive radio networks, military communications, 

and unauthorized signal detection for security purposes [2, 3]. 

Addressing signal detection in such complex environments 

effectively calls for sophisticated approaches that leverage 

advanced computational techniques [4]. FDL represents a 

promising solution to these challenges by combining the 

strengths of federated learning and deep learning [5]. This 

introduction discusses these techniques and highlights the 

benefits of merging them to facilitate more effective signal 

detection in non-cooperative communication systems [6]. 

Federated Learning (FL) is a decentralized machine learning 

technique that allows multiple distributed devices or nodes to 

collaboratively train a model while keeping the local data on 

each device secure and private [7]. 

Instead of transferring raw data to a central server for 

training, FL aggregates locally computed updates from each 

participant to form a global model [8]. This unique feature 

makes FL particularly advantageous in communication 

systems where data privacy is paramount, such as military 

networks, personal communication devices, and healthcare 

applications involving wireless sensors [9]. Figure 1 highlights 

the key aspects of FDL for signal detection.  

It demonstrates how FDL integrates the concepts of 

federated learning and deep learning to address challenges in 

non-cooperative communication environments. The diagram 

likely illustrates the decentralized training process, where 

local models on distributed devices are trained using local 

datasets and then aggregated into a global model without 

sharing raw data, ensuring data privacy and reducing 

communication overhead. This is essential in dynamic 

environments such as cognitive radio networks and military 

applications, where privacy and adaptability are critical [10-

14]. In the context of signal detection in non-cooperative 

communications, federated learning plays a crucial role [15]. 

Traditionally, centralized learning approaches require that all 

available signal data be transmitted to a central location for 

analysis [16]. This not only raises significant privacy concerns 

but also becomes computationally burdensome due to the 

massive data size. Moreover, such an approach can led to 
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network congestion and increased latency, which are 

undesirable in real-time communication scenarios [17]. 

Federated learning, by allowing devices to retain their data 

locally, addresses these concerns [18]. It enables distributed 

devices to collaboratively develop a shared signal detection 

model without compromising the privacy of individual nodes, 

thereby reducing both communication overhead and privacy 

risks. Non-cooperative communications, often characterized 

by interference from numerous transmitters, require a level of 

signal analysis adaptable to the constantly changing dynamics 

of the communication channel [19]. The decentralized nature 

of federated learning makes it well suited for such 

environments, providing a scalable approach to signal 

detection without over-relying on centralized infrastructure 

[20]. Additionally, FL can be used to maintain an adaptive 

model that learns continuously from each device, ensuring that 

detection capabilities improve as new patterns and behaviors 

are observed over time [21]. Deep learning (DL) has emerged 

as a powerful tool for signal detection and classification due to 

its ability to autonomously extract complex features and learn 

from large datasets [22]. 

In non-cooperative communication scenarios, deep learning 

models, such as Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), are particularly valuable 

for detecting patterns amidst noise and interference [23]. Deep 

learning algorithms excel at managing non-linear and complex 

relationships within the data, which are common in signal 

propagation in crowded and dynamic communication 

environments. Deep learning models can classify various 

signal types, identify modulation schemes, and detect the 

presence of interfering signals key requirements in non-

cooperative communications [24]. These models are trained 

on vast datasets containing examples of both cooperative and 

non-cooperative signals, enabling them to learn discriminative 

features that facilitate signal detection and classification. 

When signals are transmitted in non-cooperative settings, 

detection must be robust to variations in power, frequency, and 

other channel parameters [25]. The objective of the paper is to 

develop a framework for signal detection in non-cooperative 

communication environments using FDL. It aims to leverage 

the decentralized nature of federated learning to ensure data 

privacy while collaboratively training a global model. 

Additionally, it seeks to integrate the deep learning capabilities 

of feature extraction and pattern recognition to enhance the 

robustness and efficiency of signal detection in dynamic 

environments. 

 

 
 

Figure 1. Key aspects of FDL for signal detection 

 

 

2. PROPOSED FDL FOR SIGNAL DETECTION 

 

An FDL merges the advantages of federated learning and 

deep learning to create a robust framework for signal detection 

in non-cooperative communications. By integrating the 

decentralized training mechanism of federated learning with 

the powerful features of extraction and learning capabilities of 

deep learning, FDL provides a compelling solution to the 

challenges posed by non-cooperative environments. FDL 

allows distributed devices to collaboratively train a deep 

learning model without sharing their raw data, thereby 

ensuring data privacy and reducing communication overhead. 

The benefit of using FDL in non-cooperative communications 

lies in its ability to leverage the distributed nature of data while 

retaining the learning capacity of deep learning. Each 

participating device, such as a sensor or a user terminal, trains 

a local deep learning model using its own signal data. The 

model updates are then aggregated centrally to form a global 

model.  

This process continues iteratively, with each device 

benefiting from the collective learning of all participants. As a 

result, the final model is well adapted to the diverse and 

dynamic nature of signals that are encountered in non-

cooperative environments. In addition to improving data 

privacy, the FDL approach also provides a significant 

reduction in the volume of data that needs to be transmitted 

over the network. Since only model updates are communicated 

rather than raw data, network congestion and latency are 

2228



 

greatly minimized, making it feasible to deploy FDL in real-

time applications. Moreover, by decentralizing the learning 

process, FDL enhances the robustness of the signal detection 

system; it becomes less susceptible to single points of failure, 

a critical feature in adversarial environments or settings where 

network connectivity is unreliable.  

 

 
 

2.1 Proposed mathematical model for FDL in signal 

detection  

 

The FDL approach supports personalization in signal 

detection. In non-cooperative communication systems, the 

channel conditions and interference patterns may vary 

significantly from one device to another. FDL can 

accommodate these variations by allowing devices to maintain 

locally optimized versions of the global model, which are fine-

tuned to their specific environments. This localized adaptation 

ensures that the model is not only generalized but also 

specialized to the needs of each individual device, thereby 

enhancing the overall detection performance. 

In FDL, each participating device performs local training 

using its local dataset. The update of the local model wi can be 

described as follows: 

 
 

 

 

𝑤𝑖
𝑡+1 = 𝑐 − 𝜂∇𝐹𝑖(𝑤𝑖

𝑡; 𝐷𝑖) (1) 

 

where, 𝑤𝑖
𝑡+1 represents the updated model at device i at time 

step t+1, 𝑤𝑖
𝑡  is the current model at time step t, and 

𝐹𝑖(𝑤𝑖
𝑡; 𝐷𝑖) represents the loss function computed on the local 

dataset 𝐷𝑖 , ∇𝐹𝑖(𝑤𝑖
𝑡; 𝐷𝑖) loss function, and 𝜂 is the learning rate. 

After local training, each device sends its model update to a 

central server, which aggregates these updates to form a new 

global model. The aggregation can be represented by the 

following equation: 

 

𝑤𝑡+1 = ∑
|𝐷𝑖|

∑ |𝐷𝑗|𝑁
𝑗=1

𝑁
𝑖=1 𝑤𝑖

𝑡+1  (2) 

 

where, |𝐷𝑖| is the size of the local dataset at device i. This 

weighted averaging ensures that devices with larger datasets 

have a greater influence on the global model update. The 

global loss functions 𝐹(𝑤)  that FDL aims to minimize is 

defined as the weighted sum of the local loss functions: 

 

𝐹(𝑤) = ∑
|𝐷𝑖|

∑ |𝐷𝑗|𝑁
𝑗=1

𝑁
𝑖=1 𝐹𝑖(𝑤; 𝐷𝑖)  (3) 

 

This global loss function encapsulates the contributions of 

all participating devices, ensuring that the final model is 

optimized for the entire distributed dataset. To improve 

communication efficiency, techniques such as model 

compression and selective update can be applied. The model 

update Δ𝑤𝑖 transmitted from each device can be compressed 

as follows: 
 

Δ𝑤𝑖 = 𝑤𝑖
𝑡+1 − 𝑤𝑖

𝑡 (4) 
 

and only significant components of Δ𝑤𝑖  are transmitted to 

reduce communication overhead. The gradient descent 

approach used in local training can be represented as: 
 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 𝜂
1

|𝐷𝑖|
∑ ∇𝐹𝑖(𝑤𝑖

𝑡; 𝑥𝑘)
|𝐷𝑖|

𝑘=1   (5) 

 

where, 𝑥𝑘  represents individual data points in the local dataset 

𝐷𝑖 . The Federated Averaging (FedAvg) algorithm is 

represented by the following equation: 

 

𝑤𝑡+1 =
1

𝑁
∑ 𝑤𝑖

𝑡+1𝑁
𝑖=1   (6) 

 

which provides a simple average of the local models to update 

the global model. To prevent overfitting, a regularization term 

R(w) is added to the loss function: 

 

𝐹𝑖(𝑤) = 𝐿𝑖(𝑤) + 𝜆𝑅(𝑤) (7) 

 

where, 𝜆  is the regularization coefficient. The learning rate 

η can be updated adaptively using the following rule: 

 

𝜂𝑡+1 =
𝜂𝑡

1+𝛽𝑡
  (8) 

 

where, β is the decay factor. The local loss function is 

minimized iteratively as follows: 

 

𝐹𝑖
𝑡+1(𝑤) = 𝐹𝑖

𝑡(𝑤) − 𝜂∇𝐹𝑖(𝑤) (9) 

 

Ensuring convergence towards an optimal solution. In 

practice, stochastic gradient descent is often used for local 

updates: 

 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 𝜂∇𝐹𝑖(𝑤𝑖
𝑡; 𝜉) (10) 

 

where, ξ represents a random mini batch from the local dataset. 

The global model update can also be weighed up based on the 

performance of local models: 

 

𝑤𝑡+1 = ∑ 𝛼𝑖𝑤𝑖
𝑡+1𝑁

𝑖=1   (11) 

 

where, αi represents the weight assigned to each local model 

based on its accuracy or contribution. Eq. (12) allows the 

learning rate to adapt over time while performing local updates, 

enhancing convergence. 

 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 −
η𝑡

1+β𝑡
∇𝐹𝑖(𝑤𝑖

𝑡; 𝒟𝒾)  (12) 

 

Eq. (13) ensures that the global model benefits from the 

averaged local models while incorporating regularization to 

avoid overfitting. 

 

𝑤𝑡+1 =
1

𝑁
∑ (𝑤𝑖

𝑡+1 − λ𝑅(𝑤𝑖
𝑡+1))𝑁

𝑖=1   (13) 

 

Eq. (14) provides a more dynamic update mechanism where 

each local model update is weighted based on its accuracy 

while the learning rate adapts over time. 
 

𝑤𝑡+1 = ∑ α𝑖 (𝑤𝑖
𝑡 −

η𝑡

1+β𝑡
∇𝐹𝑖(𝑤𝑖

𝑡; ξ))𝑁
𝑖=1   (14) 

 

The FDL algorithm aims to collaboratively train a machine 

learning model across multiple devices without sharing raw 

data. This ensures data privacy and security while improving 

model performance in tasks such as signal detection. Each 

participating device gathers local data. This data remains on 

the device, ensuring no sensitive information is transmitted to 

a central server. Each device uses its local data to train a model. 

The loss function is minimized using optimization techniques 

like Stochastic Gradient Descent (SGD). 
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Algorithm: Signal Detection Using FDL 

1: Start the FDL Process 

   - Initialize parameters and start the signal detection 

process. 

2: Local Data Collection at Devices 

   - collecting data as signal strengths, noise levels, or any 

relevant features. 

3: Local Model Training 

- Local model is trained using the local dataset. 

- The local model minimizes the local loss function: 

𝐿𝑖(𝑤) = ∑ 𝑙(𝑥𝑗 , 𝑦𝑗 , 𝑤)𝑛
𝑗=1   

 

   - Use optimization algorithms like stochastic gradient 

descent (SGD) to minimize the local loss function: 

 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 𝜂∇𝐿𝑖(𝑤𝑖
𝑡)  

 

4: Compute Local Model Update 

   - Computing local model updates based on the training 

done using gradient descent. 

   - Gradients are calculated to adjust the weights to 

minimize the local error: 

 

Δ𝑤𝑖 = −𝜂∇𝐿𝑖(𝑤) 

 

5: Send Model Updates to Central Server 

   - Computed local model updates are sent to a central 

server. 

   - Ensuring data privacy and security. 

6: Aggregate Local Updates 

   - Aggregation the local updates from all participating 

devices. 

   - Weighted averaging is used to create an updated global 

model: 

 

𝑤𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 =

1

𝑁
∑ 𝑤𝑖

𝑡+1𝑁
𝑖=1   

 

7: Update Global Model 

   - Updating the global model parameters. 

8: Distribute Global Model to Devices 

   - The updated global model is distributed back. 

9: Local Model Personalization 

   - The personalized model is represented as: 

 

𝑤𝑖
personal

= 𝑤global + Δ𝑤local 

 

10: Iteration Step 

   - Convergence is assessed by monitoring the change in the 

global loss function: 

 

𝐹(𝑤) =
1

𝑁
∑ 𝐿𝑖(𝑤)𝑁

𝑖=1   

 

11: End Process  

   - Once the model has converged or reached satisfactory 

performance, the FDL process ends.     

 

2.2 Proposed algorithm for FDL in signal detection 
 

The goal is to improve the model's ability to understand 

local signal patterns. The local model parameters are adjusted 

based on computed gradients. These updates reflect the 

knowledge gained by the model using local data. The local 

model updates are sent to the central server. Only the model 

weights are transferred, preserving privacy since raw data is 

not shared. The central server aggregates the updates from all 

participating devices. This is done using weighted averaging 

to ensure that each device’s contribution is considered 

proportionally. The aggregated updates are used to refine the 

global model. This new version of the global model better 

represents the combined data distributions across all devices. 

The updated global model is shared with all devices, 

ensuring that they all benefit from the combined learning 

progress of the entire network. Devices may choose to 

personalize the global model further using their local data. 

This step allows for tailored optimization to account for 

device-specific characteristics or environmental factors. The 

FDL process ends when satisfactory performance is achieved. 

The final model is capable of accurately detecting signals, 

benefiting from the distributed training across all participating 

devices. The algorithm efficiently balances privacy with 

effective learning, making it suitable for scenarios involving 

sensitive or distributed data. 
 

 

3. RESULTS AND DISCUSSION 
 

Figure 2 emphasizes the decentralized nature of FDL. Each 

device trains its model locally, ensuring that sensitive data is 

never shared, which is crucial in privacy-sensitive applications 

such as healthcare or military communications. The weight 

update process is scalable, meaning that more devices can join 

the training process without fundamentally changing the 

underlying methodology. The decentralized approach is well 

suited for non-cooperative environments where channel 

dynamics are constantly changing. By transmitting only, the 

model updates and utilizing techniques like model 

compression, the weight update process reduces the volume of 

data exchanged between devices and the server. This is 

essential in bandwidth-constrained or delay-sensitive 

environments, making FDL a viable solution for real-time 

signal detection. The aggregation step allows the global model 

to become more generalized while also retaining local 

specialized knowledge, resulting in enhanced robustness of the 

signal detection system. Figure 3 demonstrates how different 

learning rates can influence the weight update process during 

training. When the learning rate is too high, the model weights 

may change too drastically, potentially causing the model to 

overshoot the optimal solution. This can lead to instability in 

the training process, where the loss function fluctuates and 

fails to converge properly. 

When the learning rate is too low, the weight updates 

become very small, resulting in slow convergence. An optimal 

learning rate achieves a balance, allowing the model to make 

steady progress towards minimizing the loss function without 

oscillating or getting stuck in local minima. The figure likely 

plots different weight trajectories over time, showing how 

model parameters are adjusted at each iteration based on 

different learning rates. For higher learning rates, the weight 

updates show large fluctuations, with the model potentially 

diverging if the updates are too aggressive. This results in a 

less smooth curve and possibly an inability to stabilize. For 

lower learning rates, the weight updates will appear more 

incremental, resulting in a smoother but slower approach 

towards convergence. The ideal learning rate produces a curve 

that steadily decreases, representing consistent progress 

towards minimizing the loss function and achieving 

convergence . 

The primary purpose of Figure 4 is to show the differences 
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in convergence behavior when momentum is applied versus 

when it is not during the training process. This visualization is 

crucial for understanding the benefits of momentum in 

accelerating the convergence of the model while avoiding 

common pitfalls such as oscillation and stagnation. The 

convergence curve without momentum shows significant 

fluctuations, particularly in areas with rapidly changing 

gradients. These fluctuations can cause the model to move 

inefficiently towards the minimum of the loss function. This 

type of convergence can lead to slow progress, as the model 

takes smaller steps in areas where it oscillates, struggling to 

find a smooth path toward an optimal solution. The training 

process without momentum can get stuck in local minimum or 

experience slow progress in reaching convergence, as it lacks 

the directional consistency provided by momentum. When 

momentum is applied, the weight updates consider not only 

the current gradient but also a fraction of the previous update, 

leading to a smoother path towards convergence. The 

momentum factor helps build velocity in directions with 

consistent gradients, allowing the model to move past minor 

local minima and avoid getting stuck. As a result, the 

convergence curve with momentum is typically much 

smoother, indicating steady progress toward the optimal 

solution with fewer oscillations and less backtracking. 

 

 
 

Figure 2. Weight update process 

 

 
 

Figure 3. Weight update process with different learning rates 
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Figure 4. Convergence with and without momentum 

 

 
 

Figure 5. Convergence with different learning rates 

 

 
 

Figure 6. Learning rate decay over iterations 
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Figure 5 illustrates the impact of different learning rates on 

model convergence during training. The learning rate 

determines the step size towards minimizing the loss function 

and is crucial for effective training, especially in federated 

learning, where the global model aggregates updates from 

distributed devices. A high learning rate may cause the model 

to overshoot the optimal point, resulting in oscillations or 

divergence. While it can accelerate initial progress, it often 

prevents stable convergence. Conversely, a low learning rate 

ensures precise updates but significantly slows down 

convergence, making training inefficient. The optimal 

learning rate balances speed and stability, enabling steady 

convergence without instability. In federated learning, 

selecting the right learning rate helps local models contribute 

effectively to the global model, ensuring stability and 

efficiency in convergence.  

Figure 6 aims to visually demonstrate how the learning rate 

is modified over iterations, highlighting the benefits of 

adjusting the learning rate to improve both the stability and 

efficiency of the training process. In deep learning, using a 

constant learning rate throughout the entire training process 

can lead to problems in convergence. If the learning rate 

remains high, the model may oscillate around the optimal 

point or even diverge, whereas if it is too low, the model may 

get stuck in local minima or take an extremely long time to 

converge. Learning rate decay helps to strike a balance by 

starting with a relatively high learning rate to accelerate 

training and then gradually decreasing it to ensure precise fine-

tuning as the model nears an optimal solution. It likely shows 

a plot of the learning rate value on the y-axis versus the number 

of iterations or epochs on the x-axis. The curve illustrates how 

the learning rate decays over time. Initially, the learning rate 

is high to enable rapid exploration of the loss landscape, and 

then it steadily decreases as the training progresses. The shape 

of the decay curve is typically an exponential decay or a step-

wise decay depending on the decay strategy used. This helps 

the model make large jumps in the beginning and then 

progressively take smaller steps as it approaches the optimal 

value. 

By comparing weight updates with various decay rates, 

Figure 7 highlights how the decay rate influences stability, 

speed, and precision of convergence. It serves to emphasize 

the importance of selecting an appropriate decay rate to 

achieve optimal model performance in FDL contexts. The 

figure likely presents multiple curves that represent the weight 

updates over time for different learning rate decay rates. Each 

curve corresponds to a different decay rate. The x-axis likely 

represents the number of iterations or epochs, while the y-axis 

shows the magnitude of weight updates or loss value . Each 

curve represents how the weights of the model are updated 

over time, depending on the learning rate decay rate applied 

during training. A high decay rate reduces the learning rate too 

quickly. This leads to weight updates becoming smaller at a 

faster rate, which can cause the model to converge slowly and 

prematurely. In Figure 7, a high decay rate might show the 

weight update magnitude decreasing too quickly, resulting in 

a curve that levels off early. While this might help in avoiding 

overshooting, it also risks causing the model to get stuck in 

local minima without effectively exploring the loss landscape. 

Such rapid decay may hinder the model from fully utilizing the 

initial high learning rate for faster convergence in early 

training stages.  

A low decay rate reduces the learning rate gradually, 

allowing the model to continue making relatively larger 

updates for a longer period. This approach helps the model 

explore the loss landscape more thoroughly, which is 

beneficial for avoiding local minima and ensuring a more 

robust optimization process. However, if the decay rate is too 

low, the training may become unstable, as the learning rate 

remains high for too long, leading to potential oscillations and 

an inability to settle at an optimal point. In Figure 8 a low 

decay rate curve might show larger fluctuations in the weight 

update magnitude for a prolonged period, indicating slower 

stabilization and a risk of divergence. FedAvg is well suited 

for scenarios involving many distributed devices, as it allows 

them to collaboratively learn from data in a decentralized 

manner. This is especially useful in environments with many 

data-generating nodes, such as IoT and smart devices. In non-

cooperative communication environments, FedAvg enables 

continuous adaptation to the dynamics of the communication 

channels. Each local device updates the global model with its 

specific signal characteristics, resulting in a robust, adaptive 

signal detection solution . 

 

 
 

Figure 7. Weight updates with different learning rate decay rates 
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Figure 9 compares the convergence behavior of the Adam 

optimizer and SGD with Momentum. The convergence curves 

show how each optimizer affects the speed and stability of 

reaching the optimal solution. Adam uses an adaptive learning 

rate for each parameter, making it effective in complex 

optimization landscapes with diverse gradient magnitudes. In 

Figure 9, Adam likely shows a rapid initial decrease in the loss 

value, indicating fast progress early in training, with a smooth 

convergence curve and fewer oscillations. This adaptability is 

particularly beneficial in federated learning with 

heterogeneous data. This optimizer offers more control over 

learning dynamics, which is useful for stabilizing the training 

process, especially when data across devices is noisy or varies 

significantly . 

Figure 10 visualizes the trade-off between communication 

efficiency and model performance in federated learning. It 

shows how different configurations, such as the number of 

communication rounds, impact this balance. As 

communication rounds increase, model performance generally 

improves due to more frequent updates, but this also raises 

communication costs. 

Reducing communication rounds initially has little impact 

if local training is effective, but too few updates can lead to 

decreased convergence speed and performance. The figure 

likely shows an optimal balance where high model 

performance is achieved with minimal communication costs. 

Techniques like FedAvg, gradient compression, and adaptive 

communication protocols help reduce communication 

frequency without significantly affecting performance. In non-

cooperative communication environments, achieving this 

balance is critical to maintaining detection accuracy while 

minimizing resource consumption. Figure 10 emphasizes the 

need for efficient strategies to deliver accurate signal detection 

with minimal communication overhead . 

 

 
 

Figure 8. FedAvg algorithm 

 

 
 

Figure 9. Comparison of weight convergence: Adam optimizer vs. SGD with momentum 
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The main purpose of Figure 11 is to visualize how data 

heterogeneity affects the convergence behavior of a federated 

learning model. The figure likely compares convergence 

curves under different conditions of data heterogeneity. 

Furthermore, the figure presents multiple convergence curves, 

with the x-axis representing the number of iterations or 

communication rounds, and the y-axis representing the loss 

value or model accuracy . The different curves illustrate the 

impact of data heterogeneity, comparing scenarios where data 

is homogeneous across all devices with scenarios where data 

is highly heterogeneous. When data is homogeneous, all 

participating devices have similar data distributions. 

This scenario leads to more stable and rapid convergence 

because the aggregated updates from local models are more 

consistent. In Figure 11, the curve for homogeneous data likely 

shows a smooth and steady decrease in the loss value, 

reflecting the consistent updates that allow the model to 

converge faster. This leads to inconsistent local model updates, 

which can complicate the aggregation process and slow down 

convergence. The convergence curve for heterogeneous data 

in Figure 11 shows more oscillations and slower convergence 

compared to homogeneous data, highlighting the challenges 

associated with integrating diverse model updates. 

Heterogeneous data may cause the global model to experience 

fluctuations in loss as updates from devices push the model 

towards a local minimum that represents their individual data 

characteristics.  

 

 
 

Figure 10. Effect of different weight decay values on convergence 

 

 

 

Figure 11. Convergence rates with different optimizers 
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Figure 12 compares the performance of different 

aggregation techniques. It highlights how these techniques 

influence the convergence behavior, accuracy, and robustness 

of the global model. The figure likely presents a set of 

performance metrics for each aggregation method, offering a 

visual comparison of how each approach affects the federated 

learning process. It contains multiple curves or bars, 

representing different aggregation methods such as FedAvg, 

weighted aggregation, and possibly adaptive aggregation. The 

figure might be a bar chart comparing the final performance 

metrics achieved using each aggregation method . FedAvg is 

the most used aggregation method, where local models are 

averaged to produce a new global model. Each local model’s 

contribution is weighted by the size of its dataset, ensuring that 

devices with larger datasets have more influence. The 

performance curve for FedAvg likely shows steady 

convergence and relatively high accuracy, reflecting its ability 

to balance contributions from different devices. Weighted 

aggregation involves assigning different weights to local 

models based on various factors, such as dataset size, data 

quality, or device reliability. This approach helps ensure that 

the global model gives more importance to updates that are 

more representative or trustworthy. In the figure, weighted 

aggregation might show improved convergence stability and 

higher accuracy compared to simple averaging, particularly 

when there is significant data heterogeneity. Adaptive 

aggregation dynamically adjusts the contribution of local 

models based on their performance or contribution to reducing 

the loss. This technique is particularly useful in environments 

where data distributions vary significantly across devices. The 

curve for adaptive aggregation in Figure 12 shows faster 

convergence and reduced oscillations, as it selectively 

emphasizes the most beneficial updates . 

 

 
 

Figure 12. Stochastic Gradient Descent (SGD) with mini-batches over iterations 
 

 
 

Figure 13. Impact of federated aggregation on model accuracy 
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Figure 13 illustrates the relationship between the number of 

communication rounds and the resulting model accuracy. It 

shows how increasing the number of communication rounds 

can lead to improved model performance, but at the cost of 

increased communication overhead. The figure likely presents 

multiple convergence curves, each representing the model’s 

accuracy over different numbers of communication rounds, 

offering insights into the optimal number of rounds for 

effective training. The figure shows the relationship between 

increasing communication rounds and changes in model 

accuracy, highlighting whether more frequent communication 

significantly enhances the performance of the federated model. 

At the beginning of training, increasing the number of 

communication rounds has a significant positive effect on 

model accuracy. This is because each round allows the server 

to incorporate updated local models, making the global model 

more accurate and representative of the entire distributed 

dataset. In Figure 13, this trend is depicted as a steep increase 

in model accuracy during the initial communication rounds, 

reflecting rapid convergence. After a certain number of 

communication rounds, the rate of improvement in accuracy 

begins to diminish. The curve likely shows a flattening trend, 

indicating that additional communication rounds result in only 

marginal gains in model performance.  

Figure 14 illustrates how different learning rates influence 

the convergence behavior and model performance in federated 

learning. The figure likely presents multiple convergence 

curves for different learning rates, allowing a comparison of 

how varying this hyperparameter impacts the speed, stability, 

and effectiveness of the learning process. The figure contains 

multiple curves, each representing the model’s convergence 

for a different learning rate, enabling visual comparison of the 

impact of each learning rate on the training process. A high 

learning rate causes large updates to the model weights during 

each iteration, which can lead to oscillations or even 

divergence of the model. In Figure 14, a curve corresponding 

to a high learning rate shows significant fluctuations or an 

inability to steadily decrease the loss value, indicating that the 

model is struggling to converge. The aggressive weight 

changes may cause the model to overshoot the optimal point 

repeatedly, resulting in unstable training. A low learning rate 

results in small weight adjustments during each iteration, 

leading to slow convergence. The corresponding curve in 

Figure 14 is likely characterized by a gradual, steady decrease 

in loss, indicating that the model is converging but at a slower 

pace. 

Figure 15 compares the trade-offs between model accuracy 

and communication cost for different federated learning 

settings or aggregation techniques. This comparison is key to 

understanding which configurations provide the best balance 

for achieving accurate models while using minimal 

communication resources. The figure presents multiple curves 

or points, each representing a different federated learning 

strategy or approach. These curves illustrate how changes in 

communication frequency and methods affect both 

communication efficiency and model performance. It is shown 

that high communication costs generally lead to higher model 

accuracy. This is because frequent communication between 

devices and the central server allows the global model to 

integrate updated knowledge from local models more 

effectively, resulting in better performance. This comes with 

the drawback of increased communication overhead, which is 

impractical in non-reducing communication rounds, or the 

amount of information exchanged can lower communication 

costs but may negatively impact model accuracy.  

FedAvg is a common aggregation method that averages the 

model updates from all devices. It typically requires frequent 

communication to maintain high accuracy, which can lead to 

high communication costs. In Figure 15, FedAvg might be 

represented by a curve showing good accuracy at the cost of 

high communication, highlighting the need for optimization in 

scenarios where communication efficiency is a priority. 

Figure 16 compares the impact of IID (Independent and 

Identically Distributed) versus non-IID data distribution on 

model performance in federated learning, demonstrating that 

IID data leads to faster and smoother convergence while non-

IID data causes slower, less stable convergence due to the 

conflicting nature of local updates. Addressing the challenges 

posed by non-IID data is essential for federated learning in 

non-cooperative communication environments, where data 

distributions across devices are often heterogeneous. 

Techniques like clustered training, adaptive weighting, and 

regularization can help mitigate these challenges, leading to 

better model accuracy and stability. 

 

 
 

Figure 14. Comparison of different aggregation methods in federated learning 
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Figure 15. Impact of data heterogeneity on federated learning performance 

 

 
 

Figure 16. Impact of personalization on federated learning performance 

 

 
 

Figure 17. Impact of model compression techniques in federated learning 
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This figure is important for understanding how the type of 

data distribution across devices affects the convergence and 

performance of a global model, which is especially pertinent 

in real-world applications where data is often non-

homogeneous. Impact of Data Distribution on Model 

Performance. It highlights the challenges posed by data 

heterogeneity and how it impacts convergence speed, stability, 

and model accuracy. It aims to show how these different data 

scenarios affect training dynamics and the quality of the 

resulting global model. This indicates a more straightforward 

aggregation process, allowing the model to converge more 

efficiently. The stability of convergence is also better in IID 

settings, as the model updates from each device do not conflict 

with each other, making it easier for the global model to 

minimize the loss. 

Figure 17 illustrates the effect of different aggregation 

frequencies on the convergence behavior and accuracy of the 

federated learning model. It likely shows a comparison of 

multiple curves or performance metrics that demonstrate how 

the model behaves under different aggregation scenarios, 

helping to identify an optimal balance between convergence 

rate and communication efficiency. The figure contains 

several convergence curves, each corresponding to a different 

aggregation frequency. These curves help in understanding 

how the frequency of aggregation affects the model’s 

convergence speed and final accuracy. In scenarios with high 

aggregation frequency, local models are updated frequently, 

leading to consistent integration of information from each 

device. This typically results in faster convergence and a 

smoother learning process, as the global model is continuously 

refined. In Figure 17, a high aggregation frequency is likely 

represented by a curve that shows rapid convergence, with 

model accuracy improving steadily over fewer communication 

rounds. The regular updates help keep the global model 

aligned with local improvements, reducing discrepancies 

between local models.  

However, the downside of high aggregation frequency is the 

increased communication cost, which can be a limiting factor 

in non-cooperative environments where communication is 

costly. With low aggregation frequency, local models perform 

more iterations before being aggregated. This reduces the 

overall communication cost, which is advantageous in 

bandwidth-limited scenarios. Furthermore, a curve 

representing low aggregation frequency might exhibit slower 

convergence with more fluctuations in the model accuracy, 

especially in the early stages of training. This is because local 

models may diverge significantly before they are aggregated, 

leading to inconsistencies when these local updates are finally 

integrated into the global model. In extreme cases, too low an 

aggregation frequency could cause stale updates that fail to 

reflect recent changes in local data distributions, resulting in 

poorer model accuracy and instability in convergence. 

 

3.1 Dataset description and diversity analysis 

 

The dataset utilized for training and testing in this study 

consists of a hybrid compilation of synthetically generated and 

real-world signal samples, carefully curated to replicate both 

controlled and realistic communication scenarios [26]. The 

real-world data was collected using a software-defined radio 

(SDR) testbed, which was deployed in operational cognitive 

radio bands under non-cooperative communication 

environments [27]. This setup allowed for the acquisition of 

authentic signal behavior reflective of practical deployment 

conditions, including channel variability and uncoordinated 

transmission sources [28]. To complement this, a set of 

simulated signals was generated using standardized 

modulation schemes such as Binary Phase Shift Keying 

(BPSK), Quadrature Phase Shift Keying (QPSK), Quadrature 

Amplitude Modulation (QAM), and Orthogonal Frequency-

Division Multiplexing (OFDM) [29]. The simulation spanned 

a comprehensive range of signal-to-noise ratio (SNR) values 

from −10 dB to +20 dB, incremented in 5 dB steps. This range 

ensures that the dataset adequately captures both low-quality 

(noisy) and high-quality (clean) channel conditions, thereby 

supporting robust model training across diverse environments. 

Furthermore, the dataset incorporates a variety of 

interference profiles designed to emulate real-world 

challenges [30]. These include additive white Gaussian noise 

(AWGN), burst interference, and impulsive jamming, each 

contributing to the simulation of adversarial, unpredictable, 

and dynamic channel conditions [31]. Such diversity enhances 

the generalization capabilities of the trained models, 

particularly in hostile or congested spectral environments. The 

dataset design ensures that the evaluation metrics derived from 

model training and testing are grounded in realistic, 

challenging, and diverse communication scenarios. 

 

3.2 Quantitative privacy protection metrics 

 

To rigorously quantify privacy within the federated FL 

framework, a differential privacy (DP) mechanism has been 

implemented aimed at safeguarding client-side data during 

collaborative training. Gaussian noise perturbation has been 

employed on local gradient updates before their transmission 

to the central server [32]. This approach ensures that 

individual data contributions are obfuscated, thereby limiting 

the potential for adversarial inference or data reconstruction. 

The privacy budget was quantified using standard differential 

privacy parameters, with results reported for ε = 0.1, 1.0, and 

3.0, under a fixed δ = 1e−5, in accordance with widely 

accepted DP literature. Our experimental results reveal a 

compelling trade-off between model utility and privacy 

preservation. At ε = 1.0, the model exhibited a modest 

accuracy degradation of less than 6%, while simultaneously 

achieving a greater than 95% reduction in gradient leakage 

success rates when compared to the baseline (non-private) 

setting. This balance demonstrates that strong privacy 

guarantees can be achieved without significantly 

compromising model performance—an essential requirement 

in non-cooperative communication environments, where data 

sensitivity and exposure risks are high. 

To further validate the robustness of our DP implementation, 

simulated gradient inversion attacks have been conducted 

aimed at reconstructing input data from shared gradients. The 

cosine similarity between original and reconstructed data 

vectors has been measured a metric of reconstruction fidelity 

[33]. Across all evaluated privacy budgets, the similarity 

remained consistently below 0.1, demonstrating the 

effectiveness of DP in defending against such inference 

attacks. In addition to empirical results, a detailed discussion 

on the privacy-utility trade-offs has been provided, 

highlighting the practical implications of selecting different ε 

values in real-world deployments. These recommendations 

serve as a practical resource for deploying secure and privacy-

preserving federated learning systems in adversarial and non-

cooperative communication environments [34]. 
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3.3 Non-IID data impact and mitigation 

 

To assess the impact of data heterogeneity on FL 

performance, a detailed study focusing on Non-Independent 

and Identically Distributed (Non-IID) data has been conducted 

in some scenarios, specifically exploring label-skewed and 

feature-skewed data distributions across client devices [35]. In 

federated environments, particularly those involving non-

cooperative or decentralized communication, data often varies 

significantly from one client to another due to differing user 

behaviors, signal environments, or device-specific 

characteristics [36]. Our findings confirm that this 

heterogeneity introduces substantial model divergence, which 

in turn slows convergence by approximately 20–30% when 

compared to IID baselines. 

To address these challenges, the FedProx algorithm has 

been integrated as an enhanced optimization approach that 

modifies the local objective function by introducing a 

proximal term. This term penalizes local updates that deviate 

too far from the global model, thereby maintaining tighter 

alignment between local and global updates. The use of 

FedProx resulted in a 12% improvement in convergence speed, 

demonstrating its effectiveness in mitigating the negative 

impact of data skewness. 

Furthermore, a clustered federated learning approach has 

been implemented, which dynamically groups clients based on 

the cosine similarity of their local gradient updates. This 

approach yielded an additional 9% increase in overall model 

accuracy compared to standard FedAvg, highlighting the 

advantages of adapting model aggregation strategies to the 

underlying data structure. 

 

3.4 Experimental evaluation in time-varying environments 

 

To rigorously evaluate the adaptability and robustness of the 

proposed FDL model in highly dynamic and unstable 

communication environments, a comprehensive channel 

simulation framework has been designed that closely mimics 

real-world radio behavior under non-cooperative conditions 

[37]. This framework integrates Rayleigh fading models, 

widely adopted in wireless communication research for their 

ability to emulate multipath propagation common 

phenomenon in urban and mobile settings where transmitted 

signals reflect off various surfaces before reaching the receiver 

[38]. This variability introduced high temporal uncertainty 

into the system, simulating environments such as mobile 

cognitive radio networks, where signal quality can fluctuate 

rapidly due to mobility, interference, and environmental 

changes. 

Beyond channel fading and SNR variations, burst 

interference patterns and sudden signal dropouts have been 

introduced to simulate transient adversarial disruptions. These 

scenarios reflect real-world challenges such as localized 

spectrum congestion, faulty equipment, and deliberate 

jamming efforts. The purpose was to evaluate the model’s 

capacity not only to withstand intermittent disruptions but also 

to recover autonomously and maintain stable performance 

across fluctuating time windows [39]. Despite these 

adversities, the FDL model achieved a mean detection 

accuracy of 90.7%, with a standard deviation of ±2.8%, 

demonstrating its resilience, low variance in predictive 

performance, and strong generalization in uncertain 

communication environments. 

Additionally, the real-time responsiveness of the FDL 

framework has been evaluated by measuring latency per 

model update, especially under network-constrained and 

resource-limited conditions, such as edge devices or mobile 

gateways [40]. The system maintained low-latency 

performance, ensuring it can be deployed in time-sensitive 

applications like spectrum sensing, interference detection, and 

signal classification. In parallel, adversarial jamming attacks 

has been simulated where high-power, random signals were 

introduced to obstruct signal clarity and disrupt collaborative 

learning. The FDL model exhibited graceful degradation, 

maintaining acceptable detection levels during interference 

and quickly recovering post-attack, reaffirming its robustness 

in hostile and mission-critical settings. 

 

3.5 Compression-efficiency trade-off analysis 

 

To address the bandwidth and communication overhead 

associated with federated learning in resource-constrained 

environments, a detailed analysis of model update 

compression techniques has been conducted, aimed at 

optimizing the trade-off between communication efficiency 

and model performance. Specifically, three prominent 

methods have been evaluated: (1) top-k gradient sparsification, 

(2) fixed-point quantization using 8-bit representation, and (3) 

delta encoding, each of which offers unique advantages for 

reducing data transmission volume during federated training 

rounds [41]. 

In our experiments, top-k gradient sparsification, where 

only the top 25% of gradients (based on magnitude) are 

transmitted, achieved a substantial 60% reduction in 

communication cost. Despite this aggressive pruning, the 

model’s performance remained remarkably stable, with 

accuracy decreasing by only 1.7% compared to the 

uncompressed baseline. This demonstrates that many gradient 

components contribute minimally to convergence and can be 

safely omitted without significantly degrading performance. 

Next, 8-bit quantization has been applied, converting 32-bit 

floating-point gradient values into lower-precision 

representations. This method led to an 80% reduction in 

bandwidth usage, albeit with a slightly higher impact on model 

performance, up to 3.2% drop in accuracy. This trade-off 

suggests that quantization is particularly beneficial in 

scenarios where extreme communication efficiency is 

prioritized over marginal performance drops. 

By further minimizing redundant information, delta 

encoding—when combined with sparsification or 

quantization—amplifies compression benefits without 

introducing additional accuracy penalties. 

 

3.6 Performance comparison with baseline methods 

 

To provide a comprehensive performance benchmark, a 

comparative evaluation of three learning Paradigms 

Centralized Deep Learning (CDL), Non-Federated 

Decentralized Learning (NDL), has been conducted, and the 

proposed FDL framework under identical dataset conditions 

and communication constraints [42]. This analysis aimed to 

assess not only the accuracy of each model but also its 

communication efficiency, privacy guarantees, and 

convergence behavior, all of which are critical factors in non-

cooperative communication environments [43]. The CDL 

model, which aggregates raw data from all devices to a central 

server, achieved the highest accuracy at 96.1%. However, this 

performance came at a considerable cost: the model required 
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full raw data transmission from all clients, resulting in 

significant communication overhead and posing substantial 

privacy risks. Such centralized architectures are typically 

impractical or undesirable in privacy-sensitive domains such 

as military communications or personal healthcare networks. 

The NDL approach, where each client trained a local model 

and exchanged updates in a peer-to-peer fashion without 

central coordination or federated aggregation, achieved a 

lower accuracy of 90.3%. While this method avoided 

centralization, it lacked any privacy-preserving mechanism, 

exposing the system to potential data leakage through shared 

model parameters. Additionally, the absence of a unified 

model update strategy led to slower convergence and 

inconsistent learning dynamics across clients. In contrast, our 

FDL model offered a balanced and practical solution, 

achieving 94.5% accuracy while preserving data privacy by 

ensuring no raw data left the local devices. Through structured 

aggregation and the use of privacy-enhancing techniques such 

as differential privacy and secure model update protocols, 

FDL ensured robust privacy guarantees. Moreover, by 

employing communication-efficient techniques such as 

sparsification and asynchronous updates, FDL achieved an 

80% reduction in transmission volume compared to CDL. 

Latency and convergence measurements further highlighted 

FDL’s operational efficiency. The federated approach 

converged in 45% fewer training iterations than NDL, owing 

to its coordinated learning strategy and optimization 

techniques that mitigated model divergence due to data 

heterogeneity. These findings collectively demonstrate that 

FDL offers a compelling trade-off, achieving near-centralized 

accuracy with significantly lower communication costs and 

strong privacy protections making it highly suitable for 

deployment in distributed, data-sensitive, and resource-

constrained environments. 

 

3.7 Personalization strategy and validation 
 

To effectively manage user-specific interference patterns in 

non-cooperative communication environments, a 

personalization strategy has been implemented that leverages 

local fine-tuning following each global model update [44]. The 

rationale behind this method lies in the observation that while 

the global model captures generalizable features across all 

devices, it may underperform on clients experiencing distinct 

interference conditions, such as burst noise, jamming, or 

localized spectral congestion [45]. From a theoretical 

standpoint, this approach aligns with generalization error 

reduction principles in federated learning. Specifically, 

personalization helps minimize the discrepancy between the 

global hypothesis and the client-specific distribution, 

effectively reducing local empirical risk. This is particularly 

critical in highly heterogeneous environments where non-IID 

data distributions can cause standard federated learning 

models to perform suboptimally on certain clients [46]. 

Empirical evaluations confirmed the efficacy of this 

strategy. On datasets with highly variable interference patterns, 

such as impulsive jamming and location-specific noise sources, 

device-level classification accuracy improved significantly 

from 89.2% to 94.6% after applying local fine-tuning. This 

enhancement reflects the model’s increased sensitivity to 

localized signal features and its ability to adapt dynamically to 

environmental variations. The improvement was consistent 

across multiple client devices, indicating that personalized 

federated learning offers a scalable and practical solution for 

maintaining high accuracy in the face of user-specific channel 

anomalies. These findings suggest that incorporating local 

adaptation phases into the federated training cycle is not only 

feasible but also crucial for deploying federated models in 

real-world, decentralized communication systems, where 

interference conditions are inherently diverse and 

unpredictable. 

 

 

4. PRACTICAL DEPLOYMENT, CONVERGENCE, 

AND SECURITY IN FDL SYSTEMS 

 

To ensure real-world viability of the proposed FDL 

framework for signal detection in non-cooperative 

communications, three critical dimensions have been 

addressed: deployment, convergence, and security. First, we 

identify deployment challenges such as device heterogeneity, 

communication latency, and asynchronous participation [47]. 

To mitigate these, we introduce a resource-aware federated 

scheduler that selects devices based on availability and 

implements asynchronous update protocols with staleness 

tolerance to maintain system stability. Convergence behavior 

has been analyzed under standard assumptions and 

demonstrates a theoretical convergence rate of O(1/√T). 

Empirical evaluation reveals stabilization within 50 training 

rounds under IID and 75 rounds under Non-IID conditions. 

Finally, the security threat model has been extended beyond 

gradient leakage to include poisoning attacks and membership 

inference threats. Techniques like Krum and coordinate-wise 

median aggregation significantly mitigate adversarial impacts, 

even with up to 20% compromised nodes. Moreover, 

differential privacy effectively limits inference success to 

under 5%. This integrated approach ensures that the FDL 

framework not only achieves accuracy and efficiency but also 

remains robust and secure during real-world deployment. 

 

4.1 Deployment considerations and challenges 

 

In real-world federated learning deployments, several 

system-level challenges arise that can significantly hinder 

model performance, reliability, and scalability [48]. Among 

the most pressing issues are device heterogeneity, 

communication latency, and asynchronous participation [49]. 

Devices participating in federated learning ranging from 

smartphones and embedded sensors to edge AI devices often 

vary widely in terms of computational capabilities, memory 

availability, battery life, and network bandwidth [50]. These 

differences introduce imbalances in training contribution and 

update frequency, which can impair both convergence and 

fairness. To address this, a resource-aware federated 

scheduling algorithm has been proposed that dynamically 

selects participating clients based on real-time resource 

availability. This scheduler takes into account CPU load, 

memory usage, energy constraints, and connectivity status to 

prioritize devices that are best positioned to contribute 

effectively at each training round. This adaptive selection 

mechanism ensures optimal utilization of available resources 

while maintaining balanced participation across clients. 

In addition, asynchronous update protocols have been 

implemented with staleness tolerance to accommodate devices 

that participate irregularly due to intermittent connectivity or 

variable computation delays. These protocols allow stale 

updates from slower devices to be integrated in a controlled 

manner, thereby preserving convergence stability without 
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penalizing less-responsive clients or halting global training 

progress. These accelerators significantly reduce the local 

computation time through efficient parallel processing and AI-

specific instruction sets, enabling real-time model updates 

even in low-power or embedded systems. This architecture 

highlights how edge devices communicate locally with edge 

servers before forwarding aggregated updates to the cloud, 

reducing uplink latency and distributing the computational 

burden. The proposed deployment model not only enhances 

scalability and responsiveness but also aligns with real-world 

constraints encountered in IoT, mobile, and smart 

infrastructure networks. 

 

4.2 Convergence analysis of global model 

 

To theoretically assess the convergence behavior of our 

FDL framework, we conducted an in-depth convergence 

analysis under widely accepted assumptions in federated 

optimization [51]. Specifically, we assumed smoothness of the 

loss function, convexity of the objective, and bounded 

variance of stochastic gradients across clients’ conditions 

commonly employed in the theoretical analysis of federated 

and distributed learning algorithms. Based on these 

assumptions, we derived that the expected decrease in global 

loss follows a convergence rate of O(1/√T), where T denotes 

the number of global communication rounds. This sublinear 

rate reflects the typical convergence behavior of first-order 

optimization algorithms in federated settings, particularly 

when dealing with partial client participation and noisy 

gradient aggregation. The complete mathematical derivation 

supporting this result is provided in Appendix A for 

reproducibility and theoretical transparency. 

Complementing the theoretical results, we conducted 

extensive empirical evaluations to observe the practical 

convergence characteristics of the model under different data 

distribution scenarios. Under IID conditions, the FDL model 

converged rapidly, stabilizing after approximately 50 global 

communication rounds. In contrast, under Non-IID data 

settings, where data heterogeneity induces additional 

divergence between local and global model updates, 

convergence occurred after approximately 75 rounds. This 

observation is consistent with existing literature, where data 

heterogeneity is known to slow down convergence due to 

inconsistent gradient directions across clients. 

 

4.3 Extended security threat model and defenses 

 

Beyond the threat of gradient leakage, which allows 

adversaries to reconstruct training data from shared model 

updates, we broaden our security analysis to include more 

sophisticated adversarial threats, particularly poisoning 

attacks [52]. In such scenarios, malicious clients intentionally 

submit manipulated or misleading gradient updates with the 

goal of corrupting the global model, degrading its performance, 

or introducing hidden behaviors [53]. These attacks pose a 

significant challenge in FL, especially in non-cooperative or 

decentralized environments where direct oversight of 

participating devices is limited. To evaluate the robustness of 

our FDL framework under these adversarial conditions, we 

implemented two state-of-the-art robust aggregation 

techniques: Krum and coordinate-wise median. Krum selects 

updates that are closest to the majority of other client updates, 

thereby filtering outliers, while coordinate-wise median 

computes the median value of each parameter dimension 

independently to minimize the influence of anomalous inputs. 

Our experiments showed that both methods were effective in 

mitigating the impact of up to 20% compromised clients, 

maintaining overall model integrity and performance despite 

the presence of adversarial participants. 

Additionally, the model’s susceptibility has been 

investigated to membership inference attacks (MIAs), where 

an adversary attempts to determine whether a specific data 

sample was part of a client's training set. To assess this risk, 

adversarial testing methods have been applied and evaluated 

inference success rates under varying levels of DP noise. The 

results demonstrated that when Gaussian DP noise was applied 

to the gradient updates, inference success rates dropped to 

≤5%, effectively neutralizing the MIA threat and reinforcing 

the privacy guarantees of our framework. 

 

 

5. CONCLUSIONS 

 

This paper introduces a FDL framework for effective signal 

detection in non-cooperative communication environments. 

By leveraging the decentralized and privacy-preserving nature 

of federated learning combined with the feature extraction 

power of deep learning, the proposed solution addresses 

critical challenges such as adaptability, privacy, and 

computational efficiency. The results demonstrate that the 

FDL approach not only ensures data security but also delivers 

robust, real-time performance in dynamic environments. 

These advantages make FDL a promising solution for various 

applications, including military, IoT, and cognitive radio 

networks, where secure and efficient communication is 

essential. Future work will focus on further refining the model 

to handle even more diverse conditions and evaluating its 

performance in larger-scale deployments. 
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