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Current methods in the literature for predicting preterm birth using electrohysterogram 

(EHG) signals generally concentrate only on classifying term and preterm spontaneous 

deliveries. However, a realistic approach should also include other delivery types, such as 

induced, cesarean, and induced-cesarean sections. We can increase the precision of labor 

stage identification and better understand preterm birth risk by examining the characteristics 

of EHG signals unique to various delivery methods. In this study, the methodology involves 

preprocessing EHG signals and extracting key features through Shannon Entropy and 

logarithmic energy. These features, which do not need complicated models, are effective in 

highlighting the key traits and complexity of the signals. Thanks to their high sensitivity, 

they can identify even the most subtle shifts in uterine activity. The adaptive synthetic 

(ADASYN) oversampling technique is applied after extracting features to address the class 

imbalance. These features are then examined using three machine learning models: Random 

Forest (RF), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) to 

evaluate their effectiveness in distinguishing different types of delivery. The ICEHG-DS 

database was used to evaluate the performance of the proposed method, and the best results 

were achieved for the LSTM method using the Shannon Entropy feature extracted from 

channel S3, yielding an average F1-score of 99.34% and an accuracy of 99.33%. This work 

demonstrates the feasibility of accurately predicting the type of delivery by analyzing EHG 

signals as early as the 23rd week of pregnancy, utilizing a feature extraction method with 

low computational complexity. 
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1. INTRODUCTION

According to the World Health Organization (WHO) 2019 

report, around 14 million pregnant women suffered preterm 

delivery, accounting for about 10% of all deliveries in that 

year. According to the organization’s statistics, complications 

from premature birth claimed the lives of about 900,000 

babies. Therefore, one of the most important challenges in 

global health is determining what causes preterm birth and 

creating ways to anticipate it weeks or even months in advance 

[1]. Various factors, including medically necessary or induced 

amniotic sac ruptures before 37 weeks and other underlying 

health issues, can lead to the early onset of labor [2]. Preterm 

birth can be triggered by several health conditions, such as 

infections, inflammation of the uterus, ruptured blood vessels, 

poor uterine blood circulation, and intense uterine 

contractions. A higher risk of premature birth can also be 

caused by risk factors such as high blood pressure, diabetes, 

prior cervical surgeries (like conization), uterine 

abnormalities, unhealthy lifestyle choices like smoking, 

drinking, or using drugs, and poor general health [3, 4].  

Accurately predicting preterm birth continues to be a major 

challenge, even with significant research. However, 

examining uterine electrohysterogram (EHG) offers a hopeful 

path to enhancing the precision of predictions. This approach, 

which can be performed fully or semi-automatically using 

low-cost methods [5-10], can enable the prediction of weeks 

or even months in advance of preterm birth. Uterine 

contractions, which are vital for labor, are caused by swift 

electrical signals within the uterine muscles [11]. EHG signals 

capture variations in the electrical potential of the uterus, 

allowing for a precise and non-invasive assessment of its 

function [12]. According to a review of current research, EHG 

signals provide more detailed information for predicting labor, 

achieving higher accuracy than other existing methods [7]. 

There are two primary strategies for predicting preterm birth 

with EHG signals: examining data from both the pre-labor and 

labor phases, and comparing pregnancies that occurred before 

and after 37 weeks [8-10, 13]. Conventional methods usually 

center around analyzing contraction intervals, but this 

approach restricts the data, particularly in early pregnancy 

when contractions are rare. 

Accurately predicting preterm birth and delivery outcomes 

remains a critical challenge in obstetrics, with significant 

implications for maternal and fetal health. EHG signals, which 

capture uterine electrical activity, offer a promising non-
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invasive approach for early prediction [7, 9]. Evidence 

suggests that analyzing both contraction and non-contraction 

(dummy) intervals in EHG records can enhance classification 

accuracy without requiring prior annotation of contractions 

[9]. Various signal processing methods have been explored to 

extract linear and nonlinear features, including time-domain 

characteristics, frequency-domain properties, and complexity 

metrics, to classify EHG records for preterm and term 

deliveries [9, 10, 14-26]. However, existing methods 

predominantly focus on distinguishing spontaneous preterm 

and term deliveries, often neglecting other delivery types such 

as induced, cesarean, and induced-cesarean sections, 

particularly in early pregnancy stages. 

The rising global rates of induced and cesarean deliveries, 

which account for significant maternal and fetal health risks, 

underscore the need for comprehensive prediction models that 

include these delivery types [27, 28]. Induced labor, often 

necessitated by conditions like preeclampsia or fetal distress, 

can lead to prolonged labor and an increased likelihood of 

cesarean section, which is associated with higher maternal 

morbidity, including infection and hemorrhage, and 

complications in subsequent pregnancies [2]. Early 

identification of delivery type as early as the 23rd week of 

pregnancy can guide clinical decision-making, enabling 

obstetricians to optimize induction protocols, reduce 

unnecessary cesarean sections, and improve maternal-fetal 

outcomes. Current EHG-based methods, however, primarily 

rely on late-stage signals (after 37 weeks) and focus on 

spontaneous labor, leaving a critical gap in early prediction for 

diverse delivery types [29, 30]. This study addresses this gap 

by proposing a novel method to classify induced, cesarean, and 

induced-cesarean deliveries using EHG signals from the 23rd 

week of pregnancy. By leveraging simple yet effective 

features (Shannon Entropy and Logarithmic Energy), our 

approach achieves high accuracy with low computational 

complexity, offering a robust tool for personalized obstetric 

care and improved health outcomes. 

The TPEHG DB database, which was made public in 2011, 

includes 300 spontaneous EHG records from preterm and term 

pregnancies that were taken at various times (about 23 and 31 

weeks). This database has enabled detailed research into 

nonlinear signal processing techniques and machine and deep 

learning methods to accurately predict preterm birth and 

classify pregnancies before and after 37 weeks [29]. A major 

limitation of this database is the class imbalance between 

preterm and term datasets (38 preterm vs. 262 term records).  

The TPEHGT DS database (collected around the 31st week) 

is also frequently used in preterm birth prediction work. This 

dataset contains 13 recordings that include preterm and term 

pregnancies and measure uterine contractions. In this dataset, 

uterine contraction interval measurement is essential for 

differentiating between preterm and term deliveries. Data 

imbalance is the main challenge in biomedical databases, 

including TPEHG or ICEHG DS, where observations in one 

class (such as preterm births or cesarean deliveries) are 

substantially less numerous compared to the other [24, 31]. 

The performance of machine learning models may suffer as a 

result of this imbalance. Artificial generation of data methods 

like SMOTE or ADASYN are commonly utilized to address 

this issue, however, they have drawbacks as well [22, 32-34]. 
 

 

2. RELATED WORK 
 

Identifying preterm and term births using various features, 

methods, and classifiers is the subject of numerous studies in 

the literature. The TPEHG and TPEHGT datasets are the main 

sources of data used in the investigations. 

Fergus et al. [35] used a polynomial classifier as their 

detection approach with a feature set that included RMS, peak 

and median frequencies, sampleEn, and clinical data. To 

address data imbalance, the SMOTE oversampling technique 

was applied, and an average sensitivity of 96%, specificity of 

90%, and overall accuracy of 95% are reported. Hussain et al. 

[36] used a Dynamic Neural Network as their detection 

technique and reported 89% sensitivity, 91% specificity, and 

90% accuracy. These results were achieved using SMOTE 

oversampling and features similar to those used by Fergus et 

al. [35]. Smrdel and Jager [37] used a statistical classification 

technique named Quadratic Discriminant Analysis and SVM 

classifiers to detect term and preterm cases. The authors first 

filtered the EHG signal within a 0.3-4 Hz frequency range and 

then estimated smapelEn and median frequency from one of 

the EHG signal channels using the adaptive autoregressive 

method. After balancing the data with SMOTE, they reported 

86% and 87% accuracy for each class, respectively.  

Ren et al. [38] used empirical Mode Decomposition (EMD) 

to decompose the signals into their constituent Intrinsic Mode 

Functions (IMFs) and based on the instantaneous amplitude 

and frequency, the author extracts entropy ratios of these 

instantaneous as feature vectors. After applying the Min/Max 

technique for addressing data imbalance, the highest results 

were obtained using the Ada boost classifier with an AUC of 

98/6%. Also, Fergus et al. [39] utilized extracted features from 

both the time and frequency domain of the EHG signals from 

the TPEHG database, along with the SMOTE oversampling 

technique for data balancing. The authors reported a sensitivity 

of 91%, specificity of 84%, and an AUC of 94%, achieved 

through a combination of advanced artificial neural network 

classifiers. Acharya et al. [22] employed to extract features 

from both the time and frequency domain based on EMD and 

Wavelet packet decomposition technique from 326 EHG 

recordings. After employing ADASYN to balance the 

database and SVM for classification, a sensitivity of 96.25%, 

specificity of 95.08%, accuracy of 97.33%, and AUC of 96.2% 

was achieved.  

Ahmed et al. [32] extracted multivariate multiscale entropy 

from TPEHG signals and applied the ADASYN technique to 

balance the dataset. The best classification performance using 

an SVM, with a sensitivity of 92%, specificity of 98%, 

accuracy of 94.9%, and an AUC of 99% was reported. 

Degbedzui and Yüksel [33] extract a new feature by analyzing 

the frequency components of the EHG signal. The authors use 

the ADASYN technique to balance the data, and the best 

results achieved with the SVM method were an accuracy of 

99.74%, specificity of 99.94%, and sensitivity of 99.55%. 

Mischi et al. [31] extract new entropy measures for 

analyzing contraction data. The authors showed that these 

measures help quantify the complexity and regularity of the 

EHG signals, providing valuable features for distinguishing 

between term and preterm births with an average sensitivity of 

61%, specificity of 83%, and accuracy of 73%. The authors 

did not specify the technique used for data balancing, and the 

database employed was non-public. Jager et al. [9] used a 

balanced dataset of TPEHGT (Contractions/Non-contraction) 

records, consisting of 53 terms and 47 preterms. In this work, 

the characteristics, complexity, and frequency properties of the 

EHG signals are evaluated. The features used as a feature 

vector include sampleEn, median frequency of power 
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spectrum and peak amplitude of normalized power spectrum. 

After applying SMOTE for both classes and employing 

quadratic discriminant analysis, this method achieved an 

average sensitivity of 89% - 87%, specificity of 89% - 91%, 

and accuracy of 88.68% - 88.79% for each class, respectively. 

Chen and Xu [40] utilized a Sparse Autoencoder (SAE)-

based deep neural network (DNN) classifier to predict preterm 

birth using EHG signals. The sampleEn and wavelet entropy 

were extracted from both preterm and term recordings in the 

TPEHGT database, which is a balanced dataset containing 450 

terms and 450 preterm samples. The best results achieved by 

this method were: a sensitivity of 98.2%, a specificity of 

97.74%, and an accuracy of 97.9%. Saleem et al. [41] applied 

Granger causal analysis to analyze the contraction and dummy 

intervals of recorded EHG signals. The TPEHGT dataset used 

in this study consists of 94 terms and 106 preterms samples. 

The features extracted from the analysis were the coupling 

strength and directionality indices, which formed the feature 

vector for classification. The best results achieved by this 

method were: a sensitivity of 86%, specificity of 90%, and 

accuracy of 84%. Peng et al. [42] investigated the relevance of 

linear and nonlinear features extracted from different 

gestational weeks (before the 26th week of gestation) using a 

random forest (RF) classifier. After feature extraction and 

selecting 15 features, and using ADASYN to handle class 

imbalance, an accuracy of 93%, sensitivity of 89%, and 

specificity of 97% were reported. 

Nieto-del-Amor et al. [43] proposed an ensemble classifier 

for term and preterm detection based on nonlinear, temporal, 

and spectral features extracted from EHG signals across 

different bandwidths and all recording channels. Feature 

selection was performed using a genetic algorithm. Following 

the SMOTE method, a mean F1 score of 92.04% was 

achieved. Later, in another study, Nieto-del-Amor et al. [44] 

used a linear discriminant analysis (LDA) classifier and 

entropy measures to classify term-preterm EHG recordings. 

The results demonstrated the effectiveness of this approach, 

with an average F1 score of 90.1% achieved.  

Xu et al. [45] used a horizontal visibility graph (HVG) 

algorithm to extract features such as network degree density 

and distribution, clustering coefficient, and assortativity 

coefficient. These features were then used with an SVM 

classifier to predict preterm labor. To address data imbalance, 

they applied a partition-synthesis method. By employing this 

approach, they achieved an accuracy of 91%.  

Researchers have developed various methods to distinguish 

between spontaneous labor at term (before the 41st week of 

gestation) and induced labor in late-term pregnancies [46]. 

These methods include characterizing EHG bursts in pregnant 

women with complete placenta previa using late antepartum 

EHG records, predicting the success of labor induction based 

on EHG measurements taken in the first hours after induction 

[47-49], using intrapartum cardiotocography traces to predict 

delivery modes such as cesarean section and spontaneous 

vaginal delivery [27], employing clinical attributes to forecast 

delivery modes [50], and monitoring uterine dynamics and 

predicting uterine atony after spontaneous vaginal or cesarean 

deliveries using postpartum EHG records [51]. However, the 

current methods for predicting delivery mode have been 

developed independently from the issue of preterm birth 

prediction and primarily rely on late antepartum or intrapartum 

records, all collected after the 37th week of pregnancy [28, 47, 

48]. As a result, these methods are all focused on term 

pregnancies.  

To our knowledge, there has been no research focused on 

the characterization and separation of uterine 

electromyography (EHG) records from induced labor and 

cesarean sections that were collected several weeks or even 

months before delivery. Such research is crucial to enhance 

our understanding of how key features evolve during 

pregnancy, as well as to predict the mode of delivery and 

evaluate the health conditions of both the mother and the baby 

at the time of delivery. This study aims to examine the 

physiological factors that may lead to induction, cesarean 

section, or a combination of both during pregnancy using the 

ICEHG DS dataset. The research seeks to determine whether 

early prediction of delivery methods, such as induced labor 

and cesarean section, is possible as early as the 23rd or 31st 

week of pregnancy by analyzing and classifying EHG records 

from the ICEHG DS. 

 
 

3. MATERIALS AND METHODS 

 

The main steps of the proposed method to classify the type 

of delivery (induced or cesarean) consists of four steps: (1) 

Data acquisition and preprocessing, (2) addressing the class 

imbalance problem using the Adaptive Synthetic (ADASYN) 

sampling approach, (3) feature extraction, and (4) detection of 

the type of delivery (induced or cesarean). The details of the 

proposed method are explained in the following subsections. 
 

3.1 Data acquisition 
 

In this paper, we utilize the Induced Cesarean 

Electrohysterogram Database (ICEHG DS), which is freely 

accessible on the Physionet website. This data was collected 

at the Clinical Department of Perinatology, University 

Medical Center Ljubljana, Ljubljana, Slovenia, from 1997 to 

2006. This dataset has been ethically approved by the National 

Medical Ethics Committee of Slovenia (No. 32/01/97), with 

all data fully anonymized and informed consent obtained from 

all participants, as documented in the dataset publication [51]. 

EHG data are collected by placing four electrodes (E1, E2, E3, 

E4) on the abdominal surface of pregnant mothers (placement 

protocol, which is shown in Figure 1), Based on differences in 

electrical potentials between the electrodes, three channels 

were used for each recording: S1 = E2 − E1, S2 = E2 − E3, 

and S3 = E4 − E3. For each individual, recordings of 

approximately 30 minutes were digitized at a rate of 20 

samples per second per channel, with a 16-bit resolution in a 

range of ± 2.5 millivolts. This data set was collected from 91 

pregnant women. The available information regarding the 

number of mothers with Induced or Cesarean deliveries, as 

well as Induced-Cesarean deliveries and other necessary 

information, is provided in Table 1. 
 

Table 1. The quantity of EHG records for each delivery type 

in the ICEHG DS database 
 

Group 
Delivery 

Group 

Number of 

Subjects 

Mean of Recording 

Time (Week) 

Early 

Cesarean 11 22.6 

Induced 38 22.9 

Induced-

Cesarean 
13 23.3 

Late 

Cesarean 8 30.8 

Induced 43 31.0 

Induced-

Cesarean 
13 31.2 
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Figure 1. The electrode placement points for recording EHG 

signals [9] 

3.2 Preprocessing 

 

The signal recorded from the lower abdomen is a complex 

combination of the mother’s electrocardiogram (MECG), the 

fetal electrocardiogram (FECG), and various other signals, 

including uterine activity (UA), myographic signals, and 

others [9]. To extract uterine activity signals, raw EHG data 

were processed using a fourth-order Butterworth band-pass 

filter. A double-pass filtering method was applied, with cut-

off frequencies set at 0.08 Hz and 5 Hz. Given that most of the 

spectral content of the EHG signal falls within this frequency 

range, the focus of this study is on the EHG signals filtered 

using these specific cut-off frequencies. To reduce transient 

effects introduced by the filtering process, the initial and final 

180 seconds of each recording were removed [51]. Figure 2 

illustrates the raw EHG waveforms corresponding to the three 

delivery types induced, cesarean, and induced-cesarean, 

alongside their filtered counterparts. 

 

 
 

Figure 2. The raw EHG waveforms for the three delivery types, as well as their filtered versions: (a) Early Cesarean (b) Early 

Induced (c) Early Induced-Cesarean 

 

3.3 Data balancing and normalization 

 

The main issue with the ICEHG DS database is the 

imbalance in the distribution of data across the Cesarean, 

Induced, and Induced-Cesarean delivery classes. The original 

ICEHG DS consists of 19 Cesarean deliveries, 81 induced 

deliveries, and 43 late), and 26 induced-cesarean deliveries, 

with only 15% of the data corresponding to Cesarean 

deliveries and 20% to induced-cesarean deliveries, and 65% to 

induced deliveries. This imbalance can lead to classifiers being 

biased toward the induced deliveries. Given that classifiers are 

sensitive to detecting the majority class, it is crucial to balance 

the minority class. A common solution found in the literature 

is to generate synthetic samples for the underrepresented class 

using techniques such as SMOTE or ADASYN [52]. In this 

study, the ADASYN oversampling technique is used to 

address the data imbalance issue. Subsequently, all the data are 

rescaled to a fixed range of 0-1. 
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3.4 Feature extraction 

 

EHG signals exhibit complex and dynamic patterns due to 

the intricate interactions of uterine cells, necessitating features 

that effectively capture their nonlinear and energy 

characteristics for accurate classification of delivery types. In 

the literature, various features have been explored for EHG 

analysis, including time-domain features (e.g., Root Mean 

Square, Mean Absolute Value), frequency-domain features 

(e.g., Median Frequency, Power Spectral Density), and 

nonlinear features (e.g., Sample and Dispersion Entropy) [9, 

22, 31, 33]. In this study, we selected Shannon Entropy (Sh-

En) and Logarithmic Energy (LogEn) as the primary features 

due to their simplicity, low computational complexity, and 

demonstrated effectiveness in modeling the complexity and 

energy dynamics of EHG signals [9, 15, 31]. 

Sh-En quantifies the uncertainty or randomness in the EHG 

signal, making it well-suited for capturing the irregular 

patterns associated with different delivery types. LogEn 

measures the signal’s energy distribution across frames, which 

is particularly sensitive to the intensity of uterine contractions, 

hypothesized to be stronger in induced deliveries compared to 

cesarean or induced-cesarean cases. These features were 

chosen based on their theoretical alignment with the nonlinear 

and dynamic nature of EHG signals, as well as preliminary 

experiments with the ICEHG DS dataset that confirmed their 

suitability for distinguishing delivery types. Studies [38, 43] 

have utilized entropy-based measures to differentiate preterm 

and term EHG records, while the studies [9, 40] highlighted 

the effectiveness of simple features for classifying delivery 

groups (preterm, term, induced, cesarean), supporting our 

choice. Compared to time- and frequency-domain features 

(e.g., RMS, Median Frequency), Sh-En and LogEn offer 

superior performance in delivery type classification due to 

their lower sensitivity to noise, better ability to capture 

nonlinear EHG patterns, and reduced computational 

complexity, as evidenced by prior studies [9, 15, 28, 31, 38, 

40, 43]. These characteristics make them more suitable for a 

cost-effective and robust classification system using the 

ICEHG DS dataset. 

To prepare EHG signals for analysis, a band-pass filter 

(frequency range: 0.08 to 5 Hz) is applied to remove noise, 

such as power line interference and movement artifacts, 

preserving the relevant frequency components of uterine 

electrical activity. The filtered signal is then segmented into 

3000-sample windows with a 1000-sample shift, and the Sh-

En and LogEn of each frame are calculated. The equations for 

these features are defined as follows: 

Shannon Entropy: 

 

𝐻𝑘 = − ∑ 𝑝𝑖

𝑁

𝑖=1

ln 𝑝𝑖  (1) 

 

where, 𝑝𝑖  represents the probability of the i-th value within the 

frame, and N represents the total number of frames analyzed 

for each EHG signal. 

Logarithmic Energy: 

 

𝑧𝑘 = 𝑙𝑛 (
1

𝑁
 ∑ 𝑠(𝑘, 𝑖)2

𝑁

𝑖=1

) (2) 

 

where, 𝑧𝑘  denotes the logarithmic energy of the k-th frame, 

𝑠(𝑘, 𝑖)  represents the EHG signal within the frame, and N 

represents the total number of frames analyzed for each EHG 

signal. From each 29-minute EHG signal, 1448 frames were 

extracted for each delivery type (induced, cesarean, and 

induced-cesarean). The length of the extracted feature vector 

will be equal to the number of frames. The corresponding 

logarithmic energy and Shannon entropy are presented in 

Figure 3 for the different delivery types. 

 

3.5 Delivery type classification 

 

To implement the model, after feature extraction, we apply 

ADASYN to address the class imbalance. The balanced 

feature is then divided into training and testing sets: 80% for 

training and 20% for testing. The performance of the extracted 

features in distinguishing between Cesarean, Induced, and 

Induced-Cesarean classes is evaluated using three classifiers. 

To classify between induced, cesarean, and induced-cesarean 

deliveries, we use three classifiers: Long Short-Term Memory 

(LSTM), Support Vector Machine (SVM), and Random Forest 

(RF). These classifiers were selected because of their varying 

learning strategies, providing a well-rounded approach to the 

classification task. The decision to use these models is based 

on their established reliability and effectiveness in 

distinguishing between different delivery types, as supported 

by previous research and literature.  

 

  

(a1) (a2) 
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(a3) (b1) 

  
(b2) (b3) 

  
(c1) (c2) 

 
(c3) 

 

Figure 3. The waveform of the EHG signal (channel S1) and the corresponding Sh-En and LogEn features are illustrated for 

three delivery types: Early Cesarean (a1, a2, a3), Early Induced (b1, b2, b3), and Early Induced-Cesarean (c1, c2, c3). Panels -1 

show the EHG waveforms, panels -2 the Sh-En features, and panels -3 the LogEn features 
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3.6 Performance measures 

 

The performance of the methods is evaluated using four 

quantitative metrics: True Positives (TP): Correctly predicted 

as the specific class (e.g., Induced, Cesarean, or Induced-

Cesarean). True Negatives (TN): Correctly predicted as not 

belonging to the specific class. False Positives (FP): 

Incorrectly predicted as the specific class when it was not. 

False Negatives (FN): Incorrectly predicted as not belonging 

to the specific class when it should have. To evaluate the 

performance of the proposed classification algorithm, 

sensitivity (Se), specificity (Sp), accuracy (Acc), Precision 

(Pr), and F1 score are computed. The calculation rules of the 

metrics can be formulated as follows. 

 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (3) 

 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (4) 

 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
× 100 (5) 

 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (6) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟 × 𝑆𝑒

𝑃𝑟 + 𝑆𝑒
 (7) 

 

 

4. RESULTS AND DISCUSSION 

 

In this paper, to achieve better performance for each 

classifier, the experiments were repeated multiple times, and 

we report the best and most important parameters, with the 

remaining ones set to their default values. Based on a review 

of existing EHG signal classification methods, a series of 

experiments were performed to evaluate the effectiveness of 

the classification techniques used in this study. All 

experiments were conducted in MATLAB R2024a on a 

workstation equipped with three NVIDIA GeForce RTX 

2080Ti GPUs (12 GB each). 

 

4.1 Classification performance on ICEHG DS 

 

Distribution plots for each delivery type in various entropy 

and log entropy measures are shown in Figure 4. The 

performance metrics for LSTM, SVM, and RF models, 

obtained through 10-fold cross-validation, are presented in 

Tables 2-4, respectively. In the initial stages of developing an 

SVM classification model, our preliminary analysis showed 

that the polynomial kernel models demonstrated superior 

performance compared to the linear kernel model, and the 

RBF model also produced similar results. Consequently, we 

decided to exclude the results of the linear kernel and RBF 

models from this report. Furthermore, we recognize the critical 

role of kernel parameters in effectively distinguishing between 

different birth types, such as cesarean and induced deliveries. 

To minimize classification errors, optimal kernel parameters 

are crucial. Therefore, we utilized MATLAB R2024a for its 

automatic tuning to maximize model performance.  

The classification performance of the RF classifier using the 

extracted Shannon Entropy and logarithmic energy features is 

presented in Table 2. This table illustrates that Channel S3 

achieved the highest classification performance with Sh-En 

features, recording an average 91.56 ± 0.0695 % accuracy. 

Channel S2 followed closely with an average accuracy of 

90.67 ± 0.0631 %. Conversely, Channel S1 showed the lowest 

accuracy for Sh-En features, at 89.42 ± 0.1040%. With the 

same method, Channel S2 displayed the best performance for 

features extracted using LogEn with an average accuracy of 

92.78 ± 0.0788%. In contrast, Channel S3 exhibited the lowest 

accuracy for LogEn features, at 90.56 ± 0.0456%. 

Table 3 presents the classification accuracy results obtained 

using an SVM classifier. The analysis shows that the Shannon 

Entropy features extracted from Channel S3 exhibited the best 

performance, with a peak classification accuracy of 97.78 ± 

0.0388%. Similarly, features extracted using logarithmic 

energy achieved the highest accuracy of 96.17 ± 0.0604% on 

Channel S1. On the other hand, the lowest accuracies were 

recorded on Channel S2, with Sh-En achieving 93.33% ± 

0.0574% and LogEn reaching 94.44 ± 0.0586%. 

 

  
(a1) (a2) 
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(b1) (b2) 

  
(c1) (c2) 

 

Figure 4. Distribution plots for various entropy and logarithmic measures: (a1), (b1), and (c1) display the normal Distribution of 

Sh-En for channels 1,2,3, respectively. (a2), (b2), and (c2) show the normal Distribution of LogEn for channels 1,2,3, 

respectively 

 

Table 2. Performance of different channel configurations for various extracted features using the RF method 

 

Feature Channel Se (%) Sp (%) ACC (%) 

LogEn 

CH1 94.40 ± 0.0927 90.46 ± 0.1262 90.73 ± 0.1061 

CH2 96.57 ± 0.0735 98.57 ± 0.0452 92.78 ± 0.0788 

CH3 94.89 ± 0.0858 92.13 ± 0.1164 90.56 ± 0.0456 

Sh-En 

CH1 94.40 ± 0.0939 89.88 ± 0.1824 89.42 ± 0.1040 

CH2 95.14 ± 0.1040 93.57 ± 0.1636 90.67 ± 0.0631 

CH3 98.00 ± 0.0689 92.25 ± 0.1010 91.56 ± 0.0695 

 

Table 3. Performance of different channel configurations for various extracted features using the SVM method 

 
Feature Channel Se (%) Sp (%) ACC (%) 

LogEn 

CH1 100.00 ± 0.0000 92.45 ± 0.0820 96.17 ± 0.0604 

CH2 100.00 ± 0.0000 92.82 ± 0.0983 94.44 ± 0.0586 

CH3 98.53 ± 0.0452 98.70 ± 0.0279 95.56 ± 0.0234 

Sh-En 

CH1 100.00 ± 0.0000 91.35 ± 0.1154 96.75 ± 0.0456 

CH2 99.67 ± 0.0.0298 94.17 ± 0.1245 93.33 ± 0.0574 

CH3 100.00 ± 0.0000 98.00 ± 0.0632 91.78 ± 0.0388 
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Table 4. Performance of different channel configurations for various extracted features using the LSTM method 

 

Feature Channel Se (%) Sp (%) ACC (%) 

LogEn 

CH1 98.75 ± 0.0395 98.75 ± 0.0452 98.40 ± 0.0338 

CH2 96.05 ± 0.0672 97.13 ± 0.0612 96.76 ± 0.0448 

CH3 98.57 ± 0.0452 97.32 ± 0.0303 98.67 ± 0.0264 

Sh-En 

CH1 98.75 ± 0.0452 99.11 ± 0.0725 99.07 ± 0.0264 

CH2 94.64 ± 0.0941 99.76 ± 0.0124 96.67 ± 0.0606 

CH3 97.50 ± 0.0791 99.65 ± 0.0223 99.33 ± 0.0527 

 

 

The classification results for the LSTM classifier are 

presented in Table 4. This table demonstrates that the extracted 

LogEn feature from channel S3 achieves the highest 

classification performance, with an average accuracy of 99.17 

± 0.0264 %. Channels S1 and S2 exhibit closely related 

performance, achieving average accuracies of 96.79 ± 

0.0414% and 95.76 ± 0.0448%, respectively. Similarly, 

features extracted using Sh-En achieved the highest accuracy 

of 96.17 ± 0.0604% on Channel S3. 

An analysis of Tables 2 to 4 in this article demonstrates that 

by extracting two key features from the structure of EHG 

signals, it becomes possible to effectively and accurately 

distinguish between Cesarean and Induced births. 

Furthermore, the results indicate that all three channels yielded 

fairly acceptable outcomes in detecting various delivery 

records. Consequently, by utilizing the introduced features and 

employing a single measurement channel, the progress of 

labor and, subsequently, the mode of delivery can be 

effectively monitored. This approach offers cost-effectiveness 

and low computational demands. 

 

4.2 Discussion of results and limitations 

 

Table 5 presents the comparative performance F1-score 

measure of various classification models on the given dataset. 

Analyzing Tables 2 to 4 reveals that Channel S3 provided 

more acceptable results. This table demonstrates that the 

extracted LogEn feature from Channel S3 achieves the highest 

classification performance using the LSTM method, with an 

average F1-score of 99.15 ± 0.0275%. The SVM method 

exhibits closely related performance, reaching an average F1-

score of 98.89 ± 0.0351%. Similarly, features extracted using 

Sh-En using the LSTM method achieved the highest accuracy 

of 99.34 ± 0.0186% on Channel S3. SVM method using the 

same feature, followed closely with an average accuracy of 

99.21% ± 0.0263%. 

 

Table 5. F1 score performance of different classification 

methods for extracted features in channel S3 

 

Feature RF SVM LSTM 

LogEn 
94.45 ± 

0.0534 

98.89 ± 

0.0351 

99.15 ± 

0.0278 

Sh-En 
95.40 ± 

0.0528 

99.21 ± 

0.0263 

99.34 ± 

0.0186 

 

To address class imbalance in the ICEHG DS dataset, where 

minority classes (e.g., induced deliveries) were 

underrepresented, the Adaptive Synthetic Sampling 

(ADASYN) technique was used to generate synthetic samples. 

This improved the F1-score for the LSTM classifier with 

Shannon Entropy on Channel S3 from 82% (without 

ADASYN) to 99.34%, with real induced delivery samples 

achieving an F1-score of 95% [52]. To mitigate overfitting and 

noise, synthetic samples were used only during training, with 

real data reserved for testing, and 10-fold cross-validation 

ensured model generalization [53]. ADASYN’s parameters 

(e.g., number of nearest neighbours) were tuned to minimize 

distribution shifts, verified using Kullback-Leibler divergence 

to align synthetic and real data distributions [53]. However, 

reliance on synthetic data may not fully capture real-world 

EHG variability, a limitation we aim to address by collecting 

larger real-world datasets and exploring alternatives like 

SMOTE or cost-sensitive learning.   

Despite the high performance, EHG-based predictions of 

delivery types (induced or cesarean) lack full interpretability, 

limiting their use for definitive medical decisions without 

additional clinical tests [38]. These predictions, representing 

probabilities, require further development for reliable hospital 

use [43]. Patient data privacy, addressed through 

anonymization in the ICEHG DS dataset (Section 3.1), 

remains critical [51]. Limited datasets from single medical 

centers also restrict generalizability across diverse 

populations. Future work should prioritize larger, multi-

regional datasets to enhance the clinical applicability and 

robustness of EHG-based models. 

 

4.3 Rationale for classifier and channel selection 

 

The proposed classifiers, RF, SVM, and LSTM were chosen 

for preterm labor prediction using the ICEHG DS dataset due 

to their suitability for small datasets and proven effectiveness 

in EHG analysis [9, 52]. The limited dataset size (126 

deliveries) makes complex models like Transformers 

impractical, as they require large data to avoid overfitting. RF, 

SVM, and LSTM offer computational efficiency for home-

based monitoring, unlike resource-intensive Transformers [23, 

52]. The extracted features (Sh-En, LogEn) are compatible 

with RF and SVM for structured data and LSTM for sequential 

data, aligning with standard EHG studies [9]. These classifiers 

ensure reliability even without synthetic data (unlike 

ADASYN, etc.). Future work may explore larger datasets for 

advanced models. 

Hyperparameter tuning was performed to ensure 

reproducibility using 10-fold stratified cross-validation on the 

ICEHG DS dataset (19 Cesarean, 81 induced, 26 induced-

cesarean deliveries) in MATLAB R2024a. For Random Forest 

(RF), the number of trees and maximum depth were tuned via 

grid search in the Classification Learner app, achieving an F1-

score of 98.89%. For Support Vector Machine (SVM), kernel 

type (linear, RBF, polynomial) and regularization parameter C 

were optimized automatically, yielding an F1-score of 

99.21%. For Long Short-Term Memory (LSTM), the number 

of layers and units per layer were adjusted in the Neural 

Network Toolbox, resulting in an F1-score of 99.34%. These 

settings, optimized on real data independently of ADASYN 

(Section 4.2), align with EHG studies [9, 22]. 

As noted in the article [30], Channel S3, derived from 
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horizontally placed abdominal electrodes, performs better in 

separating preterm and term records (p=1.1×10⁵ for MF in B01 

band). This is likely due to its high sensitivity to low-

frequency signals (0.08-0.3 Hz, Fast Wave Low) associated 

with uterine contractions, while reducing maternal cardiac and 

respiratory noise (>1.0 Hz) [22]. We also used this channel in 

our study, and the results confirm the correctness of our 

choice. 

 

4.4 Computational efficiency, real-time monitoring 

feasibility, and limitations 

 

This section evaluates the computational efficiency and 

real-time applicability of the RF, SVM, and LSTM classifiers 

using the ICEHG DS dataset (1,448 frames per record). The 

feature extraction process, Sh-En (1.2 s), LogEn (0.56 s), and 

their combination (1.5 s per record) take approximately 0.39 

to 1.04 ms per frame, which is well below the EHG sampling 

interval of 50 ms (20 Hz), enabling real-time data processing. 

Table 6 summarizes the average training and inference 

times across 10-fold cross-validation, averaged over 10 

independent runs using MATLAB’s timeit function. The 

reported inference times are significantly lower than the EHG 

frame interval, supporting the feasibility of real-time 

monitoring using the proposed models. These results are 

consistent with prior EHG-based studies [9, 52], which 

typically report processing latencies between 10–100 µs per 

sample. 

 

Table 6. Computational Efficiency Metrics for RF, SVM, 

and LSTM 

 
Classifier Training Time/Fold (s) Inference Time (ms) 

RF 17.5 ± 1.5 83.5 ± 0.3 

SVM 70.4 ± 5.3 24.1 ± 0.2 

LSTM 71.0 ± 4.6 28.9 ± 0.5 

 

In terms of clinical deployment, these latency metrics 

suggest compatibility with portable fetal monitoring devices 

such as the Monica AN24 [11], which operate within similar 

real-time constraints. However, several deployment 

challenges remain, including potential signal noise in 

ambulatory environments, limited processing power on edge 

devices, and the relatively small size and diversity of the 

dataset, which may affect model generalizability. As part of 

future work, we aim to: further optimize model latency for 

embedded and low-power platforms, expand the dataset 

through multi-center collaborations to enhance robustness, 

and explore lightweight deep learning architectures that 

maintain accuracy while reducing computational demands. 
 

 

5. CONCLUSION 
 

This study presents a computationally efficient method for 

classifying delivery types (induced, cesarean, and induced-

cesarean) using EHG signals as early as the 23rd week of 

pregnancy. By leveraging two simple yet sensitive features, 

Shannon Entropy and Logarithmic Energy extracted from a 

single EHG channel, our approach achieves high accuracy 

(99.34% F1-score) without requiring complex models. The 

use of data augmentation techniques, such as ADASYN, 

effectively addressed class imbalance, yielding robust 

performance despite data limitations. Beyond its technical 

merits, this method offers significant clinical potential by 

enabling early identification of delivery type risks, allowing 

clinicians to optimize labor induction strategies, reduce 

unnecessary cesarean sections, and mitigate maternal and 

neonatal complications. This predictive capability supports 

personalized obstetric care, potentially alleviating the global 

burden of preterm birth and associated adverse outcomes. The 

low computational complexity of our approach also makes it 

suitable for integration into portable EHG devices, facilitating 

real-time monitoring in clinical settings. However, for real-

time deployment, further optimization may be necessary to 

reduce computational latency and ensure compatibility with 

wearable or portable hardware. Future work will focus on 

validating the method across diverse populations and 

exploring hardware-friendly architectures to enhance its 

practical utility in maternal healthcare. 
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