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In today's world, among 11 adults, one adult experiences diabetes mellitus and a complex 

illness known as diabetic foot ulcers (DFU). DFU needs to be treated well; otherwise, it may 

lead to amputation. The clinician performs the DFU treatment, where these treatments show 

remarkable restrictions, like costly diagnosis and lengthy care of DFU and treatment. Thus, 

there is a need for a novel decision-making technique. Constructing the dataset and 

collecting foot images from various patients are time-consuming processes. After the dataset 

acquisition, the skin conditions must be evaluated using computer vision algorithms. Here, 

novel learning techniques obtain the DFU features and the skin patches, which are healthy 

for understanding the difference in computer vision perspective. Further, the theoretical 

convolutional neural network architecture, CNN-DFUNet, is proposed to learn the feature 

representation to find the difference among the features and enhance the prediction accuracy. 

The CNN-DFUNet achieves 0.961 as the AUC score and is better than the conventional 

learning approaches. Furthermore, the proposed model is highly sensitive to detecting the 

presence of DFUs. Moreover, it is used for delivering the paradigm shift potentially among 

patients in diabetic foot care with less cost and reliable solutions in healthcare. 
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1. INTRODUCTION

Diabetes, also known as Diabetes Mellitus (DM), is a 

chronic condition resulting from high blood sugar levels, 

which can lead to serious health complications if not properly 

managed. It causes significant complications like kidney 

failure, cardiovascular diseases, lower limb amputation, and 

blindness that are frequently associated using Diabetic Foot 

Ulcers (DFU) [1]. In 2014, about 422 million individuals had 

DM, compared to 108 million people in 1980, based on the 

global report on diabetes. The global prevalence has crossed 

from 4.7% to 8.5% from 1980 to 2014 among adults 18 years 

of age [2]. Global DM prevalence is projected to reach 600 

million individuals by 2035, according to estimates [3]. It is 

important to note that about 20% of people are from developed 

countries. The others are considered from developing 

countries because of the lack of awareness and the restricted 

facilities in healthcare [4]. A diabetic patient has a chance of 

about 15% to 25% developing DFU eventually, and the lower 

limb amputation may occur if the proper care is not taken [5]. 

More than 1 million patients have DM lose their leg part every 

year because they fail to identify it and treat the DFU properly 

[6]. A ‘high risk’ foot requires a periodic check-up with the 

doctors for the diabetic patient with continuous medication, 

which is costly, and hygienic personal care is needed to protect 

from additional problems mentioned before. Hereafter, an 

extensive burden will be caused, burdening the patient's family 

and the patient, particularly in developing countries. Here, the 

expense of treatment for the disease is costly and equal to 5.7 

years of annual income [7]. 

The determination of DFU consists of different vital works 

in the present clinical practices and early diagnosis, which 

keep track of enhancement, and the count of lengthy tasks is 

considered in the management and treatment of DFU in every 

specific case [8]. They are (i) the evaluation of the patient's 

medical history needs to be considered, (ii) a specialist of the 

diabetic foot and the wound is examined the DFU thoroughly, 

(iii) the extra tests such as MRI, CT scans, and X-ray are

required for helping to help plan the treatment [9]. Based on

every scenario, the DFU patients have swollen legs, even

though it is painful and itchy. The DFU appearance visually

and the skin around the wound is based on the different phases,

like callus formation, redness, numerous types of tissues such

as slough, granulation, scaly skin, bleeding, and blisters [10-

12]. Generally, uncertain outer boundaries and irregular

structures are there in DFU. Evaluating ulcers with computer

vision algorithms depends on correctly assessing the visually

considered signs as texture features and colour descriptors.

However, all these methods fail to provide a substantial

outcome for predicting cancer in the earlier stage. Thus, some

complexities are not addressed by the existing works. They are:

(i) collection requires more time and the DFU images are
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labelled by experts, (ii) the high inter-class similarity among 

the abnormal classes as DFU and regular classes as healthy 

skin, and the intra-class variations that are based on the DFU 

classification [13], the ethnicity of the patient, and the lighting 

conditions. Research in foot ulcer prediction using deep 

learning has made significant strides, particularly for diabetic 

patients, yet several critical gaps and limitations remain. 

Addressing these issues is essential to improving model 

performance, generalizability, and clinical relevance. One 

major limitation is the scarcity and imbalance in existing 

datasets. Most available datasets for foot ulcer prediction are 

small, with a disproportionate number of images representing 

advanced-stage ulcers compared to early-stage cases. This 

imbalance hinders a model's ability to generalize and 

accurately detect the early signs of foot ulcers. To enhance 

generalizability, there is a need for larger, well-annotated, and 

diverse datasets that include various stages of foot ulcers 

across different demographics, including skin tones and 

patient age groups. Another challenge is the interpretability of 

DL techniques, specifically CNNs, which are often perceived 

as "black boxes." Clinicians and medical experts require 

models that provide transparent and interpretable predictions 

to confidently integrate them into clinical workflows. Without 

interpretability, there may be hesitation to trust or adopt these 

AI systems in real-world settings. Early detection of foot 

ulcers remains an ongoing challenge. While current models 

perform well in predicting advanced-stage ulcers, they often 

struggle to identify early-stage ulcers where signs may be 

more subtle. Models trained on small, imbalanced datasets are 

prone to overfitting, reducing their effectiveness when applied 

to new, unseen data. Therefore, improving model robustness 

and preventing overfitting are key areas where progress is 

needed, particularly when training data is limited. Addressing 

these gaps can give rise to more accurate, interpretable, and 

clinically viable models for foot ulcer prediction. Techniques 

like multimodal learning, real-time monitoring, and 

explainable AI have the potential to enhance the applicability 

and effectiveness of these models in healthcare settings. 

Additionally, comparing the proposed model with existing 

methods such as LBP, LeNet, AlexNet, GoogleNet, 

HOG+LBP, and color descriptors is important for 

benchmarking performance. Improving the model's ability to 

detect early-stage ulcers would enable more effective 

preventive interventions, which is crucial for patient outcomes. 

Nonetheless, the proposed model shows promising results in 

terms of accuracy, recall, F1-score, and precision, offering a 

groundwork for future enhancements in this area. 

Thus, the proposed model intends to address these issues 

with the proper clinical findings in the earlier stage. The 

computer vision approaches are proposed to differentiate the 

DFU with deep learning and conventional machine learning 

techniques from healthy skin [14, 15]. The proposed system 

shows some major contributions as listed below: 

1) Here, a novel computerized telemedicine system is 

presented to address the issues in DFU. The input dataset 

consists of 397-foot image samples, where 292 samples show 

DFU and 105 images of a healthy foot. 

2) Subsequently, a novel learning approach is employed to 

learn and extract the features from the patches of healthy skin 

and the DFU. With the boom of DL, CNNs are used to develop 

the fully automated technique for classifying the DFU skin 

over the regular skin. 

3) The proposed CNN-DFUNet is developed with fine-

tuned input data and works more effectively than the modern 

CNN. It requires the actual data to generate the exact outcomes, 

yet in the convolutional blocks parallel with the larger filter 

size of CNN-DFUNet, which can create better results on the 

dataset. 

The work is structured as follows: Section 2 offers a 

comprehensive evaluation of existing techniques and 

discusses the benefits and drawbacks related to the model. 

Section 3 provides an elaborate discussion on the proposed 

CNN-DFCNet model. The numerical results are provided in 

Section 4, followed by the research summary in Section 5. 

 

 

2. RELATED WORKS 

 

The communication technologies and the proliferation of 

information represent both the chances and difficulties of the 

new age medical systems development. The number of e-

health systems is available in developing levels, like (i) the 

present healthcare systems are improved, and the expense of 

medical facilities are decreased, (ii) a level of medical 

facilities is improved such as that patients' remote assessment 

are often suits with the less expert medical professionals to the 

chronic disease [9]. Doctors and researchers have designed 

critical telemedicine systems over the years to monitor 

diabetes [16, 17]. Moreover, some intelligent systems are 

proposed for the pathologies of the diabetic foot that need to 

be classified into automated and non-automated telemedicine 

systems. With the sudden development in mobile 

telecommunications, remote communication has standalone 

devices such as laptops, the Internet, and smartphones. In 

today's world, small smart devices, like pocket-sized having 

enhanced mobile operating systems, have the personal 

computer's abilities. It captures high-resolution images, video, 

and audio communication and has an improved mobile 

Internet, such as 4G. The general telemedicine systems in the 

non-automatic criteria depend on the devices that are almost 

needed to arrange for the patients' assessments in the remote 

location, such as (i) three-dimensional wound imaging (3D), 

(ii) video conferencing, (iii) optical scanner, and (iv) digital 

photography [18]. Moreover, specialized medical 

professionals are still needed to complete the patients' 

assessment. There is an urgent requirement for intelligent 

systems that can detect the pathologies of DFU automatically 

and remotely, even though the systems give guaranteed 

outcomes. 

The automatic telemedicine systems for DFU usage are still 

in inception. It is important to note that the intelligent 

telemedicine system was designed by Hermans [19] in 2015 to 

detect the complications of diabetic food by having infrared 

thermal images, reconstruction of 3D surface, and spectral 

imaging. Moreover, there is a need for different costly devices, 

and special training is required for using the devices to 

implement this system. Foltynski et al. [20] use the image 

capture box to obtain the image features and evaluate the 

DFU's area with the help of cascaded two-staged related 

classification such as Support Vector Machine. The proposed 

system uses the super-pixel approach to segment and extracts 

the feature number for performing two-staged categorization. 

Even though the system reports the guaranteed outcome, this 

is not validated on the larger dataset. In addition, data 

collection is not possible through the image capture box. There 

is a requirement to contact the box surface and the patient's 

foot, which is not permitted in the healthcare setting due to 

infection control. Chen et al. [21] developed the DFUs' 
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segmentation, and the skin is surrounded by the whole foot 

image in other remarkable areas.  

In addition, the manual or image processing techniques or 

the engineered features are related to the computer 

methodologies established to classify the tissue and the skin 

lesion, like the wound is segmented. The process of extracting 

the different features, like the colour descriptors and the 

texture descriptors, on the less delineated patches of wound 

images, is used to perform the classification task with the help 

of conventional machine learning. It is used for classifying 

skin patches as abnormal and normal classes using machine 

learning algorithms [22-25]. The skin colour and the lighting 

conditions affect the hand-crafted features in multiple 

computer vision systems based on the patient's ethnicity. 

Generally, all skin lesions are virtually related to the ulcer, 

which is termed a wound. The ulcer and the injury are 

concerned differently in the medical perspective produced 

using the external issue. On the other hand, internal problems 

cause an ulcer. In addition, the skin lesion has a different 

appearance from ulcer and wound. The scenario is based on 

the body works like physiology, aetiology and pathology [25]. 

Moreover, DFU alone is concerned in the current research for 

determining how these are varied from the physically regular 

skin at the place of appearance. 

In recent years, there have been sudden enhancements in the 

computer vision area mainly to critical and challenging 

problems such as the images being understood with various 

domains like medical, spectral, detection of an object, and face, 

label classification and multi-class classification [26]. The 

machine learning algorithms and traditional computer vision 

are significantly fewer capabilities for processing the wide 

range of image data, which gives the data representation 

various levels of abstraction and requires more tuning in 

manual way for every input image. A recent machine learning 

algorithm called deep convolutional networks rises as the 

fundamental approach for solving the types of problems in 

computer vision [27]. It transforms the simple representation 

of features into a more enhanced abstract model for 

categorization. Simple non-linear modules are employed to 

acquire the different levels of representation approaches using 

DCN. The image samples are used as input and begin to 

understand the features like position from the array of pixel 

values and the edges at a particular direction by the deep 

convolutional networks. The combination of the edges at a 

greater level needs more vital abstract features, like the 

components of the required object. In the last stage, the 

components are associated with forming the final object [28]. 

One of the general forms of ML is supervised learning. It is 

necessary to train the system's classification tasks from the 

broad group of images distinctly labelled for every category. 

It is impossible to detect the needed class without training 

using the most incredible score of all the types [29]. During 

the training phase, the machine processes the various images 

to generate the scores vector output for every image for all 

classes. Thus, the errors are evaluated related to output scores 

rather than the predicted score until every class's reliable score 

is attained. After the training, a set of images is validated to 

fine-tune the networks' hyper-parameters like weights, pooling 

layer counts and the convolutional layers. Finally, the system's 

performance is checked by testing the system and real-world 

test data with no predicted result [30]. Table 1 depicts the 

comparison of various existing approaches. 

CNN-DFUNet may feature a custom architecture 

specifically optimized for foot ulcer detection, designed to 

capture the unique characteristics of ulcers, such as texture, 

color variations, and irregular shapes. This specialized design 

likely enhances feature extraction compared to general-

purpose networks. To determine whether CNN-DFUNet’s 

AUC score of 0.961 signifies a statistically significant 

improvement over other methods, statistical tests like the 

DeLong test for comparing AUCs, McNemar’s test, or a paired 

t-test (for accuracy, sensitivity, etc.) could be employed. 

Additionally, calculating confidence intervals for AUC scores 

and other performance metrics would clarify whether the 

observed improvements are statistically significant or likely 

due to chance. Applying cross-validation techniques (e.g., k-

fold) and comparing the average results across folds would 

further help assess if CNN-DFUNet consistently outperforms 

alternative models. Its superior performance can be attributed 

to its customized architecture, multi-scale feature extraction, 

ability to handle data imbalances, and efficient learning 

methods. To confirm that this improvement is statistically 

significant, proper statistical testing and cross-validation 

should be conducted. 
 

Table 1. Summary of DFU prediction using various deep and machine learning approaches 
 

S. No Author Wound Type ES 
Total 

Patients 
ES Parameters Duration Outcomes 

1 [21] DFU HPVC 41 100 𝜇𝑠 and 50V 12 weeks with 8h 
The healing rate is higher 

compared to other approaches 

2 [22] 
Chronic diabetic 

ulcers (CDU) 

Heat+ES+local dry 

heating 
21 

30Hz, 20mA and 

250𝜇𝑠 

35 min with 4 

weeks 

Increased healing rate with local 

heat 

3 [23] CDU and DFU LIDS 48 1.5𝜇𝐴 
60 min with 8 

weeks 
Increased healing rate 

4 [24] 
Open diabetic 

ulcers 
HPVC 30 

100𝜇𝑠 and 140V 

and 55Hz 
45 min+4 weeks Enhanced healing rate 

5 [25] 
Chronic leg ulcer 

(CLU) 

Asymmetric biphasic 

pulsed current 
80 -- Ulcer healed The increased healing rate is 65% 

6 [26] DFU HPVC 28 
150V, 100𝜇𝑠 and 

100Hz 
50 min 

The wound size is reduced in the 

initial phase 

7 [27] 
Stage IV 

decubitus ulcer 

ES+global heat 

ES+local+heat 
30 30Hz and 20mA 30 min 

The healing rate is higher with 

global heat 

8 [28] CLU HPVC 15 
100V, 50𝜇𝑠 and 

105Hz 
50 min 45% healing rate is seen 

9 [29] CLU FIRMS 35 
100Hz, 10-40𝜇𝑠 

and 100V 

45 min and 3 

weeks 
Improved healing rate 

10 [30] DU Placebo vs ENS 65 -- 
50-60 min and 

12 weeks 

Reduced pain and enhanced 

healing rate 
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3. METHODOLOGY 
 

This section provides a broader assessment of the proposed 

model. Here, a novel CNN-based DFUNet is proposed to 

analyze diabetic foot ulcer prediction and classify diabetic 

ulcer stage (classes). Here, some essential pre-processing steps 

are done before performing classification. The performance of 

the anticipated model is measured using metrics like 

sensitivity, accuracy, specificity, precision, F-measure, SE and 

CI. 
 

3.1 Dataset 
 

The dataset of DFUs standardized colour images requires 

being collected from different patients to train the other deep 

learning models. The extensive dataset, having 292 patients' 

foot images of the DFU, has been used across the prior five 

years in the Lancashire Teaching Hospitals to ethically obtain 

approval from the appropriate patients and bodies that provide 

written consent of information. In addition, about 105 healthy 

foot images are gathered to get more scenarios for the typical 

healthy classes. The NHS Research Ethics Committee 

provides approval for using the images for the study. Nikon 

D3300 is used to capture the DFU images. The images show a 

complete foot whenever needed, with a distance of around 30 

to 40cm to the plane of an ulcer having a parallel orientation. 

The flash is the first light source that can be eliminated, rather 

than using suitable room lights to get reliable colours in the 

images. The Nikon AF-S DX Micro NIKKOR 40mm f/2.8G 

lens is utilized to ensure close-up focus and eliminate the 

blurriness from the close-up distance in the images. Another 

test case is added in the proposed system to capture with the 

help of the FootSnap application with an iPad to show the 

meaningful algorithms across the heterogeneous capturing 

setup. This heterogeneous test case comprises 32 regular and 

20 abnormal skin patches. 

 

3.2 Image labelling 

 

Zhou et al. [30] provide a suitable annotator for every full 

image of the foot that has ulcers and the Region of Interest 

(ROI) delineated by medical experts in the crucial area above 

the ulcer, with both abnormal and normal skin tissues. 

 

 
 

Figure 1. Flow of the anticipated model 
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Figure 1 illustrates the workflow of the proposed model. 

The medical professionals outline the ground truth labels in 

infected skin patches and normal skin patches from the area of 

the ROI. The ground truth of the abnormality type is labelled 

and exported for every delineated abnormal area to the 

Extensible Markup Language (XML) file. The experts 

gathered both the patch classes from the region of ROI in the 

group of ground truth patches, which helps have a more 

meaningful categorization of the patches than involving the 

complete foot as the area. There are about 292 ROI, such as 

only for ulcers; foot images for the annotation of 397-foot 

images having both the non-ulcer and ulcer with 1679 skin 

patches, have the 1038 abnormal class and the 641 normal 

classes from these annotations. Lastly, the dataset is divided 

into 84 patches for validation, 1423 for the training, and 172 

for testing. 

 

3.3 Data augmentation 

 

The deep networks need more training image data due to the 

many parameters. The learning algorithms assign the weights 

with the convolutional layers, which can be tuned. Moreover, 

data augmentation enhances deep learning techniques. 

Different image processing approaches, such as flipping, 

rotation, and enhancement of contrast, are combined with the 

help of random scaling and the various colour spaces for data 

augmentation. Angles of 90° and 180° rotate the image, and 

270° is used for further rotation. Thus, the three flipping 

methods, vertical flip, horizontal flip, and horizontal and 

vertical flip, are needed to serve on the original patches. Four 

colour spaces are required to augment data like NTSC, HSV, 

𝐿 ∗ 𝑎 ∗ 𝑏, and YCbCr. There are three functions in contrast 

enhancement. The two cropped patches having the random 

orientation and the random offset are produced in the proposed 

system from the skin patches in the original dataset. The 

amount of training and validation patches is increased by 

fifteen times, that is, 1260 patches for validation and 21,345 

patches for training with these approaches. 

 

3.4 Pre-processing 

 

There is a necessity for pre-processing on these patches 

since many training data augments are obtained. The zero-

centre approach is utilized to pre-process these attained 

patches, and then the normalization is done for each pixel. 

 

3.5 Classifier model 

 

The proposed CNN-DFU model is a lightweight model that 

reduces complexity and enhances processing speed. The 

model intends to reduce the computational complexity and 

processing speed. The novelty of the work relies on the layer 

description and the changes done between the standard feature 

extraction layer of CNN and the fully connected layer. The 

features are analyzed, and the approximation with the 

extracted linear features is derived. 

 

3.6 Model description 

 

Assume 𝜒 is the set of 𝑁 images where the feature maps are 

obtained from the 𝑖𝑡ℎ image with the feature extraction block. 

There is no constraint with the architectural model adopted for 

the feature extraction procedure. Consider 𝐿 as the number of 

layers (lightweight) where the features are extracted. Here, 

𝑋𝑖𝑗𝜖ℝ𝑁𝑓  is adopted for the extracted feature vector for the 𝑖𝑡ℎ 

image of 𝜒 , and 𝑁𝑓  is the convolutional layers' channel 

(features extracted). The length of the feature maps describes 

several feature vectors, which are available across the 

intermediate layers. The feature vector count defines the 

feature map size and is available over the extracted feature. 

For instance, when the 20 ∗ 20 feature maps are extracted, the 

vectors are provided for different quantization processes. The 

factor 𝑁𝑖  extracts several feature vectors from the available 

𝑖𝑡ℎ mage. The image is specified with the set of 𝑁𝑖  feature 

vectors 𝑥𝑖𝑗 ∈ ℝ𝑁𝐹 (𝑗 = 1, … , 𝑁𝑖)  extracted with the trained 

convolutional feature extractor. The intermediate layers are 

compiled using the histogram generated for every image after 

feature vector quantization. The prevailing global pooling 

approaches are fused with the feature vectors or used for 

pooling the spatial information for feature representation. The 

proposed model decouples the extracted feature representation 

size based on dimensionality and feature vectors. It facilitates 

independently controlling the feature representation size and 

allows the reduction of layer parameters required by the fully 

connected layers. 

Input layer: It also helps in handling images of various 

sizes. Similarly, two diverse layers are utilized to examine the 

extracted features: 1) one layer measures the input feature 

vector similarity and measures the input vectors, and 2) 

accumulation layers execute the histogram representation by 

integrating the feature vectors (quantized). Thus, the layers 

form the pooling structure used for extracting the 

representation, which is fed as an input to the successive 

classifier. The differential similarity function is adopted to 

measure the feature vectors' similarity issues. The feature 

formulation of the anticipated model relies on the kernel-based 

radial basis function, which is used as a similarity metric. Thus, 

the RBF neurons are included in the preliminary layers, and 

the output of 𝑘𝑡ℎ neuron [∅(𝑥)]𝑘 is expressed in Eq. (1): 

 

[∅(𝑥)]𝑘 = exp(−||𝑥 − 𝑣𝑘||
2

/𝜎𝑘) 𝜖 ℝ (1) 

 

Here, 𝑣𝑘  refers to the number of features and feature 

representation size. Where 𝑥 specifies the feature vector, 𝑣𝑘 is 

the output of the k-th neuron, and 𝜎𝑘 is the scaling factor used 

to adjust the Gaussian function in RBF neurons over the 

intermediate layers. Then, 𝑙1 scaling is used for feature 

formulation and normalization is applied over the neurons. 

The output from the RBF neuron is represented in Eq. (2): 

 

[∅(𝑥)]𝑘 =
exp(−||𝑥 − 𝑣𝑘||

2
/𝜎𝑘)

∑ exp(−||𝑥 − 𝑣𝑚||
2

/𝜎𝑚)
𝑁𝑘
𝑚=1

 (2) 

 

It can be efficiently understood by the feature vector 

quantization and normalizing of the higher similarity feature 

vectors. The normalization process is adapted to the layers of 

the anticipated model to ensure the distribution shift and 

enhance the scale invariance. The enhanced scale invariance 

of the expected model is shown in Figure 1. The final image 

representation is extracted based on the RBF neuron response 

of every vector, and it is fed to the intermediate layers, and it 

is expressed in Eq. (3): 

 

𝑠𝑖 =  
1

𝑁𝑖

 ∑ ∅(𝑥𝑖𝑗) 

𝑁𝑖

𝑗=1

𝜖 ℝ𝑁𝑘 (3) 
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Here, ∅(𝑥) = ([∅(𝑥)]1, … , [∅(𝑥)]𝑁𝑘
)

𝑇
∈ 𝑅𝑁𝑘  specifies the 

RGF vector output, 𝑎𝑛𝑑 𝑠𝑖  specifies the histogram, which is 

expressed based on the distribution of RBF neurons and 

determines the visual content of every sample image. The 𝑠𝑖 

vectors possess an 𝑙1 normalization unit. It is provided to the 

fully connected layers—the extracted features from the 

histogram and projects the feature vector distribution with the 

elimination of spatial information. The spatial information is 

provided to the extracted feature representation, which is like 

of matching technique. The images are segmented to the 

number of regions, and individual histograms are acquired 

from one another. The histograms are integrated to produce the 

resultant representation. The representation is provided as 

𝑁𝐾𝑁𝑆 , where 𝑁𝑆  specifies the total spatial regions. The 

classifier model needs to infer the image class after hauling out 

the histogram representation and the model with loss function 

(differential) is utilized for analysis. 

Hidden layer: The multi-layer perceptron with the hidden 

layer is specific to the anticipated model. The quantity of 

hidden neurons is specified as 𝑁𝐻, while the output neuron is 

utilized for every class that leads to output layer 𝑁𝑐 

(classification problem for various courses). Nc specifies the 

total hidden neurons, the regression is performed, and the 

neuron's output is set as 𝑁𝑐 = 1. 
Activation layer: The ReLU activation function with 

hyper-parameters (default) is utilized for hidden layers. With 

the ReLU, the obtained histograms enhance the network 

convergence velocity over the various activation functions. 

The softmax layer is employed for the classification of output 

layer, while regression does not employ any activation 

function. The classification process used cross-entropy loss 

function for network training, whereas regression used 

squared loss function. The dropout is set as 𝑝 = 0.5 is utilized 

for the hidden layer, and gradient descent is used for learning 

the attributes, and it is shown in Eq. (4): 

 

∆(𝑊𝑀𝐿𝑃 , 𝑉, 𝜎, 𝑊𝑐𝑜𝑛𝑣)

= − (𝜂𝑀𝐿𝑃

𝜕𝐿

𝜕𝑊𝑀𝐿𝑃

, 𝜂𝑣
𝜕𝐿

𝜕𝑉
, 𝜂𝜎

𝜕𝐿

𝜕𝜎
, 𝜂𝑐𝑜𝑛𝑣

𝜕𝐿

𝜕𝑊𝑐𝑜𝑛𝑣

) 
(4) 

 

Here, the symbol 𝐿 is utilized to specify the loss function, 𝜎 

sets the scaling factors (𝜎 = (𝜎1, … , 𝜎𝑁𝐾
)) , and 𝑉 =

(𝑣1, … , 𝑣𝑁𝐾
)  identifies the RBF neurons (centroid). The 

classifier and feature parameters are expressed as 𝑊𝑀𝐿𝑃  and 

𝑊𝑐𝑜𝑛𝑣 , respectively. The learning rate of the parameters is 

specified as 𝜂𝑀𝐿𝑃, 𝜂𝑣, 𝜂𝑠𝑖𝑔𝑚𝑎,  and 𝜂𝑐𝑜𝑛𝑣 .  The adam 

optimizer is used to perform optimization, and the derivations 

from the intermediate layers are derived analytically using 

supplementary materials. The convolutional feature extraction 

is initialized randomly or pre-trained. In MLP, 𝑘 − 𝑚𝑒𝑎𝑛𝑠 is 

initialized, and the vectors 𝑆 = {𝑥𝑖𝑗  |𝑖 = 1, … , 𝑁, 𝑗 =

1, … , 𝑁𝑖}  are clustered to 𝑁𝐾  clusters and centroids 𝑉𝐾 ∈
ℝ𝑁𝐹  (𝑘 = 1, … , 𝑁𝐾) are utilized for initializing the neurons 

centroid. The process is adopted for learning purposes, applied 

for centre initialization and optimized to fulfil the objective. 

The scaling factor is set as 0.1.  At last, the random 

initialization process is utilized for MLP parameter 

initialization. 

The critical concept that relies on linear feature pooling is 

to substitute the higher non-linear similarity evaluation that 

performs computation with pairwise distance and transforms 

the RBF kernel similarity, i.e., linear operator. The non-linear 

exponential operator and scaling factor adopted in Eq. (1) are 

eliminated and attain the similarity function. 

 
[∅(𝑥)]𝑘 = −||𝑥 − 𝑣𝑘||

2
∈ ℝ (5) 

 
The above Eq. (5) can also be developed with the squared 

distance among the feature vectors. 

 

[∅(𝑥)]𝑘 = −||𝑥 − 𝑣𝑘||
2

2
= 2𝑥𝑇𝑣𝑘 − ||𝑥||

2

2
− ||𝑣𝑘||

2

2
 (6) 

 
Thus, the similarities among the feature vectors are 

specified as the inner product among the vectors after 

subtracting 𝑙2  normalization. After the training, the 

normalization factor is set constant, i.e. ||𝑣𝑘||
2

2
= 𝑐𝑘 . Consider 

that the feature vector normalization is constant, and ||𝑣𝑘||
2

2
=

𝑐𝑓 is reduced to [∅(𝑥)]𝑘 = 2𝑥𝑇𝑣𝑘 − 𝑐, where 𝑐 = 𝑐𝑘 + 𝑐𝑓 is a 

constant (fixed). Thus, with the elimination of additive factor 

“𝑐”, the similarity function is given by Eq. (7): 

 
[∅(𝑥)]𝑘 = 𝐶𝑆𝑇 𝑣𝑘 (7) 

 

The above Eq. (7) represents the cosine similarity 

((𝑥𝑇𝑣𝑘/||𝑥||
2

||𝑣𝑘||
2

))  with unit length representation. 

Moreover, the unit length ranges from −∞ 𝑡𝑜 ∞ while cosine 

similarity ranges between −1 and 1. To avoid normalization 

during network deployment, the absolute operator fulfills the 

similarity metrics and leads to similarity metrics for linear 

feature analysis. 

 

[∅̿(𝑥)]
𝑘

= |𝑥𝑇 𝑣𝑘 | ∈  ℝ (8) 

 
where, |. | specifies the absolute value operator. The similarity 

value specifies a higher correlation degree with (+𝑣𝑒 𝑎𝑛𝑑 −
𝑣𝑒) vectors, while values nearer to 0 specify the no correlation 

factor. The anticipated similarity metrics eliminate the 

correlation sign. It may not harm the model accuracy, as the 

degree of correlation among the vectors, i.e., essential 

information. Moreover, the feature vectors are provided to the 

similarity metrics, and the gradients are back-propagated to the 

related layers with the elimination of the correlation sign. The 

quantization used over the regular pooling operations is 

evaluated with Eq. (9): 

 

[∅̿(𝑥)]
𝑘

=
|𝑥𝑇𝑣𝑘|

∑ |𝑥𝑇𝑣𝑚|
𝑁𝑘
𝑚=1

 (9) 

 
Then, the histogram representation is hauled out using the 

membership vectors. The gradient descent is utilized for 

parameter learning, and the derivatives are attained 

analytically. Since Euclidean clustering is not employed 

during the similarity assessment between the feature vectors, 

the linear pooling is not enhanced by k-means initialization. 

The pooling layer is provided sequenced, and the average 

pooling layer is set with proper strides and a pooling window 

(Figure 2). 
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Figure 2. Internal representation of the network model 

 

 
 

Figure 3. CNN-DFUNet model 

 

Convolutional layers: The similarity evaluation is 

executed as the absolute value operator in the convolutional 

layer. Thus, 𝑁𝐾 is the filter size (1 ∗ 1 ∗ 𝑁𝐹), and 𝑁𝑓 specifies 

the filter count. Moreover, with the experimentation, it is noted 

that the skipping normalization does not affect the 

performance of the pooling. At last, average pooling with 

stride and window length equal to the extracted feature length 

maps are utilized to extract the input sample representation as 

a feature size map 1 ∗ 1 ∗ 𝑁𝑘. As the independent histogram is 

hauled out, the spatial segmentation needs to alter the window 

length, i.e. diminishing the window length is equal to the 

spatial segmentation (i.e., level=1). The segmentation process 

provides the spatial regions. However, it does not diminish the 

model's learning ability and reduces the overfitting risk. The 

architecture adopted for executing the linear variants is similar 

to the network, i.e., 1 ∗ 1  convolutions to diminish the 

extracted features. The network model provides a primitive 

way of removing the feature representation and gives 

successive insights (Figure 3). 

The feature extraction model is competent in decoupling the 

feature representation from the extracted feature count and its 

dimensionality, allowing the network model. The CNN model 

needs 𝑂(𝑁𝑖𝑁𝐹𝑁𝐻 + 𝐶𝐿)  parameters for the fully connected 

layers, the pooling layer needs 𝑂(𝑁𝐹𝑁𝐻 + 𝐶𝐿), and the linear 

features require 𝑂(𝑁𝑆𝑁𝐾𝑁𝐹 + 𝑁𝑆𝑁𝐾𝑁𝐻 + 𝐶𝐿) . The 

parameters are diminished to 𝑂(𝑁𝐾𝑁𝐹 + 𝑁𝑆𝑁𝐾𝑁𝐻 + 𝐶𝐿). The 
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cost of evaluating the network process is 𝑂(𝑁𝑖𝑁𝐹𝑁𝐻 +
𝐶𝐿), 𝑂(𝑁𝑖𝑁𝐹 + 𝑁𝐹𝑁𝐻 + 𝐶𝐿)  for global mapping and 

𝑂(𝑁𝑖𝑁𝐾𝑁𝐹 + 𝑁𝑆𝑁𝐾𝑁𝐻 + 𝐶𝐿) for feature mapping. The cost to 

assess the similarity among the feature vectors is the same for 

the linear feature. The distance among the vectors is evaluated 

with the product evaluation, i.e., ||𝑥 − 𝑦||
2

2
= 𝑥𝑇𝑥 + 𝑦𝑇𝑦 −

2𝑥𝑇𝑦 for two diverse features vectors 𝑥. The obtained feature 

count is based on the input image dimension. Therefore, the 

complexity is handled by the global mapping and linear feature 

analysis with the suitable input image. 

 

 

4. NUMERICAL RESULTS 

 

The dataset of DFU is divided into 5% validation, 10% 

testing sets, and 85% training, and the 5-fold cross-validation 

approach is adopted in the proposed system. Henceforth, the 

proposed method has the CNN-DFUNet architecture for 

validation, training, and testing set, and about 84 patches 

comprising 52 abnormal cases, 1423 patches comprising 882 

irregular cases, and 172 patches, such as 104 irregular cases 

from the 397 exact image samples of the foot. The earlier 

proposed system uses CNNs and CML models to perform the 

classification task. Table 1 depicts the performance of various 

metrics like specificity, sensitivity, accuracy, precision, AUC, 

and F-measure. In healthcare imaging, specificity and 

sensitivity are the more reliable metrics to measure classifier 

efficiency. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (14) 

 

The performance measures for different CNN-DFUNet 

variants are reported in Table 2, having the various parameters 

described in the CNN-DFUNet architecture in the previous 

step. There is no more gap in the efficiencies of all the 

appraoches. Yet, CNN-DFUNet Iteration 5 is made better in 

each evaluation metric without precision; here, CNN-DFUNet 

iteration 1 performed well. The earlier hypothesis is correct, 

like increased filter size in the parallel convolution layers 

needed to enhance the CNN-DFUNet efficiency. Moreover, 

CNN-DFUNet iteration 5 utilizes larger filter sizes than the 

other variants in the previous two similar convolutional layers, 

creating good outcomes. Henceforth, the CNN-DFUNet is 

proposed with the good results that CNN-DFUNet obtains for 

comparing the deep learning models and other conventional 

machine learning performances. Table 3 compares various 

performance metrics. The work is performed for successive 

iterations, i.e., iteration 1 to iteration 5. The sensitivity ranges 

from 92% to 95% from iteration 1 to iteration 5. The 

specificity ranges from 91% to 95% from iteration 1 to 

iteration 5. The precision ranges from 94% to 91% from 

iteration 1 to iteration 5. The accuracy ranges from 91% to 95% 

from iteration 1 to iteration 5 (Figure 4). The F-measure ranges 

from 93% to 93% from iteration 1 to iteration 5. AUC ranges 

from 95% to 96% from iteration 1 to iteration 5 (Figure 5). The 

SE ranges from 0.0050 to 0.0040 (Figure 6), and the CI ranges 

from 0.94 to 0.96 (Figure 7). 

Three diverse conventional machine learning (ML) 

approaches and three modern CNN approaches are considered 

for classification purposes. In the traditional ML approaches, 

HOG, LBP, and colour descriptors are used as feature vectors 

and trained with some optimization approach to perform 

classification. Some modern CNNs include GoogLeNet, 

AlexNet, and LeNet, which are considered for analysis with 

the proposed CNN-DFUNet model. Every classifier is 

efficient in its way and works effectually; however, the 

sensitivity of those classifiers is substantially lower than the 

anticipated model. Similarly, the proposed CNN-DFUNet 

model is also efficient in the case of specificity, with the results 

ranging from 0.76 to 0.93. The CNN performs better than the 

most conventional ML features using a more significant 

margin. In many scenarios, all the CNN architectures obtain 

more excellent outcomes than ML. The best performers are 

CNN-DFUNet and GoogLeNet to evaluate the different 

metrics between the classifiers. The demonstration of the 

receiver operating characteristic curve for all the models is 

made. 
 

Table 2. Performance evaluation comparison 
 

Iterations Sensitivity Specificity Precision Accuracy F-Measure AUC SE CI 

1 0.92 ± 0.030 0.91 ± 0.053 0.94 ± 0.039 0.91 ± 0.03 0.93 ± 0.03 0.95 0.0050 0.94-0.96 

2 0.92 ± 0.023 0.90 ± 0.032 0.94 ± 0.02 0.91 ± 0.04 0.93 ± 0.02 0.95 0.0047 0.94-0.96 

3 0.92 ± 0.028 0.90 ± 0.028 0.94 ± 0.025 0.92 ± 0.03 0.93 ± 0.02 0.96 0.0046 0.95-0.96 

4 0.92 ± 0.025 0.90 ± 0.063 0.93 ± 0.03 0.91 ± 0.04 0.93 ± 0.01 0.95 0.0046 0.94-0.96 

5 0.95 ± 0.025 0.91 ± 0.030 0.94 ± 0.03 0.95 ± 0.02 0.93 ± 0.02 0.96 0.0044 0.95-0.96 
 

Table 3. Comparison of proposed vs existing approaches 
 

Existing Vs. Proposed Sensitivity Specificity Precision Accuracy F-Measure AUC SE CI 

LBP 91 76 87 86 89 93 0.0062 0.92 

HOG+LBP 89 84 90 86 89 93 0.0061 0.91 

HOG+LBP+Color descriptors 90 84 90 88 90 94 0.0055 0.93 

LeNet 91 81 87 87 89 92 0.0050 0.94 

AlexNet 89 88 93 89 91 95 0.0051 0.94 

GoogLeNet 90 91 94 90 92 96 0.0046 0.95 

DFUNet 93 91 94 92 93 96 0.0045 0.95 

Proposed 95 93 94 95 95 97 0.0030 0.97 
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Figure 4. Performance analysis 
 

Figure 5. AUC plotting 

 .  
 

Figure 6. SE evaluation for successive iterations 
 

Figure 7. CI evaluation for subsequent iterations 
 

  
  

Figure 8. Performance analysis 
 

Figure 9. AUC plotting 
 

  
  

Figure 10. SE evaluation for successive iterations Figure 11. CI evaluation for subsequent iterations 
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Table 3 compares the anticipated model with the existing 

approaches like LBP, HOG+LBP, HOG+LBP+color 

descriptors, LeNet, AlexNet, GoogLeNet, and DFUNet. The 

sensitivity of the proposed model is 95% which is 4%, 6%, 5%, 

4%, 6%, 5% and 2% more than the existing models. The 

specificity of the proposed model is 93% which is 17%, 9%, 

9%, 12%, 5%, 2% and 2% more than the existing models. The 

precision of the anticipated model is 94% which is 7%, 4%, 

4%, 7%, and 1% higher than other approaches and equal to 

GoogleNet and DFUNet, respectively. The accuracy of the 

anticipated model is 95% which is 9%, 9%, 7%, 8%, 6%, 5% 

and 3% more than the existing models, and all of these metrics 

are shown in Figure 8. The F-measure of the anticipated model 

is 95% which is 6%, 6%, 5%, 6%, 4%, 3% and 2% more than 

the existing models. The AUC of the anticipated model is 97% 

which is 4%, 4%, 3%, 5%, 2%, 1% and 1% more than the 

existing models, as shown in Figure 9. The SE value of the 

proposed model is 0.0030, which is substantially less than 

other approaches, as shown in Figure 10. The CI ranges from 

96% to 97%, more than existing models, as shown in Figure 

11. 

This work compares the traditional ML, and CNN variants 

with the proposed CNN-DFUNet model works well in all 

categories. With the variants of CNN, the existing LeNet 

attains a lesser score of about 0.82% (specificity), while 

DFUNet, GoogLeNet, and AlexNet work well with a 

specificity rate of 93%, 91% and 89%, respectively. Then, 

AUC shows some possible functionality measures with the 

conventional ML approaches for classification purposes, 

while GoogLeNet and DFUNet attain 96%, which is 1% less 

than other approaches. The overall analysis (Table 2) shows 

that the modern CNN approaches outperform the conventional 

ML features. The CNN variants attain superior results 

compared to ML in successive iterations. This 

experimentation attains superior outcomes than the CNN 

variants on different analysis metrics; the primary cause of 

employing the proposed CNN-DFUNet instead of 

conventional architecture is to enhance the results with fewer 

network layers, for instance, 15 layers instead of 23 layers. The 

number of neurons over the FC layers is diminished to enhance 

the computation time of the anticipated CNN-DFUNet model 

based on the class labels. With a 5-fold CV, the configuration 

remains the same with batch size, where the proposed CNN-

DFUNet model consumes 3 minutes for processing. The 

GoogLeNet model consumes 16 minutes to train the network 

model (training and validation). While in the case of testing, 

the proposed CNN-DFUNet model takes 50 seconds, and 

GoogLeNet consumes 73 seconds to categorize the testing 

data. Thus, it is demonstrated that reducing several layers 

helps provoke the CNN-DFUNet model with reduced 

processing time and attains superior specificity and sensitivity 

by adding convolutional layers with a filter size. Also, the 

proposed model gives better results with 95% sensitivity, 94% 

precision, 95% accuracy, 95% accuracy, 97% AUC, SE of 

0.0030 and CI of 96% to 97%, respectively. With 

augmentation, the patches are generated for every training and 

validation process. However, when augmentation is performed 

for all iterations, there is not much change with the anticipated 

model, i.e., sensitivity, specificity, precision, accuracy, AUC, 

SE, CI, and F-measure. The outcomes are tabulated with the 

data augmentation process, and those without augmentation 

are not included. There is not much difference in the results 

between the execution with and without augmentation. The 

training process is more complex with the inclusion of 

augmentation than the normal analysis. Therefore, this 

research concentrates on determining the skin lesions at 

increased risk of being identified as misclassification. There is 

no proof of the impact of various factors, like lightning and 

skin condition, owing to the patients' curiosity about the 

prediction rate. Generally, the ulcer region with the 

surrounding regions shows some distinctive colour and texture 

features from the normal skin tone based on the above analysis. 

In this experimentation, these factors outcomes in a lower 

misclassification rate during testing. Conducting validation of 

CNN-DFUNet on additional publicly available datasets or 

those sourced from various demographics (e.g., patients with 

differing skin tones, age groups, and geographic locations) 

would better demonstrate the model's robustness and 

generalizability. Comparing it to strong baseline models such 

as ResNet, EfficientNet, and potentially transformer-based or 

hybrid models would provide a more objective benchmark for 

CNN-DFUNet's performance. It is crucial to use the same 

datasets and evaluation metrics (e.g., AUC, precision, recall) 

across all models under consistent training conditions to 

ensure a fair comparison. Additionally, reporting how 

performance metrics (AUC, accuracy, sensitivity) vary across 

different datasets would offer valuable insights into the 

model’s adaptability and efficacy in real-world applications. 

 

4.1 Analysis 

 

The computerized technique is used to diagnose and detect 

the DFU, the emerging study region with the computer vision 

evolution, particularly deep learning techniques. The primary 

research of the DFU's binary classification for regular skin is 

done to understand the different features of skin lesions. The 

new lightweight deep learning architecture is proposed in the 

experiment that classified the healthy skin lesions and the 

CNN-DFUNet with greater accuracy. In addition, the vital 

objective of the proposed system is to identify the skin lesion 

types at a higher risk of getting misclassified using algorithms. 

Some examples are classified correctly and incorrectly in the 

regular and abnormal classes using the CNN-DFUNet 

presented in Figure 12. The algorithms based on computer 

vision find it difficult to organize the subtle DFU having the 

same skin tone exactly. These are identified as normal, having 

a higher percentage than is presented in examples 1 and 2 of 

the cases of abnormal class misclassification. In addition, the 

CNN-DFUNet has a very small size, which is classified 

incorrectly as the normal skin lesion presented in examples 3 

and 4 of the abnormal class of misclassification cases given. 

The patches are in the highly wrinkled skin on the toe. The 

very high red skin tone is misclassified and presented 

examples with normal classes offered (Figure 13). 

 

 
 

Figure 12. Predicted DFU 
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With the adoption of computer vision approaches, it is 

optimal to have different types of images to construct the 

dataset. Configurations with various other cameras are not 

allowed, and the implementations are captured with the 

camera. The proposed model attains superior performance 

with 95% sensitivity, 93% specificity, 94% precision, 95% 

accuracy, 95% F-measure, 97% AUC, 0.0030 SE and CI is 

0.96-0.97. The proposed model works well in classifying 

ulcers, and its robustness is tested. The experimentation is 

tested for skin patches, i.e., wrinkles, spots, and normal. There 

is no freely accessible dataset, and with the given dataset, the 

skin patches are delineated with diverse patches. The best-

suited CNN variants are used for comparison, and the 

proposed CNN-DFUNet model outperforms the existing 

approaches with a 5-fold CV. DL does not work effectually 

over the smaller dataset; however, the proposed model uses a 

larger filter size with parallel processing to extract huge 

features, making the model more efficient than others. Also, 

the computational complexity is considered. The algorithms 

for multiplying two integers with 𝑛  digits have a 

computational complexity of 𝑂(𝑛2), whereas the two numbers 

have a computational complexity of 𝛩(𝑛). As a result, owing 

to dealing with float values with 16 decimal digits, 

multiplication is the most time-consuming part of the 

implementation procedure. 

 

Correctly classified samples as an abnormal instance 

 

Normal-68% 

Abnormal-99% 

 

Normal-0% 

Abnormal-100% 

Wrongly classified samples as an abnormal instance 

 

Normal-79% 

Abnormal-20% 

 

Normal-83% 

Abnormal-16% 

Correctly classified samples as a normal instance 

 

Normal-100% 

Abnormal-0% 

 

Normal-89% 

Abnormal-10% 

Wrongly classified samples as a normal instance 

 

Normal-15% 

Abnormal-84% 

 

Normal-26% 

Abnormal-73% 

 

Figure 13. Classified results 

 

 

5. CONCLUSION 

 

Different classifiers are trained in the proposed system 

depending on the conventional ML algorithms, CNN-DFUNet 

on the classification of DFU, the CNNs, and the suggested new 

architecture of CNN that differentiates the DFU skin from the 

normal skin. CNN-DFUNet permits the automated recognition 

of DFU accurately in the foot images with higher performance 

metrics in classification and allows it a new approach to 

evaluating the medical treatment and DFU. It is essential to 

identify the variation between healthy skin and the DFU to 

detect the DFU and identify the feature differences between 

the two classes from computer vision. The technology can 

transform diabetic foot ulcer detection and treatment in the 

proposed system, potentially turning to a paradigm shift in 

diabetic foot clinical care. The future goals are achieved in the 

proposed method based on (i) the automatic annotator is 

developed that is used to delineate automatically, and the foot 

images are classified with no need of clinicians, and (ii) the 

detection, recognition, and segmentation of automatic ulcer is 

developed using the classifiers, (iii) the method is 

implemented for identifying the different DFUs' pathologies 

like the multi-class classification is same as the classification 

of Texas, and few scales of grading, (iv) different user-friendly 

software tools are implemented that has the mobile 

applications to recognize the ulcer. The proposed system is 

used to classify skin lesions like wound classification, 

infections like shingles or chickenpox, and other skin lesions 

such as freckles, moles, pimples, and spotting marks over the 

normal skin, since the CNN-DFUNet performed well for the 

classification of DFU. CNN-DFUNet is the lightweight CNN 

structure utilized for the DFU dataset for classification with 

two classes, normal skin and ulcer. The dataset of facial skin 

has three classes: normal skin, spots, and wrinkles. It is further 
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tested for including more courses in the future. Henceforth, the 

process of minimizing the count of neurons and the count of 

layers in the FC layers is demonstrated with the help of the 

indicated CNN-DFUNet architecture, which minimizes the 

processing time. On the other hand, higher specificity and 

higher sensitivity are obtained. 
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