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 Access to daily activity has a potential impact on differently-abled individuals. BCI-based 

EEG devices have emerged as a potential aid to improve daily assistance, using only brain 

signals as a communication path. The EEG signals of mental imagination of any action, 

specifically visual imagery, are challenged in classification due to the diversity and variety 

of neural activity patterns. This study specifically concentrates on the EEG signal 

classification of imagery mental tasks, employing the imagination of turning light on and 

off. Electroencephalogram signals were recorded using a NeuroSky headset. Our 

methodology involved comparing raw data, extracted features, and power spectra images. 

These data were then fed into recurrent neural networks (RNNs) and deep neural networks 

(DNNs) for task recognition. Results indicate that image power spectra images, which 

identify EEG signal frequencies, are the most significant, and the classification 

outperformed raw data and extracted features. Notably, greyscale power spectra images 

achieved the highest accuracy, reaching 97.4% through a deep-learning network. The 

superior performance of image classification suggests its efficacy in discerning imagery 

tasks. In conclusion, greyscale power spectra images emerge as the most suitable data type 

for classifying imagery tasks, showing a clear pattern of imagery tasks.  
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1. INTRODUCTION 

 

Brain-computer interfaces (BCIs) constitute an emerging 

field of research [1]. A BCI allows users to interact with a 

computer only through intention [2] without using the natural 

pathways of nerves and muscles. The user's intention is 

detected through brain signals, usually measured by 

electroencephalography (EEG). BCIs could help patients with 

disabilities by providing a new means of communication that 

can respond to brain commands and be considered aware. 

A variety of applications of EEG signals have been studied, 

such as motor imagery [3], mental workloads [4], emotion 

recognition [5], Alzheimer's classification [6], visual 

imaginary tasks [7, 8], and brain intentions [9]. The 

foundational work using brain intentions has relied on motor 

imagery [10, 11], mental workloads, and goal-directed 

thinking. However, the decoding of imagination task 

commands has not been widely explored. In this work, we 

explore this type of EEG application called imagination tasks. 

Imagination tasks are actions of the imagination carried out 

mentally, and they may be referred to as mental imagination 

or mental intentions [12]. This topic has been explored mainly 

in motor imagery studies [13-15] to distinguish different body 

movements. It has also been studied to define the 

reproducibility of the EEG spectrum, as in reference [16]. 

Furthermore, to detect some pathophysiology disorders [17]. 

Decoding the EEG signals of the user while imagining daily 

tasks and differentiating it from imaging the use of his body is 

essential, to settle a high-performance tool that can 

communicate with the user efficiently, also we can implement 

a variety of daily applications such as opening and closing the 

door, to improve the level of autonomy of those who need such 

type of application, and control their environment. 

In this study, we applied a type of mental imagery called 

visual imagery, an EEG-based, BCI-endogenous paradigm. 

Visual imagery (VI) relies only on visual perception without 

using any aid devices. The user has to imagine an action that 

activates different frequency bands, such as delta, theta, and 

alpha bands [18]. 

EEG signal classification generally passes through four 

principal stages: signal acquisition, preprocessing, feature 

extraction, and feature classification. In this paper, we 

implement different neural and deep learning networks to 

classify EEG signals and thereby identify the action imagined 

by the user - in our case, turning a light on and off. Specifically, 

we used LSTM and BiLSTM networks, deep neural network 

LSTM (DNN-LSTM), and simple deep learning architecture 

to classify EEG signals. Our simple DNN model achieved the 

best results, with 97.4% accuracy, with greyscale power 

spectra images as features. 

The rest of the paper is organized as follows: Section 2 

briefly describes the experiment with recorded data, and the 
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used material, and provides also the details of different feature 

extraction with a description of the network models classifiers 

for the imaginary tasks: turning a light on and off. The 

classification results of recorded data and discussion of the 

classification percentage of our experiments are described in 

Section 3, and Section 4 is dedicated to discussing the 

conclusion about the best features of classification imagery 

EEG signal. 

 

 

2. METHODS 

 

2.1 Flow of the experiment 

 

Twenty-four university students participated in this 

experiment as subjects for EEG data acquisition. Every student 

imagined the first action, turning on the light in the room, and 

the second action, turning it off. The imagination of one task 

lasted for one minute, with a rest of three minutes between the 

two tasks. To help students focus on one task, the requested 

action was written on paper and shown to the subject. The 

action of holding their attention on the written tasks was meant 

to avoid eye artefacts that could be recorded. 

The experiment consisted of 25 trials, each containing five 

or six trials. Each trial was divided into A (turning the light on) 

and B (turning it off). The duration of every trial was two 

seconds. A temporal chart of our experiment is shown in 

Figure 1. 

 

 
 

Figure 1. Temporal chart of the experiment 
Source: By the authors of this paper 

 

2.2 Data 

 

After rejecting poorly recorded signals, 216 trials were 

divided into Task A (122) and Task B (94). Data on each 

subject’s trials in tasks A and B were collected from 24 

subjects. Figure 2 shows a temporal representation of the EEG 

signals recorded for the two imagination tasks. As our dataset 

was small, we used data augmentation by making new samples 

for training and regularizing the dropout values. 

 

 

 
 

Figure 2. Temporal EEG representations of raw signals for 

task A and task B signals 
Source: From Matlab execution code 

 

2.3 NeuroSky MindWave 

 

The EEG signals were recorded using the NeuroSky 

MindWave headset, as shown in Figure 3. This headset has a 

512-Hz sampling rate. The NeuroSky MindWave’s [19] data 

are received every second. The raw EEG data are provided as 

eight signals: delta from 0.5 to 2.75Hz, theta from 3.5 to 6.75, 

low-alpha from 7.5 to 9.25Hz, high-alpha from10 to 11.75Hz, 

low-beta from 13 to 16.75Hz, high-beta from 18 to 29.75Hz, 

low-gamma from 31 to 39.75Hz, and mid-gamma from 41 to 

49.75Hz. The connection between the application and the 

headset is paired through Bluetooth. 

 

 
 

Figure 3. NeuroSky MindWave headset 
Source: https://store.NeuroSky.com/ 

 

2.4 Features extraction 

 

Instantaneous frequency (IF) and spectral entropy (SE) 

features [20, 21] were extracted from the 216 EEG signals 

recorded. The samples were divided into training and testing 

data for the introduction to the classification models. 

 

2.4.1 IF 

IF is a parameter of time variation that defines the frequency 

of spectral peaks varying with time [22]. The IF for a real 

signal x(t) is given by the Eq. (1): 

 

( )
( )

d t
IF t

dt


=  (1) 

 

where, 𝜃(𝑡) –represents the phase of z (t), and z(t)–is the 

analytic function of x(t) and can be written as in Equation Eq. 

(2): 

 
( )( ) ( ) ( ) ( ) i tz t x t iH t a t e = + =  (2) 

 

where, a(t)–is a real function, which represents the amplitude 

of z(t), 𝜃(𝑡)–is a real function, which represents the phase of 

z(t), and H(𝑡)–is the Hilbert transform of signal z(t), which is 
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given by Eq. (3): 
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( )( )

x k
H x t dk
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
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=
−  (3) 

 

2.4.2 SE 

SE quantifies the number of peaks (spectral complexity) of 

the EEG signal. This measure is given by Eq. (4): 

 

logf ff
E p p= −  (4) 

 

where, 𝑝𝑓 is the power spectral density in each frequency. 

 

2.4.3 Power spectral density 

Power spectral density is widely used to analyze EEG 

signals [23-25], which is a measure of the power across the 

frequency domain. The power is a quantity related to energy. 

A plot of the signal power is the energy per unit time, while 

the power spectral density is the signal’s power falling within 

given frequency bins. This measure is defined by Eq. (5): 

 

21
( )P X m

N
=  (5) 

 

where, X(m) is Fourier transform of the time-domain signal 

x(n) with n samples, the Fourier transformation of discrete 

signal x(n), is given by Eq. (6): 

 
0 1m N  −  (6) 

 

The power spectral density images were generated for all 

EEG signals, as presented in Figure 4. 

Figure 4 presents the original plot of the EEG signal in the 

first row, the color power spectra image of the signal in the 

second row, and the last row presents the same images in 

grayscale. We have resized each of the original power spectra 

images for the experiment down to 227×227 pixels. 

 

 
 

Figure 4. Rows from top to bottom: source image, color power spectra image, grayscale spectra images 
Source: From MATLAB code execution 

 

2.5 Neural networks 

 

2.5.1 LSTM 

Long short-term memory networks (LSTMs) are recurrent 

neural networks (RNNs) with a special feature: their ability to 

learn long-term dependencies. The algorithm has a memory 

element to remember previous sequences of steps, which 

overcomes the exploding gradients problem of traditional 

RNNs [26]. Figures 5 and 6 show the elementary structure of 

the LSTM unit and BILSTM structure respectively. 

The basic cell of LSTM architecture, shown in Figure 5, 

consists of three gates. 

Gate 1 (the sigmoid gate) selects the information to be 

retained, as described by Eq. (7): 

𝑓(𝑡) = 𝜎(𝑤𝑓[ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑓) (7) 

 

where, f(t) is the output of the forget gate, σ is the sigmoid 

function, wf is the weight function, h(t-1) is the input of the 

previous cell, x(t) is the input to the cell, and bf is the bias. 

Gate 2 (the write gate) stores the information in the memory. 

Its behaviour is described by Eq. (8): 

 

𝑐(𝑡) = 𝑓𝑡 ∗ 𝑐(𝑡 − 1) + 𝑖(𝑡) ∗ 𝑐1(𝑡) 

𝑖(𝑡) = 𝜎(𝑤𝑓[ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑓) 

𝑐1(𝑡) = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑐) 

(8) 

 

where, i(t) is the output from gate 1, and c(t) is the new state, 

while c1 (t-1) represents the old cell state. 
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Gate 3 (the output gate) is described by Eq. (9): 

 

ℎ(𝑡) = 𝑜(𝑡) ∗ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) 

𝑜(𝑡) = 𝜎(𝑤0 [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏0) 
(9) 

 

where, o(t) is the output of the sigmoid layer, and h(t) is the 

output of the LSTM cell. 

 

 
 

Figure 5. Elementary LSTM unit 
Source: https://www.researchgate.net 

 

 
 

Figure 6. BILSTM structure 
Source: By the authors of this paper 

 

2.5.2 BI-LSTM network 

Bidirectional LSTM is a type of recurrent neural network 

widely used in language, video, voice, and other applications 

as a classification tool. In the EEG field is used for the features 

classification of motor imagery signals, as in study by 

Hochreiter and Schmidhuber [27]. This type of RNN network 

has internal memory and predicts efficient time series. It also 

has bidirectional propriety, which means that the information 

flows in two directions. In the first direction, the model learns 

the sequence from the input information, but in the second 

direction, the model learns the reverse of that information. 

Then, both models are combined using one of the following 

functions: summing, multiplication, averaging, or 

concatenation [28]. We used the structure presented in Figure 

6 to classify the EEG signals. 

The BILSTM structure shown in Figure 6 consists of two 

hidden BILSTM layers: a softmax (normalized exponential 

function) layer for classification into the class labels, and an 

input layer containing the data displayed by the NeuroSky 

headset. From dataset, 80% were used for training and 20% 

for testing. For backpropagation (weight updating), the 

‘Adam’, ‘Sigmoid’ and ‘RMSProp’ versions of gradient 

descent was used. 

 

2.5.3 Deep learning network 

Deep-learning models are models that learn through non-

linear transformations. Deep-learning networks (DNNs) has 

been explored for the classification of EEG signals efficiently 

[29], they contain several layers. The layers are of different 

types: the principal three types used for building deep neural 

networks are the fully connected (FC), convolutional, and 

recurrent layers [30]. We experiment with three different DL 

models with varying complexity and different architectural 

properties to test and compare the performance of the extracted 

features and power spectra images as classification inputs. 

We used fully connected LSTM layers to build our first 

model, presented in Figure 7.  

Every neuron in the FC layer receives the activation of 

every neuron in the previous layer as input. The dropout layer 

is used to reduce overfitting. The values 1 and 0 mean no input; 

0.5 is used for this hyperparameter. 
 

 
 

Figure 7. The fully connected deep learning model proposed 

 

2.5.4 Image classifiers 

To classify images, we have chosen two classifiers, the first 

one includes a convolutional layer, the convolutional neural 

network (CNN) has been used recently for image classification 

[31, 32], we have chosen a six layers CNN architecture; the 

design includes an image input layer, a dropout layer, a fully 

connected layer, a softmax layer, and the last one, the 

classification layer. The second classifier, is a simple deep 

neural network with four layers, which includes a fully 

connected layer and a softmax layer. 

 

 

3. RESULTS AND DISCUSSION 

 

The data were divided into two groups for the two imagery 

tasks: one for training and the second for testing. We classified 

our three types of data with different neural networks. We used 

BiLSTM, LSTM neural networks, and deep learning networks. 

We evaluated the classifiers using Adam, sigmoid, and 

rmsprop optimizers. We investigated the classification into 

two groups: 
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- Raw data and extracted features with BiLSTM, LSTM 

neural networks, and deep learning networks, and the results 

are presented in Table 1. 

- Power spectra images with a convolutional neural network 

and a simple neural network, with the results presented in 

Table 2. 

 

Table 1. Comparative results (in percentages) of raw data 

and extracted features classification 

 

 
Hyper-

Parameters 
BiLSTM LSTM 

DNN 

LSTM 

Raw data 

Sgmd 57.0% 71.0% 54.0% 

Adam 68.0% 50.0% 75.0% 

Rmsprop 65.0% 52.0% 54.0% 

Features SE IF 

Sgmd 48.0% 51.0% 51.0% 

Adam 58.0% 52.0% 49.0% 

Rmsprop 55.0% 51.0% 54.0% 

 

Table 2. Comparative results (in percentages) of power 

spectra images classification 

 

Images 
Hyper-

Parameters 

Convolutional 

DNN 

Simple 

Network 

DNN 

Power spectra 

grayscale images 

Sgmd 94.87% 97.44% 

Adam 89.74% 94.87% 

Rmsprop 96.15% 93.59% 

Power spectra color 

images 

Sgmd 64.94% 68.83% 

Adam 90.91% 85.71% 

Rmsprop 96.10% 92.21% 

 

 
 

Figure 8. Confusion matrix of power spectra greyscale 

images classification 
Source: Results from MATLAB execution 

 

The results imply that power spectra images are more 

suitable for imagery classification, especially greyscale 

images, with an accuracy range from 89.7% to 97.4% instead 

of color images, with an accuracy range from 64.94% to 

96.10%. The highest accuracy of 97.4% was achieved with the 

sigmoid function, as illustrated by the confusion matrix plot in 

Figure 8. 

The grey images were more efficient than the color images 

because pixels in color images are represented by three values 

(red, green, bleu); otherwise, in greyscale images, pixels are 

represented by one value, which reduces the size of data 

efficiently and improves the memory usage and processing 

time subsequently. Additionally, the importance of power 

spectra presentation is the intensity of power that each signal 

contains; the graduation of color is trivial in our case, so the 

greyscale images will be adequate for the classification. The 

key criterion of greyscale is the visualization of the most 

dominant frequency, with reduce signal noise or artifacts. 

 

 

4. CONCLUSION 

 

In conclusion, our study focused on the classification of 

daily imagery tasks using various feature extraction methods 

and neural network architectures, including LSTM, BiLSTM, 

and DNN-LSTM classifiers applied to raw data and extracted 

features. Notably, the classification of greyscale power spectra 

images yielded the most promising results, achieving an 

accuracy of 97.4%. The superior performance of image 

classification, particularly with greyscale images, underscores 

the significance of this approach in the context of imagination 

tasks. Raw data, in contrast, proved to be insignificant for 

these tasks. 

Our findings represent a substantial step toward realizing a 

brain-computer interface controlled solely by thought for daily 

tasks. The primary contribution of our work lies in the 

effective utilization of greyscale power spectra images as 

inputs for classification, offering a valuable insight for future 

BCI development. While the results suggest the simplicity of 

a DNN architecture as the optimal choice for classifying 

imagery tasks, further exploration is needed. As part of future 

work, the development of a prototype will be undertaken, 

addressing practical aspects and potential challenges in 

implementing our findings. 

Our objective was to make an application that contains some 

options. One of these options is to light off and on the room. 

When the user mentally chooses an option, the device will 

select it. The environment of the experiment was a natural 

environment within an office with students; we have not used 

specific isolated environment. 

The prototype we would adapt will be a device with an 

interactive interface with some options; once an option is 

selected mentally, the classification algorithm will highlight it. 

The signal acquisition device will be the same device used in 

our experiment, the NeuroSky headset. The device receives 

the EEG signals via Bluetooth, and the classification algorithm 

on the device will be implemented on an open-source 

electronic prototyping platform, such as Arduino. The 

challenge is using the device in real-time and training the users. 

By addressing these challenges, we aim to advance the 

practical implementation of BCI technology, making it more 

accessible and efficient for everyday applications. 
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