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 Kidney tumor segmentation from CT images remains a challenging task due to the 

presence of noise, indistinct boundaries, diminished contrast, and varying 

morphological characteristics between the kidney and tumor. Most existing 

methods rely on the Softmax function to generate pixel-wise class probabilities and 

segmentation outcomes, but this approach has limitations in accurately delineating 

pixels with ill-defined edges. To overcome this problem, we propose a novel Edge-

Refine Network (ERNet) that refines the Softmax-based pixel attributions to 

achieve precise segmentation of kidney tumors. ERNet leverages the Segmentation 

via Gradient-weighted Class Activation Mapping (Seg-Grad-CAM), a novel 

technique that produces interpretable heatmaps that highlight the pixels that are 

difficult to segment. By using backpropagation, ERNet retrains the model with the 

heatmap weights and the target probabilities from the Softmax function, thereby 

enhancing the segmentation accuracy. We evaluate our method on publicly 

available kidney tumor datasets and show that ERNet outperforms the state-of-the-

art methods in kidney tumor segmentation, achieving a 2.9% improvement in the 

Dice score and a 4.17% reduction in the ASD. Moreover, ERNet exhibits superior 

precision in segmenting intricate details, especially in regions with ambiguous 

boundaries. 
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1. INTRODUCTION 

 

Early and accurate identification of kidney cancer is crucial 

for improving the survival rate of patients, as the tumor can 

spread to nearby tissues or organs and increase the mortality 

risk. However, diagnosing kidney cancer has been a 

challenging task for the past decade [1]. Clinical practice faces 

difficulties due to the noise in CT images, which causes blurry 

boundaries, low contrast, and varying morphological features 

between the kidney and the tumor, as shown in Figure 1. 

Therefore, detecting and segmenting the kidney and tumor 

accurately are major challenges. Organ and tumor 

segmentation are important but difficult problems in medical 

imaging [2]. Manual segmentation of the kidney is especially 

time-consuming and labor-intensive, and often leads to 

inconsistent results. Radiologists spend a lot of time 

processing numerous CT images [3]. 

Furthermore, extracting kidney features accurately depends 

on capturing the intensity variations among the voxels near the 

kidney boundary in CT images [4]. However, the presence of 

blurred voxels around the organ boundary complicates the task 

[5]. Moreover, the texture similarity between tumors and the 

kidney poses a challenge for the identification process [6]. 

Nevertheless, precise delineation of kidney tumors is vital for 

preoperative evaluation and surgical planning. 

 

 
 

Figure 1. Kidney and Tumor Segmentation.  

Left: segmentation results generated by ERNet.  

Right: corresponding ground truth, where the tumor is 

annotated as part of the kidney 
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Various methods have been proposed to achieve precise 

segmentation of kidney tumors. Thresholding segmentation 

and its variants are often preferred by researchers as the 

primary techniques for segmenting the target [7]. For example, 

one method divides the global image segmentation task into 

local tasks, applies thresholding segmentation to each block, 

and then clusters the blocks to identify the target region [8]. 

Another method combines K-means clustering with 

thresholding segmentation for kidney tumor segmentation [9]. 

These methods suggest that local segmentation performs better 

than global segmentation. However, these threshold-based 

methods also have limitations due to their inability to separate 

the overlapping regions in the grayscale image between the 

target and background [10]. 

In recent years, deep learning methods have made 

significant progress in medical image segmentation [11-13]. 

However, due to the high cost and limited availability of 

medical datasets, data augmentation is often required during 

the training process to improve the training performance. For 

instance, some methods use weakly supervised techniques to 

enlarge kidney tumor segmentation datasets [14], and some 

methods use neural networks to augment datasets and integrate 

them with designed modules for target segmentation [15]. 

Moreover, the Region Proposal Network (RPN) generates 

multiple target sub-regions for further training [16]. These 

approaches have all contributed to the advancement of kidney 

tumor segmentation. However, some studies have also 

highlighted the importance of dataset curation, which involves 

removing images or slices that do not contain the kidney 

region, leading to better segmentation results [17]. 

Numerous advanced deep learning models have been 

applied in the realm of kidney tumor segmentation. 

Noteworthy examples encompass encoder-decoder 

architectures such as U-Net, as well as the sophisticated 

DeepLab series networks and the Mask R-CNN networks, 

which incorporate candidate box handling to refine 

segmentation accuracy in medical contexts [18]. U-Net can 

achieve satisfactory results for kidney tumor segmentation, but 

it still faces difficulties in segmenting edges accurately due to 

their low contrast [19]. Therefore, several modified versions 

of U-Net have been proposed for kidney segmentation, such 

as combining SegNet with U-Net to enhance the global 

contextual information [20], incorporating attention 

mechanisms into U-Net with residual networks and fine-

tuning with preprocessed contours [21], and achieving precise 

segmentation by integrating 3D point clouds with U-Net [22]. 

Moreover, tumor segmentation has been performed using 

Dense U-Net after downsampling features [23]. 

The DeepLab series have improved the encoder and decoder 

for semantic seg-mentation. For instance, the DPN-131 

encoder has been combined with the DeepLab v3+2.5D model 

for initial segmentation, followed by post-processing [24]. 

These methods enhance the feature representation and 

extraction ability of the network, thereby increasing the 

probability of pixels with target features being classified 

correctly. The Mask R-CNN series, based on the Fast RCNN 

series, propose generating multiple candidate regions and then 

performing pixel-wise classification after locating the target 

regions. This approach inspires us to not only improve the 

feature-containing pixels during neural network feature 

computation, but also consider making refinements based on 

the final pixel classification position. 

The neural network often misclassifies the low contrast and 

blurry edges of kidney tumors as background or other objects, 

as it assigns a higher probability of belonging to another class 

to such pixels. However, many methods suffer from the 

problem of blurry edges of the kidney being misclassified as 

background [25, 26]. Based on the principles of probability 

theory, the Bayes rule implies that these pixels are difficult or 

unable to meet the probability threshold of being classified as 

the target [27, 28]. Consequently, a simplistic approach relying 

solely on a comparison of maximum probabilities across 

various classes for each pixel fails to yield satisfactory results 

within the neural network’s final output. Instead, the 

probability judgment for each pixel should be revised based on 

probability theory. By addressing this pivotal aspect, the 

neural network can then recalibrate its probability assignments, 

fostering more accurate segmentation outcomes, particularly 

in scenarios marked by ambiguous edges. 

The development of explainable neural networks in recent 

years has provided a solution to this problem. Seg-GRAD-

CAM can generate a heatmap of the last convolutional layer, 

where the heatmap’s weight indicates the importance of that 

pixel for the final segmentation result, with higher weights 

implying greater importance, and vice versa [29]. During Seg-

Grad-CAM’s experiments, the pixels with lower importance 

tend to have smaller heatmap weights, and these pixels often 

correspond to blurry edges. Therefore, with the help of 

interpretable heatmaps, we can identify and separate the pixels 

that need revision during the training process. Using neural 

network techniques such as BP, the network can learn the 

heatmap weights of pixels, the probability values of the pixel 

being classified as the target, and its corresponding label. This 

enables the network to learn the relationships between these 

factors and segment the edges of kidney tumors accurately. 

In summary, our contributions are as follows: 

(1) We propose an Edge Refine Network (ERNet) that can 

segment kidney tumors with low-contrast and blurry edges 

accurately. 

(2) Based on probability theory, we introduce an approach 

to reset the target probabilities from the neural network’s tail 

to address the segmentation of images with blurry boundaries. 

(3) ERNet achieves state-of-the-art segmentation 

performance on two publicly available kidney tumor datasets, 

especially excelling in segmenting images with indistinct 

edges. 

 

 

2. RELATED WORK 

 

In this section, we review three key categories of research 

that are closely related to our work. First, we survey the current 

state of segmentation methods for kidney tumors and other 

medical targets. Second, we examine the popularized 

improved methods based on Softmax. Third, we discuss the 

evolution of interpretable heatmaps. 

 

2.1 Segmentation methods for kidney tumors 

 

Many methods have been proposed to address the complex 

challenge of kidney tumor segmentation. One notable 

approach is to refine U-Net segmentation by applying 

selective training data sets in the input section of the neural 

network. The architecture of an Ensemble of U-Net Models 

(Ens-UNet) is carefully designed, consisting of four 

downsampling blocks, one feature representation block, four 

upsampling blocks, and a final output convolution layer [30]. 

Each block has two identical 3×3 convolutional layers, and 
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each downsampling block is followed by a 2×2 max-pooling 

operation. In a seamless integration, a 2×2 2-D transposed 

convolutional layer with a stride of 2×2 is concatenated with 

the features from the downsampling blocks, following the core 

structure of U-Net [31]. 

Moreover, enhancing the feature representation in the 

intermediate stages of neural networks has shown great 

promise. For instance, Reverse Boundary Channel Attention 

(RBCA) introduces a novel and ingenious method of isolating 

tumor slices, enabling separate training and empowering the 

neural network to effectively capture and learn crucial tumor 

features [32]. Simultaneously, the Attention-UNet architecture 

refines U-Net by emphasizing regions of interest, such as the 

kidney and tumor, through an intelligent attention mechanism, 

while suppressing the influence of non-focus areas [33]. In the 

output section of the neural network, A triple-stage self-guided 

network (TSS) optimizes information retention by skillfully 

introducing modifications to the pooling process [34]. 

Similarly, a detection platform for colorectal cancer (DPC) 

focuses on fine-tuning the input data set, striving to achieve 

enhanced rectal cancer segmentation accuracy [35]. In contrast, 

Prostate cancer of magnetic (PCM) adopts a data set expansion 

strategy, propelling Mask RCNN’s segmentation performance 

for prostate segmentation to new heights [36]. Implementing 

these strategic improvements at different positions within the 

neural network collectively serves the overarching goal of 

enhancing the network’s proficiency in extracting and 

preserving critical features, resulting in a more robust and 

accurate kidney tumor segmentation model. 

 

2.2 Improved methods based on Softmax 

 

Segmentation accuracy depends on both the feature 

extraction capability of neural networks and the discriminative 

ability of the decision structure [37]. To refine the 

segmentation process, it is essential to optimize both aspects. 

Feature extraction enables the network to capture relevant and 

distinctive characteristics of the target objects, facilitating 

more precise segmentation. However, without a discriminative 

decision structure, the network may struggle to effectively 

distinguish between different classes, leading to 

misclassifications and diminished segmentation accuracy [38]. 

The stack Net research addresses this challenge by 

conducting a thorough exploration of various classifiers for 

automated COVID detection [39]. The research develops a 

stacked ensemble model comprising diverse classifiers, 

tailored to leverage their unique strengths and overcome 

individual limitations. The ensemble model collaboratively 

analyzes input data, combining the knowledge from multiple 

classifiers to arrive at a more robust and accurate segmentation 

output. This innovative approach demonstrates the power of 

collaboration in enhancing the performance of segmentation 

tasks, especially in applications like COVID detection. 

Additionally, the Region-wise loss (RWL) method 

introduces a Modified Region-Aware Map, which represents a 

simplified adaptation of the boundary distance map [40]. This 

novel map takes into account not only class imbalance but also 

pixel importance, enabling the fine-tuning of Softmax outputs. 

By considering both class distribution and pixel significance, 

the segmentation results are substantially improved. This 

intelligent approach ensures that the network’s predictions are 

better aligned with the underlying structure of the data, leading 

to more accurate and reliable segmentation outcomes. 

Furthermore, activations extracted from CNN (AE-CNN) 

pioneers a sophisticated fusion of Fourier transform and 

Gradient-Weighted Class Activation Mapping (Seg-Grad-

CAM) techniques to process input images effectively [41]. 

This multi-faceted approach involves a series of steps to enrich 

the network’s discriminative capacity. Three distinct ResNet 

models generate type-based activations, harnessing the 

diversity of information captured by each model. 

Subsequently, a local interpretable model-agnostic 

explanation method is employed to identify the most 

appropriate type-based activation from the CNN model. This 

selective activation enables the network to focus on crucial 

regions relevant to segmentation targets, thus fine-tuning its 

decision-making process. The Softmax method is then utilized 

to perform reclassification based on the optimized activations, 

further refining the segmentation outcomes. This 

comprehensive strategy exemplifies the fusion of innovative 

techniques to empower Softmax with the capability to 

discriminate between different segmentation targets 

effectively. The result is a network that is not only proficient 

in recognizing and preserving key features but also excels in 

reconfiguring pixel representations for more accurate and 

refined segmentation results. 

 

2.3 Advances in interpretable heat maps 

 

The challenge of determining which pixels’ representations 

necessitate adjustment or enhancement during the training 

process is a complex one that the traditional Softmax approach 

encounters. In recent years, the concept of Class Activation 

Mapping (CAM) has paved the way in this regard, enabling 

the identification of critical regions for the classification 

process [42]. Building upon CAM, subsequent algorithms like 

Score-CAM and Ablation-CAM have evolved to delve deeper 

into activation maps and feature map weights, enhancing the 

interpretability and comprehensibility of the results [43]. 

Within the realm of image segmentation, innovative methods 

like Eigen-CAM and Layer-CAM have further refined the 

CAM approach. By optimizing computational branches and 

expanding the perceptual field through intricate features, these 

methods have pushed the boundaries of segmentation accuracy 

[44]. The culmination of these advancements, including the 

Seg-Grad-CAM methodology, has paved the way for pixel-

level analysis of heatmaps. This, in turn, has unlocked a 

treasure trove of insights into the intricate processes of image 

segmentation. Importantly, Seg-Grad-CAM provides the 

theoretical foundation upon which the proposed ERNet is built, 

a novel approach aimed at resetting the Softmax pixel class 

probabilities to achieve superior segmentation outcomes. 

 

 

3. METHODOLOGY 

 

In this section, we will provide a detailed description of the 

implementation process of ERNet for kidney tumor 

segmentation. As depicted in Figure 2, the process consists of 

two branches: the Mask RCNN box branch for locating the 

Region of Interest (RoI) and the Mask branch for obtaining the 

mask segmentation [45]. The Mask branch comprises three 

steps, namely, obtaining class probabilities using Softmax, 

generating heatmap weight maps with Seg-Grad-CAM, and 

obtaining pixel segmentation results through BP fitting.
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3.1 Overview of ERNet 

 

The ERNet segmentation methodology is visually 

elucidated in Figure 2. The process commences with kidney 

tumor images being subjected to the Mask RCNN, which 

undertakes the computation of multiple RoIs encompassing 

the tumor regions while concurrently determining pixel class 

probabilities via Softmax activation. To ensure robust feature 

extraction, the ResNet-101 architecture is harnessed to 

generate a backbone feature pyramid that effectively captures 

the essence of the input images. This pyramid is subsequently 

subjected to RoI Align, a pivotal step that facilitates accurate 

alignment between RoIs and the corresponding pixel positions 

on the feature map, accomplished through bilinear 

interpolation. With the overarching objective of encompassing 

the tumor region to the greatest extent possible, the process 

employs two sub-branches—Box Coordinates and Box 

Category—that are instrumental in determining RoIs that 

optimally cover the expansive area of the kidney tumor region. 

The features of each pixel are channeled through the ResNet-

101 backbone and the Fully Convolutional Network (FCN) to 

compute pixel-wise class probabilities via the Softmax 

mechanism. Concurrently, the Seg-Grad-CAM module comes 

into play, calculating interpretable heatmaps derived from the 

last convolutional layer within the FCN. The final steps 

involve fine-tuning the class probabilities derived from 

Softmax and the corresponding heatmap weights in 

conjunction with the ground truth labels. This meticulous fine-

tuning process is facilitated through the application of BP 

fitting, a technique that optimally adjusts the model parameters 

to yield refined kidney tumor segmentation results of the 

highest precision and accuracy. In the subsequent sections, we 

will delve into a detailed exploration of the pivotal 

components underpinning ERNet, including Mask RCNN, 

Softmax, Seg-Grad-CAM, and the intricate mechanics of BP 

fitting. 

 

 
 

Figure 2. Flowchart of ERNet for kidney tumor segmentation 

 

3.2 ERNet segmentation of kidney tumors 

 

3.2.1 Obtaining RoI through MaskRCNN 

During the training process, ERNet first acquires RoI 

through MaskRCNN. The pseudo-code for obtaining RoIs in 

Matlab language is as follows: 

 

Algorithm 1. RoI for Kidney Tumor Targets 

Input: Train data img; Mask RCNN’s model; 

Output: RoIs 

1: [maskmap, bbox] = MaskRCNN(model, img); 

2: RoIs = []; 

3: for i = 1: Size(bbox, 1) do 

4: x = Round(bbox(i, 1)); y = Round(bbox(i, 2)); 

5: w = Round(bbox(i, 3)); h = Round(bbox(i, 4)); 

6: x = Max(x, 1); y = Max(y, 1); 

7: w = Min(w, Size(img, 2) − x + 1); 

8: RoImask=maskmap(y: y+h−1, x: x+w−1, i); 

9: RoI=img(y: y+h−1, x: x+w−1, :); 

10: RoI=RoI . Uint8(RoImask); 

11: RoIs=[RoIs, RoI]; 

12: end for 

13: return RoIs 

 

where, maskmap represents the mask that is obtained for each 

pixel by MaskRCNN, while bbox denotes the coordinates of 

the detection box. The coordinates, length, and width of the 

RoI are respectively denoted by x, y, w, and h. The Size 

function is used to retrieve the size or dimension information 

of an array (matrix), and the round function is applied for 

rounding numerical values. Max and Min are used to 

respectively calculate the maximum and minimum values. The 

input data is converted to an 8-bit unsigned integer type using 

Unit8.
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3.2.2 Getting pixel class probabilities via Softmax 

After obtaining the RoI, the weights w and biases b are 

calculated using FPN (Feature Pyramid Network) and FCN 

with ResNet-101 as the backbone. Subsequently, the RoI that 

contains the kidney tumor along with w and b are inputted to 

Softmax to obtain the pixel probability map 𝑃𝑖𝑥𝑒𝑙𝑝
𝑚𝑎𝑝

. The 

pseudocode for this process is as follows: 

 

Algorithm 2. Softmax for Pixel Class Probability 

Input: RoI; FCN’s net, weights w and biases b;  

Output: 𝑃𝑖𝑥𝑒𝑙𝑝
𝑚𝑎𝑝

 

1: RoIfeatures = Forward(net, RoI); 

2: 𝑧 = 𝑤 ∗ RoIfeatures +𝑏 

3: 𝑒𝑥𝑝𝑧 = 𝑒𝑧; 𝑒𝑠𝑢𝑚𝑧
𝑒𝑥𝑝

= Sum(𝑒𝑥𝑝𝑧) ; 
4: Pixelp = 𝑒𝑥𝑝𝑧/𝑒𝑠𝑢𝑚𝑧

𝑒𝑥𝑝
; 

5: 𝑃𝑖𝑥𝑒𝑙𝑝
𝑚𝑎𝑝

= Reshape(Pixelp, Size(RoI)); 

6: return 𝑃𝑖𝑥𝑒𝑙𝑝
𝑚𝑎𝑝

 

 

where the Forward function executes the forward propagation 

of FCN, while the Reshape function is used to reorganize the 

dimensions of an array. 

 

3.2.3 Generating interpretable heatmaps of FCN using Seg-

Grad-CAM 

The purpose of ERNet is to bias the probabilities of pixels 

with different performance abilities. ERNet aims to obtain 

interpretable heatmap weights ℎ  to train the corresponding 

biases of pixels with different performance abilities. The 

computation of ℎ in ERNet is given by the Eq. (1) and Eq. (2). 

 

Ψ𝑐 = ReLU (∑  

𝑘

 𝜔𝑐
𝑘ℒ𝑘), 

𝜔𝑐
𝑘 =

1

𝑁
∑  

𝑢,𝑣

 
∂ ∑  (𝑖,𝑗)∈𝑀  𝑌𝑖𝑗

𝑐

∂ℒ𝑢𝑣
𝑘

, 

(1) 

 

ℎ = {
Ψ𝑐 if (𝑦𝑖𝑗 = 𝑐)

0 otherwise
 (2) 

 

where the heat map results of category 𝑐, denoted as Ψ𝑐, play 

a crucial role in the process. By applying the rectified linear 

unit (ReLU), only the contributing pixels are highlighted, 

providing a more focused representation for further analysis. 

The importance of each class 𝑐 in the 𝑘𝑡ℎ convolution kernel 

is expressed by the weight 𝜔𝑐
𝑘, which significantly influences 

the final segmentation outcome. Moreover, the feature map 

ℒ𝑘𝑢𝑣 of the 𝑘𝑡ℎ convolution kernel at position (𝑢, 𝑣) in the 

last convolutional layer 𝑁, holds valuable information about 

the spatial characteristics of the image. At the same time, the 

pixel-wise class labels 𝑌𝑖𝑗
𝑐  at position (𝑖, 𝑗) capture the ground 

truth information for each class 𝑐 . The generated mask, 

represented as 𝑀 , is constructed based on this label 

information [46]. It is worth noting that the value of the 

hyperparameter ℎ  serves as a measure of the pixel's 

contribution to the overall segmentation. 

 

3.2.4 Fitting pixel class probabilities and heatmap weights 

with labels through BP 

After obtaining the Softmax values 𝑃𝑖𝑥𝑒𝑙𝑝
𝑚𝑎𝑝

 from 

Algorithm 2 and the corresponding values of h from Eq. (2), 

the proposed ERNet employs BP to fit these two sets of data. 

In Algorithm 3, Ninput Nhidden and Noutput represent the number 

of neurons in the input layer, hidden layer, and output layer, 

respectively. The activation function used for the input and 

hidden layers is the sigmoid function: 

 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

 

and the Derivative of the sigmoid function is denoted as: 

 

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 (𝑥) = 𝜎(𝑥) × (1 − 𝜎(𝑥)) (4) 

 

Algorithm 3. BP for Class Probability Resetting 

Input: Pixelmap; Heat map weights h; YRoI 

Output: 𝑊̂, 𝑤̂, 𝐵̂ and 𝑏̂ 

1: Ninput=2; Nhidden=5; Noutput=1; 

2: 𝑊̂=Rand(Nhidden, Ninput); 𝐵̂=Rand(Nhidden, 1); 

3: 𝑤̂=Rand(Noutput, Nhidden); 𝑏̂ = Rand(Noutput, 1); 

4: learningrate=0.01; iterations=1000; 

5: for iter = 1: iterations do 

6: Z=𝑊̂∗[Pixelmap; h]+𝐵̂; 

7: X=Sigmoid(Z); Eq. (3) 

8: yOut=𝑤̂ ∗ X +𝑏̂; 

9: Loss = Sum((Y RoI − yOut).2)/2; 

10: ∆y =yOut−Y RoI; 

11: ∆hidden = (wˆT ∗ deltay).∗ Derivative(Z); Eq. (4) 

12: 𝑊̂=𝑊̂ −learningrate ∗ ∆hidden ∗ [Pixelmap; h]T; 

13: 𝑤̂=𝑤̂−learningrate ∗ ∆y ∗ XT  

14:  𝐵̂=𝐵̂−learningrate ∗ ∆hidden; 

15: 𝑏̂=𝑏̂ −learningrate ∗ ∆ y; 

16: end for 

17: return 𝑊̂, 𝑤̂, 𝐵̂ and 𝑏̂ 

 

In Algorithm 3, the superscript T denotes the transpose of a 

matrix. ERNet utilizes a deep neural network with five hidden 

layer to effectively capture the intricate relationship between 

the data 𝑃𝑖𝑥𝑒𝑙𝑝
𝑚𝑎𝑝

 and h, enabling the model to learn the 

crucial for accurate kidney tumor segmentation. The model’s 

output directly serves as the final prediction for the 

segmentation task, providing the precise delineation of tumor 

regions. 

Throughout the training process, the model parameters are 

initialized with random values. The hidden layer is designed 

with 5 neurons (Nhidden). 𝑊̂, 𝑤̂, and 𝐵̂, 𝑏̂ are the weights and 

biases of the BP, respectively. The training process consists of 

1000 iterations, where the model updates its parameters 

iteratively to gradually refine its predictions. The mean 

squared error is utilized as the loss function, quantifying the 

discrepancy between the predicted and actual segmentation 

results, guiding the model to minimize inaccuracies. Using the 

technique of gradient descent, the model parameters are 

updated at each iteration based on the computed gradients and 

the predefined learning rate. 

During each training iteration, the error terms for the output 

layer and hidden layer are computed and used to guide the 

parameter updates. The gradients and learning rate determine 

the magnitude and direction of the parameter updates, striking 

a balance between stability and convergence. Through this 

iterative process of gradual refinement, the loss function is 

steadily reduced, resulting in a well-optimized ERNet model 

that excels in kidney tumor segmentation, providing accurate 

results.
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4. EXPERIMENTS AND RESULTS ANALYSIS 

 

4.1 Segmentation dataset 

 

KiTS2019 [46] and KiTS2021 [47] are 3D datasets 

containing abdominal CT images. A preprocessing step was 

implemented to transform the images into a 2D dataset, 

ensuring consistent image sizes before commencing the 

training process as shown in Figure 3. Each dataset, KiTS2019 

and KiTS2021, consists of a total of 300 CT images from 

patients, with 210 cases allocated as the training set and the 

remaining 90 cases as the test set. To facilitate model 

optimization during the training phase, 20 cases were 

randomly selected from the training set to form a validation 

set. For the experimental setup, model training was performed 

utilizing the Inter(R) Core(TM) i7-10700 CPU and GeForce 

RTX 3070 hardware, coupled with the PyTorch framework. 

 

 
 

Figure 3. The cases of the dataset 

 

4.2 Evaluation indicators 

 

In order to comprehensively evaluate the effectiveness of 

our approach, we utilize three widely recognized evaluation 

indicators: specificity (SP), sensitivity (SE), and the Dice 

similarity coefficient. These metrics play a crucial role in 

quantifying the model’s performance by measuring its ability 

to correctly identify true negatives, true positives. 

Moreover, we introduce two additional vital metrics that 

hold significant relevance in the field of medical image 

segmentation: the relative volume difference (RVD) and the 

average symmetrical surface distance (ASD). The RVD metric 

allows us to quantify the volume discrepancy between the 

predicted and actual contours. On the other hand, the ASD 

metric provides us with a measure of the average distance 

between the predicted and label contours. 

The RVD shows the volume difference between the 

predicted and actual labels, 

 

𝑅𝑉𝐷 = (
𝑉𝑠𝑒𝑔

𝑉𝑔𝑡
) ∗ 100% (5) 

 

where, Vseg expresses the outline of the actual segmentation, 

while Vgt represents the outline of the ground truth. 

Consequently, we can assess the overall disparity between the 

predicted contour and the actual contour, with a particular 

focus on the regions with ambiguous edges. 

The metric ASD offers a specific measure of the average 

distance between the predicted contour and the labeled contour. 

This distance metric allows us to evaluate the accuracy and 

proximity of our segmentation predictions in comparison to 

the ground truth. Where Apred denotes the pixels of the 

boundary in the predicted Vpred, Agt is ground true. Bpred 

represents the nearest pixel to the prediction boundary of Apred, 

and Bgt refers to the set of pixels closest to the real contour. 

 

𝐵pred = {∀𝑝1 ∈ 𝐴pred, Distancecloest(𝑝1, 𝑝2) ∣ ∃𝑝2 ∈ 𝐴𝑔𝑡} (6) 

 

𝐴𝑆𝐷 = mean({𝐵pred, 𝐵𝑔𝑡}) (7) 

 

4.3 ERNet Segmentation results 

 

To comprehensively evaluate the segmentation 

performance of ERNet for kidney tumors, we conducted a 

comparison with nine state-of-the-art models. These advanced 

models include Ens-UNet [30], RBCA [32], Attention-UNet 

[33], TSS [34], DPC [35], PCM [36], Stack Net [39], AE-CNN 

[41], and RWL [40]. 

1) Kidney Segmentation 

Quantitative Results: The metrics for each method are 

presented in Table 1. The bold entries indicate the optimal 

metric performance for each corresponding method. Notably, 

ERNet demonstrates favorable outcomes in both KiTS2019 

and KiTS2021 datasets, especially in the RVD and ASD 

metrics. RVD≥0 indicates that the predicted labels exceed the 

Ground Truth, with lower RVD values being more desirable. 

Similarly, lower ASD values signify closer proximity to the 

Ground Truth. These findings indicate that ERNet yields 

segmentation outcomes that closely align with the Ground 

Truth due to its refined handling of edge details. In fact, ERNet 

achieves the highest Dice =0.936 in KiTS2021 kidney 

segmentation, and even in the KiTS2019 dataset, the marginal 

ΔDice =0.003 between ERNet and the top-performing method 

demonstrates ERNet's segmentation precision being at an 

advanced level. Moreover, ERNet demands a bigger 

computational load in terms of FLOPs compared to other 

methods. This is attributed to ERNet's integration of three 

neural networks: Mask RCNN, Seg-Grad-CAM, and BP. 

Despite this, it is acceptable to sacrifice a certain amount of 

computational resources to obtain a higher segmentation effect. 

Table 1. Comparison of metrics for kidney segmentation and tumor segmentation tasks using various advanced methods 

 

Kidney-Seg FLOPs↓ KiTS2019 KiTS2021 

 Dice↑ SP↑ SE↑ RVD↓ ASD↓ Dice↑ SP↑ SE↑ RVD↓ ASD↓ 

AE-CNN [41] 51.6G 0.901 0.992 0.853 0.348 1.469 0.804 0.996 0.605 0.401 4.078 

At-UNet [33] 66.3G 0.957 0.993 0.868 0.184 1.331 0.928 0.991 0.850 0.147 1.389 

DPC [35] 54.2G 0.940 0.989 0.677 0.370 3.117 0.848 0.995 0.828 0.474 1.803 

Ens-UNet [30] 39.3G 0.947 0.995 0.842 0.186 1.358 0.894 0.992 0.856 0.350 1.471 

PCM [36] 57.2G 0.914 0.988 0.744 0.369 2.526 0.818 0.989 0.680 0.377 3.121 

RBCA [32] 38.7G 0.954 0.994 0.847 0.148 1.384 0.920 0.992 0.840 0.190 1.358 

RWL [40] 54.1G 0.944 0.989 0.824 0.472 1.809 0.905 0.995 0.831 0.422 1.644 

Stack Net [39] 47.3G 0.916 0.993 0.833 0.424 1.642 0.839 0.998 0.753 0.376 2.560 
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TSS [34] 35.5G 0.967 0.993 0.894 0.127 1.316 0.922 0.997 0.889 0.182 1.424 

Ours 79.1G 0.964 0.993 0.896 0.126 1.144 0.936 0.993 0.880 0.130 1.333 

Tumor-Seg FLOPs KiTS2019 KiTS2021 

 Dice↑ SP↑ SE↑ RVD↑ ASD↓ Dice↑ SP↑ SE↑ RVD↑ ASD↓ 

AE-CNN [41] — 0.795 0.989 0.879 -0.024 1.303 0.790 0.989 0.868 -0.048 2.703 

At-UNet [33] — 0.857 0.992 0.838 -0.027 1.257 0.802 0.973 0.692 -0.025 1.256 

DPC [35] — 0.730 0.970 0.667 -0.202 3.594 0.727 0.971 0.917 -0.207 3.810 

Ens-UNet [30] — 0.701 0.980 0.873 -0.039 1.179 0.699 0.997 0.880 -0.034 1.298 

PCM [36] — 0.752 0.978 0.667 -0.224 3.304 0.747 0.991 0.837 -0.230 1.222 

RBCA [32] — 0.703 0.953 0.924 -0.059 1.218 0.697 0.990 0.882 -0.027 1.181 

RWL [40] — 0.740 0.975 0.878 -0.044 2.702 0.736 0.960 0.834 -0.023 2.305 

Stack Net [39] — 0.761 0.989 0.793 -0.081 1.608 0.754 0.988 0.815 -0.078 1.609 

TSS [34] — 0.845 0.954 0.871 -0.035 1.296 0.837 0.988 0.737 -0.108 1.306 

Ours — 0.863 0.988 0.892 -0.016 1.173 0.855 0.974 0.867 -0.021 1.192 

 

 
 

Figure 4. The qualitative segmentation outcomes for kidney segmentation 
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Qualitative Results: As shown in Figure 4, segmentation 

outcomes from AE-CNN [41], Ens-UNet [30], At-UNet [33], 

TSS [34], and our ERNet are compared across seven 

representative kidney cases. Heatmaps from ERNet are also 

visualized, where darker blue indicates greater pixel-level 

attention. Dice and ASD metrics are annotated in the top-right 

corner of each image to indicate segmentation accuracy. 

ERNet demonstrates superior performance, particularly in 

capturing edge details that are typically blurred and fused with 

the background. Kidney-3, 5, 6, and 7 highlight this advantage, 

closely matching the Ground Truth. At-UNet and TSS show 

partial improvements but fail to fully recover edge structures. 

Meanwhile, Kidney-1, 2, and 4 illustrate ERNet’s ability to 

recover regions with low heatmap weights, benefiting from the 

BP-trained bias model that refines pixel probabilities. Kidney-

4, in particular, shows precise left kidney segmentation. 

Although visual results are compelling, ERNet’s quantitative 

performance also remains comparable to TSS and At-UNet. 

2) Tumor Segmentation 

Quantitative Results: Analyzing the tumor segmentation 

results in Table 1, it becomes evident that ERNet excels across 

most metrics. This advantage can be attributed to the common 

characteristic of tumors in the dataset, often presenting with 

blurred edges. Notably, ERNet is designed to address the issue 

of blurry edges prevalent in tumor segmentation. It achieves 

the best segmentation results with Dice=0.863 and Dice=0.855 

for KiTS2019 and KiTS2021, respectively. These values bear 

testament to ERNet’s proficiency in achieving highly accurate 

segmentation. All methods exhibit negative RVD values, 

indicating that none of the methods’ predictions surpass the 

Ground Truth. In this context, a value closer to 0 signifies a 

prediction closer to the Ground Truth. ERNet similarly excels 

by achieving the nearest proximity to the Ground Truth in 

terms of the RVD metric among the methods. 

 

 
 

Figure 5. Qualitative segmentation results for tumor segmentation 
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Qualitative Results: As shown in Figure 5, we compare 

tumor segmentation outcomes using AE-CNN, Ens-UNet, At-

UNet, TSS, and our ERNet across seven representative cases. 

Heatmaps from ERNet highlight attention regions, where 

darker blue indicates greater pixel-level focus. Dice and ASD 

metrics are annotated in the upper-right of each case, with 

higher Dice and lower ASD values indicating more accurate 

segmentation. ERNet demonstrates a strong ability to capture 

intricate tumor edge details that are often missed by other 

methods. In Tumor-7, for instance, AE-CNN, Ens-UNet, and 

At-UNet provide minimal segmentation on the left side, while 

ERNet successfully avoids erroneous outputs in that area. This 

accuracy is attributed to the precise RoI constraints imposed 

by Mask R-CNN, which confine the segmentation to valid 

regions. Furthermore, the BP-trained bias model in ERNet 

only influences pixel probabilities within the defined RoI, 

enhancing its reliability in complex cases. 

 

4.4 Ablation study 

 

In this subsection, we conduct four experiments to verify 

the performance of each module of ERNet. 

RoI. The RoI stands as a pivotal foundation within the 

framework of ERNet. This significance arises from ERNet’s 

bias model, which is learned during the training process and 

adapts to the entirety of the image. Throughout the training 

phase, we employ Eq. (2) to confine the heatmap within the 

bounds of the labeled region. This confinement facilitates the 

precise acquisition of the relationship between the Softmax 

pixel class probabilities, heatmap weights, and the Ground 

Truth. 

Figure 6 presents a visual ablation of RoI settings. In (a), the 

original CT image is shown with the kidney in green and the 

tumor in red. Without any RoI constraints, as in (b), the 

globally applied heatmap during testing leads to minor false-

positive segmentations due to ERNet’s reset probability. In (c), 

a coarse RoI—generated by enlarging the Mask R-CNN RoI 

by 0.5× in both length and width—still leads to potential 

misclassifications despite slightly lower overall error rates. 

Conversely, the precise RoI from Mask R-CNN in (d) 

effectively encloses the tumor, minimizing false segmentation 

results. In (e), the Ground Truth is displayed; the tumor is 

defined as part of the kidney, and the red overlay visually 

obscures the green region. This experiment underscores the 

importance of accurate RoI localization for suppressing 

spurious activations and enhancing segmentation reliability in 

ERNet. 

 

 
 

Figure 6. RoI ablation experiment 

 

Softmax. The core component of ERNet lies in its Softmax 

learning bias. In neural networks, when the features of target 

pixels within images fail to be prominently highlighted, it 

leading to the network’s tendency to misclassify these pixels 

during segmentation. The primary objective of Softmax 

learning bias is to lower the threshold at which these features, 

which are challenging to distinguish, are categorized as target 

pixels. To contrast the outcomes of not learning bias with 

ERNet’s learned bias, we compare the Mask RCNN for kidney 

tumor segmentation with ERNet in Table 2. 

 

Table 2. Comparison of ERNet and mask RCNN for kidney 

and tumor segmentation 

 

Method 
Blurry Edges Crisp Edges 

Kidney Tumor Kidney Tumor 

Mask RCNN [48] 0.913 0.671 0.957 0.739 

ERNet 0.982 0.858 0.960 0.751 

 

As observed from Table 2, ERNet excels in both kidney and 

tumor segmentation when compared to the basic Mask RCNN. 

This is attributed to ERNet’s capacity to identify those edge 

pixels with features that are not significantly pronounced, 

which are often overlooked by Mask RCNN. However, in 

scenarios where the target without blurry edges, ERNet’s 

performance closely aligns with that of Mask RCNN. 

Consequently, ERNet proves to be better suited for 

segmenting medical targets characterized by blurry edges. 

Seg-Grad-CAM. ERNet’s objective revolves around 

reducing the classification threshold for poorly performing 

target pixels. During the training process, determining which 

pixels require resetting and learning becomes a critical 

consideration. The issue is expertly addressed through the 

interpretable heatmaps generated by Seg-Grad-CAM. This is 

due to the fact that pixels with lower contribution values tend 

to be positioned at the edge. Thus, by leveraging the heatmap 

weights derived from Seg-Grad-CAM, pixels can be 

categorized into distinct classes without necessitating 

additional clustering operations. As illustrated in Table 3, a 

comparison between unsupervised clustering based on 

grayscale values and bias learning through heatmap-guided 

segmentation underscores the effectiveness of the heat map 

approach. As the pixels within the RoI are progressively 

subdivided into multiple classes for bias learning, the Dice 

scores for kidney and tumor segmentation gradually improve. 

This demonstrates how the utilization of Seg-Grad-CAM’s 

heatmaps enables ERNet to distinguish between different pixel 

categories with greater precision, ultimately enhancing the 

segmentation results. 
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Table 3. Ablation experiments with Seg-Grad-CAM 

 

 
Global 

Bias 

Kmeans-

10 

Kmeans-

20 

Kmeans-

30 

Heat Map 

(ERNet) 

Kidney 0.485 0.684 0.753 0.871 0.964 

Tumor 0.173 0.385 0.592 0.738 0.863 

 

BP. Fitting the pixel class probabilities and heatmap 

weights of Softmax using BP is the most straightforward and 

efficient approach. Despite various alternatives, such as 

Bayesian methods for bias fitting, BP has the advantage of 

leveraging its own neural units for more precise fitting. One 

notable advantage of BP in ERNet is its minimal requirement 

for additional parameter configuration, in contrast to other 

fitting methods that escalate the hyperparameter count. 

Furthermore, ERNet doesn’t necessitate interpretability or 

parameter explanations for the fitting process, rendering BP as 

a simpler choice for fitting. 

 

4.5 Parameter settings 

 

ERNet begins with an initial learning rate of 0.01 and a 

weight decay of 0.001. The images are sized at 512 × 512, 

with a batch size of 4. RoI Align is set at a resolution of 7 × 7, 

and the anchor's preset size is 64. The BP hidden layer consists 

of 5 neural units with a Sigmoid activation function. The 

update of weights is performed using stochastic gradient 

descent.  

 

 

5. CONCLUSIONS 

 

We proposed a novel edge-refining network called ERNet 

for the segmentation of kidney tumors in CT images. ERNet 

diverges from directly employing Softmax class probabilities 

for result determination; rather, it focuses on the precision 

segmentation of targets by resetting pixel class probabilities 

through interpretable heatmap weights. This approach 

particularly excels in accurately segmenting areas with blurry 

edges. Despite requiring more computational resources, 

ERNet showcases exceptional performance in segmenting 

medical images containing targets with ambiguous edges. 

ERNet’s effectiveness stems from its precise RoI limitation 

and interpretable heatmap, which facilitate the resetting of 

pixel class probabilities within the RoI while leaving the rest 

of the image unaffected. In the future, ERNet could be 

extended for segmenting other medical targets characterized 

by blurry edges. 
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