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Epileptic seizures affect over 50 million people globally, posing significant diagnostic and 

safety challenges due to their sudden and unpredictable nature. This study proposes a hybrid 

deep learning model that combining Discrete Wavelet Transform (DWT), Convolutional 

Neural Networks (CNN), and Long Short-Term Memory (LSTM) networks to predict 

seizures using EEG signals. SHapley Additive exPlanations (SHAP) are integrated to 

provide interpretability at both global and local levels. The model is trained and evaluated 

on the Bonn EEG dataset and achieving 98% accuracy, 98% recall, and 98.7% precision. 

SMOTE is applied to address class imbalance, which improving recall and F1-score. Min-

Max normalization preserves amplitude dynamics essential for EEG analysis. While the 

Bonn dataset provides clean, balanced signals suitable for benchmarking, further validation 

on real-world datasets is recommended to enhance clinical applicability. The proposed 

framework demonstrates strong potential for real-time seizure prediction with interpretable 

insights to support personalized epilepsy care. 
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1. INTRODUCTION

Epilepsy, a neurological disorder affecting approximately 

50 million people worldwide, is characterized by recurrent, 

unprovoked seizures resulting from abnormal electrical 

activity in the brain [1]. Early and accurate seizure prediction 

is crucial, especially for patients with drug-resistant epilepsy, 

to enhance safety and quality of life. Electroencephalogram 

(EEG) signals offer a non-invasive, real-time method for 

monitoring brain activity and detecting epileptic events. 

However, manual interpretation of EEG is time-intensive and 

subject to inter-observer variability, prompting the adoption of 

artificial intelligence (AI) techniques for automated seizure 

prediction [2, 3]. 

Machine learning (ML) and deep learning (DL) approaches 

have demonstrated potential in analyzing complex EEG 

patterns, yet they often struggle with capturing intricate 

spatiotemporal features and providing transparent decision-

making processes [4, 5]. To overcome these challenges, recent 

works have proposed hybrid architectures—combining 

convolutional neural networks (CNNs) for spatial feature 

extraction and long short-term memory (LSTM) networks for 

temporal modeling [6, 7]. Although effective, these models 

typically function as "black boxes," limiting clinical trust due 

to their lack of interpretability. 

To improve transparency, explainable AI (XAI) methods 

such as SHapley Additive exPlanations (SHAP) have been 

introduced to interpret model outputs. Nonetheless, most 

current applications remain at a preliminary stage and have yet 

to demonstrate consistent clinical relevance [8, 9]. 

Complementing these developments, recent studies 

underscore the broader role of ML and DL in EEG-based 

neurological disorder analysis, enhancing predictive power 

and interpretability [10]. 

Despite these advances, many studies emphasize accuracy 

while relying on idealized datasets that lack real-world clinical 

complexity. Moreover, they often neglect computational 

efficiency and clinical interpretability. Addressing these gaps, 

this study proposes a novel Wavelet CNN-LSTM model with 

SHAP-based interpretability for early epileptic seizure 

prediction. Key contributions include: the use of Discrete 

Wavelet Transform (DWT) for noise-resilient, time-frequency 

feature extraction; a CNN-LSTM hybrid for robust spatial-

temporal learning; and SHAP integration to facilitate 

transparent, clinically meaningful model interpretation. 

2. RELATED WORKS

Epilepsy affects nearly 50 million people worldwide, with 

seizures that are often unpredictable and disruptive. To 

improve detection and prediction, various ML and DL 

techniques have been applied to EEG signals. Vieira et al. [11] 

proposed an explainable AI model using simple classifiers and 

selected EEG features, achieving over 95% accuracy, but 

lacking temporal modeling due to the absence of deep 

learning. Chowdhury and Chowdhury [12] used a quantum 

machine learning model with MRI and Layer-wise Relevance 

Propagation (LRP), showing strong performance but limited 

real-time usability due to high computational cost. Our 

proposed CNN-LSTM model with SHAP improves both 

accuracy and interpretability using EEG, optimized for real-
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time clinical application. 

Zhang et al. [13] introduced a DNN with adversarial 

training and attention mechanisms to improve generalization, 

though it increased model complexity. Our method achieves 

similar robustness without adversarial overhead by combining 

wavelet-based spatial and LSTM-based temporal features. Lo 

Giudice et al. [14] developed a CNN to differentiate epileptic 

and psychogenic seizures, but limited data and lack of 

temporal analysis reduced generalizability. We address this 

through LSTM layers and larger dataset validation. Al-

Hussaini and Mitchell [15] presented SeizFt using wearable 

EEG, data augmentation, and CatBoost, improving sensitivity 

but struggling with diverse seizure types. Our model enhances 

robustness by integrating DWT, CNN, and LSTM for more 

comprehensive and interpretable predictions. 

 

 

3. PROBLEM STATEMENT 

 

Although considerable progress has been made in epileptic 

seizure detection, key challenges remain. Many existing 

models inadequately capture both the frequency and temporal 

features of EEG signals, resulting in reduced accuracy and 

poor generalizability across patient datasets [11, 16]. 

Additionally, high computational complexity and limited 

scalability hinder their integration into real-time clinical 

applications [12]. A further limitation is the lack of 

interpretability in deep learning models, which often operate 

as black boxes, thereby limiting trust in clinical decision-

making processes [17, 18]. 

To address these limitations, we propose a hybrid deep 

learning framework that combines DWT for multi-resolution 

frequency feature extraction, CNN for learning spatial 

patterns, and LSTM networks for capturing temporal 

dependencies. Furthermore, SHAP is employed to provide 

both global and local interpretability of model predictions [6, 

18]. 

This integrated approach leverages the strengths of DWT, 

CNN, and LSTM to improve the detection of seizure-related 

EEG patterns. The incorporation of SHAP enhances 

transparency, providing insights into the contribution of 

individual features. As a result, the model achieves better 

prediction accuracy, supports real-time implementation, and 

fosters clinical trust, offering a comprehensive solution for 

early seizure prediction and intervention planning [19, 20]. 

 

 

4. INTEGRATED METHOD FOR EARLY 

PREDICTION OF EPILEPTIC SEIZURES UTILISING 

EEG DATA AND A HYBRID CNN-LSTM-SHAP 

MODEL 

 

To capture spatial, frequency, and temporal EEG dynamics, 

a hybrid model was developed using DWT, CNN, LSTM 

networks, and SHAP. DWT decomposes EEG signals into 

sub-bands for frequency-domain features [21], which are 

processed by CNN layers for spatial learning and LSTM layers 

for temporal pattern recognition [22]. A dense layer handles 

binary classification, using ReLU activation, max-pooling, 

and residual connections for deeper learning [23]. SHAP 

provides global and local interpretability, revealing feature 

contributions to predictions (Figure 1).  

While the model performed well on the clean Bonn EEG 

dataset, its limited complexity restricts generalizability [24]. 

The early plateau in validation loss suggests overfitting. Future 

work includes testing on more diverse datasets like CHB-MIT 

[25] and UBMC [17], and applying regularization (e.g., 

dropout, early stopping). The workflow (Figure 1) includes 

EEG acquisition, normalization, model training, evaluation, 

and SHAP analysis. As illustrated in Figure 2, the architecture 

starts with wavelet decomposition (cA1, cD1–cD3), followed 

by CNN-LSTM feature extraction, classification, and 

interpretability. This integrated design boosts predictive 

accuracy, transparency, and clinical relevance for early seizure 

prediction. 
 

 
 

Figure 1. Proposed methodology for Hybrid Wavelet CNN-

LSTM-SHAP 

 

 
 

Figure 2. Architecture of the proposed Hybrid Wavelet CNN-LSTM model 
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4.1 Data collection 

 

The EEG dataset used in this study consists of 500 

recordings, grouped into five subsets of 100 files each, where 

each file captures 23.6 seconds of brain activity, represented 

by 4,097 time-series data points [24]. These recordings were 

segmented into 23 segments per file, each with 178 data points 

corresponding to one-second EEG intervals. This results in a 

matrix of 11,500 rows (segments) and 178 columns (features), 

with the 179th column representing the class label 𝑦 ∈
{1,2,3,4,5}. The class labels denote specific brain states: Class 

1 (epileptic seizure), Class 2 (tumor region), Class 3 (healthy 

region in tumor patients), Class 4 (eyes closed), and Class 5 

(eyes open). Classes 2 to 5 represent non-epileptic activity, and 

many studies treat the dataset as a binary classification task: 

seizure (Class 1) vs. non-seizure (Classes 2–5). 

The dataset was split randomly into training (70–80%), 

validation (10–15%), and testing (10–15%) sets. This 

stratification ensured fair evaluation of model generalization. 

The training set was used for model learning, the validation set 

for tuning hyperparameters, and the testing set for final 

performance assessment on unseen data. 

 

4.2 Data pre-processing and balancing 

 

Data pre-processing enhances learning efficiency by 

modifying input features to a standardized scale. In this study, 

Min-Max normalization was applied to rescale EEG signals to 

a range of 0 to 1. This approach reduces computational 

complexity, accelerates convergence, and preserves relative 

amplitude variations critical for detecting seizure-related 

anomalies. Unlike Z-score normalization, which may obscure 

these patterns, Min-Max scaling ensures that all features 

contribute proportionally to the model [5, 11]. The 

normalization is defined by: 

 

𝑢0 = ((𝑦0 − 𝑦0𝑚𝑖𝑛
)(𝑚𝑎𝑥 − 𝑚𝑖𝑛))

/((𝑦0𝑚𝑎𝑥
− 𝑦0𝑚𝑖𝑛

) + min) 
(1) 

 

where, u₀ is the normalized value, y₀ is the original input, and 

(min, max) represent the target range.  

Although the CHB-MIT dataset is commonly used for real-

world clinical evaluations, we employed the Bonn EEG 

dataset due to its clean, balanced structure and high signal 

quality, which make it suitable for benchmarking deep 

learning models. To address class imbalance—especially the 

underrepresentation of seizure cases (Class 1)—the Synthetic 

Minority Over-sampling Technique (SMOTE) was applied. 

As shown in Table 1 (before SMOTE and after SMOTE), this 

technique balanced the class distribution, enhancing recall and 

F1-score for seizure detection while maintaining high 

precision across all classes. This data preparation pipeline 

supports the robustness and generalizability of the proposed 

Wavelet CNN-LSTM-SHAP model and establishes a 

foundation for future testing on more complex datasets like 

CHB-MIT [26, 27]. 

SMOTE (Synthetic Minority Over-sampling Technique) is 

a popular technique for balancing imbalanced data by creating 

synthetic samples for minority classes. In the pre-processing 

step, SMOTE selects a sample from a minority class and works 

to find its k-nearest neighbours. For each selected model, an 

artificial model is generated by interpolation between the 

model and its neighbours. For each selected model, an 

artificial model is generated by interpolation between the 

model and its neighbours. The equation for the artificial 

sample xn is given by: 

 

𝑥𝑛 = 𝑥𝑖 + 𝜆 × (𝑥𝑛𝑛 − 𝑥𝑖) 

 

where, 𝑥𝑖  is a subclass sample,  𝑥𝑛  is one of its nearest 

neighbours k, and λ is a random number ranging from 0 to 1. 

This process is repeated until equilibrium is reached, 

contributing to machine learning modelling variety is 

effective. More classes are adequately represented during 

training.   

The Bonn EEG dataset was selected for its clean signals, 

balanced class labels, and controlled conditions—ideal for 

validating deep learning models. In contrast, the CHB-MIT 

dataset offers more clinical realism but includes high noise, 

patient variability, and temporal imbalance, requiring 

extensive preprocessing and personalized models [24, 25]. 

Thus, the proposed method establishes a strong baseline for 

future application to more complex EEG datasets.   

 

Table 1. Comparison of model performance before and after 

SMOTE balancing 

 

Metric Before SMOTE After SMOTE 

Accuracy 96.3% 98.0% 

Precision 94.5% 98.5% 

Recall 91.2% 98.0% 

F1-Score 92.8% 98.0% 

Minority Class 

Sensitivity (Class 1) 
88.4% 97.8% 

 

4.3 Feature extraction and classification using Hybrid 

Wavelet CNN-LSTM-SHAP 

 

The DWT is a mathematical technique that decomposes 

signals into time-frequency components, offering advantages 

over traditional Fourier transforms by capturing both 

frequency and location information. DWT is particularly 

effective for multi-scale analysis of complex sequences, 

making it suitable for EEG signal processing. 

Using wavelet decomposition, the EEG signal is split into 

two parts: approximation coefficients (low-frequency 

components) and detail coefficients (high-frequency 

components). The approximation captures the primary 

structure of the signal, while the detail contains transient or 

noisy information. This allows for effective noise reduction by 

isolating and discarding high-frequency fluctuations, 

improving feature quality for downstream analysis using the 

hybrid CNN-LSTM-SHAP model. 

To compute a set of wavelets 𝜓′
𝑗,𝑘

(𝑡)  and binary scale-

functions 𝜑′
𝑗,𝑘

(𝑡) for a given wavelet's mother function 𝜓′(𝑡) 

and its associated scaling function 𝜙′(𝑡), use the Eqs. (2) and 

(3): 

 

𝜓′
𝑗,𝑘

(𝑡) = 2
𝑗

2𝜓′(2𝑗𝑡 − 𝑘)  (2) 

 

𝜑′
𝑗,𝑘

(𝑡) = 2
𝑗

2𝜑′(2𝑗𝑡 − 𝑘)  (3) 

 

in where 𝑡, 𝑗, and 𝑘 signify the time indices, scaling variables, 

and translating variables. The initial sequences 𝑜𝑠′(𝑡) may be 

represented as shown in Eq. (4): 
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𝑜𝑠′(𝑡) = ∑ 𝑐′
𝑗,𝑘

𝑛
𝑘=1 𝜑′

𝑗,𝑘
(𝑡) +

∑ ∑ 𝑑′
𝑗,𝑘

𝑛
𝑘=1

𝐽
𝑗=1 𝜓′

𝑗,𝑘
(𝑡)  

(4) 

 

In this equation, 𝑐′
𝑗,𝑘 represents the approximate coefficient 

for scale 𝑗 and location k, 𝑑′
𝑗,𝑘 represents the comprehensive 

coefficients at scale 𝑗 and locations 𝑘, 𝑛 is the initial sequence 

size, and 𝐽 is the breakdown levels. According to the rapid 

DWT, the approximation sequence and the complete sequence 

within a specific WD level may be derived using numerous 

low and high-pass filters. 

The proposed Hybrid Wavelet CNN-LSTM model (Figure 

2) combines DWT, CNN, and LSTM to extract spatial, 

spectral, and temporal features from EEG signals for early 

seizure prediction. DWT, using the Daubechies 4 (db4) 

wavelet, is selected for its effective time-frequency 

localization and proven utility in biomedical signal analysis 

[21, 22]. The EEG signals are decomposed into three levels, 

yielding one approximation (cA3) and three detail coefficients 

(cD3, cD2, cD1) that preserve essential signal characteristics 

linked to seizure onset. These coefficients are then passed into 

a CNN with two convolutional layers (32 and 64 filters, 3×3 

kernels), followed by ReLU activations, batch normalization, 

dropout (rate = 0.25), and 2×2 max-pooling. Residual 

connections are added to retain low-level spatial features and 

improve training stability [23]. 

The CNN output is flattened and passed to a stacked LSTM 

network for modeling temporal dependencies. The first LSTM 

layer (128 units, return_sequences=True) and the second (64 

units) capture sequential patterns in the EEG. A final dense 

layer with a sigmoid activation performs binary classification 

(seizure vs. non-seizure). The model is trained using the Adam 

optimizer (learning rate = 0.001), binary cross-entropy loss, 

batch size of 64, and 100 epochs. Performance is measured 

using accuracy, precision, recall, and F1-score. Compared to 

Short-Time Fourier Transform (STFT), DWT offers adaptive 

resolution and improved localization of transient seizure 

activity [11]. For interpretability, SHAP quantifies each 

feature’s influence on predictions, providing both global and 

local insights to support clinical transparency and trust [18]. 

 

4.3.1 Convolutional layer  

The process of convolution is characterized as a particular 

linear approach for extracting local patterns in temporal 

domains and identifying local correlations in the input 

sequence. Eqs. (5) and (6) define the fundamental sequence 

input S as well as the filter sequences FS. Vectors are shown 

in bold according to the standard. 

 

𝑆′ = [𝑠1
′ , 𝑠2

′ , 𝑠3
′ , … 𝑠𝐿

′ ] (5) 

 

𝐹𝑆′ = [𝜔1
′ , 𝜔2

′ , 𝜔3
′ , … 𝜔𝐾

′ ] (6) 

 

In this example, 𝑠𝑖
′ ∈ 𝑅 represents a sequence of data points 

arranged by time, while 𝜔𝑗
′  ∈ 𝑅′(𝑚×1)represents the filtering 

vectors. 𝐿 the lengths of initial sequence inputs 𝑆, whereas 𝐾 

is the total amount of filtering in the convolutional layers. Eq. 

(7) defines the convolution process as a product of a filter 

vector 𝜔𝑗
′ and a combination of vectors 𝑠𝑖:𝑖+𝑚−1

′ . 

 

𝑠𝑖:𝑖+𝑚−1
′ = 𝑠𝑖

′ ⊕ 𝑠𝑖+1
′ ⊕ 𝑠𝑖+2

′ ⊕ 𝑠𝑖+𝑚−1
′  (7) 

 

The combination operator is ⊕, and 𝑠𝑖:𝑖+𝑚−1
′  represents a 

window of 𝑚 continual timing steps beginning with the 𝑖-th 

step. Furthermore, the term "bias" 𝑏 ∈ 𝑅 would be addressed 

throughout the convolution procedure. Therefore, the last 

calculating equation is expressed in Eq. (8). 

 

𝑐𝑖
′ = 𝑓(𝜔𝑗

′𝑇𝑠𝑖:𝑖+𝑚−1
′ + 𝑏) (8) 

 

𝜔𝑗
′𝑇 is the transposed of the filtering matrix 𝜔𝑗

′, and 𝑓 is a 

nonlinear activation function. Furthermore, indices 𝑖 specifies 

the 𝑖-th timing steps, while index 𝑗 represents the 𝑗-th filters.  

The incorporation of activated functions aims to improve 

the models' ability to acquire big and complex functions, hence 

increasing prediction performance. Using an effective 

activation function may not just accelerate convergence but 

additionally improve model complexity. Rectified Linear 

Units are utilized in simulations because they exceed other 

types of activation mechanisms.  

An activation function called Rectified Linear Unit (ReLU) 

comes after each convolutional layer. Data can go from the 

first to final layers to residual learning blocks. Moreover, these 

blocks are utilized to optimize CNN loss by concatenating the 

retrieved features from several convolutional layers. One of 

the most important parts of the residual learning block is depth 

concatenation [23]. The feature map's depth is increased by 

using depth concatenation. A convolutional layer, a batch 

normalization layer, and a ReLU function comprise each 

convolutional block. 

 

4.3.2 Pooling layer 

The preceding sample only shows the specific convolution 

operations technique among a single filter and the input 

sequences. A single filter can produce one features map. 

Numerous filters are used in the convolutional layer to 

effectively extract the main properties of input data. The 

convolutional layer has K filters having a windows size of m, 

as previously assumed. In Eqs. (6) and (8), every vector 𝜔𝑗
′ 

denotes a filter, and the single value 𝑐𝑖
′ indicates the window 

activations.  

The convolutional operation across the full sequence input 

is carried out by moving filtering windows from the first to the 

last timing step. As a result, the features map related to that 

filter may be represented using a vector, as shown in the Eq. 

(9).  

 

𝐹𝑗
′ = [𝑐1

′ , 𝑐2
′ , 𝑐3

′ , … 𝑐𝐿−𝑚+1
′ ] (9) 

 

The items in 𝐹𝑗
′  represent multi-windows as 

{𝑠1:𝑚
′ , 𝑠2:𝑚

′ , … 𝑠1−𝑚+1:𝐿
′ }. Index 𝑗 represents the 𝑗-th filter. 

Pooling is equivalent to sub sampling since it subsects the 

result of a convolutional layers depending on a certain pooling 

size 𝑝. This indicates that the pooling layers may efficiently 

condense the length of the features map, thereby reducing the 

amount of model parameters. The model's max-pooling 

method yields the compressed vector of features 𝐹𝑗
′ −

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠, as shown below. Also, the max function requires 

a max functional over the p successive elements in the features 

map 𝐹𝑗
′ in Eq. (10). 

 

𝐹𝑗
′ − 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 = [ℎ1

′ , ℎ2
′ , ℎ3

′ , … ℎ𝐿−𝑚
𝑝

+1

′ ] (10) 

 

where, ℎ𝑗
′ = max (𝑐(𝑗−1)𝑝

′ , 𝑐(𝑗−1)𝑝+1
′ , … , 𝑐𝑗𝑝−1

′ ).  

The CNN-based extractors of features can produce accurate 

and relevant data than the original sequencing input. 
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Furthermore, compressing the duration of the sequences of 

inputs improves the capacity of future LSTM models to collect 

temporal information.  

The CNN output, which contains spatial information 

gleaned from EEG, is fed into the LSTM layers. This allows 

the model to analyse long-term trends in EEG data and 

produce precise predictions by capturing temporal 

dependencies that are essential for seizure prediction. 

The conventional neural networks structures are 

differentiated by fully connected among neighbouring levels, 

that may translate the present input into target vectors. Yet, 

RNN can maps the target vectors utilizing the complete past 

of prior inputs. RNN outperforms traditional neural networks 

for simulating dynamics in sequential data. Overall, RNN 

joins units from guided cycles and remembers previous inputs 

via internal states. RNN results at time intervals t−1 may have 

an influence on RNN results at time steps t. This permits RNN 

to form temporal links between the current patterns and the 

previous ones [22].  

The consecutive vectors 𝑋 =  [𝑥(0), 𝑥(1), 𝑥(2)]  are fed 

into RNN one by one based on the timing step. This is distinct 

from a standard feed-forward networks, where all sequencing 

vectors are supplied into the framework at the same time. The 

applicable formula can be stated as follows in Eq. (11). 

 

𝑆′(𝑡) = 𝜎(𝑈. 𝑥′(𝑡) + 𝑊. 𝑆′(𝑡 − 1) + 𝑏) (11) 

 

𝑦′(𝑡) = 𝜎(𝑉. 𝑠′(𝑡) + 𝑐) (12) 

 

The equation shows that 𝑥′(𝑡) is the initial variables at the t 

time steps. 𝑊, 𝑈 and 𝑉 are weight matrices. b and c are biased 

vectors, 𝜎 is a function of activation, and 𝑦′(𝑡) is the result 

that is anticipated at a t times in Eq. (12). 

While RNN excels in simulating dynamics in sequential 

data, it could be impacted by the gradient vanishing and 

inflating issue during backpropagation-based training of 

models when analysing longer sequences. Consider the 

inherent shortcomings of standard RNN, its enhanced form, 

termed LSTM, is used in this study, as described in the 

following section. 

The LSTM network is a kind of RNN that integrates 

representations learning and model construction without 

needing additional domain expertise. The improved LSTM 

architecture helps to eliminate gradient disappearance and 

explosive issues in standard RNN. This demonstrates that 

LSTM is more successful in collecting long-term connections 

and simulating nonlinear structures when dealing with 

sequential data that is longer in period. 

LSTM is specifically developed to avoid the issue of 

gradient vanishing, allowing the connection among vectors in 

the shorter and longer terms to be retained. In an LSTM cell, 

ℎ′(𝑡) represents a short-term state, whereas 𝑐′(𝑡) represents a 

longer-term state. The major feature of LSTM is its ability 

understand which should be preserved in the long term., which 

should be rejected, and which should be read. When the 

𝑐′(𝑡 −  1) point reaches the cell, it first travels via a forget 

gates to remove memory; next the new memory are inserted 

into it through an input gate; at last, a novel outcome 𝑦′(𝑡) is 

produced and processed by the resultant gate. The mechanism 

of where new recollections originates those gates operate is 

demonstrated below. 

(1) Forget Gate 

This section describes that LSTM determines what kind of 

data is allowed into the memories cell. After passing through 

the sigmoid function, ℎ′(𝑡 −  1)  and 𝑥′(𝑡)  create a value 

𝑓′(𝑡) ranging from 0 to 1. A value of 1 indicates that ℎ′(𝑡 −
 1) would be completely incorporated in the cells state 𝑐′(𝑡 −
 1). If the current value is 0, cell state 𝑐′(𝑡 − 1) will forsake 

ℎ′(𝑡 − 1). The formula for this procedure is presented below 

in Eq. (13): 

 

𝑓′(𝑡) = 𝜎(𝑊𝑓
′. [ ℎ′(𝑡 −  1), 𝑥′(𝑡)] + 𝑏𝑓

′ ) (13) 

 

in which 𝑊𝑓
′: weighted matrix, 𝑏𝑓

′ : bias vectors, and σ is the 

activation factor.  

(2) Store Gate 

This section explains that LSTM determines which types of 

data can be kept within the cell’s state. The sigmoid function 

is used to transform ℎ0′(𝑡 − 1) into a value ranging from 0 to 

1. The 𝑡𝑎𝑛ℎ function is then used to transform ℎ0′(𝑡 − 1) into 

an alternative potential value, 𝑔0′(𝑡). Finally, the two outputs 

described above are combined to update the prior state, as 

shown in Eqs. (14) and (15). 

 

𝑖0′(𝑡) = 𝜎(𝑤𝑖
′. [ ℎ0′(𝑡 −  1), 𝑥′(𝑡)] + 𝑏𝑖

′)  (14) 

 

𝑔0′(𝑡) = tanh (𝑤𝑔
′ . [ ℎ0′(𝑡 −  1), 𝑥′(𝑡)] + 𝑏𝑔

′ ) (15) 

 

The prior cell state 𝑐0′(𝑡 − 1) decides which information to 

discard and store before creating the next cell state 𝑐0′(𝑡). This 

procedure may be expressed as follows in the Eq. (16). 

 

𝑐0′(𝑡) = 𝑓′(𝑡). 𝑐0′(𝑡 − 1) + 𝑖0′(𝑡). 𝑔0′(𝑡) (16) 

 

(3) Output Gate 

The LSTM outputs is dependent on the modified cell state 

𝑐′(𝑡). Initially, use the sigmoid functions to create a value 

𝑜′(𝑡) to regulate output. The cell state ℎ′(𝑡) is generated by 

using 𝑡𝑎𝑛ℎ  and the outcome of the sigmoid function 𝑜′(𝑡). 

After the aforementioned process, produce 𝑦′(𝑡), as illustrated 

in the two Eqs. (17) and (18). 

 

𝑜′(𝑡) = 𝜎(𝑤𝑜
′ . [ ℎ′(𝑡 −  1), 𝑥′(𝑡)] + 𝑏𝑜

′ ) (17) 

 

𝑦′(𝑡) = ℎ′(𝑡) = 𝑜′(𝑡) ∗ tanh (𝐶′(𝑡)) (18) 
 

The EEG analysis pipeline integrates signal processing and 

deep learning to enable effective seizure prediction. It begins 

with collecting raw EEG data, which is decomposed using 

Wavelet Transform into four frequency components: cD3 

(high-frequency), cD2 (mid-frequency), cD1 (low-frequency), 

and cA1 (approximation). These components are then passed 

to a CNN-LSTM model, where the convolutional layer 

extracts spatial features and LSTM layers handle temporal 

patterns. The model processes these components sequentially, 

and its output is derived by summing the learned sub-

sequences. 

This architecture first applies Wavelet Transform to 

separate the EEG signal into discrete detail (cD) and 

approximation (cA) coefficients. These are input into the 

CNN-LSTM model, where CNN layers extract local patterns 

and LSTM layers capture sequential dependencies while 

filtering irrelevant information. The extracted features are 

combined and aggregated to form a comprehensive 

representation of the EEG signal. This hybrid approach 

effectively leverages both wavelet decomposition and deep 

learning for EEG analysis, making it well-suited for tasks like 

epileptic seizure prediction. 
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4.4 Explainable AI (XAI) 

 

Interpreting ML model predictions is essential for clinical 

trust and decision-making. While simpler models offer 

transparency, they often lack the accuracy of deep learning 

approaches. To balance this trade-off, SHAP provide a unified 

method to interpret outputs across different ML models, 

including complex neural networks [18]. 

SHAP extends game theory’s Shapley values to quantify 

each feature's contribution to a prediction. It supports global 

interpretability by ranking overall feature importance and local 

interpretability by explaining individual outcomes. Unlike 

traditional techniques, SHAP delivers case-specific insights, 

improving transparency and trust. It is also model-agnostic, 

supporting both linear and non-linear architectures. 

Integrated into the proposed Wavelet CNN-LSTM model, 

SHAP highlights the most influential EEG features in seizure 

prediction. It supports various explanation modes: 

• Text-based (feature importance scores), 

• Local (impact of small input changes), 

• Representative (training data influence), and 

• Visual (feature effect plots). 

This study integrates SHAP into the Wavelet CNN-LSTM 

model to provide both global and local interpretability, 

enabling transparent identification of the most influential EEG 

features in seizure prediction through text, local, 

representative, and visual explanation modes. 

 

 

5. RESULTS 

 

The proposed hybrid model outperformed previous 

techniques in the early prediction of epileptic seizures, 

displaying robust performance across a wide range of patient 

datasets. Furthermore, SHAP analysis gave a significant 

understanding of the contributing components of seizure 

prediction, improving the ability to interpret and 

comprehension of the underlying processes. 

 

5.1 Input data visualization  

 

To address class imbalance and better reflect real-world 

seizure distribution, SMOTE was applied. As shown in Figure 

3, the seizure class (Class 1) was initially underrepresented. 

Post-SMOTE, class distribution was balanced, significantly 

improving recall and F1-score without reducing precision. 

EEG features were normalized using Min-Max scaling to map 

values to [0, 1], preserving amplitude structure critical for 

detecting seizure patterns. This method outperforms Z-score 

normalization, which may suppress key signal characteristics 

[5, 11]. Figure 4 presents a bar graph depicting the number of 

categories, with the y-axis marked 'Counts' (0–2000) and the 

x-axis labelled with category numbers from 1 to 5. Each of the 

five equally spaced bars reaches the 2000-count marker, 

indicating that every category has an equal count of 2000. 

The frequency distribution of EEG signal values (X1) is 

shown in Figure 4. The frequency is represented by the y-axis, 

which varies from 0 to 12000, while the X1 is represented by 

the x-axis, which runs from -2000 to 1500. On the X1 axis, the 

bars are concentrated in the region between -500 and 0. 

Measures of statistics are shown. A dashed line at -11.58 

represents the mean, a dashed line at -8.00 represents the 

median, and a dashed line at 165.63 represents the standard 

deviation. 

 
 

Figure 3. Data visualization distribution 

 

 
 

Figure 4. Histogram of EEG signals [24] 

 

 
 

Figure 5. EEG readings over time [24]  

 

Figure 5 displays five EEG samples. Samples 1 and 4 show 

stable readings, while Samples 2 and 3 have minor, similar 

fluctuations. Sample 5 shows sharp peaks and troughs. The x-

axis (0–175) represents time, and the y-axis (-1500 to 500) 

indicates EEG amplitude. The graph highlights EEG activity 

changes over time. 

Figure 6 shows the six-level wavelet decomposition of EEG 

signals illustrating amplitude variations across samples for 

seizure (orange) and non-seizure (blue) segments. 

 

2527



 
 

Figure 6. Wavelet features of different channels 

 

 
 

Figure 7. Distribution of randomly selected EEG readings 

[24] 

 

 
 

Figure 8. Different channels stacked area plot [24] 

Figure 7 presents a histogram of EEG values. The x-axis 

(−2000 to 2000) shows EEG readings, and the y-axis (0 to 

7000) indicates frequency. Most bars cluster around zero. The 

legend includes randomly selected EEG groups labeled x55, 

x86, x22, x34, x46, x139, x73, x68, x174, and x175, 

illustrating the data distribution.  

Figure 8 visualizes data from channels X1 to X10, each 

shown in a different color. The x-axis (0–100) represents time, 

and the y-axis (−10.0 to 10.0) shows normalized values. 

Stacked regions illustrate variations across channels over time, 

with sharp peaks and troughs indicating differences in 

normalized values.  

Figure 9 shows a scatter plot of seizure prediction, with data 

points representing distinct channels. Channels: The scatter 

plot has two sorts of data points: '0' and '1'. X1 ranges from -

2000 to 1500. X2 ranges from -2000 to 1500. Distribution 

points are more prevalent and spread out while clustering at 

the core. 

 

 
 

Figure 9. Scatter plot of different channels [24] 
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Figure 10. Correlation heat map [24] 

 

Figure 10 shows correlations among variables X1 to X20. 

Values near 1 indicate strong positive, and near -1 indicate 

negative correlation. Color intensity reflects strength, with a 

diagonal of 1s showing self-correlation. The heatmap aids in 

pattern recognition and data analysis.  

 

5.2 Prediction output 

 

Figure 11 illustrates the performance of the seizure 

prediction model using a confusion matrix. The x-axis shows 

predicted labels (0: no seizure, 1: seizure), and the y-axis 

shows actual labels. The matrix includes: 1788 True 

Negatives, 24 False Positives, 15 False Negatives, and 1798 

True Positives. It is used to evaluate accuracy, recall, 

precision, and F1-score. 

 

 
 

Figure 11. Confusion matrix of seizure prediction 

 
 

Figure 12. Training and validation loss 

 

Figure 12 shows the training and validation loss over 

epochs, indicating model performance during training. Loss 

measures the gap between predicted and actual values. 

Training loss starts high and quickly drops near zero. 

Validation loss starts lower, declines gradually, and stabilizes 

above zero. The graph helps monitor convergence and 

overfitting.  

Figures 13 and 14 illustrate key evaluation metrics for 

binary classification. In Figure 13, the Precision-Recall Curve 

plots Precision (y-axis) against Recall (x-axis), showing high 

precision with low recall initially, and performance indicated 

by the area under the curve. Figure 14 presents the F1 Score 

Curve, starting at 0 and rising sharply to a peak of 1.0, then 

gradually declining as the threshold nears 1.0. 
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Figure 13. Precision-recall curve [26, 27] 

 

 
 

Figure 14. F1 score curve [26, 27] 

 

Table 2. Performance comparison 

 

Metrics Precision Recall Accuracy 
F1-

Score 

RIPPER-SVM-NN [26] 0.85 0.85 0.857 0.85 

ZC in WT-SVM [27] 0.96 0.90 0.94 0.92 

CNN-LSTM 0.97 0.94 0.96 0.95 

Hybrid Wavelet CNN-

LSTM-SHAP 
0.987 0. 98 0.98 0.98 

 

Table 2 presents precision, recall, accuracy, and F1-score 

for various seizure prediction models. While RIPPER-SVM-

NN shows reasonable accuracy, the Hybrid Wavelet CNN-

LSTM-SHAP model achieves superior performance, 

particularly in early seizure prediction. 

The performance metrics of three different machine 

learning algorithms are shown in Figure 15. Maximum 

precision is attained by RIPPER-SVM-NN [16], maximum 

recall is attained by ZC in WT-SVM [11], and higher accuracy 

is demonstrated by Hybrid Wavelet CNN-LSTM-SHAP. 

Furthermore, the F1-scores for ZC in WT-SVM and RIPPER-

SVM-NN are 85% and 92%, whereas CNN-LSTM and Hybrid 

Wavelet CNN-LSTM-SHAP exceeds 95%, providing 

important information on how well the models perform under 

various assessment criteria.  

The model's performance is shown by the ROC curve in 

Figure 16, which has an AUC-ROC value o demonstrates the 

model's capacity to discriminate between true positive and 

false positive rates. The model's efficacy is shown by the 

curve, which is positioned considerably above the diagonal 

line. Higher AUC values correspond to better classification 

performance. 

 

 
 

Figure 15. Comparison of performance metrics [11, 16, 26, 

27] 

 

 
 

Figure 16. ROC curve [24-27] 

 

Table 3. Performance of computational time 

 

Methods Time 

SVM [28] 0.000313 s 

KNN [29] 4.789 s 

Naïve Bayes [29] 0.166030 s 

CNN-LSTM 0.000145 s 

Hybrid Wavelet CNN-LSTM-SHAP  0.000023 s 

 

Table 4. Datasets comparison 

 

Dataset 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F1-Score 

(%) 

CHBMIT [1] 85.41 85.94 85.49 - 

Bonn EEG [2] 99.6 99.4 99.5 - 

UBMC [17] 

96.41 96.97 97.32 - (University of Beirut 

Medical Center) 

CHB-MIT dataset [25] 92 93 94 92 

Epileptic Seizure 

Dataset [24] 
98 98 99 98 

CHBMIT 99 98 98 98 
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As summarized in Table 3, the proposed hybrid model 

demonstrates the lowest computational time compared to 

traditional models like SVM and KNN, highlighting its 

suitability for real-time applications. The Hybrid Wavelet 

CNN-LSTM-SHAP model achieved a runtime of 0.000023 

seconds on a workstation with an Intel i7-11800H (2.3 GHz), 

16 GB RAM, and an NVIDIA RTX 3060 GPU. Although 

wearable devices have limited resources, real-time 

deployment is feasible using model pruning, quantization, or 

edge computing. Studies like SeizFt [15] and Wang et al. [28] 

show such adaptations enable near real-time seizure detection, 

indicating the proposed model's suitability for wearable 

implementation with minor optimizations. 

 

 
 

Figure 17. Model performance comparison on CHB-MIT 

[25] and Epileptic Seizure Dataset [24, 30, 31] 

 

 
 

Figure 18. SHAP analysis function 

 

Figure 17 compares model performance on CHB-MIT and 

Epileptic Seizure Datasets using Accuracy, Precision, Recall, 

and F1-Score, with the latter outperforming across all metrics 

(88%–100%), showing its suitability. While the model 

achieves 98% accuracy on the clean, balanced Bonn EEG 

dataset [24], it may not reflect real-world complexity [30], 

potentially inflating results. Figure 12 suggests early 

validation loss convergence, indicating possible overfitting 

despite using dropout and SMOTE. The confusion matrix 

(Figure 11) shows 24 false positives and 15 false negatives, 

which in clinical settings could lead to missed or unnecessary 

interventions. Hence, further validation on diverse, multi-

patient datasets is needed for clinical reliability [30, 31]. Table 

4 compares the model's performance across multiple EEG 

datasets, showcasing consistently high accuracy and recall, 

with the Bonn EEG dataset yielding the best results. 

 

5.3 Interpretation of SHAP output and neurophysiological 

correlation 

 

Figure 18 shows the impact of features X17 to X129 on 

model output using mean absolute SHAP values (x-axis). Each 

feature reflects its influence on Class 0 and Class 1 predictions. 

Longer bars indicate greater impact. This analysis enhances 

model interpretability and feature significance. 

The effects of attributes X17 through X77 on the results of 

a predictive model are shown in Figure 7. The average 

influence on the size of the model's output is shown by the 

mean absolute SHAP value on the x-axis. The effects of each 

characteristic, ranging from X17 to X77, on Class 0 and Class 

1 predictions are indicated. Greater impact on model 

predictions or a higher mean SHAP value is indicated by 

longer bars. 

Figures 18 and 19 show SHAP outputs, clearly identifying 

the EEG features contributing most to classification. This 

interpretability enables clinicians to better understand the 

model’s decisions and supports its adoption in real-world 

healthcare.  

 

 

 
 

Figure 19. SHAP model output 

 

Figures 18 and 19 also present the SHAP analysis, offering 

insight into the contribution of individual EEG-derived 

features toward the prediction of epileptic seizures. Notably, 

features corresponding to channels X17, X22, X34, X46, X68, 

and X73 exhibited the highest SHAP values, indicating their 

substantial influence on the model’s output. These channels 

are predominantly associated with electrodes placed over the 
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temporal and frontal brain regions—areas widely recognized 

in the epilepsy literature as common sites for seizure onset and 

propagation [6, 7, 17]. 

Temporal lobe structures are considered highly 

epileptogenic due to their involvement in the limbic system, 

which is frequently implicated in seizure initiation. Likewise, 

the frontal regions often demonstrate early spike-wave activity 

in focal seizures, further reinforcing the clinical relevance of 

these high-SHAP features [9]. 

With respect to frequency bands, the model leverages 

wavelet decomposition to extract multiscale frequency 

components, including high-frequency (cD3), mid-frequency 

(cD2), low-frequency (cD1), and approximation (cA1) bands. 

Among these, cD2 and cD3—corresponding to the beta (14–

30 Hz) and gamma (>30 Hz) frequency ranges—showed 

significant SHAP values, highlighting their importance in 

seizure prediction. This finding is consistent with previous 

studies that report elevated beta and gamma power in the pre-

ictal phase due to increased neuronal synchronization [21, 32]. 

Overall, the SHAP-based feature importance analysis 

validates not only the model’s predictive strength but also its 

alignment with well-established neurophysiological markers 

of epilepsy. By integrating model interpretability with domain 

knowledge, this approach enhances clinical credibility and 

contributes to the development of actionable decision-support 

systems for early seizure intervention. 

 

 

6. DISCUSSIONS 

 

The proposed Wavelet-CNN-LSTM model achieved 98% 

accuracy, 98% recall, and 98.7% precision (1798 TP, 24 FP; 

Figure 11), demonstrating strong potential for seizure 

prediction with superior accuracy and interpretability over 

previous methods. The pipeline comprises EEG data 

collection, normalization, Wavelet CNN for spatial-frequency 

feature extraction, and LSTM for capturing temporal 

dependencies. SHAP analysis enhances model transparency 

by highlighting key predictive features, enabling global and 

local interpretability. The model was evaluated using standard 

metrics and benchmarked against existing techniques. 

Although high accuracy was achieved on the Bonn EEG 

dataset, its artifact-free and balanced nature limits clinical 

generalizability [24]. The early plateau in validation loss 

(Figure 13) indicates potential overfitting. Despite applying 

dropout and SMOTE, further validation using complex 

datasets such as CHB-MIT [25], UBMC [17], and TUH EEG 

is necessary to ensure robustness across real-world conditions. 

Clinically, the model shows promise with a low false 

positive rate (1.3%) and high recall (98%), ensuring minimal 

missed seizures, which is crucial for patient safety. This 

effective balance between sensitivity and specificity supports 

reliable and ethically responsible deployment. SHAP-driven 

insights improve clinical trust by revealing EEG features 

influencing predictions, helping physicians make informed 

treatment decisions and enabling more personalized care. 

While the model is computationally intensive and depends on 

high-quality labeled data, its ability to capture spatial, 

temporal, and frequency-domain patterns positions it as a 

viable tool for seizure prediction and broader medical time-

series analysis. 

 

 

 

7. CONCLUSION AND FUTURE WORK 

 

This study presents a novel and interpretable deep learning 

framework for early prediction of epileptic seizures using EEG 

data. By integrating Wavelet-based CNN for spatial-frequency 

feature extraction, LSTM for capturing temporal patterns, and 

SHAP for interpretability, the model achieved 98% accuracy, 

98% recall, and 98.7% precision on the Bonn EEG dataset. 

These results demonstrate the model’s robustness and clinical 

relevance. 

Future work will involve: 

• Real-time deployment on embedded or edge devices 

for continuous patient monitoring 

• Multimodal data integration, such as combining 

EEG with fMRI or ECG, to improve diagnostic 

precision 

• Clinical validation through pilot studies with 

neurologists and patient feedback to evaluate the 

system’s usability, latency, and decision-support 

quality in real-world scenarios 

By enhancing both predictive performance and 

transparency, this approach contributes meaningfully toward 

practical, explainable AI solutions in neurodiagnostics. 
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