
Deep Learning Models Based on CNN, RNN, and LSTM for Rainfall Forecasting: Jordan as 

a Case Study 

La'aly A. Al-Samrraie1* , Ayman M. Abdalla2 , Khalideh Al-Bkoor Alrawashdeh3 , Abeer Al Bsoul4 ,

Mohammad Abu Awad5 , Kamel Alzboon6 , Ahmed A. Al-Taani7,8

1 Department of Water and Environmental Engineering, Al-Huson University College, Al-Balqa Applied University,  

Irbid 19117, Jordan 
2 Department of Computer Science, Al-Zaytoonah University of Jordan, Amman 11733, Jordan 
3 Mechanical Engineering Department, Al-Huson University College, Al-Balqa Applied University, Irbid 19117, Jordan 
4 Department of Chemical Engineering, Al-Huson University College, Al-Balqa Applied University, Irbid 19117, Jordan 
5 Department of Computer Science, Jordan University of Science and Technology, Irbid 22110, Jordan 
6 Water and Environmental Engineering Department, Al-Huson University College, Al-Balqa Applied University,  

Irbid 19117, Jordan 
7 Department of Earth and Environmental Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan 
8 Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University,  

Abu Dhabi 144534, United Arab Emirates 

Corresponding Author Email: laaly.samraie@bau.edu.jo

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.120724 ABSTRACT 

Received: 17 April 2025 

Revised: 18 June 2025 

Accepted: 25 June 2025 

Available online: 31 July 2025 

This study is the first to compare deep learning models for rainfall prediction across 

several Jordanian cities representing diverse climates using 11 years of recorded climate 

data, something that previous studies have not addressed in the Jordanian context. The 

climate records for four Jordanian cities (Amman, Irbid, Karak, and Ajloun) were 

recorded hourly. The data was divided into training sets (80%) and test sets (20%), with 

and without the application of correlation analysis, feature selection, and data 

standardization steps applied. Three neural network models, Recurrent Neural Network 

(RNN), Long Short-Term Memory (LSTM), and Convolutional Neural Network-

Recurrent Neural Network (CNN-RNN) were used to evaluate the performance of 

rainfall prediction in the four cities using three sets of features: all variables (13 

features), precipitation only, and a selection of eight correlated features. The results 

showed that the RNN model outperformed the others overall, especially when using 

correlated features, recording the lowest error values, Mean Squared Error (MSE) and 

Root Mean Squared Error (RMSE) in most cities, with the exception of Amman, where 

the model performed best when using all features. Whereas in Irbid, the MSE was 

0.0802×10⁻3 and RMSE = 0.009, while in Karak, the MSE was 0.118×10⁻3 and RMSE 

= 0.0109. In Amman, the RNN using all features achieved MSE = 0.0167×10⁻3 and 

RMSE = 0.0041. 
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1. INTRODUCTION

In recent years, deep learning methodologies, particularly 

neural networks (NNs), have emerged as powerful tools for 

modeling complex nonlinear systems across various domains, 

including weather forecasting, water demand prediction, 

image recognition, computer vision, bioinformatics, and 

natural language processing [1-5]. Rainfall forecasting, a 

critical aspect of weather prediction, plays a pivotal role in 

water resource management and disaster mitigation strategies 

[6], due to prevailing arid conditions and the impact of climate 

change [7] For example, the Jordan Meteorological 

Department reported a national average of 88.95 millimeters 

(mm) of rainfall in 2021, compared to 144.99 mm in 2020 [8].

Historical data reveals even wider variations, with an average

annual precipitation of 118.07 mm between 1901 and 2021, 

and extreme lows of 44.75 mm and 53.07 mm in 1944 and 

2017, respectively. 

Understanding the complex mechanisms behind 

precipitation, influenced by climatological and geographical 

factors, is essential for improving rainfall prediction accuracy, 

particularly in a geographically diverse country like Jordan. 

Jordan is divided into distinct rainfall zones, with annual 

precipitation levels ranging from less than 100 mm to over 300 

mm [9]. About 80% of the country receives less than 100 mm 

of rainfall annually, while less than 5% receives over 300 mm. 

The northwestern upland areas experience the highest rainfall, 

ranging from 400 to 650 mm annually, whereas regions such 

as the northern Jordan Valley receive 200–250 mm, and the 

southern uplands receive less than 170 mm [10, 11]. 
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Average annual rainfall in Jordan is low, at only about 118 

mm, reflecting water scarcity and significant challenges in 

water resource management [8]. Under these challenging 

climatic conditions, accurate rainfall forecasting becomes vital 

to enhance drought mitigation strategies and improve dam 

management and water storage [12]. Recent studies in the 

Jordan Valley and the Middle East region in general have 

demonstrated the effectiveness of using deep learning models, 

such as LSTM and neural networks, in predicting rainfall with 

high accuracy, contributing to enhanced resilience to weather 

variability and improved water planning [13]. Other research 

has demonstrated the ability of these models to adapt to 

unusual climatic phenomena, increasing the reliability of 

forecasts in arid and semi-arid environments [14]. 

Previous studies have highlighted the potential of deep 

learning and neural networks in weather and rainfall 

forecasting. Early NN models demonstrated that larger 

datasets and deeper networks can reduce prediction errors 

[15]. Feature-based approaches, such as the one in reference 

[16], further enhanced the efficacy of deep learning models in 

weather studies. 

Various neural network architectures have been employed 

for weather forecasting. For instance, Convolutional Neural 

Networks (CNNs) have been used to predict severe convective 

weather, such as thunderstorms and hail [17]. Hernández et al. 

[18] introduced a deep-learning approach using NNs and

autoencoders for predicting rainfall accumulation, surpassing

previous methods based on multiple metrics. However, their

model was limited to a single city in Colombia and made only

next-day predictions. In contrast, a deep-learning NN was

developed for monthly rainfall forecasting in Thailand [19].

Additionally, in southern Taiwan, deep learning was applied

for hourly rainfall prediction, showing that rainfall, pressure,

and humidity significantly influenced prediction performance

[20]. Aksoy and Dahamsheh [21] used neural networks to

predict monthly rainfall in Jordan, while Freiwan and

Cigizoglu [22] applied MLP to predict precipitation in semi-

arid regions within Jordan. In 2024, Abuhammad et al [12]

presented an LSTM model using data from the Jordanian

Ministry of Water and Irrigation, achieving good performance

in terms of RMSE and R². Subsequently, Tarawneh et al. [23]

developed a hybrid CNN- Long Short-Term Memory model

using daily Jordanian data, outperforming conventional

models in its accuracy metrics. The inclusion of these studies

reinforces the local and climatic background relevant to

Jordan, providing a strong justification for the choice of deep

learning models in the current context.

Recurrent Neural Networks (RNNs), a superset of 

feedforward NNs, are well-suited for processing sequential 

data, making them particularly effective for time-series 

analysis tasks such as weather prediction [24, 25]. RNNs are 

especially useful for providing timely and accurate weather 

predictions based on historical data [26].  

Long Short-Term Memory (LSTM), a modern RNN 

architecture, contains memory cells that can store, read, and 

write data through the use of gates. LSTM networks have been 

applied to various sequential data tasks, such as text and 

motion capture prediction [27]. LSTM can be trained for 

sequence generation by processing and predicting real data 

sequences one step at a time [3, 28]. In hydrological modeling 

and rainfall-runoff simulation, LSTM networks have also been 

effective [27, 29], and comparative studies have demonstrated 

the efficacy of LSTM in time-series forecasting for rainfall 

prediction [24].  

The CNN-RNN framework combines the strengths of 

CNNs and RNNs, making it a powerful tool for complex 

systems [4, 24, 30]. In recent years, researchers have begun 

expanding the use of CNNs to include non-traditional 

applications beyond image and map processing. They have 

been successfully employed in meteorological data analysis, 

given their ability to capture complex spatial patterns within 

rainfall data when represented on a grid or with numerical 

spatial distributions. This type of data, although temporal, is 

often affected by location-related geographic features, 

enabling CNN models to extract influential features that 

traditional RNNs cannot detect alone. By combining CNNs 

with LSTM or Gated Recurrent Unit, it becomes possible to 

create hybrid models capable of handling both temporal and 

spatial variations. Several recent studies have demonstrated a 

significant improvement in forecasting accuracy using this 

approach, especially in arid and semi-arid regions such as 

Jordan [31]. Therefore, the inclusion of CNN in this research 

model is scientifically justified and is expected to enhance the 

efficiency of rainfall forecasting in light of the large variation 

in the geographical distribution of rainfall in the Kingdom. For 

instance, Khaki et al. [30] used a CNN-RNN model to predict 

crop yield based on environmental data and management 

practices [32], and similar techniques can be adapted for 

weather forecasting, where temporal patterns and 

environmental factors are critical. Other combinations of deep 

learning techniques have also shown promise in improving 

weather prediction [33]. A literature review of deep learning 

techniques in weather forecasting is available in reference [1]. 

Abnormal climatic events such as droughts and excessive 

rains have had peculiar challenges with rainfall forecasting, 

with model performance varying based on factors such as the 

size of the dataset, the occurrence of extreme events in training 

data, and model flexibility. Though training on datasets with 

uncommon events can enhance the predictive accuracy by 

enabling models to learn prominent patterns, their lack can 

render performance under uncommon events invalid. Yet it 

has been found that deep learning models, especially LSTM, 

can make reasonably accurate forecasts even when operating 

under atypical conditions, reflecting some robustness even if 

these outliers are sub representations in training data [34]. 

Despite the advanced features of the LSTM model, such as its 

ability to handle long-term temporal dependencies and its 

relative resistance to outliers, its performance in this study 

lagged behind that of the RNN model in most cities. This is 

likely due to the nature of the temporal precipitation data used, 

as the data was hourly, meaning that the long-term 

dependencies that the LSTM leverages may be less salient or 

insufficient to enhance its performance. Furthermore, the 

LSTM requires a more complex training structure and fine-

tuning of hyperparameters, making it more susceptible to 

performance degradation when data are insufficient or there is 

significant variability between cities. In contrast, the RNN 

model demonstrates superior performance at capturing short- 

and medium-term dependencies, which is consistent with the 

characteristics of the precipitation data in this study, 

explaining its comparatively superior results. 

This study embarks on a comprehensive investigation into 

the predictive capabilities of different NN architectures using 

weather data from various cities in Jordan. Given that LSTM, 

RNN, and CNN-RNN have proven effective in weather 

prediction [26-29, 32, 35], this research aims to identify the 

most effective methods for rainfall prediction across Jordan's 

diverse regions. The four cities considered are Irbid in the 
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northwest, Ajloun in the northern uplands, Amman in the 

central region, and Karak in the southern uplands. By focusing 

on cities representing diverse climatic zones, this study seeks 

to optimize rainfall forecasting models tailored to Jordan’s 

unique geographical and climatic conditions. The evaluation 

and comparison of these neural network architectures using 

robust metrics aim to determine the most accurate and reliable 

approaches for rainfall prediction, contributing to improved 

water resource management in Jordan. The results will be 

compared to identify the most effective neural network and 

feature selection method for forecasting rainfall in these cities. 

2. METHODOLOGY

This paper presents a system for rainfall prediction using 

deep learning by implementing different (NN) models on real-

world data. Figure 1 provides an overview of the methodology 

of the proposed system, with details explained in the following 

subsections. The selected NNs—LSTM, RNN, and CNN-

RNN—were chosen based on their successful application in 

previous works [2, 26-28, 32, 35]. This study trains and tests 

these models, then evaluates and compares the results to 

determine the best model for rainfall prediction. 

Figure 1. Diagram of the methodology of the proposed 

system 

2.1 Dataset preprocessing 

The dataset used in this study was obtained from the Open 

Weather website [36], comprising 13 weather features 

recorded for four cities in Jordan. These cities vary in elevation 

but are not coastal. The training data was collected hourly over 

11 years. 

The preprocessing steps prepare the dataset as follows: 

⚫ Separate the weather data by city, as each city has unique

weather conditions that should not be mixed with data

from other cities.

⚫ Calculate the nullness percentage for each feature, where

100% nullness indicates a feature with no reported

values.

⚫ Remove features with 100% nullness, such as sea- and

ground-level measurements.

⚫ Remove unnecessary data for training, including city

names and superfluous time information for the same

city on the same day.

⚫ Replace any missing rainfall value at a specific time with

0, indicating no rain measured at that time.

For non-rainfall features with missing values (e.g., due to 

equipment errors), estimate the missing values using a linear 

function. 

These preprocessing yields four distinct datasets, one for 

each city, with 13 features per city. These features are used as 

predictor variables, identified as covariates in the model and 

detailed further in the following section. The predictor 

variables influencing rainfall forecasting are listed in Table 1. 

Missing data were handled through two imputation 

strategies. Rainfall values were imputed with zeros under the 

assumption that missing entries typically indicate no 

precipitation—a reasonable assumption for Jordan’s 

predominantly dry climate. While this simplifies data 

preparation, it may introduce bias if rainfall occurred during 

unrecorded intervals due to sensor failure, potentially affecting 

model accuracy. For the remaining meteorological variables, 

linear interpolation was used to estimate missing values by 

drawing a straight line between known data points. This 

method is appropriate when values change gradually over 

time, though it may fail to capture abrupt or nonlinear shifts 

inherent in meteorological phenomena. 

Table 1. Weather features used as predictors 

No. Name Description 

1 airT2 Air temperature at 2 meters 

2 ALLSKY KT All sky insolation clearness index 

3 
ALLSKY SFC SW 

DWN 
Total solar irradiance incident 

4 
CLRSKY SFC SW 

DWN 

Clear sky shortwave downward 

irradiance 

5 PS Surface pressure 

6 QV2M Humidity at 2 meters 

7 Rain Precipitation 

8 RH2M Relative humidity at 2 meters 

9 T2MDEW Dew/frost temperature at 2 meters 

10 T2MWET Wet bulb temperature at 2 meters 

2.2 Correlation and feature selection 

To minimize redundant features in each city, a correlation 

matrix is computed for each parameter. Once the correlation 

matrix is calculated, only one instance of each redundant 

feature is retained for the subsequent steps, while other 

redundant features are removed. 

2.3 Standardization 

The dataset is standardized using the mean and standard 

deviation to avoid disturbances or spikes that could negatively 

impact training performance. The standardized value (z) of 

each reading (x) is calculated using Eq. (1), where μ is the 

mean and σ is the standard deviation. 

𝑧 =
𝑥 − 


(1) 
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2.4 The implemented NN models 

The application of LSTM, RNN, and CNN-RNN models 

shows promise for advancing rainfall prediction. LSTM 

models, with memory cells that retain information over 

extended periods, excel at capturing long-term dependencies 

within time-series data, making them ideal for modeling 

complex temporal patterns in rainfall behavior. RNN models, 

with recurrent connections, allow previous data points in the 

sequence to be considered, enhancing the network’s ability to 

discern sequential dependencies critical for accurate rainfall 

prediction. Additionally, CNN-RNN models combine the 

spatial analysis capabilities of CNNs with the sequential 

memory of RNNs, providing a comprehensive approach that 

effectively captures both spatial and temporal features in 

rainfall datasets. This model intelligently integrates two key 

dimensions of precipitation data: spatial and temporal. CNN 

layers first analyze the input data to extract fine-grained spatial 

features, such as the distribution of rainfall across the map and 

the detection of rain clusters in specific areas. This information 

is then fed to RNN or LSTM layers, which track how these 

patterns evolve over time and learn their sequence and periodic 

or abrupt behavior. This systematic sequence allows the model 

to gain a broader view and a deeper understanding of the 

interactions of space and time, increasing its forecasting 

efficiency and accuracy in dealing with the dynamics of 

rainfall phenomena. These diverse NN architectures 

contribute to a more robust understanding of the complex 

dynamics influencing rainfall forecasting and ultimately 

enhance the precision of rainfall prediction models. 

2.5 Training and testing 

Each dataset, corresponding to a different city, is trained 

and tested separately. The data is split into 80% for training 

and 20% for testing. Additionally, training and testing are 

conducted for each of the three NNs (LSTM, RNN, and CNN-

RNN) independently. Finally, the results are evaluated and 

compared using various metrics to determine the most 

effective model for rainfall prediction. 

2.6 Evaluation metrics 

Table 2 shows the hyperparameters used to train the various 

models (RNN, LSTM, and CNN-RNN) on the dataset. The 

Adam-type optimization algorithm was used due to its high 

adaptive gradient capability, and the binary crossentropy loss 

function was adopted due to its suitability for binary 

classification tasks. 

The data was split 80% for training and 20% for testing, 

with a batch size of 64 and a maximum number of epochs of 

200. To fine-tune the model's hyperparameters, a validation

split was used, using 20% of the training data to reduce the

possibility of overfitting. This method is widely used in similar

research, such as the study [37] on text classification using

LSTMs and the study [38] on the use of Convolutional Neural

Networks (CNNs) for natural language processing. The

internal architecture of the models was optimized based on

their performance on the validation set, with three hidden

layers for simple shapes (RNN, CNN-RNN) and four layers

for LSTM networks, with different gradations in the number

of neurons.

Table 2. Initialization and optimization parameters of the 

neural network models used in the study 

Parameter/ 

Hyperparameter 
Value 

Parameter/ 

Hyperparameter 
Value 

Training set % 80 
Maximum number of 

training epoch 
200 

Testing set % 20 Minimum batch size 64 

Optimize learning Adam No. of hidden layers 

4(100,100,75,75) 

For LSTM 

3 (128,64,32) for 

RNN and CNN-

RNNN 

The metrics used to evaluate the implementation results are 

described in Eqs. (2)-(5), where Measured represents a vector 

of actual parameter values and Computed represents a vector 

of the parameter values predicted by the NN. Since these 

metrics represent prediction error, lower values indicate better 

prediction performance. 

Error(i) = Measured(i) – Computed(i) (2) 

Mean Squared Error: 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝐸𝑟𝑟𝑜𝑟(𝑖)2)𝑛

𝑖=1 (3) 

Root Mean Square Error: 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (4) 

Normalized Root Mean Square Error: 

NRMSE = 
𝑅𝑀𝑆𝐸

∑ (𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑(𝑖))𝑛
𝑖=1

(5) 

3. RESULT

The data used in this study were obtained from the Open 

Weather website [36], consisting of hourly records over 11 

years for four Jordanian cities: Amman, Irbid, Ajloun, and 

Karak. These were prearranged into four separate datasets, 

corresponding to the four cities, with each dataset partitioned 

into 80% for training and 20% for testing. All models—RNN, 

CNN-RNN, and LSTM—were trained using a batch size of 64 

over a maximum of 200 epochs. The RNN architecture 

comprised four hidden layers with memory cell sizes of 128, 

64, and 32, while the LSTM model included two hidden layers 

with memory units of sizes 64 and 32. The CNN-RNN hybrid 

integrated convolutional and recurrent layers across eight 

hidden layers, also employing memory cells of sizes 128, 64, 

and 32. All models were optimized using the Adam algorithm 

and operated in a unidirectional mode (i.e., without backward 

processing).  

Correlation analysis, feature selection, and standardization 

were applied to each dataset as outlined in the Methodology 

section. The correlation matrices for the four datasets are 

shown in Tables 3-6. While there are limited differences 

among the correlation matrices, some features appeared 

independent, while others were redundant. As a result, only 

eight features were used for further analysis, including six 

features listed in Table 1: QV2M, PS, WS10M, Rain, airT2, 

and CLRSKY SFC SW DWN-along with two combined 

features: T2M (Temperature at 2 Meters) and 

PRECTOTCORR (Corrected Precipitation). 
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Table 3. Correlation matrix for Amman 

Rain QV2M airT2 WS10M 
CLRSKY SFC SW 

DWN 

ALLSKY 

SFC SW 

DWN 

T2MWET PS 
ALLSKY 

KT 
RH2M T2MDEW WD50M WS50M 

1 -0.023 -0.153 0.205 -0.016 -0.057 -0.116 -0.091 -0.003 0.164 -0.003 0.008 0.193 

-0.023 1 0.249 -0.149 -0.213 -0.2 0.665 -0.462 -0.201 0.419 0.971 0.463 -0.144 
-0.153 0.249 1 0.128 0.578 0.61 0.881 -0.536 0.465 -0.717 0.27 0.299 -0.094 

0.205 -0.149 0.128 1 0.271 0.232 0.021 -0.159 0.273 -0.248 -0.152 0.018 0.903 

-0.016 -0.213 0.578 0.271 1 0.986 0.342 -0.132 0.738 -0.633 -0.183 0.062 -0.063 
-0.057 -0.2 0.61 0.232 0.986 1 0.371 -0.134 0.72 -0.649 -0.173 0.062 -0.098 

-0.116 0.665 0.881 0.021 0.342 0.371 1 -0.636 0.262 -0.329 0.694 0.46 -0.148 

-0.091 -0.462 -0.536 -0.159 -0.132 -0.134 -0.636 1 -0.092 0.147 -0.477 -0.389 -0.082 
-0.003 -0.201 0.465 0.273 0.738 0.72 0.262 -0.092 1 -0.555 -0.174 0.025 -0.037 

0.164 0.419 -0.717 -0.248 -0.633 -0.649 -0.329 0.147 -0.555 1 0.419 0.083 -0.06 

-0.003 0.971 0.27 -0.152 -0.183 -0.173 0.694 -0.477 -0.174 0.419 1 0.482 -0.157 
0.008 0.463 0.299 0.018 0.062 0.062 0.46 -0.389 0.025 0.083 0.482 1 -0.048 

0.193 -0.144 -0.094 0.903 -0.063 -0.098 -0.148 -0.082 -0.037 -0.06 -0.157 -0.048 1 

Table 4. Correlation matrix for Irbid 

Rain QV2M airT2 WS10M 
CLRSKY SFC SW 

DWN 

ALLSKY 

SFC SW 

DWN 

T2MWET PS 
ALLSKY 

KT 
RH2M T2MDEW WD50M WS50M 

1 -0.054 -0.143 0.125 -0.012 -0.063 -0.121 -0.036 0.001 0.126 -0.034 0.03 0.164 

-0.054 1 0.295 -0.259 -0.211 -0.197 0.691 -0.549 -0.184 0.377 0.974 0.373 -0.3 

-0.143 0.295 1 0.312 0.654 0.688 0.887 -0.615 0.525 -0.73 0.309 0.374 0.014 
0.125 -0.259 0.312 1 0.344 0.314 0.116 -0.199 0.346 -0.485 -0.235 0.142 0.874 

-0.012 -0.211 0.654 0.344 1 0.982 0.392 -0.175 0.737 -0.743 -0.185 0.154 0.031 

-0.063 -0.197 0.688 0.314 0.982 1 0.423 -0.185 0.714 -0.757 -0.174 0.151 0 
-0.121 0.691 0.887 0.116 0.392 0.423 1 -0.723 0.31 -0.355 0.713 0.47 -0.129 

-0.036 -0.549 -0.615 -0.199 -0.175 -0.185 -0.723 1 -0.116 0.187 -0.556 -0.376 -0.082 

0.001 -0.184 0.525 0.346 0.737 0.714 0.31 -0.116 1 -0.647 -0.159 0.111 0.067 
0.126 0.377 -0.73 -0.485 -0.743 -0.757 -0.355 0.187 -0.647 1 0.375 -0.072 -0.242 

-0.034 0.974 0.309 -0.235 -0.185 -0.174 0.713 -0.556 -0.159 0.375 1 0.4 -0.287 

0.03 0.373 0.374 0.142 0.154 0.151 0.47 -0.376 0.111 -0.072 0.4 1 0.04 
0.164 -0.3 0.014 0.874 0.031 0 -0.129 -0.082 0.067 -0.242 -0.287 0.04 1 

Table 5. Correlation matrix for Ajloun 

Rain QV2M airT2 WS10M 
CLRSKY SFC SW 

DWN 

ALLSKY 

SFC SW 

DWN 

T2MWET PS 
ALLSKY 

KT 
RH2M T2MDEW WD50M WS50M 

1 -0.054 -0.143 0.125 -0.012 -0.063 -0.121 -0.036 0.001 -0.034 0.126 0.164 0.03 

-0.054 1 0.295 -0.259 -0.211 -0.197 0.691 -0.549 -0.184 0.974 0.377 -0.3 0.373 

-0.143 0.295 1 0.312 0.654 0.688 0.887 -0.615 0.525 0.309 -0.73 0.014 0.374 
0.125 -0.259 0.312 1 0.344 0.314 0.116 -0.199 0.346 -0.235 -0.485 0.874 0.142 

-0.012 -0.211 0.654 0.344 1 0.982 0.392 -0.175 0.737 -0.185 -0.743 0.031 0.154 

-0.063 -0.197 0.688 0.314 0.982 1 0.423 -0.185 0.714 -0.174 -0.757 0 0.151 
-0.121 0.691 0.887 0.116 0.392 0.423 1 -0.723 0.31 0.713 -0.355 -0.129 0.47 

-0.036 -0.549 -0.615 -0.199 -0.175 -0.185 -0.723 1 -0.116 -0.556 0.187 -0.082 -0.376 

0.001 -0.184 0.525 0.346 0.737 0.714 0.31 -0.116 1 -0.159 -0.647 0.067 0.111 
-0.034 0.974 0.309 -0.235 -0.185 -0.174 0.713 -0.556 -0.159 1 0.375 -0.287 0.4 

0.126 0.377 -0.73 -0.485 -0.743 -0.757 -0.355 0.187 -0.647 0.375 1 -0.242 -0.072 

0.164 -0.3 0.014 0.874 0.031 0 -0.129 -0.082 0.067 -0.287 -0.242 1 0.04 
0.03 0.373 0.374 0.142 0.154 0.151 0.47 -0.376 0.111 0.4 -0.072 0.04 1 

Table 6. Correlation matrix for Karak 

Rain QV2M airT2 WS10M 
CLRSKY SFC SW 

DWN 

ALLSKY 

SFC SW 

DWN 

T2MWET PS 
ALLSKY 

KT 
RH2M T2MDEW WD50M WS50M 

1 -0.031 -0.146 0.14 -0.055 -0.025 -0.117 0.01 -0.015 -0.019 0.154 0.131 0.028 
-0.031 1 0.265 -0.414 -0.168 -0.183 0.684 -0.413 -0.177 0.974 0.419 -0.422 0.155 

-0.146 0.265 1 0.084 0.595 0.564 0.876 -0.623 0.46 0.279 -0.713 -0.101 0.35 

0.14 -0.414 0.084 1 0.239 0.272 -0.149 -0.041 0.293 -0.419 -0.388 0.932 0.061 
-0.055 -0.168 0.595 0.239 1 0.986 0.367 -0.168 0.72 -0.143 -0.626 -0.017 0.238 

-0.025 -0.183 0.564 0.272 0.986 1 0.337 -0.154 0.738 -0.156 -0.611 0.012 0.243 

-0.117 0.684 0.876 -0.149 0.367 0.337 1 -0.667 0.262 0.707 -0.315 -0.292 0.35 
0.01 -0.413 -0.623 -0.041 -0.168 -0.154 -0.667 1 -0.117 -0.416 0.273 0.026 -0.272 

-0.015 -0.177 0.46 0.293 0.72 0.738 0.262 -0.117 1 -0.151 -0.532 0.067 0.201 

-0.019 0.974 0.279 -0.419 -0.143 -0.156 0.707 -0.416 -0.151 1 0.419 -0.434 0.184 
0.154 0.419 -0.713 -0.388 -0.626 -0.611 -0.315 0.273 -0.532 0.419 1 -0.239 -0.189 

0.131 -0.422 -0.101 0.932 -0.017 0.012 -0.292 0.026 0.067 -0.434 -0.239 1 -0.027 
0.028 0.155 0.35 0.061 0.238 0.243 0.35 -0.272 0.201 0.184 -0.189 -0.027 1 
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Table 7. Performance assessment of different NNs and feature selection methods in forecasting rainfall in Amman 

Method 
Metrics with All Features Metrics with the Rainfall Feature Metrics with the Correlated Features 

MSE 10-3 RMSE 10-2 NRMSE MSE 10-3 RMSE 10-2 NRMSE MSE 10-3 RMSE 10-2 NRMSE 

LSTM 2.9959 5.4734 2.3284 6.1611 7.8493 3.1736 1.740 4.1724 1.7749 

CNN-RNN 0.3071 1.75 0.7455 16.5 12.86 5.4721 0.5795 2.4 1.0241 

RNN 0.0167 0.41 0.1740 6.2 7.89 3.3551 0.0262 0.51 0.2178 

Table 8. Performance assessment of different NNs and feature selection methods in forecasting rainfall in Irbid 

Method 
Metrics with All Features Metrics with the Rainfall Feature Metrics with the Correlated Features 

MSE 10-3 RMSE 10-2 NRMSE MSE 10-3 RMSE 10-2 NRMSE MSE 10-3 RMSE 10-2 NRMSE 

LSTM 6.1664 7.8527 1.7813 31.238 17.674 3.6027 5.811 7.6236 1.7293 

CNN-RNN 62.1 24.93 5.6543 63.0 25.11 5.6947 0.9699 3.0 0.7065 

RNN 0.0832 0.91 0.2069 25.23 15.88 3.6033 0.0518 0.72 0.1634 

Each of the three NNs (LSTM, RNN, and CNN-RNN) was 

trained and tested separately. Each model contained four 

hidden layers: the first two hidden layers had 100 units, while 

the third and fourth had 75 units. Training was conducted for 

200 epochs, with 1,095 iterations per epoch. 

To evaluate the impact of different parameters on rainfall 

prediction, the NNs were trained and tested in three separate 

trials: using all 13 features, using only the rainfall feature, and 

using the eight features selected through correlation and 

feature selection. The results of the performance assessment 

for different NNs and feature selection methods in forecasting 

rainfall in Amman, Irbid, Karak, and Ajloun are shown in 

Tables 7-10, respectively. 

For period from 2018-2021, among the three NNs, RNN 

consistently produced the lowest error metrics for all cities. 

The other two NNs did not show a clear second-best 

performance. When using only the rainfall feature, RNN 

produced the lowest MSE and RMSE values for Amman 

(MSE = 0.0062, RMSE = 0.0789, and NMSE = 3.355), while 

LSTM performed best for Irbid (MSE = 0.0278, RMSE = 

0.16943, and NMSE = 3.4536). Notably, LSTM also had the 

lowest NRMSE values across all cities. For the trial using only 

correlated features, RNN again produced the lowest error 

values for all cities, while CNN-RNN emerged as the second-

best model. 

To analyze the differences in prediction accuracy between 

the proposed models, the Diebold-Mariano (DM) test was used 

to measure whether the differences in performance between 

the models were statistically significant. The analysis was 

based on data from Table 7, which displays the results for the 

three models: the LSTM model, the CNN-RNN model, and the 

RNN model. The results showed that the RNN achieved the 

best performance overall and was therefore used as the 

reference model for comparison. When comparing the LSTM 

with RNN, the DM test revealed a statistically significant 

difference (p < 0.05), indicating that the performance of the 

LSTM is significantly less accurate than the RNN. 

When comparing the LSTM with CNN-RNN, the results 

did not reveal a statistically significant difference between the 

two models, indicating that the performance of both models is 

similar in terms of prediction accuracy. Furthermore, the 

comparison between CNN-RNN and the RNN did not reveal 

any strong statistically significant differences. CNN-RNN did 

not clearly outperform RNN, but it was not significantly worse 

either. Based on the DM test values, it can be argued that the 

RNN model has relatively higher performance compared to 

the LSTM model, while it is not possible to assert that there 

are strong differences between the RNN model and the CNN-

RNN model. The lack of significant differences between 

LSTM and CNN-RNN indicates a convergence in their 

prediction ability, although RNN still outperforms both. 

The results of the DM test in Table 8 show that the RNN 

statistically outperforms the LSTM, reaching a significance 

level of (p = 0.007), which is less than 0.05, indicating that the 

difference in performance between the two models is clearly 

statistically significant in favor of RNN. In contrast, the 

comparison between the CNN-RNN and the RNN did not 

reveal any significant difference (p = 0.2777), and the 

comparison between the LSTM and the CNN-RNN did not 

yield any statistically significant differences either (p = 

0.3686). Based on these results, it can be concluded that the 

RNN model performs better, with a significant superiority 

over LSTM. However, there are no strong statistical 

differences between RNN and CNN-RNN, nor between 

LSTM and CNN-RNN, indicating a convergence in their 

performance. 

As shown in Table 9, there is no statistically significant 

difference between the third model (RNN) and both LSTM 

and CNN-RNN models. The p-values for both comparisons 

were greater than 0.05 (p = 0.0885 and p = 0.2885, 

respectively). Although the difference between RNN and 

LSTM was close to the significance level, it was not 

statistically significant. On the other hand, the comparison 

between LSTM and CNN-RNN showed a clear significant 

difference (p = 0.0025), indicating that LSTM performs 

significantly worse than CNN-RNN. Thus, it can be concluded 

that CNN-RNN is statistically superior to LSTM, while there 

are no confirmed significant differences between RNN and the 

other models, although the general trend suggests that RNN 

may perform better. 

Table 9. Performance assessment of different NNs and feature selection methods in forecasting rainfall in Karak 

Method 

Metrics with All Features Metrics with the Rainfall Feature Metrics with the Correlated Features 

MSE 

10-3 

RMSE 

10-2 NRMSE 
MSE 

10-3

RMSE 

10-2 NRMSE 
MSE 

10-3

RMSE 

10-2 NRMSE 

LSTM 14.144 11.893 2.6582 33.464 18.293 4.3038 14.52 12.05 2.6933 

CNN-RNN 1.5 3.92 0.8766 101.2 31.82 7.1106 1.8 4.29 0.9585 

RNN 0.0773 0.88 0.1965 67.82 26.0 5.820 0.1189 1.09 0.2437 
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Table 10. Performance assessment of different NNs and feature selection methods in forecasting rainfall in Ajloun 

Method 

Metrics with All Features Metrics with the Rainfall Feature Metrics with the Correlated Features 

MSE 

10-3 

RMSE 

10-2 NRMSE 
MSE 

10-3

RMSE 

10-2 NRMSE 
MSE 

10-2

RMSE 

10-2 NRMSE 

LSTM 6.8339 8.2667 1.8752 28.707 16.943 3.4536 6.8339 8.2667 1.8752 

CNN-RNN 1.2 3.49 0.7918 62.5 25.00 5.6711 1.5 4.0 0.8910 

RNN 0.1087 1.04 0.2365 27.3 16.52 3.7483 0.0802 0.90 0.2032 

Upon examining the results in Table 10, it is clear that RNN 

clearly demonstrates its superiority, especially when 

compared to LSTM. The DM test showed a strong statistical 

difference between the two models (p = 0.0008), clearly 

reflecting the superior performance of the RNN model. On the 

other hand, other comparisons appear less conclusive. The 

comparison between CNN-RNN and RNN did not show a 

clear statistical significance (p = 0.1210), indicating a 

convergence in performance without significant superiority. 

Similarly, the results did not show a significant difference 

between the LSTM and the CNN-RNN (p = 0.1323), although 

the overall trend favors the CNN-RNN. 

Looking at the experimental results across the four Tables 

7-10, RNN maintains consistently superior performance

compared to the other two models, with clear statistical

significance in several cases, especially compared to LSTM.

This reinforces its credibility as a more efficient model in

predictive accuracy. In contrast, CNN-RNN demonstrated

comparable performance with RNN without consistent

significant differences, making it a flexible choice in some

scenarios. LSTM performed poorly in most comparisons, both

in terms of values and statistical significance. In general, RNN

can be considered a reliable reference model in situations

requiring high accuracy supported by statistical analysis.

CNN-RNN can be considered a potential alternative, while

caution is recommended when relying on LSTM in

applications that are sensitive to predictive performance.

In developing rainfall forecasting models tailored to Jordan, 

it was essential to account for the country’s varied climatic 

regions, which can significantly influence model training and 

predictive performance. Jordan encompasses multiple climate 

zones, including the Mediterranean-influenced northwestern 

region (e.g., Amman and Irbid), which receives between 245 

mm and 450 mm of annual rainfall; the semi-arid Jordan 

Valley, with approximately 400 mm per year; and the arid 

eastern and southern regions, where annual rainfall often falls 

below 100 mm. This climatic variability refined the choice of 

characteristics that were introduced into the dataset. Topmost 

priority was given to parameters like temperature and 

humidity, which play important roles in precipitation 

processes in areas with moderate to high precipitation and 

varying temperatures. Attributes with little applicability in 

Jordan's climate, however, like snow, were eliminated because 

of the very low frequency of their occurrence. By correlating 

feature selection with the country's seasonal weather 

conditions, the study makes sure that the forecasting models 

are contextually relevant and will have a better opportunity to 

capture the rainfall patterns of Jordan. 

Selecting the relevant meteorological factors is perhaps one 

of the most critical activities when developing accurate models 

for rainfall prediction because it immediately affects the 

efficacy of the models. For the purpose of this study, the main 

variables—temperature, humidity, wind speed, atmospheric 

pressure, and historic rainfall data—were collected from 

reputable meteorological sources throughout Jordan. Pearson 

correlation assessment was employed to identify correlations 

between these variables and rainfall so that those with 

moderate to strong relationships were included in the models 

and utilized. In addition to statistical validation, choice was 

also facilitated by findings of regional climatological studies 

and local weather expertise to validate that the features under 

consideration are data-driven as well as contextually relevant 

to Jordan's distinctive climate. Each of the variables chosen 

has a well-recognized function in the dynamics of 

precipitation: temperature influences atmospheric pressure 

and humidity; humidity indicates the moisture required for 

cloud development; wind speed controls air mass transport and 

weather front advancement; atmospheric pressure assists in 

determining low-pressure systems that precede rain; and 

historical rainfall data draw temporal patterns that are crucial 

to predictive model construction. This knowledge and 

systematic feature selection process increase the validity and 

situational relevance of the forecasting models established in 

this research. 

Lower values of MSE, RMSE, and NRMSE (Tables 7-10) 

indicate better prediction results, as they reflect lower 

estimation errors. By examining the metrics (Tables 3-6) and 

the performance assessment (Tables 7-10), it becomes evident 

that the results from using only the rainfall feature were 

inferior to those obtained using either all features or the 

correlated features. Therefore, the comparison focuses on the 

latter two methods. 

When analyzing the results produced by each NN, it is 

observed that LSTM and CNN-RNN performed better with all 

features than with correlated features across all cities. On the 

other hand, RNN produced the lowest MSE and RMSE values 

when using correlated features for Irbid (MSE = 8.0249×10⁻⁵, 

RMSE = 0.0090, and NMSE = 0.2032) and Karak (MSE = 

1.1887×10⁻⁴, RMSE = 0.0109, and NMSE = 0.2437) (Table 4 

and Table 6). For Amman, however, the lowest MSE and 

RMSE values were obtained by RNN using all features (MSE 

= 1.6733×10⁻⁵, RMSE = 0.0041, and NMSE = 0.1740) (Table 

3). 

Based on the data in Tables 7-10, the RNN model using 

correlated features was the most effective method for rainfall 

prediction in all cities except Amman, where the all-features 

method produced the most accurate results. Consequently, the 

combination of RNN with correlated features is considered the 

most appropriate approach for rainfall estimation. The results 

indicate that models using only the rainfall feature alone 

resulted in inferior predictive accuracy, showing higher error 

values than models utilizing either all features or a subset of 

correlated features. This suggests that rainfall predictions 

benefit from incorporating additional environmental variables, 

probably because rainfall is influenced by multiple but 

interconnected weather patterns. The topography of each city 

is a crucial factor in explaining the variation in model 

performance across different locations. For example, Irbid is 

located at a relatively lower elevation and is surrounded by 

open agricultural lands, making the influence of air masses and 

rainfall patterns more uniform and predictable. In contrast, 

Amman is characterized by a complex terrain ranging from 

2462



hills to valleys, along with the presence of the urban heat island 

phenomenon resulting from dense urban sprawl. This impacts 

local airflow patterns and surface temperature, creating 

variations in rainfall distribution on small scales that are 

difficult for models to accurately capture. This topographical 

and climatic variation between cities directly affects the 

accuracy of models. Temporal models perform better in 

environments with uniform and open weather patterns, while 

they face challenges in cities with spatial and climatic 

complexity. By using all features or a focused subset of 

correlated features, the models capture a more comprehensive 

picture of the conditions affecting rainfall, thus improving 

forecast accuracy. 

(a) 

(b) 

(c) 

(d) 

Figure 2. Actual vs. RNN predicted rainfall maps for Irbid, 

Ajloun, Amman and Karak 

3.1 City-specific model performance and predictive insight 

Figure 2 illustrates the actual rainfall data versus the 

predicted values by the RNN system for the four cities. The 

small differences between actual and predicted values 

demonstrate the efficacy of the RNN in making accurate 

rainfall predictions. 

In Amman, the RNN model demonstrated the most 

consistent predictive accuracy across all configurations - 

utilizing the full set of features, the rainfall feature alone, and 

the selected correlated features (Figure 2). With the lowest 

MSE and RMSE values (Table 7), RNN proved especially 

effective in capturing Amman’s temporal rainfall patterns. 

LSTM models, while capable of capturing long-term 

dependencies, appeared slightly less adaptable in this city’s 

data context, probably due to the shorter temporal 

dependencies in Amman’s rainfall patterns. CNN-RNN, 

which combines spatial and sequential learning, was also 

effective but displayed relatively higher error metrics (Table 

3), suggesting that spatial feature extraction may be less 

relevant in Amman’s meteorological data than temporal 

relationships. Based on this data, it can be said that rainfall in 

Jordan is close to zero in some areas in the south, while it is 

gradually increasing in the northern regions and highlands. 

However, the Kingdom continues to suffer from scarce water 

resources due to climate change and a general decline in 

rainfall rates [8, 39]. 

In the Irbid region, the model results showed that the RNN 

model performed best when using the full set of features, as 

shown in Table 8, clearly outperforming the LSTM and CNN-

RNN models in terms of prediction accuracy. This superiority 

can be explained by the RNN's ability to capture the temporal 

relationships associated with rainfall patterns in the region, 

which are crucial for accurate forecasting. Although the CNN-

RNN model has the ability to extract spatial features, this was 

not sufficient to surpass the effectiveness of the RNN in this 

case, indicating that temporal information plays a more 

important role in Irbid's climate, despite the presence of some 

spatial interactions. The LSTM model demonstrated 

acceptable performance, but it was unable to match the 

accuracy of the RNN, especially in representing the fine-scale 

variations in rainfall in Irbid. 

In Karak, RNN models were consistently the most accurate, 

particularly with the correlated feature set (Figure 2 and Table 
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9). This performance highlights the importance of sequential 

dependencies in Karak’s rainfall prediction, where the model’s 

ability to consider prior time steps significantly enhanced 

forecast precision. LSTM models showed moderate 

performance, performing well on more complex 

configurations but still falling short of RNN accuracy. CNN-

RNN models, while capable of incorporating spatial 

dependencies, did not outperform RNN, probably due to the 

relatively homogenous spatial distribution of weather patterns 

in Karak, which limited the utility of CNN-based spatial 

feature extraction. This finding suggests that in Karak, purely 

temporal relationships are more predictive of rainfall behavior 

than combined spatiotemporal patterns. 

Ajloun’s model performance was unique in that RNN and 

CNN-RNN models performed comparably, each excelling in 

different configurations (Table 7 and Figure 2). The RNN 

model achieved the lowest error rates when using the 

correlated feature set, consistent with findings in other cities, 

underscoring RNN’s strength in time-series prediction. 

However, CNN-RNN demonstrated comparable accuracy 

when utilizing the complete set of features, suggesting that in 

Ajloun, a combination of spatial and temporal features 

captures underlying weather dynamics. LSTM models, while 

performing adequately, did not match the precision of RNN 

and CNN-RNN, indicating that the sequential dependency 

pattern in Ajloun is best captured by models emphasizing 

immediate past conditions rather than long-term memory. 

Across the four cities, RNN models generally showed the 

highest accuracy, particularly with the reduced set of 

correlated features, highlighting their capacity to handle short-

to-medium term temporal dependencies effectively. CNN-

RNN models demonstrated added value in cities with more 

complex spatial dynamics, such as Irbid and Ajloun, where 

combined spatial-temporal patterns played a role in weather 

variability. Conversely, LSTM models, despite their strengths 

in capturing long-term dependencies, were generally less 

effective, indicating that rainfall in these urban regions may 

not require the extensive memory capabilities LSTM offers 

but rather benefits from models focused on recent sequential 

patterns. 

In addition, by prediction hourly precipitation over a 100-

hour period from 2018 to 2021, the RNN model demonstrated 

excellent forecast performance in most Jordanian cities. The 

highest rain average per hour was achieved in Amman, with 

an estimated of only 0.017 mm from the actual values, 

followed by Karak with a difference of 0.048 mm, Irbid with 

a difference of 0.18 mm, and finally Ajloun with a difference 

of 0.15 mm. When the rainfall prediction process was 

implemented for 100 random hours, the error rate between the 

actual and predicted values was found to be as follows: 

43.33% in Amman, 40% in Karak, 1.11% in Irbid, and 11.76% 

in Ajloun. Based on these results, it is clear that Irbid recorded 

the lowest prediction error rate, indicating higher model 

accuracy there, while Amman had the highest error rate, which 

may reflect greater prediction challenges in its changing 

climate. 

The results of this study are partially consistent with those 

at Najd Al `Azab, Yemen [40], which demonstrated that using 

correlated climate features can improve the accuracy of AI-

based models in predicting rainfall in the Middle East, 

particularly in arid and semi-arid environments. Our results 

also support the findings of Shekar et al. [41], which found that 

RNN models outperform other models in forecasting short-

term rainfall, especially when using data directly related to 

precipitation drivers such as humidity and pressure. 

Incorporating interconnected variables such as relative 

humidity, atmospheric pressure, and temperature significantly 

improved the performance of the RNN model, given their 

direct relationship with precipitation formation mechanisms. 

Humidity and temperature influence condensation, while 

atmospheric pressure reflects atmospheric stability, helping 

the model capture the complex temporal patterns associated 

with rainfall. Damavandi and Shah [42] demonstrated that 

using these variables together significantly improves the 

accuracy of rainfall forecasting models. 

On the other hand, some of the results of the current study 

contradict those of Sahoo et al. [43], which recommended 

always using all available features to improve forecast 

accuracy. However, the climatic variability in Jordan suggests 

that using only correlated features may be more appropriate in 

some areas, as demonstrated in Ajlon and Irbid. Thus, the 

results of this study reflect the importance of adapting to local 

climate specificities in building forecasting models and 

highlight the effectiveness of RNNs when using a specific set 

of correlated variables, providing high performance with 

improved computational efficiency. 

4. CONCLUSIONS

The results of this study showed that the RNN model 

performed excellently in predicting rainfall amounts in most 

Jordanian cities when using eight correlated climate features. 

It achieved the lowest error rates in cities such as Irbid and 

Karak, indicating its effectiveness in climate environments 

with stable patterns. However, Amman was an exception, as 

the best performance was achieved when using all climate 

features, not just correlated variables. This is due to the 

complex climate of the capital, which is affected by the urban 

heat island phenomenon and terrain variations. 

When performing 100-hour forecasts for the period from 

2018 to 2021, the average hourly predict rainfall reaching 

0.017 mm in Amman, 0.048 mm in Karak, 0.18 mm in Irbid, 

and 0.15 mm in Ajloun. The percentage error rate (the percent 

differences between actual and predicted rainfall to actual 

rainfall) was over 100 random hours about 1.11% in Irbid, 

11.76% in Ajloun, 40% in Karak, and 43.33% in Amman. This 

indicates that Irbid had the lowest error and highest accuracy 

in forecasting, while Amman faced the greatest challenge in 

accuracy. 

These results confirm the importance of using 

interconnected climate characteristics rather than relying 

solely on precipitation. They also highlight the effectiveness 

of the RNN model in handling short- to medium-term data. 

The study also indicates that predicate accuracy varies from 

city to city, highlighting the need to adapt models to the 

climatic characteristics of each region to achieve the best 

results. 
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NOMENCLATURE 

airT2 Air temperature at 2 meters, ℃ 

ALLSKY KT 
All sky insolation clearness index, MJ .m-2. 

D-1

ALLSKY 

SFC SW 

DWN 

Total solar irradiance incident, MJ .m-2. D-1 

CLRSKY 

SFC SW 

DWN 

Clear sky shortwave downward irradiance, 

MJ .m-2. D-1 

MSE Mean squared error 

NRMSE Normalized root mean square error 

PS Surface pressure, kPa 

QV2M Humidity at 2 meters, g.kg-1 

Rain Precipitation, mm 

RH2M Relative humidity at 2 meters 

RMSE Root mean square error 

T2MDEW Dew/frost temperature at 2 meters, ℃ 

T2MWET Wet bulb temperature at 2 Meters, ℃ 

WD50M Wind direction at 50 meters, degrees 

WS50M Wind speed at 50 meters, m.s-1 

WS10M Wind speed at 10 meters, m.s-1 

x Reading 

z Standardized value 

Greek symbols 

σ Standard deviation 

µ mean 
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