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The growing need for wireless communication services has resulted in a pressing need 

for more enhanced exploitation of available spectrum bandwidth. Cognitive Radio (CR) 

technology emerges as a potential solution, facilitating secondary users, in their ability 

to opportunistically access underutilized spectral resources without causing harmful 

interference to primary users. In this paper, we propose and analyze a horizontal 

spectrum-sharing model for CR systems operating in wideband environments. Unlike 

traditional orthogonal access schemes, the horizontal model enforces exclusive sub-

band transmission per user in the Time-Division Duplex (TDD) framework, combined 

with the water-filling power allocation strategy to maximize spectral efficiency. We 

develop an analytical framework to characterize the spectral efficiency and capacity 

achievable by the proposed model and assess its asymptotic behavior under Rayleigh 

fading channels. Extensive simulations are conducted to validate the theoretical 

findings, comparing the horizontal model to the classical orthogonal model across 

various Signal-to-Noise Ratio (SNR) regimes. Results demonstrate that the horizontal 

sharing approach significantly improves spectral efficiency, especially in low-SNR 

conditions, and converges to the orthogonal performance in high-SNR environments. 

This work provides valuable insights into the design of future CR systems, highlighting 

the advantages of opportunistic spectrum pooling strategies for enhancing overall 

network performance. 
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1. INTRODUCTION

The exponential rise in wireless communication 

technologies has significantly increased the demand for radio 

spectrum, a limited and tightly regulated resource [1-3]. 

Despite this growing demand, various studies and practical 

observations consistently indicate that substantial portions of 

the licensed spectrum are often left unused across different 

times, locations, and frequency bands. This persistent 

underutilization highlights a pressing challenge of enhancing 

spectrum efficiency while ensuring that the rights and 

operations of licensed (primary) users are preserved [4, 5]. 

Traditional spectrum management relies on static allocation 

policies, where frequency bands are exclusively assigned to 

specific services or operators [6]. While this model simplifies 

regulation, it leads to significant spectral wastage, particularly 

in frequency bands reserved for applications with variable or 

sporadic usage. In response to this inefficiency, the research 

community and regulatory bodies, such as Federal 

Communications Commission (FCC), have proposed more 

dynamic and intelligent methods for spectrum access [4]. 

One prominent solution is CR concept, which enables 

secondary (unlicensed) users to opportunistically access 

unused spectrum portions while ensuring no detrimental 

interference to primary users. CRs rely on spectrum sensing, 

adaptive transmission, and learning mechanisms to identify 

and exploit spectrum holes in real time. The potential of CR 

systems has led to the development of various frameworks, 

including Dynamic Spectrum Access (DSA), Opportunistic 

Spectrum Access (OSA), and cooperative sensing techniques 

[7]. 

In this context, this work selects several recent and 

noteworthy studies for analysis, aiming to identify research 

gaps in this area. For instance, Bouhafs et al. [6] proposed a 

spectrum management platform for 6G networks based on a 

sharing economy model. Using a simulated dense Internet of 

Things (IoT) deployment with 5G base stations and Wi-Fi 

802.11ah access points, they demonstrated dynamic spectrum 

trading through Software Defined Wireless Networking 

(SDWN), heterogeneous spectrum programming, and a 

brokering interface. The approach improves spectral 

efficiency, Signal to Interference plus Noise Ratio (SINR), and 

reduces connectivity denial compared to traditional static 5G 

allocation. However, its limitations include reliance on simple 

trading algorithms and lack of real-time, interference-aware 

control.
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Table 1. Summary of related works on spectrum management approaches 

 

Ref. Year Materials (System/Setup) Methods Advantages 
Limitations (vs. Horizontal Sharing in 

Cognitive Radio Networks (CRNs)) 

[6] 2022 
Simulated dense IoT with 5G 

BSs and Wi-Fi 802.11ah APs 

SDWN, spectrum 

brokering, 

heterogeneous 

programming 

↑ Spectral efficiency, 

↑ SINR, ↓ denial rate 

No exclusive sub-band use, lacks 

interference-aware control and water-

filling 

[8] 2022 

Simulated 10-device SAGIN 

setup with varying priorities 

and bandwidths 

HNOGA: GA + 

MGA + niche + 

orthogonal crossover 

Fast convergence, 

strong stability, 

superior optimization 

No real-time power control or exclusive 

allocation; not adaptive to dynamic CRN 

needs 

[9] 2023 

Centralized MATLAB model 

with fuzzy logic and smart 

sensing 

SSDSM with 

periodic sensing + 

decision support 

↑ Throughput, ↓ 

delay, ↑ QoS 

Assumes ideal sensing; lacks 

decentralization and dynamic multi-user 

adaptability 

[10] 2024 
2-IoT device distributed CSS 

with no fusion center 

Energy detection, 

PBPO, dynamic 

programming 

↑ Sensing accuracy, ↓ 

sensing cost, scalable 

Fixed cooperation structure; limited 

adaptability to heterogeneous/dynamic 

spectrum conditions 

[11] 2024 

IoV system with cognitive 

vehicles, PBS, and fusion 

center 

Double-threshold 

energy detection; 

OR/AND fusion rules 

based on traffic 

↑ Detection accuracy 

under low SNR, ↓ 

false alarms, energy 

efficient 

Centralized fusion, static grouping/rules; 

lacks flexibility for complex, time-

varying vehicular scenarios 

Unlike horizontal spectrum-sharing models in CRNs, this 

approach lacks exclusive sub-band access and intelligent 

power allocation, underscoring the added value of horizontal 

models in managing interference and optimizing performance. 

Meng et al. [8] proposed a Hybrid Niche Orthogonal 

Genetic Algorithm (HNOGA) to allocate spectrum for diverse 

devices with varying frequency needs in integrated space–air–

ground networks. They used a simulated system consisting of 

ten frequency-using devices with varying bandwidths, 

transmission powers, and service priorities. The approach is 

based on mathematical modeling and optimization, integrating 

a standard genetic algorithm with a micro genetic algorithm 

for enhanced local search capabilities. 

It also adopts niche techniques for population diversity, and 

an orthogonal uniform crossover operator for efficient solution 

generation. The main advantages of this approach include 

faster convergence, higher stability, and superior optimization 

performance compared to traditional genetic, ant colony, and 

greedy algorithms. However, the method lacks key 

characteristics found in horizontal spectrum-sharing models 

for CRNs, specifically, it does not enforce exclusive sub-band 

allocation or real-time power control strategies like water-

filling. Consequently, while effective within its scope, the 

method may be less adaptable to dynamic or interference-

sensitive environments where Cognitive Radio (CR) thrives, 

highlighting the added value and relevance of our proposed 

horizontal sharing framework. 

Fraz et al. [9] proposed a Smart Sensing Enabled Dynamic 

Spectrum Management (SSDSM) framework for CRNs using 

a centralized model simulated in MATLAB. The system 

employs fuzzy logic decision support and periodic smart 

sensing to optimize spectrum allocation, reduce energy 

consumption, and improve QoS. Advantages include 

increased throughput, reduced service delay, and fewer 

handoffs compared to baseline methods. However, the 

approach assumes ideal sensing and centralized coordination, 

limiting its effectiveness in decentralized, dynamic multi-user 

scenarios, highlighting the need for more adaptable and 

interference-aware spectrum sharing strategies. 

Wu et al. [10] developed a distributed cognitive IoT model 

for Cooperative Spectrum Sensing (CSS), involving two IoT 

devices that use energy detection and sequential decision-

making without a centralized fusion center. They applied 

dynamic programming and a Person-By-Person Optimization 

(PBPO) method to minimize the combined cost of sensing 

time and decision errors, formulating and solving a joint 

optimization problem. This approach improves sensing 

accuracy and reduces average cost, making it suitable for 

scalable, heterogeneous IoT environments. However, the 

method is constrained by its reliance on fixed cooperation 

structures and lacks adaptability to diverse, dynamic spectrum 

usage patterns, emphasizing the importance of developing 

more adaptive and environment-sensitive spectrum access 

mechanisms. 

Du and Wang [11] introduced a double-threshold 

cooperative spectrum sensing algorithm tailored for CR 

applications within the Internet of Vehicles (IoV), utilizing a 

system model that includes cognitive vehicles, a Primary Base 

Station (PBS), and a fusion center. The method enhances 

traditional energy detection by introducing dual thresholds, 

which are dynamically adjusted based on noise uncertainty, 

and applies collaborative decision-making using OR and AND 

fusion rules depending on traffic conditions. This approach 

significantly improves detection accuracy, especially under 

low SNR and high-noise environments, and reduces false 

alarms compared to single-threshold methods. Advantages of 

the proposed method include adaptability to fluctuating 

vehicular and environmental conditions, reduced energy 

consumption, and higher reliability in detecting spectrum 

availability. However, the method still faces limitations due to 

its dependence on centralized fusion decisions, fixed vehicle 

groupings, and static rule-based adaptation, which restrict its 

flexibility and responsiveness in more complex and 

heterogeneous communication landscapes, underscoring the 

importance of exploring mechanisms that can better 

accommodate dynamic interactions and varying operational 

contexts. To identify research gaps and highlight the unique 

value of our horizontal spectrum-sharing model, Table 1 

summarizes key recent studies. 

Despite notable advancements in CR research, several 

critical limitations persist in current spectrum management 

approaches. As summarized in Table 1, many recent methods 

still exhibit structural or operational drawbacks that limit their 

applicability in real-world, dynamic environments. For 

instance, the SSDSM framework presented by Fraz et al. [9] 

employs fuzzy logic and periodic sensing in a centralized 

MATLAB setup, achieving gains in throughput and QoS. 

However, it assumes ideal sensing conditions and centralized 
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coordination, which can hinder adaptability and scalability in 

decentralized, heterogeneous networks. Similarly, the 

distributed cooperative spectrum sensing model in reference 

[10] introduces energy detection and dynamic programming to 

improve sensing accuracy and reduce cost, but its reliance on 

fixed cooperation structures limits flexibility in diverse or 

evolving spectrum conditions. The double-threshold 

cooperative algorithm proposed by Du and Wang [11] 

improves detection accuracy under low SNR and reduces false 

alarms in vehicular networks, yet it still depends on centralized 

fusion decisions and static rule configurations, restricting 

responsiveness in time-varying environments. Furthermore, 

methods such as those studies [6, 8] focus on optimization and 

spectrum brokering, but fall short in interference-aware power 

control and exclusive sub-band access. Overall, these 

limitations highlight the necessity for more robust, 

decentralized, and horizontally coordinated CRN strategies 

that support intelligent sub-band allocation, dynamic 

cooperation, and adaptive interference mitigation to maximize 

system-wide spectral efficiency. In summary, while prior 

studies have explored dynamic access and optimization 

strategies, they often lack exclusive sub-band allocation, real-

time power control, or decentralized operation. This paper 

proposes a novel horizontal spectrum-sharing model that 

combines exclusive sub-band usage with water-filling power 

allocation in a TDD CR system. Analytically evaluated under 

Rayleigh fading and validated via simulations, the model 

enhances spectral efficiency, especially at low SNR, while 

supporting scalable, decentralized access in wideband 

environments. 

To address these shortcomings, this paper proposes a 

horizontal spectrum-sharing model that redefines access 

dynamics in CR systems. Unlike previous models, our 

approach enforces exclusive sub-band access per user within 

TDD framework (see Figure 1). Figure 1 illustrates the 

horizontal spectrum-sharing concept, where each user is 

assigned a distinct sub-band within the TDD frame, preventing 

simultaneous transmissions on the same sub-band and 

minimizing interference. This exclusivity, paired with a water-

filling power allocation strategy, enables precise interference 

control and maximizes collective system efficiency. The 

model prioritizes coordinated multi-user access, ensuring that 

at most one user transmits on any given sub-band at a time, 

which sharply contrasts with shared-access strategies 

employed in earlier studies. 

We explore the application of this model in a heterogeneous 

wideband CR environment, where both primary and secondary 

users seek communication opportunities across various 

receivers. Assuming perfect spectrum sensing, the system 

dynamically assigns sub-bands based on real-time availability 

and user demand. By enforcing one-user-per-sub-band 

transmission, our framework significantly enhances spectral 

efficiency and total system capacity, providing a robust 

alternative to traditional access schemes. Through simulation 

and analysis, we demonstrate that horizontal sharing mitigates 

interference more effectively and also achieves superior 

performance in terms of global spectral utilization when 

compared to conventional spectrum access methods. 

Compared to previous methods [6, 8, 9], which often lack 

exclusive sub-band access or rely on centralized spectrum 

decisions, our approach enables fully decentralized allocation 

with exclusive access per sub-band and dynamic power 

control. This combination allows for efficient operation in 

fluctuating environments, particularly under noise-limited 

(low-SNR) conditions. 

This paper is organized as follows: Section 2 presents 

Materials and Methods, starting with an analysis of spectral 

efficiency in CR environments, followed by a description of 

the channel model. We then introduce the CR protocol that 

supports horizontal sub-band assignment, and formulate the 

detection problem along with its integration into the network 

operation. Next, we perform a detailed spectral efficiency 

analysis and assess the asymptotic performance of the 

proposed method. Section 3 discusses the simulation results 

and comparative performance evaluation. Section 4 provides 

the conclusions of this work and potential opportunities. 

Throughout this paper, we refer to our proposed approach 

as the horizontal spectrum-sharing model, which enables 

decentralized and interference-aware access through exclusive 

sub-band allocation in a TDD framework. The term spectrum 

pooling is used more generally to describe the dynamic reuse 

of sub-bands across users, a behavior inherently supported by 

the horizontal model. We use cognitive users to denote 

secondary users in a CRN who opportunistically access 

spectrum while avoiding interference with licensed (primary) 

users. 

 

 
 

Figure 1. Wheel slip behavior under the proposed control algorithm 

 

 

2. MATERIALS 

 

Building upon the limitations identified in previous CR 

models and the motivations outlined in the introduction, this 

section presents the core framework and technical components 

of the proposed horizontal spectrum-sharing model. We begin 

by analyzing the spectral efficiency challenges inherent to 

wideband CR systems operating under Rayleigh fading 
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conditions. Then, we detail the adopted channel model, 

highlighting the assumptions made regarding channel state 

information and signal propagation. Following this, we 

introduce the CR protocol specifically designed for 

coordinated sub-band assignment, which enforces a one-user-

per-sub-band transmission policy to maximize spectral 

efficiency. We also describe the detection mechanism that 

enables users to dynamically sense and adapt to the spectrum 

environment. After establishing these foundational elements, 

we develop an analytical framework to evaluate both the 

spectral efficiency and system capacity under finite and 

asymptotic conditions. Through this structured methodology, 

we aim to rigorously assess the performance benefits of 

horizontal spectrum pooling in CNRs. 

 

2.1 Spectral efficiency 

 

In spectrum pooling systems, channel allocation strategies 

are designed to give priority to primary users. Secondary users 

are then allocated to the identified spectrum gaps. These holes 

are assumed to be empty within the sub-band range. Therefore, 

secondary users fill these gaps as long as they reach the 

desirable transmission power level. More specifically, the 

spectrum is divided into 𝑁 sub-bands and each user 𝑙 tries to 

transmit using an optimal power control strategy. The 

operation of the system is considered within a wideband 

context. Consequently, the 𝑁 sub-bands of CR channel extend 

to infinity ( 𝑁 → ∞ ). The channel is assumed to have 

components that experience fading and vary slowly over time, 

where the receiver is capable of sensing and tracking the 

channel fluctuations. The channel fluctuations, represented by 

the channel gain ℎ for each user 𝑙 and are assumed constant 

over a block duration so that they can be retained while the 

block is processed. 

Under these assumptions, the average capacity of user 𝑙 in 

bits/s/Hz is given by Eq. (1) [12], where 𝑝𝑙(𝑡) denotes the 

power allocated by user 𝑙  as a function of the fading 

coefficient 𝑡 , and 𝑁0  represents the noise power spectral 

density. 

 

𝐶𝑙,∞ = ∫ log2
∞

0
(1 +

𝑝𝑙(𝑡)⋅𝑡

𝑁0
) 𝑒−𝑡  𝑑𝑡  (1) 

 

To maximize the transmission rate when optimal power 

control is applied, the power 𝑝𝑙(𝑡) is subjected to the average 

power constraint as in Eq. (2), where 𝛾0 is the water-filling 

power allocation threshold (also called the cut-off parameter). 

Thus, the spectral efficiency of CR in Rayleigh fading 

channels can be properly modeled under these conditions. 

 

∫ (
1

𝛾0
−

𝑁0

𝑡
)

∞

0
𝑒−𝑡  𝑑𝑡 = 1  (2) 

 

2.2 Channel model 

 

The discrete baseband frequency model at the receiver 𝑅𝐼 

(see Figure 1) is given by Eq. (3), where ℎ𝑖
𝑙  is the block fading 

process of user 𝑙  on sub-band 𝑖 , 𝑠𝑖
𝑙  represents the signal 

transmitted by user 𝑙 on sub-band 𝑖, 𝑝𝑖
𝑙(ℎ𝑖

𝑙) refers to the power 

control function of user 𝑙 on sub-band 𝑖, and 𝑛𝑖
𝑙 is the additive 

white Gaussian noise on the 𝑖-th sub-band. 

 

𝑦𝑅𝐼
𝑖 = ℎ𝑖

𝑙√𝑝𝑖
𝑙(ℎ𝑖

𝑙)𝑠𝑖
𝑙 + 𝑛𝑖

𝑙 ,  

for 𝑖 = 1, … , 𝑁 and 𝑙 = 1,… , 𝐿  

(3) 

 

It is assumed that the channel remains constant over the 

coherence time, which corresponds to a single fading block 

(i.e., coherent communication). The assumption of coherent 

reception is reasonable when the fading is slow enough to 

allow the receiver to track the channel variations. Statistically, 

the channel gains ℎ𝑙  are modeled as independent and 

identically distributed (i.i.d.) Rayleigh fading random 

variables, both across users 𝑙 and sub-bands 𝑖. The wideband 

CR channel in the horizontal sharing model, with multiple 

secondary users operating over 𝑁  sub-bands in parallel, is 

represented schematically in Figure 1. In the special case of a 

single secondary user employing orthogonal access across the 

available sub-bands, the system can be modeled as shown in 

Figure 2. Figure 2 depicts the orthogonal access scenario as a 

baseline model, where a single secondary user accesses non-

overlapping sub-bands, eliminating interference but limiting 

spectral efficiency. This representation simplifies the analysis 

while capturing the essential aspects of dynamic sub-band 

selection in CR environments. 

The Rayleigh fading assumption implies the following 

normalization presented by Eq. (4). 

 

𝔼[|ℎ𝑙|
2] = 1, for 𝑙 = 1, … , 𝐿 (4) 

 
 

Figure 2. CR channel model in a wideband/multi-band context with primary and secondary users operating under horizontal 

spectrum sharing 
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2.3 CR protocol 

 

Several modern studies have investigated the spectral 

efficiency of cognitive systems relative to traditional settings, 

allowing cognitive users to transmit simultaneously with 

primary users over the same frequency band. 

Various studies in CR field networks have explored 

different strategies to enhance spectral efficiency and enable 

coexistence between primary and secondary users [2, 13, 14]. 

In some approaches, cognitive users are assumed to have prior 

knowledge or partial awareness of the primary users’ 

transmissions, allowing for more intelligent adaptation of their 

communication strategies. Other frameworks consider 

cooperative strategies, where both primary and secondary 

systems collaboratively design their encoder-decoder 

structures to mitigate mutual interference and optimize 

performance. However, in practical deployments, primary 

systems are typically unaware of the existence of cognitive 

users and operate independently according to the requirements 

of primary network users. Consequently, CRs must 

autonomously sense their communication environment and 

adapt their transmission parameters to maximize the quality of 

service for secondary users while minimizing interference to 

primary transmissions. Recent research proposes protocols 

where primary and secondary users share the spectrum 

asynchronously, often under the assumption that each user 

only has knowledge of its own channel state and can detect the 

occupancy of the spectrum through spectrum sensing 

mechanisms in multiband or wideband systems [2, 13, 14]. 

Under our proposed protocol, cognitive users listen to the 

wireless channel and determine in real-time which parts of the 

spectrum are occupied. They then continuously adapt their 

signal accordingly. After this detection phase, a comparison 

algorithm is introduced between users based on capacity. 

Ultimately, only one secondary user fills the detected spectral 

holes, maximizing capacity, as the system operates in TDD 

mode. In TDD, transmission and reception occur over the 

same frequency band but at different times. Each transmitter 

for user 𝑙, 𝑇𝑙 , where, 𝑙 = 1,… , 𝐿 estimates the pilot sequence 

from receiver 𝑅𝑙  to determine the channel gain ℎ𝑙 . It is 

assumed that the channel remains constant between the time 

of estimation and transmission. Thus, each user 𝑙 knows only 

their own channel gain ℎ𝑙  and the statistical properties 

(probability distribution) of other links. An especially 

interesting goal in this context, when employing a listen-

before-talk strategy, is to reliably detect sub-bands currently 

available for a given user, saving them for upcoming 

transmissions. This knowledge can be acquired either 

centrally, via a database maintained by the regulator or another 

authority [15-17], or via an additional signaling channel for 

collision detection to prevent cognitive users from 

transmitting simultaneously. 

Specifically, the primary user arrives first and estimates its 

channel gain. Then, the cognitive users synchronously 

compare their capacities to select the one with the maximum 

capacity, thus avoiding simultaneous transmissions and 

enhancing the system’s overall capacity. Secondary users 

arrive randomly (for example, following a Poisson process) 

and estimate their channel links. In this new framework, the 

primary user remains ignorant of the cognitive users. 

Cognitive users, capable of accurately sensing the spectral 

environment over a wide bandwidth, initiate communication 

only when it does not interfere with primary users. Thus, under 

our opportunistic approach, a device transmits on a certain 

sub-band only if no other user is doing so. In an asynchronous 

context, the probability of two users transmitting 

simultaneously is negligible.  

The sensitive algorithms for cognitive users and the 

performance analysis of such an approach are proposed [15]. 

In the rest of this paper, we adopt this framework to analyze 

the achievable performance of the system in terms of capacity, 

spectral efficiency gains, and the maximum number of 

possible communication pairs. Such a simple and precise 

modeling provides a clear understanding of the real benefits of 

spectrum pooling technology. Despite the excitement 

generated by CRs, many theoretical questions about their 

performance limits remain unanswered. 

To evaluate the theoretical performance limits of such 

systems, three capacity metrics are commonly discussed in the 

literature. Comprehensive reviews of these measures can be 

found in several prior works. For the proposed protocol, the 

most relevant performance indicator is the instantaneous 

capacity per sub-band, expressed in bits/s/Hz, also known as 

spectral efficiency, as defined in Eq. (5). The sum here is taken 

over the stationary instantaneous distribution of the fading 

channel for each user 𝑙. The instantaneous capacity determines 

the maximum achievable rate across all fading states without 

delay constraints. 

 

𝐶𝑙 =
1

𝑁
∑ log2
𝑁
𝑖=1 (1 +

𝑝𝑙
𝑖|ℎ𝑙

𝑖|
2

𝑁0
) , 𝑙 = 1,… , 𝐿  (5) 

 

In our work, we transmit using optimal power allocation 

under a total power budget constraint to maximize each user’s 

transmission rate. When Channel State Information (CSI) is 

available at the transmitter, users adapt their transmission 

strategies accordingly. The corresponding optimal power 

allocation is the well-known water-filling strategy, expressed 

as in Eq. (6), where 𝛾0 is the Lagrange multiplier satisfying the 

average power constraint presented in Eq. (4). Without loss of 

generality, we assume 𝑃 = 1  in the remainder of this 

document. 

 

𝑝𝑙
𝑖 = (

1

𝛾0
−

𝑁0

|ℎ𝑙
𝑖|
2)

+

  (6) 

 
1

𝑁
∑ 𝑝𝑙

𝑖𝑁
𝑖=1 = 𝑃  (7) 

 

The water-filling strategy offers significant performance 

gains compared to constant-power strategies, particularly at 

low SNR. When transmission power is limited, it is more 

efficient to concentrate energy on the strongest sub-channel 

rather than spreading it across all modes. At high SNR, the 

transmitter tends to distribute power across all available sub-

bands. This behavior has been similarly observed [16, 17]. It 

is important to note that even though a water-filling strategy is 

adopted in this analysis, it does not restrict the proposed 

protocol. As mentioned earlier, in spectrum pooling 

implementations, cognitive users operate on the remaining 

sub-bands left by the licensed system, resulting in a binary 

channel assignment, as depicted in Figure 2 and Figure 3. 

Figure 3 illustrates the binary sub-band allocation in a 

wideband CR system, where each available sub-band is either 

fully used or left idle based on channel conditions and 

spectrum availability. 
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Figure 3. CR channel in a wideband/multi-band context with 𝑁 sub-bands and a single secondary user (orthogonal access) 

 

For clarity, consider an example where 𝑁 = 10 sub-bands. 

The primary user always has priority access to the entire 

bandwidth, while cognitive users adapt their signals to fill 

detected gaps according to their priority order. Initially, the 

primary user maximizes its rate based on its channel process. 

As previously described in Eq. (1) five secondary users at any 

instant 𝑡 with channel gains exceeding a threshold 𝛾0𝑁0 wish 

to transmit on sub-band 𝛹2 . However, the TDD principle 

ensures that only one user transmits at a time. Our approach 

respects this principle by comparing the capacities of all 

cognitive users wishing to communicate. The secondary user 

with the maximum capacity 𝐶max  senses the spectrum and 

transmits only on inactive sub-bands. Subsequently, the next 

cognitive user senses the residual sub-bands left unused by 

prior transmissions, adapting their signal to fill these gaps (𝛹3, 

𝛹4, etc.) until full spectrum utilization is achieved. 

 

2.4 Detection problem 

 

Until now, the focus has been on pairwise communications 

between transmitters and receivers. We now examine inter-

transmitter communications to analyze the detection problem. 

For this purpose, we assume that the baseband model is 

discrete in time over a period 𝑇 , where each user 𝑙  for 𝑙 =
2,… , 𝐿 operates over 𝑁 sub-bands as described in Figure 2. 

The received signal at user 𝑙 can be expressed as in Eq. (8), 

where 𝑐𝑙−1,𝑙
𝑖 (𝑘) represents the block fading process from user 

𝑙 − 1  to user 𝑙  on the 𝑖 -th sub-band at time 𝑘 . The term 

𝑝𝑙−1
𝑖 (ℎ𝑙−1

𝑖 ) denotes the power control function of user 𝑙 − 1 

on sub-band 𝑖, 𝑠𝑙−1
𝑖 (𝑘) is the transmitted signal from user 𝑙 −

1 on sub-band 𝑖 , and 𝑛𝑙−1
𝑖 (𝑘)  represents the additive white 

Gaussian noise on the 𝑖-th sub-band at time 𝑘. While perfect 

spectrum sensing is assumed in this model to facilitate 

tractable analysis, we acknowledge that this is an idealized 

condition. In practice, sensing may be subject to noise 

uncertainty, misdetection, or false alarms. As such, our results 

represent a theoretical upper bound on system performance. 

Future work will extend this framework to account for realistic 

sensing imperfections and explore robust detection strategies. 

 

𝐲𝑙
𝑖(𝑘) = 𝑐𝑙−1,𝑙

𝑖 (𝑘)√𝑝𝑙−1
𝑖 (ℎ𝑙−1

𝑖 )𝑠𝑙−1
𝑖 (𝑘) + 𝑛𝑙−1

𝑖 (𝑘),  (8) 

 

We further assume that 0 ≤ 𝑘 ≪ 𝛽𝑇 , meaning that the 

coherence time is sufficiently large for the channel to remain 

constant over the samples and only change to a new 

independent value after some duration (block fading model). 

The sensing techniques proposed rely on the assumption that 

all devices operate under a unified standard and know the pilot 

sequences used by the other users. As mentioned earlier, in this 

work, the spectrum pooling behavior is assumed to allow only 

one user to transmit simultaneously over the same sub-band. 

to support TDD operation, synchronization is achieved 

through pilot-based channel estimation and a distributed 

scheduling protocol, where each user independently estimates 

its channel and compares local capacities before transmission. 

Time slots are aligned using a shared reference signal or frame 

structure, ensuring that sub-band assignments remain 

collision-free. 

Thus, the received signal at user 𝑙  can also be rewritten 

conditionally as in Eq. (9). Assuming that 𝛽𝑇  is an integer 

equal to 𝑀  and that 𝛽𝑇  is sufficiently large, the average 

received power during the detection period at receiver 𝑅𝑙  is 

presented by Eq. (10), where the first case represents the sum 

of signal and noise when transmission occurs, and the second 

case represents pure noise otherwise. 

 

𝐲𝑙
𝑖(𝑘) =

{
𝑐𝑙−1,𝑙
𝑖 (𝑘)√𝑝𝑙−1

𝑖 (ℎ𝑙−1
𝑖 )𝑠𝑙−1

𝑖 (𝑘) + 𝑛𝑙−1
𝑖 (𝑘), if 𝑝𝑙−1

𝑖 ≠ 0

𝑛𝑙−1
𝑖 (𝑘), otherwise

  
(9) 

 

lim
𝑀→∞

1

𝑀
∑ |𝐲𝑙

𝑖(𝑘)|
2𝑀

𝑘=1 =

{
|𝑐𝑙−1,𝑙
𝑖 |

2
𝑃𝑙−1
𝑖 + 𝑁0, if 𝑝𝑙−1

𝑖 ≠ 0

𝑁0, otherwise
  

(10) 

 

Consequently, to determine which part of the spectrum is 

used, a cognitive user detects the received power and 

compares it with the known noise power 𝑁0 . The main 

difficulty in this detection process is to obtain an accurate 

estimation of the noise variance. In the context of spectrum 

pooling mechanisms, it is necessary to employ a channel 

detection method that continuously senses the channel. 

Furthermore, channel detection must be performed with a very 

high probability of correct detection to ensure a very low 

probability of interference with the primary system, as 

highlighted in recent works [18, 19]. 
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2.5 Spectral efficiency analysis 

 

We first attempt to identify the set of sub-bands detected as 

occupied by user 𝑙  as in Eq. (11), where 𝛹𝑙  satisfies the 

following properties in Eq. (12). Then, the capacity per band 

for user 𝑙 with 𝑁 sub-bands is given by Eq. (13). 

 

𝛹𝑙 = {𝑖 ∈ {1, … ,𝑁} | 𝑝𝑙−1
𝑖 ≠ 0} (11) 

 

{
 
 

 
 

𝛹1 = ∅,

⋃𝛹𝑙
𝐿+1

𝑙=1
⊆ {1,… , 𝑁},

⋃𝛹𝑙
𝐿+1

𝑙=1
= ∅

  (12) 

 

𝐶𝑙,𝑁 =
1

card(𝛺𝑙)
∑ log2𝑖∈𝛺𝑙

(1 +
𝑝𝑙
𝑖|ℎ𝑙

𝑖|
2

𝑁0
)  (13) 

 

Here, 𝛺𝑙 represents the set of remaining inactive sub-bands 

detected by user 𝑙, namely, as presented in Eq. (14). 

 

𝛺𝑙 = {𝑖 ∈ {1, … , 𝑁}} ∩ ⋃ 𝛹𝑘
𝑙−1
𝑘=1   (14) 

 

For a given number of sub-bands 𝑁 , the optimal power 

allocation that maximizes the transmission rate for user 𝑙 
solves the following optimization problem depicted in Eq. 

(15), subject to the average power constraint in Eq. (16). 

 

max
𝑝𝑙
1,…,𝑝𝑙

𝐼
𝐶𝑙,𝑁 for 𝑙 ∈ [1, 𝐿]  (15) 

 

{

1

card(𝛺𝑙)
∑ 𝑝𝑙

𝑖 = 1
𝑖∈𝛺𝑙

𝑝𝑙
𝑖 ≥ 0

 (16) 

 

The optimal power control policy is derived in Eq. (5). It is 

noteworthy that the maximum number of users 𝐿 authorized in 

such a system must satisfy the condition that card(𝛺𝐿) ≠ 0. 

We now study the derivation of the achievable spectral 

efficiency for this system. The spectral efficiency per band for 

user 𝑙 is given by Eq. (17). By multiplying and dividing Eq. 

(17) by card (𝛺𝑙), we obtain the formula in Eq. (18). 

 

𝛷𝑙,𝑁 =
1

𝑁
∑ log2 (1 +

𝑝𝑙
𝑖|ℎ𝑙

𝑖|
2

𝑁0
)

𝑖∈𝛺𝑙

 (17) 

 

𝛷𝑙,𝑁 = {

𝐶1,𝑁 if 𝑙 = 1

card(𝛺𝑙)

𝑁
⋅ 𝐶𝑙−1,𝑁 for 𝑙 ∈ [2, 𝐿]

 (18) 

 

Since the primary user benefits from the entire bandwidth, 

we have card(𝛺1) = 𝑁. As expected, when 𝑙 = 1, the spectral 

efficiency without cognition equals the primary user’s 

capacity 𝐶1,𝑁. We define 𝛥𝑙,𝑁 as the bandwidth gain factor for 

user 𝑙  over 𝑁  sub-bands, as presented by Eq. (19). In other 

words, the bandwidth gain factor represents the fraction of the 

unoccupied band allocated to user 𝑙 . Thus, the spectral 

efficiency per band for user 𝑙 can be expressed as in Eq. (20). 

 

𝛥𝑙,𝑁 =
card(𝛺𝑙)

𝑁
, for 𝑙 ∈ [1, 𝐿]  (19) 

 

𝛷𝑙,𝑁 = {
𝛥1,𝑁𝐶1,𝑁 , if 𝑙 = 1

𝛥𝑙,𝑁𝐶𝑙−1,𝑁, for 𝑙 ∈ [2, 𝐿]
 (20) 

 

Finally, the sum spectral efficiency of the system with 𝑁 

sub-bands across all users is given by Eq. (21). 

 

𝛷Sum,𝑁 = ∑ 𝛷𝑙,𝑁
𝐿
𝑙=1   (21) 

 

The advantage of our model in low-SNR regimes stems 

from its use of the water-filling power allocation strategy, 

which emphasizes power concentration on high-gain sub-

channels rather than uniform spreading. This leads to greater 

spectral efficiency in noisy environments compared to 

orthogonal or shared-access systems, where interference or 

power dilution reduces performance. 

 

2.6 Asymptotic performance 

 

We now analyze the achievable performance of devices 

operating under wideband conditions (𝑁 → ∞) . The 

instantaneous capacity of user 𝑙 for a finite number of sub-

bands is given Eq. (22), where 𝑝𝑙(𝑡) is subject to the average 

power constraint presented by Eq. (23). 

 

𝐶𝑙,∞ = ∫ log2

∞

0

(1 +
𝑝𝑙(𝑡) ⋅ 𝑡

𝑁0
)𝑓(𝑡) 𝑑𝑡,  

for 𝑙 = 1,… , 𝐿  

(22) 

 

∫ 𝑝𝑙
∞

0
(𝑡)𝑓(𝑡) 𝑑𝑡 = ∫ (

1

𝛾0
−

𝑁0

𝑡
)
+∞

0
𝑒−𝑡  𝑑𝑡 = 1  (23) 

 

Although this is not a limitation of our approach, from this 

point onward, we assume that the channel gains are 

independent and i.i.d. The spectral efficiency of user 𝑙 under 

i.i.d. Rayleigh fading is then represented as in Eq. (25), where 

𝐸𝑖 denotes the exponential integral. The Lagrange multiplier 

𝛾0 satisfies conditions in Eq. (24). 

 

𝐶𝑙,∞ = ∫ log2
∞

𝛾0𝑁0
(

𝑡

𝛾0𝑁0
) 𝑒−𝑡  𝑑𝑡 =

1

ln(2)
𝐸𝑖(𝛾0𝑁0)  (24) 

 
1

𝛾0
∫ 𝑒−𝑡
+∞

0
 𝑑𝑡 − 𝑁0𝐸𝑖(𝛾0𝑁0) = 1  (25) 

 

Our numerical results show that 𝛾0  increases as 𝑁0 

decreases and 𝛾0 always lies within the interval [0,1]. In the 

very high SNR regime, 𝛾0 → 1. In order to characterize the 

achievable performance in terms of spectral efficiency, we 

define the capacity across the frequency band 𝑊 by Eq. (26). 

Identifying expression Eq. (27) with Eq. (21), we characterize 

the frequency variation 𝑓 in terms of the channel gain 𝑡 as in 

Eq. (27). 

 

𝐶𝑙,∞(𝑊) =
1

𝑊
∫ log2

𝑊

2

−
𝑊

2

(1 +
𝑝𝑙(𝑓)|𝐻𝑙(𝑓)|

2

𝑁0
) 𝑑𝑓  (26) 

 

𝑓 = −𝑊 𝑒−𝑡 +
𝑊

2
  (27) 

 

Similarly to the previous section, we define the bandwidth 

gain factor 𝛥𝑙,𝑁 as the fraction of the inactive band detected by 

user 𝑙 over the total bandwidth 𝑊 for an infinite number of 

sub-bands as described by Eq. (28), where 𝛥𝑓 represents the 

frequency interval over which the fading gain is below a 
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threshold 𝛾0𝑁0, and asymptotically is presented in Eq. (29). 

 

𝛥𝑙,𝑁 =
𝛥𝑓

𝑊
  (28) 

 

𝛥∞ = 1 − exp(−𝛾0𝑁0) (29) 

 

Consequently, the asymptotic spectral efficiency of user 𝑙 is 

represented as in Eq. (30), similar to the fixed number of sub-

bands case, when 𝑙 = 1 , the spectral efficiency of the 

horizontal model equals the first user’s capacity 𝐶1,∞. 

 

𝛷𝑙,∞ = {
𝐶1,∞, if 𝑙 = 1

𝛥∞ ⋅ 𝐶𝑙−1,∞, for 𝑙 ∈ [2, 𝐿]
  (30) 

 

It is particularly interesting to quantify the gain in spectral 

efficiency to show the advantage of using the horizontal model 

over orthogonal systems. Following the same approach by 

iterating from user 2 to 𝐿, we derive the expression for the 

total asymptotic spectral efficiency as in Eq. (31). 

 

𝛷Somme,∞ = ∑ 𝛷𝑙,∞
𝐿
𝑙=1 = ∑ 𝛥∞

𝑘𝐿−1
𝑘=0 𝐶1,∞ =

1−𝛥∞
𝐿

1−𝛥∞
𝐶1,∞  (31) 

 

Thus, the spectral efficiency sum achieved under the 

cognitive communication model is greater than or equal to that 

of the orthogonal model 𝐶1,∞ . This result highlights the 

increasing interest in using horizontal models in future 

wireless communication systems, as the total spectral 

efficiency always outperforms traditional orthogonal systems. 

Furthermore, by substituting 𝐶1,∞ with its expression from Eq. 

(25), we obtain the final expression for the achievable spectral 

efficiency sum (i.e., Eq. (32)), which provides insights into the 

practical gains achievable by leveraging CR technologies 

without explicitly knowing the channel gain statistics through 

𝛾0 and the SNR. 

 

𝛷Somme,∞ =
1

ln(2)

1−𝛥∞
𝐿

1−𝛥∞
𝐸𝑖(𝛾0𝑁0)  (32) 

 

 

3. RESULTS AND DISCUSSION 

 

In this section, we present and analyze the performance 

evaluation of the proposed horizontal spectrum-sharing model 

through numerical simulations and theoretical analysis. We 

compare the spectral efficiency and capacity results of our 

approach against the conventional orthogonal access method 

under varying system conditions and SNR levels. The results 

highlight the advantages of the horizontal model, particularly 

in low-SNR environments, and confirm the theoretical 

predictions. Detailed discussions on the impact of the number 

of secondary users, sub-band allocations, and spectrum 

utilization efficiency are also provided to offer deeper insights 

into the system’s behavior. 

 

3.1 Performance evaluation 

 

To validate the proposed approach presented in the previous 

section, we compare the performance of our horizontal 

spectrum-sharing model against the classical orthogonal 

access method using numerical results and simulated 

expressions. The comparison is conducted under varying SNR 

conditions. For the simulations, we consider 𝐿 = 100 

(number of users), 𝑁 = 10 (number of sub-bands), and 𝑀 =

10  (number of secondary users), following the simulation 

setup commonly used in CR evaluations [20]. 

The evaluation shows that the horizontal model capacities, 

minimum ( MinHorz ), average ( MeanHorz ), and maximum 

(MaxHorz), are consistently greater than those achieved by the 

orthogonal model (MinOrth , MeanOrth , MaxOrth) in low SNR 

regions. As SNR increases, the performance of both the 

horizontal and orthogonal models converges. This will be 

illustrated in upcoming subsection, which compares their 

capacities across SNR levels, highlighting the horizontal 

model’s advantage in low-SNR conditions and convergence at 

high SNR. This comparison justifies that the horizontal model 

is particularly effective in low SNR or noisy environments, 

while for higher SNR values, both methods yield similar 

results. The detailed results are summarized in Table 2, where 

the minimum, maximum, and average capacities are reported 

for different SNR levels. 

 

3.2 Example 1: Mathematical explanation 

 

In this subsection, we illustrate the horizontal spectrum-

sharing algorithm through a concrete numerical example, as 

shown in Figure 4 and Figure 5. The top of Figure 4 shows the 

primary user’s occupied sub-bands, which are unavailable for 

secondary access. Below, the algorithm’s behavior is depicted 

over three consecutive time instants, 𝑡, 𝑡 + 1, and 𝑡 + 2, each 

involving five candidate secondary users. For each time step, 

the spectral efficiency (denoted by capacity 𝐶) of each user is 

computed based on available sub-bands. 

Figure 4 visualizes the dynamic sub-band allocation process 

across three-time steps, highlighting how secondary users 

compete for available spectrum. Figure 5 provides a detailed 

view of the allocation decisions at each step, illustrating the 

algorithm’s efficiency in maximizing spectral utilization 

without interference. As in Figure 5, the algorithm selects the 

set of users that maximizes total efficiency while ensuring no 

sub-band is reused among selected users. The bottom part of 

the figure shows the final allocation, where four users are 

chosen to collectively achieve a total spectral efficiency of 

11.164. 

The algorithm operates sequentially at each time step. First, 

the primary user selects the sub-band with the highest 

achievable capacity. Then, each secondary user independently 

evaluates the spectral efficiency across the remaining available 

sub-bands and selects the one offering the maximum gain, 

provided it is not already assigned. This process continues 

until all users are allocated or no sub-bands remain. The 

allocation ensures no sub-band reuse, preserving orthogonality 

across users in each time slot. The overall computational 

complexity is 𝑂(𝑀 ⋅ 𝑁), where 𝑀 is the number of users and 

𝑁  is the number of sub-bands, since each user performs a 

linear scan of available sub-bands. 

We begin by evaluating the performance of the primary 

user, who has exclusive access to the channel in the first 

allocation step. The spectral efficiency achieved is illustrated 

in Eq. (33). For the first secondary user, five spectral 

efficiencies corresponding to five candidate sub-bands are 

computed according to Eq. (34). Among the five sub-bands, 

sub-band 4 yields the highest capacity and is selected by the 

first user. Similarly, the second secondary user evaluates the 

spectral efficiency on each sub-band as in Eq. (35). Here, sub-

band 4 is again the optimal choice, although assignment may 

depend on whether it is already occupied. The third secondary 

user follows the same procedure as showcased in Eq. (36). 
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Table 2. Comparison between the capacity values of the two systems 

 
SNR (dB) MinOrth MinHiers MaxOrth MaxHiers MeanOrth MeanHiers 

0 10.4354 10.6850 11.1851 11.2640 10.7546 10.9123 

5 18.6511 18.7831 19.0700 19.0951 18.8301 18.9714 

10 29.5776 29.8603 30.1648 30.1834 29.8771 30.0490 

15 39.2132 39.6664 39.9552 39.9769 39.6426 39.8404 

20 63.3598 63.3598 63.3598 63.3598 63.3598 63.3598 

 

Primary User

C=10.319

Sum of spectral efficiencies = 11.164

4 users

Secondary User 1-1

C=0.252

Secondary User 1-2

C=0.831

Secondary User 1-3

C=1.064

Secondary User 1-4

C=1.349

Secondary User 1-5

C=1.191

Secondary User 2-1

C=0.983

Secondary User 2-2

C=0.205

Secondary User 2-3

C=0.407

Secondary User 2-4

C=0.997

Secondary User 2-5

C=0.494

Secondary User 3-1

C=0.591

Secondary User 3-2

C=0.123

Secondary User 3-3

C=1.061

Secondary User 3-4

C=0.925

Secondary User 3-5

C=0.885

 
 

Figure 4. Spectrum-sharing example over three-time steps (𝑡, 𝑡 + 1, 𝑡 + 2) with five candidate secondary users per step and final 

allocation yields total efficiency of 11.164 with no sub-band reuse 

 

 
 

Figure 5. Detailed breakdown of channel allocation and spectrum filling process 

 

𝐶max
PU = 10.319 (33) 

 

{
 
 

 
 
𝐶1,1 = 0.252

𝐶1,2 = 0.831

𝐶1,3 = 1.064

𝐶1,4 = 1.349

𝐶1,5 = 1.191

⇒ 𝐶max
(1) = max(𝐶1,𝑖) = 𝐶1,4 = 1.349 (34) 

 

{
 
 

 
 
𝐶2,1 = 0.983

𝐶2,2 = 0.205

𝐶2,3 = 0.407

𝐶2,4 = 0.997

𝐶2,5 = 0.494

⇒ 𝐶max
(2) = max(𝐶2,𝑖) = 𝐶2,4 = 0.997  (35) 

{
 
 

 
 
𝐶3,1 = 0.591

𝐶3,2 = 0.123

𝐶3,3 = 1.061

𝐶3,4 = 0.925

𝐶3,5 = 0.885

⇒ 𝐶max
(3) = max(𝐶3,𝑖) = 𝐶3,3 = 1.061  (36) 

 

Sub-band 3 is identified as the most favorable for user 3. 

Thus, it is chosen if not already claimed by a previous user. 

The system in this example includes a total of 𝐿 = 4 users: one 

primary and three secondaries. The aggregate system 

performance is measured by summing the maximum 

capacities of all users as presented by Eq. (37). This total 

capacity reflects the effectiveness of the horizontal model in 

maximizing spectral efficiency without overlap in 
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transmission. 

 

𝛷sum = 𝐶max
PU + 𝐶max

(1) + 𝐶max
(2) + 𝐶max

(3) = 11.164 (37) 

 

To formalize the sub-band allocation process described 

above, we present a simplified pseudocode representation of 

the horizontal spectrum-sharing strategy in Algorithm 1. This 

algorithm outlines how each user sequentially selects the most 

efficient available sub-band, ensuring non-overlapping 

assignments and maximizing total spectral efficiency. 

 

3.3 Example 2: Mathematical explanation 

 

In this subsection, we present a detailed explanation of the 

horizontal spectrum-sharing algorithm through a second 

numerical example that spans two sequential time steps, 𝑡 and 

𝑡 + 1. The process is illustrated in Figures 6 and 7, which 

depict how sub-bands are dynamically and efficiently assigned 

to secondary users over time. Each user selects the sub-band 

offering the highest spectral efficiency while ensuring that no 

sub-band is reused, thereby avoiding interference. Figure 7 

provides a step-by-step view of sub-band allocation across 

two-time steps, illustrating how the algorithm avoids overlap 

and maximizes spectral efficiency through sequential user 

selection. 

This example highlights the temporal coordination of users 

and the algorithm’s ability to sustain high cumulative 

efficiency in multi-user environments. We begin by evaluating 

the performance of the primary user, who again initiates the 

spectrum allocation by fully utilizing one available sub-band. 

The spectral efficiency achieved in this instance is shown in 

Eq. (38). 

 

𝐶max
PU = 10.609 (38) 

 

Next, we compute the individual spectral efficiencies for the 

first secondary user over five candidate sub-bands. As 

indicated in Eq. (39), sub-band 1 yields the highest value and 

is selected. 

 

{
 
 

 
 
𝐶1,1 = 1.321

𝐶1,2 = 0.925

𝐶1,3 = 0.928

𝐶1,4 = 1.167

𝐶1,5 = 0.896

⇒ 𝐶max
(1) = max(𝐶1,𝑖) = 𝐶1,1 = 1.321  (39) 

 

The second secondary user performs a similar evaluation. 

Based on Eq. (40), the highest spectral efficiency is achieved 

on sub-band 4. 

 

{
 
 

 
 
𝐶2,1 = 0.485

𝐶2,2 = 0.301

𝐶2,3 = 0.370

𝐶2,4 = 2.204

𝐶2,5 = 1.493

⇒ 𝐶max
(2) = max(𝐶2,𝑖) = 𝐶2,4 = 2.204  (40) 

 

In total, this example includes 𝐿 = 3 users: one primary and 

two secondaries. The overall performance of the system is 

captured by summing the maximum achievable spectral 

efficiencies, as shown in Eq. (41). 

 

𝛷sum = 𝐶max
PU + 𝐶max

(1) + 𝐶max
(2) = 11.358 (41) 

 

This confirms the capacity gain resulting from the use of a 

horizontal spectrum-sharing strategy, enabling each user to 

access unoccupied sub-bands with optimized efficiency while 

avoiding collisions. 

 
Algorithm 1. Sub-band allocation with horizontal 

spectrum sharing over three-time steps 

Input: Spectral efficiencies 𝐶{𝑖,𝑢}
𝑡  for user u on sub-band i 

at each time step 𝑡 ∈  {1,2,3} 
Initialize: Total spectral efficiency 𝛷𝑠𝑢𝑚 ←  0 

for each time step t = 1 to 3 do 

    Assigned sub-bands at time t: 𝐵𝑡 ←  ∅ 

    Primary user selects 𝑖 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥
{𝑖 ∉ 𝐵𝑡}(𝐶{𝑖,𝑃𝑈}

𝑡 )
 

    Assign sub-band 𝑖 ∗ to primary user 

    Update 𝛷𝑠𝑢𝑚 ← 𝛷𝑠𝑢𝑚 + 𝐶{𝑖∗,𝑃𝑈}
𝑡  

    Update 𝐵𝑡 ← 𝐵𝑡 ∪ {𝑖 ∗} 
    for each secondary user 𝑢 =  1 to number of secondary 

users do 

        Evaluate 𝐶{𝑖,𝑢}
𝑡  for all available sub-bands 𝑖 ∉  𝐵𝑡  

        Select 𝑖 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥
{𝑖 ∉ 𝐵𝑡}(𝐶{𝑖,𝑢}

𝑡 )
 

        if such i* exists then 

            Assign sub-band i* to user u 

            𝑈𝑝𝑑𝑎𝑡𝑒 𝛷𝑠𝑢𝑚 ← 𝛷𝑠𝑢𝑚 + 𝐶{𝑖∗,𝑢}
𝑡  

            𝑈𝑝𝑑𝑎𝑡𝑒 𝐵𝑡 ← 𝐵𝑡 ∪ {𝑖 ∗} 
        end if 

    end for 

end for 

Output: 𝛷𝑠𝑢𝑚 

 

Algorithm 2. Sub-band allocation over two-time steps with 

horizontal spectrum sharing 

Input: Spectral efficiencies 𝐶{𝑖,𝑢}
𝑡  for user u on sub-band 𝑖 

at time 𝑡 
Initialize: Assigned sub-bands 𝐵𝑡 ←  ∅ , Total capacity 

𝛷𝑠𝑢𝑚 ←  0 

for each time step t = 1 to 2 do 

    Primary user selects sub-band 

𝑖 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥{𝑖 ∉ 𝐵𝑡}𝐶{𝑖,𝑃𝑈}
𝑡   

    Assign sub-band 𝑖 ∗ to primary user 

    Update 𝛷𝑠𝑢𝑚 ← 𝛷𝑠𝑢𝑚 + 𝐶{𝑖∗,𝑃𝑈}
𝑡  

    Update 𝐵𝑡 ← 𝐵𝑡 ∪ {𝑖 ∗} 
    for each secondary user u = 1 to number of secondary 

users do 

        Evaluate 𝐶{𝑖,𝑢}
𝑡  for all 𝑖 ∉  𝐵𝑡  

        Select sub-band 𝑖 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥{𝑖 ∉ 𝐵𝑡}𝐶{𝑖,𝑢}
𝑡  

        if such 𝑖 ∗ exists then 

            Assign sub-band 𝑖 ∗ to user u 

            Update 𝛷𝑠𝑢𝑚 ← 𝛷𝑠𝑢𝑚 + 𝐶{𝑖∗,𝑢}
𝑡  

            Update 𝐵𝑡 ← 𝐵𝑡 ∪ {𝑖 ∗} 
        end if 

    end for 

end for 

Output: 𝛷𝑠𝑢𝑚 

 

We now illustrate a two-time-step spectrum-sharing 

scenario that includes a primary user and two secondary users. 

As before, the primary user initiates the process by occupying 

one of the available sub-bands to maximize its own spectral 

efficiency. The subsequent allocation at each time step is 

performed by the secondary users, who select the sub-band 
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offering the highest spectral efficiency from a fixed set of five 

candidates. Each allocation strictly avoids sub-band reuse to 

prevent interference. The efficiency obtained by the primary 

user is shown in Eq. (6), followed by the computed efficiencies 

for each secondary user in Eqs. (7) and (8), respectively. The 

total achieved efficiency for this two-step allocation process is 

summarized in Eq. (9), highlighting the gain in capacity and 

spectrum utilization. 

 
3.4 Performance analysis under different SNR conditions 

 

Before delving into the detailed analysis of varying SNR 

levels and user density, Figure 8 offers a foundational 

comparison between orthogonal and horizontal spectrum 

access strategies in terms of spectral efficiency. Specifically, 

Figure 8(a) illustrates the performance of the orthogonal 

access model, where each user is allocated a dedicated sub-

band, ensuring interference-free transmission but resulting in 

inefficient spectrum utilization under light user loads. In 

contrast, Figure 8(b) presents the horizontal access approach, 

which allows users to dynamically and opportunistically share 

spectrum, leading to higher spectral efficiency across the user 

index range. 

To facilitate direct comparison, Figure 8(c) overlays the 

spectral efficiency profiles of both models. The results clearly 

show that the horizontal model consistently outperforms the 

orthogonal one, especially in scenarios with partial spectrum 

occupancy, where the flexibility of dynamic access enables 

better exploitation of spectral opportunities. This initial 

observation establishes a baseline understanding of the relative 

benefits of each model and sets the stage for more 

comprehensive analyses in the subsequent sections, where the 

effects of SNR variations and increasing user density are 

systematically explored. 

Figure 9(a) presents the comparison of the total spectral 

efficiency for two different configurations: an orthogonal 

system and a horizontal system, considering 𝐿 = 10 and 𝐿 =
50 with a fixed number of sub-bands 𝑁 = 16. It is evident that 

the spectral efficiency of the horizontal system is significantly 

higher compared to the orthogonal system. The maximum 

spectral efficiency of the orthogonal system cannot exceed 

approximately 60% when the configuration includes 10 users. 

At higher SNR values, the spectral efficiencies of both systems 

tend to converge. However, at very high SNR, the total 

capacity sum approaches 𝐶1,∞. This result is intuitive, since in 

the high SNR regime, the water-filling level 1/𝛾0  becomes 

larger than the channel noise term 𝜎2/ℎ2 , leading to the 

pouring of more power as SNR increases, and thus the sum 

spectral efficiency 𝛷Somme,∞ → 1. In Figure 9(b), we observe 

the difference in spectral efficiency between the horizontal 

systems with 𝑀 = 10 and 𝑀 = 50 and the orthogonal system. 

As shown, the spectral efficiency for 50 users is greater than 

that for 10 users, highlighting the effect of increased 

competition among cognitive users. This result emphasizes 

that a higher number of cognitive users improves the overall 

spectral efficiency of the system. 

 

Primary User

C=10.609

Sum of spectral efficiencies = 11.358

3 users

Secondary User 1-1

C=1.321

Secondary User 1-2

C=0.925

Secondary User 1-3

C=0.928

Secondary User 1-4

C=1.167

Secondary User 1-5

C=0.896

Secondary User 2-1

C=0.485

Secondary User 2-2

C=0.301

Secondary User 2-3

C=0.370

Secondary User 2-4

C=2.204

Secondary User 2-5

C=1.493

 
 

Figure 6. Spectrum-sharing example over two-time steps (𝑡 and 𝑡 + 1) with five candidate secondary users per step, and final 

allocation yields a cumulative spectral efficiency of 11.358 with no sub-band reuse 

 

 
 

Figure 7. Detailed breakdown of sub-band allocation and channel filling process across time steps 𝑡 and 𝑡 + 1, illustrating 

interference-free sharing 
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Figure 8. Comparison between the capacities of the orthogonal and horizontal models: (a) Capacity of orthogonal model; (b) 

Capacity of Horizontal model; (c) Comparisons between orthogonal and Horizontal models 

 

 
 

Figure 9. Comparison between the spectral efficiency sum of an orthogonal system and horizontal systems with varying numbers 

of candidate secondary users 
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Figure 10. The spectral efficiency sums of a system with 𝑁 = 16 sub-bands 

 

To further illustrate the benefits of our algorithm in terms of 

spectral efficiency, a comparison is performed between the 

orthogonal spectrum access strategy (where only one 

secondary user accesses the spectrum at a time, 𝑀 = 1) and 

the horizontal spectrum access scheme (where multiple 

secondary users contend in parallel) for various values of 𝑀, 

as a function of the SNR in decibels. To ensure statistical 

reliability in the presence of random channel power gains, the 

reported results represent the average over 1000 successive 

spectrum access events (Figure 10). We use 1000 Monte Carlo 

iterations to ensure statistically stable average performance, in 

line with standard practice in CR evaluations [20]. 

As depicted in Figure 10(a), the horizontal access 

mechanism significantly improves the total system spectral 

efficiency compared to the orthogonal access method. 

Increasing the number of candidate secondary users 𝑀 

generally leads to better performance, as it raises the 

probability of finding a user with a favorable channel 

condition, thereby enabling more efficient spectrum usage. 

However, as shown in Figure 10(b), the performance gain 

relative to the baseline case 𝑀 = 1 grows at a diminishing 

rate. The initial increase (e.g., from 𝑀 = 1 to 𝑀 = 8) yields a 

substantial boost in spectral efficiency, while further increases 

(e.g., to 𝑀 = 64 or 𝑀 = 128) provide progressively smaller 

improvements. This diminishing return effect becomes even 

more pronounced at higher SNR levels. In high-SNR regimes, 

the primary user tends to occupy more sub-bands, leaving less 

spectrum for secondary users to access. As a result, the 

performance gap between horizontal and orthogonal access 

narrows in such scenarios. The convergence of performance 

between the horizontal and orthogonal models at high SNR is 

consistent with the behavior of the water-filling strategy, 

which tends to allocate power more uniformly across sub-

bands as the signal dominates noise. In such conditions, the 

benefit of exclusive sub-band access diminishes, and both 

models approach the theoretical capacity limit of the channel 

[16, 17]. 

 

 

4. CONCLUSIONS 

 

In this work, we analyzed a CR system in which cognitive 

users opportunistically access available spectrum to improve 

overall spectral utilization. We introduced a horizontal 

spectrum-sharing model that enables decentralized sub-band 

allocation based on real-time channel conditions, offering an 

alternative to traditional orthogonal access. The model 

promotes exclusive sub-band use without centralized 

scheduling, enhancing spectral efficiency, particularly in low-

SNR regimes, while maintaining scalability as the number of 

users increases. Simulations confirmed that the horizontal 

model consistently outperforms orthogonal allocation, with 

both models converging at high SNR where interference 

becomes negligible. These results are promising for dense and 

dynamic wireless environments. From a practical standpoint, 

applying this model in real-world systems requires 

consideration of existing regulatory frameworks and 

standardization constraints. While the model is well suited for 

decentralized operation, regulatory policies must 

accommodate flexible and dynamic spectrum access while 

ensuring interference protection and coexistence with licensed 

systems. Current wireless standards such as those used in 5G 

networks emphasize controlled and managed spectrum usage, 

and adopting opportunistic models may require protocol 

adaptations to support real-time coordination. This study also 

makes some simplifying assumptions, including perfect 

spectrum sensing, static primary users, and centralized user 

selection, which may limit immediate practical deployment. In 

reality, factors such as mobility, sensing inaccuracies, and the 

need for distributed decision-making play critical roles. Future 

work will address these limitations by incorporating more 

realistic conditions and exploring adaptive, learning-based 

methods for decentralized coordination. Overall, the proposed 

horizontal model offers a flexible and efficient approach for 

advancing spectrum sharing in next-generation CR systems. 
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NOMENCLATURE 

 

𝐶𝑙,∞ Average capacity of user 𝑙 (bits/s/Hz) under 

continuous fading 

𝐶𝑙,𝑁 Instantaneous capacity of user 𝑙 over 𝑁 sub-

bands 

𝛷𝑙,𝑁 Spectral efficiency per band for user 𝑙 over 𝑁 

sub-bands 

𝛷Sum,𝑁 Total spectral efficiency over all users and 

sub-bands 

𝛥𝑙,𝑁 Bandwidth gain factor for user 𝑙 

𝑝𝑙(𝑡) Power allocated by user 𝑙  as a function of 

fading 𝑡 
𝑝𝑙
𝑖 Power allocated by user 𝑙 on sub-band 𝑖 

𝑝𝑙−1
𝑖  Power allocated by user 𝑙 − 1 on sub-band 𝑖 

𝑁0 Noise power spectral density (W/Hz) 

ℎ𝑙
𝑖  Channel gain for user 𝑙 on sub-band 𝑖 

𝑦𝑅𝐼
𝑖  Received signal at receiver on sub-band 𝑖 

𝑦𝑙
𝑖(𝑘) Received signal at user 𝑙, sub-band 𝑖, time 𝑘 

𝑐𝑙−1,𝑙
𝑖 (𝑘) Channel coefficient from user 𝑙 − 1 to 𝑙, sub-

band 𝑖 

𝑠𝑙
𝑖, 𝑠𝑙−1

𝑖 (𝑘) Transmitted signal from user 𝑙 or 𝑙 − 1 

𝑛𝑙
𝑖, 𝑛𝑙−1

𝑖 (𝑘) Additive WHITE GAUSSIAN NOISE 

(AWGN) 

𝛾0 Water-filling cut-off level 

𝑃‾  Power budget (normalized to 1) 

𝛹𝑙  Set of sub-bands sensed as occupied by user 

𝑙 
𝛺𝑙 Set of available sub-bands for user 𝑙 
𝑁 Total number of sub-bands 

𝐿 Total number of users 

𝑇 Transmission period 

𝛽𝑇 Coherence time of the fading channel 
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𝑀 Number of detection time samples (𝑀 = 𝛽𝑇) 

card(⋅) Cardinality of a set 

𝐸𝑖(⋅) Exponential integral function 

𝑓 Frequency variable 

 

 

 

 

Greek symbols 

 

𝑙 Index for user 𝑙 
𝑖 Index for sub-band 𝑖 
𝑅𝐼 Refers to the receiver 

𝑘 Discrete time index 

𝑛𝑓 Nanofluid or normalized-fading (context-

dependent) 
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