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Many individuals with severe physical disabilities face difficulties in controlling 

electric wheelchairs due to reliance on manual input methods such as joysticks, which 

are impractical for users with limited mobility. This study aims to develop a real-time, 

cost-effective, and non-invasive system that enables hands-free wheelchair control 

using head movement detection. The proposed system leverages a Raspberry Pi, a 

camera, and Dlib’s facial landmark detection to track specific facial points (27 and 28), 

accurately detecting head tilts and turns. Unlike existing solutions that rely on expensive 

or invasive sensors, this approach ensures accessibility while maintaining high 

accuracy. The system was tested under various conditions, achieving 99.8% accuracy, 

demonstrating its reliability and practicality. The presented research has developed 

affordable assistive technology to improve the independent movement capabilities for 

disabled people. The research highlights practical deployment possibilities that lead to 

better developments in adaptive wheelchair control systems. 
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1. INTRODUCTION

Assistive technologies have enhanced mobility and self-

sufficiency for people with severe physical disabilities through 

their development. Electric wheelchairs constitute one of the 

most popular solutions in assistive technology because they 

use traditional joysticks or buttons-based control [1]. 

Wheelchair control methods prove challenging and 

inaccessible to people who have neuromuscular disorders 

combined with spinal cord injuries or any form of motor 

impairment. Increased demand exists for natural wheelchair-

control systems, which offer users non-intrusive manual-

independent operation at low equipment costs. The present 

hands-free wheelchair control systems, which include eye-

gaze tracking voice command operation and motion-based 

detection features, demonstrate various operational 

restrictions. Infrared camera equipment for eye-gaze tracking 

systems carries high costs and is sensitive to lighting 

environment conditions [2, 3]. Users with both issues must 

contend with unreliable voice command operation in loud 

spaces and erroneous accelerometer detection of casual head 

motions that diminish system accuracy [3, 4]. Some systems 

rely on wearable sensors or head-mounted devices [5, 6], 

which can be uncomfortable, invasive, and expensive, making 

them unsuitable for long-term daily use [7]. 

Current wheelchair control technologies exist without either 

a precise solution, low costs, or an unobtrusive design. A 

multitude of current systems do not achieve precise control, 

and there are unaffordable hardware requirements and 

complicated calibration methods that hinder their use in 

practical environments. The research develops a low-cost, 

real-time, non-invasive approach for detecting wheelchair user 

head movements through facial landmark tracking technology 

[8] and low-cost hardware [9].

The proposed system introduces a camera-based head

movement detection approach that eliminates the need for 

wearable sensors, ensuring comfort and ease of use. Using 

Dlib’s facial landmark tracking it achieves high accuracy and 

robustness while a novel decision-making process eliminates 

unintentional movements, enhancing reliability. This 

approach outperforms previous methods in cost, efficiency, 

and user-friendliness, making it a practical and affordable 

solution for wheelchair control. 

Unlike previous methods, this system introduces a camera-

based head movement detection approach. The contributions 

of this paper are as follows: 

1) Developing a low-cost hardware and open-source

software head movement detection system, which contributes 

to an inexpensive and accessible environment for many users. 

2) The system detects head movements with precision

even in various environmental conditions; thus, it is reliable 

and responsive. 

3) An intuitive, non-invasive solution that does not

require any complex or uncomfortable equipment was 

presented. 

4) The present work is compared with various previous

works, and the system has performed much better compared to 

the other solutions discussed in this research by achieving an 

accuracy rate of 99.8%. 
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The paper is organized as follows: Section 2 discusses 

related works in assistive technology and head movement 

detection. Section 3 discusses the materials and methods used 

in the proposed system, which elaborates on the head 

movement detection mechanism and wheelchair control 

approach. Section 4 elaborates on the use of a webcam and 

Dlib for movement detection. Section 5 outlines the main 

algorithm applied in this study, while Section 6 explains the 

protocol for the wheelchair control system. Section 7 presents 

the validation and testing processes for the system. Section 8 

assesses the system’s accuracy and responsiveness across 

different scenarios. Section 9 provides a comparative analysis 

with other systems. Finally, Section 10 concludes the paper by 

summarizing key findings and proposing directions for future 

improvements. 

 

 

2. RELATED WORKS 

 

Several studies have explored alternative wheelchair control 

mechanisms, leveraging accelerometers, vision-based 

approaches, and deep learning techniques. However, each 

approach presents limitations in terms of accuracy, cost, ease 

of use, and practicality. This section critically reviews existing 

methods and highlights how the proposed camera-based head 

movement detection system addresses these shortcomings. 

Accelerometer-based head movement detection is a common 

approach in wheelchair control. 

 

2.1 Accelerometer-based systems 

 

Accelerometer-based head movement detection is a widely 

used approach in wheelchair control. Nizar and Jabbar [10] 

developed a tilt-sensor-based system that tracks the angles of 

a user’s head, allowing wheelchair navigation. Similarly, 

Mangla et al. [11] utilized MPU-6050 sensors, combining an 

accelerometer and gyroscope, to detect head tilts in real time. 

However, Tambakhe et al. [12] reported that accelerometer-

based head motion detection can misinterpret unintentional 

head movements, leading to unintended wheelchair actions. 

Pourmirzaei et al. [13] proposed a system capable of 

functioning even when the user’s head is at unfavorable pitch, 

yaw, or roll angles, which often pose challenges for most 

webcam-based control applications. Bui et al. [14] developed 

an accelerometer-based system that achieved 97% accuracy 

but highlighted user discomfort due to the presence of external 

sensors. Kujani and Kumar [15] implemented a 

microcontroller-based accelerometer wheelchair system with 

90% accuracy; however, it lacked adaptability to complex 

environments, limiting its practical usability. These 

accelerometer-based systems, while effective to some extent, 

exhibit several drawbacks. They are prone to false detections 

caused by involuntary head movements, require user 

calibration, which increases setup complexity, and rely on 

external sensors, which can be uncomfortable and expensive. 

Our proposed system eliminates the need for external sensors 

by utilizing camera-based facial landmark tracking, which 

ensures higher accuracy 99.8%, lower cost, and greater 

comfort for the user. 

 

2.2 Vision-based systems 

 

Vision-based methods employ cameras and computer vision 

algorithms to track head movements. Chatzidimitriadis et al. 

[16] applied computer vision techniques to detect head 

movements for wheelchair control, while Roig-Maimó et al. 

[17] explored camera-based head-tracking for cervical 

rehabilitation, demonstrating its potential for non-invasive 

control. Alcantara et al. [18] implemented a Raspberry Pi and 

OpenCV-based head-tracking system for device control but 

encountered limitations in processing speed and real-time 

responsiveness. Sayeed et al. [19] used webcam-based head 

and eye movement detection but achieved only 89% accuracy, 

which was insufficient for precise wheelchair control. 

Sandhya et al. [20] integrated ultrasonic sensors with 

Raspberry Pi for autonomous wheelchair navigation, but 

struggled with complex environments. While these vision-

based approaches reduce the dependency on physical sensors, 

they remain susceptible to environmental sensitivity, where 

lighting conditions significantly affect detection performance. 

Additionally, slow processing speeds hinder real-time 

responsiveness, and their accuracy often lags behind deep 

learning-based models. Our proposed system overcomes these 

issues by leveraging Dlib’s advanced facial landmark tracking, 

which enhances robustness under varying lighting conditions 

and ensures real-time responsiveness using lightweight 

hardware. 

 

2.3 Deep learning-based systems 

 

Deep learning-based approaches have gained prominence in 

head movement detection due to their ability to extract and 

learn intricate patterns. Feng et al. [21] proposed a CNN-based 

model for facial landmark detection, demonstrating high 

accuracy in real-time applications. Zhang et al. [22] developed 

a deep multi-task learning framework combining head pose 

estimation and facial expression recognition, achieving greater 

accuracy and robustness. Zamir et al. [23] introduced a CNN-

based facial recognition system that attained 98.3% accuracy, 

though it was primarily focused on security applications rather 

than wheelchair control. Phayde et al. [24] designed a deep 

learning-based motion detection system but only achieved 

91% accuracy, making it inadequate for precise mobility 

assistance. Zeng et al. [25] explored wearable sensor-based 

deep learning methods but noted that their high computational 

demands limited real-time wheelchair control capabilities. 

Garg et al. [26] investigated the application of optical flow 

analysis to detect head gestures in video, while Zarkasi et al. 

[27] explored template-matching techniques for detecting 

subtle head movements in human-computer interaction 

systems. Prasad et al. [28] built a wheelchair control system 

using head movements detected by an ATMega328p 

microcontroller, achieving 90% accuracy but suffering from 

low processing power and limited adaptability to complex 

environments. Hassain et al. [29] developed an electric 

wheelchair control system based on head gestures, detecting 

forward, backward, left, and right movements with 92% 

accuracy; however, it struggled with subtle head movements. 

Deep learning methods deliver exceptional accuracy, but they 

impose limitations, which include substantial computational 

needs that obstruct embedded systems usage and extensive 

training datasets combined with difficulties in running 

applications in real-time on Raspberry Pi [30]. Our proposed 

system delivers 99.8% accuracy alongside low-computational 

processing needs for facial landmark tracking, which allows it 

to remain practical for real-time embedded applications. 

Studies that investigated wheelchair control through head 

movements have demonstrated useful findings; however, 
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these solutions face multiple key limitations comprising of 

deficient detection precision, the need for external sensor 

implementation, and sensitivity to environmental 

circumstances and processed data requirements. Our system 

works without accelerometer-based systems because it lacks 

dependency on external sensors, which removes discomfort 

and the need for calibration procedures. Our system employs 

Dlib’s facial landmark tracking, making it more robust against 

varying lighting conditions. Furthermore, unlike deep 

learning-based models that demand substantial computational 

power, our approach operates efficiently on low-power 

devices like the Raspberry Pi, achieving 99.8% accuracy in 

real time. Our system achieves cost-effectiveness since it 

lowers hardware costs through the combination of Raspberry 

Pi middle standard webcams, making accessibility simpler for 

users with disabilities. 

A research paper presents an algorithm detecting real-time 

head motions that employ facial landmark recognition 

technology made specifically for electric wheelchairs. The 

present system tracks facial landmarks and recognizes head 

movements such as tilts, nods, and shakes through real-time 

processing without invasive hardware requirements. The 

removal of conventional sensor-based processes leads to 

procedural simplification while reducing the invasiveness of 

equipment and creating user-friendly solutions. This system 

uses advanced computer vision methods to provide instant, 

accurate communication alongside economical processing 

requirements. This innovation presents a more accessible, 

efficient, and cost-effective solution for individuals requiring 

hands-free wheelchair control. 

 

 

3. MATERIALS AND METHODS 

 

The proposed system's efficiency is illustrated by presenting 

the power of the hardware used and the dataset added in the 

following sections. 

 

3.1 System configuration 
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Figure 1. Flowchart of head movement detection and 

wheelchair control using facial landmark detection 

The proposed system includes a person, a webcam, a 

Raspberry Pi 3, and a monitor, as shown in Figure 1. The 

camera has been installed on the head to limit unnecessary 

head movements and avoid introducing artifacts in the relevant 

data [31]. For optimal facial landmark identification during 

recording, the camera should be positioned between 20 to 60 

centimeters from the individual's face [32, 33]. Through 

testing, the optimal distance was determined to be 30 

centimeters. The 5-megapixel camera used in the system 

supports resolutions of 1080 p at 30 fps, 720 p at 60 fps, and 

640×480 p at 90 fps [34]. Controlling the wheelchair involves 

capturing video, converting it into images (frames), processing 

the image data, and transmitting the frames to the Raspberry 

Pi 3 for analysis. This is accomplished by installing and 

utilizing necessary libraries, such as OpenCV2, Dlib, Numpy, 

and Pandas [24]. 
 

3.2 Implementation strategy for head movement detection 
 

The paper methodology employed to detect head 

movements in real-time uses computer vision techniques. The 

process involves the following core steps: live data 

acquisition, face detection and tracking, facial landmark 

detection, head movement analysis, evaluation methodology, 

implementation details, and ethical considerations. The 

proposed method is implemented in real-time using a live 

camera that captures video frames of subjects' faces. This real-

time feed enables the acquisition of dynamic, continuously 

updated data throughout the experiment. Upon receiving each 

video frame from the live camera feed, face detection 

algorithms are applied to identify faces within the frame. Once 

identified, a face-tracking algorithm ensures continuity by 

tracking these faces across successive frames in the video 

stream. 

In the case of real-world applications, landmark detection 

techniques detect corners of the mouth, eyebrows, and nose tip 

as the key facial features. The proposed system specifically 

tracks facial landmarks 27 and 28, which are positioned at the 

top of the nose bridge. These points are ideal for detecting head 

movement because they are centrally located on the face and 

remain stable relative to natural head tilts and rotations. The 

system calculates the displacement of these points along the X 

and Y axes to determine head movement direction: 

(1) X-axis displacement: Left or right head movement. 

(2) Y-axis displacement: Upward or downward movement. 

(3) Combined displacement: Diagonal or mixed 

movements. 

By focusing on points 27 and 28, the system ensures robust 

tracking with minimal errors, avoiding potential inaccuracies 

that may arise from eyebrows (which may move 

independently) or chin points (which may shift due to facial 

expressions). This is done efficiently with the Dlib library in 

Python since it is fine-tuned for facial landmark detection. It 

does this by analyzing the head movements based on the 

displacement of facial landmarks in real-time. The different 

optical flow estimation and template matching methods track 

its motion between consecutive frames, enabling it to detect 

small head movements accurately. Performance is evaluated 

using standard metrics for accuracy, precision, and recall 

within an experimental testbed that examines responsiveness 

under various conditions. A real-time head movement 

detection system has been implemented in Python, leveraging 

existing libraries and frameworks to streamline development 

and functionality. Significant emphasis has been placed on 

optimizing the software architecture to ensure efficient and 
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responsive processing of live camera feeds. This approach 

aims to deliver reliable performance in real-world scenarios, 

prioritizing accuracy and responsiveness. 

 

3.3 Collected data 

 

Experimentation with the proposed head movement 

tracking system to control an electric wheelchair generated the 

collected data. Selection had to occur before the experiment 

based on established criteria to guarantee precise, measurable 

head movements from the subjects. The projected input system 

required these methods to evaluate system performance and 

reliability since they would establish steady and quantifiable 

experimental data. 

 

(1) Number of samples: 448 samples were recorded for 

head movements, including forward, backward, left, 

and right. Recordings were done under various 

changes in environmental parameters for 

comprehensive system evaluation in terms of 

stability and adaptability to changes in lighting 

conditions and viewing angles. 

(2) Type of data: Collected data included head angular 

displacements and face feature points. A high-

resolution camera paired with a Raspberry Pi system 

was used to capture video and analyze these 

movements in real time, ensuring accurate and 

detailed tracking. 

(3) Stages of data collection: 

• Performing head movements in the specified 

directions for 3 seconds per movement. 

• Recording the angular displacement and precise 

facial landmark positions using the Dlib 

algorithm. 

• Recording system outputs based on the 

wheelchair movement commands derived from 

the head movements. 

 

3.4 Face detection 

 

Dlib and OpenCV2 are used within a "For Loop" to load 

each frame from the video and detect facial landmarks in the 

image. Once a face or landmark is identified, a new landmark 

is generated inside the loop. The next step involves converting 

the color frame to grayscale, simplifying the detection of facial 

features [35]. Figure 2 illustrates the facial landmarks 

identified in a grayscale frame. 

 

 
 

(a)                                   (b) 

 

Figure 2. Face detection: (a) Color; (b) Grayscale 
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(a)                                                      (b) 

 

Figure 3. Models of image processing: (a) RGB model and 

(b) BGR model of OpenCV 

 

 
 

Figure 4. Landmarks according to Dlib library [1] 

 

A digital image on a screen is displayed using a matrix of 

pixels, where an integer value represents each pixel. Grayscale 

images are generated by assigning numerical values from 0 

(black) to 255 (white) to these pixels. The RGB color model is 

the most common for representing colors, but it is important 

to note that OpenCV2 loads color images in the reverse order, 

specifically BGR (Blue, Green, Red) [36], which is 

demonstrated in Figure 3. 

The human face has 68 fixed landmarks that are reference 

points for detecting facial features [37]. By knowing the 

indexes of these points, one can focus on specific facial areas 

like the eyes, lips, eyebrows, nose, or ears. This article 

particularly emphasizes points 27 and 28, located on the edges 

of the nose, to analyze and determine head tilt movement, as 

illustrated in Figure 4. 

 

 

4. DETECTING MOVEMENT BASED ON WEBCAM 

USING DLIB 

 

Real-time data acquisition is performed using a live camera 

feed, capturing video frames of subjects' faces. This live 

stream ensures the acquisition of dynamic and continuously 

updated data for each time instance during the experiment. 

Figure 5 explains the detecting signal in the following 

sequence upon receiving each video frame from the live 

camera feed. Face detection algorithms are applied to localize 

faces within the frame. Following detection, a face-tracking 

technique is employed to track the detected faces across 

consecutive frames, ensuring continuity in tracking 
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throughout the video stream. Landmark detection techniques 

are utilized to identify key points on the face in real-time. 

These landmarks, such as the corners of the mouth, eyebrows, 

nose tip, and localization of points (27 and 28), are detected 

for each face in every video frame, enabling precise tracking 

of facial features over time using the Dlib library. 

The movement of facial landmarks is continuously analyzed 

in real-time to infer head movements by applying points that 

detect the eyes, chin, nose, and other facial points. Techniques 

such as optical flow estimation or template matching are 

applied to track the displacement of facial landmarks between 

consecutive frames, allowing for the detection of head 

movements. 
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Figure 5. Real-time facial landmark detection and head 

movement analysis 
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Figure 6. Flowchart of real-time head movement detection 

algorithm 

The real-time head movement detection algorithm is 

divided into several primary stages. At the start, the software 

initializes to capture a video frame from the webcam and 

employs a "While Loop" to load a frame in a valid state, 

reloading it in case of an error. The system detects the user's 

face within the video feed and converts it to grayscale to 

enhance facial landmark detection. Key facial features-eyes, 

chin, and nose points-are detected using OpenCV2 and Dlib 

libraries, with particular emphasis on landmarks 27 and 28 

located on the nose bridge. These points are ideal for detecting 

head movement because they remain stable relative to natural 

head tilts and rotations. 

Once facial landmarks are detected, the system calculates 

displacement vectors along the X and Y axes to determine 

head movement direction: 

⚫ X-axis displacement: Indicates left or right movement. 

⚫ Y-axis displacement: Indicates upward or downward 

movement. 

⚫ Combined displacement: Represents diagonal or 

mixed movements. 

The system evaluates movements over a 3-second window, 

ensuring that only intentional and sufficiently long gestures 

are accepted as valid inputs. The system’s final decision is 

used to generate a corresponding wheelchair command, 

moving the wheelchair in the desired direction, as shown in 

Figure 6. 

 

5.1 Filtering intentional movements 

 

To prevent unintended activations, the system introduces a 

dual-layer filtering approach: 

(1) Time-based thresholding: 

• A movement must be sustained for at least 3 

seconds before being classified as intentional. 

• This prevents quick head jerks, minor shifts, or 

tremors from triggering unwanted wheelchair 

movements. 

• If the head returns to its neutral position before 

3 seconds, the movement is ignored. 

(2) Displacement-based filtering: 

• The system measures the displacement of 

landmarks 27 and 28 and applies predefined 

thresholds: 

• Left/Right Movement: X displacement must be 

greater than ±200 pixels. 

• Forward/Backward Movement: Y displacement 

must be greater than ±120 pixels. 

Movements below these thresholds are ignored, ensuring 

only substantial, intentional gestures trigger a response. 

By combining time-based filtering with displacement 

validation, the system minimizes false activations and 

enhances accuracy. 

 

5.2 Noise filtering and external disturbance management 

 

Environmental noise and sensor disturbances can introduce 

errors in head movement detection. The system employs the 

following techniques to maintain robust and stable tracking: 

(1) Applies a sliding window filter to smooth 

displacement variations, reducing the effects of 

sudden noise or small involuntary movements. 

(2) The system dynamically adjusts displacement 

thresholds based on the user's movement behavior. 

• If a user consistently performs subtle 
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movements, the threshold decreases for better 

responsiveness. 

• If external noise (lighting variation, small head 

tremors) is detected, the threshold increases to 

prevent misclassification. 

(3) Uses histogram equalization in OpenCV to normalize 

contrast and ensure consistent landmark tracking 

under varying lighting conditions. 

Prevents errors caused by shadows, glare, or dim 

environments. 

These filtering mechanisms ensure high detection 

reliability, even in non-ideal conditions. 

 

5.3 Decision tree-based classification 

 

The system applies decision tree classification to process 

filtered movements following noise reduction. A predefined 

displacement threshold system in the classifier decides what 

constitutes movement classes, according to Figure 7. 

Classification Rules: 

• Left Movement: If X displacement <-200 and 

sustained for 3 seconds, classify as Left. 

• Right Movement: If X displacement >200 and 

sustained for 3 seconds, classify as Right. 

• Forward Movement: If Y displacement >120 and 

sustained for 3 seconds, classify as Forward. 

• Backward Movement: If Y displacement <-120 and 

sustained for 3 seconds, classify as Backward. 

• No Movement: If both X and Y displacements are 

within the neutral range (-100≤X≤100, -50≤Y≤50), 

classified as No Movement. 
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Figure 7. Decision tree-based classification of head 

movements for wheelchair control 

 

5.4 Adaptive user thresholding 

 

The system can be tailored to different user needs by 

adjusting movement thresholds dynamically: 

• Users with slower response times (e.g., 

neuromuscular disorders)→Require a longer 

threshold (3.5-4 sec) to accommodate slower 

movements. 

• Users with fast response ability→Prefer a shorter 

threshold (2 sec) for quicker wheelchair control. 

• Adaptive learning mode→The system adjusts 

thresholds over time based on user behavior to 

optimize responsiveness. 

By incorporating adaptive tuning, the system remains 

flexible, accessible, and highly responsive to individual needs. 

 

 

6. WHEELCHAIR CONTROL SYSTEM PROTOCOL 

 

Facial landmarks are detected using Dlib, such as points of 

eye position, edge of chin, and nose. Tracking the movement 

of these points can determine specific types of head 

movements or facial expressions. The analysis of these points 

is to calculate the vertical displacement of points 27 and 28 

between consecutive frames where if the y-coordinate of either 

point increases, it indicates upward movement, and if it 

decreases, it indicates downward movement; otherwise, 

calculate the horizontal displacement of points 27 and 28 

between consecutive frames where if the x-coordinate of point 

27 increases while the x-coordinate of point 28 decreases, it 

indicates horizontal movement. 

The system interprets detected head movements based on 

displacement thresholds and duration criteria to generate 

control commands. For example, if vertical movement is 

detected while the person is speaking, it might indicate 

nodding in agreement. This interruption can be overcome by 

still being in the required direction for three seconds before 

detecting the direction or movement by applying thresholds to 

the displacement values to filter out noise and detect 

significant movements only. For instance, set a threshold for 

minimum displacement to distinguish intentional movements 

from minor fluctuations due to noise. The display screen is 

divided into four quarters by x-axes and y-axes. Firstly, it 

detects the facial landmarks and detects if the head is moving 

vertically up and down. When the eye crosses the (0,0) point 

as a threshold, the head moves down, equal to backward. For 

forward, when the chin edge is crossed the (0,0) as a threshold 

point, the head moves to the direction that gives as forward. 

Secondly, the head movement is detected horizontally by 

detecting the eye's position. If the two eyes go to the first 

quarter, the head moves right, then gives the right direction, 

and for the left, the eyes go to the second quarter. 

Table 1 illustrates the head movement protocol of the 

wheelchair control system. The head movements are detected 

using specific axis displacements, triggering wheelchair 

control commands; Left lateral flexion (0 to 45 degrees) results 

in a left movement command when the X-axis displacement is 

between <0 and <=-200, with the Y-axis remaining at 0. Right 

lateral flexion (135 to 180 degrees) triggers a right movement 

command when the X-axis displacement is between <0 and 

<=200, with the Y-axis remaining at 0. Extension (-90 

degrees) results in a forward movement command when the 

Y-axis displacement is >0 and >=-120, with the X-axis at 0. 

Flexion (90 degrees) triggers a backward movement command 

when the Y-axis displacement is >0 and >=120, with the X-

axis at 0. A normal head position (0 degrees) results in no 

movement, with X and Y axes at 0. The results seem logical 

and well-structured for detecting head movements and 

converting them into movement commands for the wheelchair. 

Adjustments might be necessary depending on the specific 

hardware used and the user's range of motion. 
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Table 1. Summary of head movement protocol according to the display screen 

 

Head 

Movement 

Motion 

Representation 

Degree of 

Bending 

Axes Displacement of Point 27 Direction of 

Movement X-Axis Y-Axis 

Left lateral 

flexion 
 

0 to 45 <0 and <=-200 0 Left 

Right lateral 

flexion 
 

180 to 135 <0 and <=200 0 Right 

Extension 

 

-90 0 >0 and >=-120 Forward 

Flexion 

 

90 0 >0 and >=120 Backwards 

Normal 

 

0 0 0 Nothing 

 

 

7. VALIDATION AND TESTING 

 

The displacement vector formula plays a vital role in 

calculating head movements. During the tracking process, a 

camera monitors the positional changes of specific facial 

landmarks over time. These changes are quantified using a 

formula that calculates both the magnitude and direction of 

displacement, providing critical data to assess the intensity and 

orientation of the movement. By precisely measuring the 

extent of these positional changes, this equation forms the 

basis for subsequent calculations and decision-making within 

the control system, enabling accurate classification of head 

gestures [25]. 

 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = √∆𝑥2 + ∆𝑦2 (1) 

 

where, ∆x is the change in the horizontal position of the facial 

landmark, and ∆y is the change in the vertical position of the 

facial landmark. 

Another essential formula in analyzing head motions 

involves direction computation, which can provide the angles 

of movement concerning a reference point, such as the initial 

head position or wheelchair orientation. In computing for 

direction in radians, this formula will realize fine navigation 

control in that the movement of the wheelchair will precisely 

align with the user's intended gestures. Such directional 

accuracy is paramount for seamless and intuitive operation, 

enhancing usability and reliability. 

 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
∆𝑦

∆𝑥
) (2) 

 

After the magnitude and direction of head movement have 

been calculated, the system applies a threshold to determine if 

the detected movement in any predetermined direction 

(forward, backward, left, or right) exceeds the limit. Only 

well-pronounced and intentional movements would be 

considered valid commands since light and accidental motions 

would be filtered out. In this manner, the system maintains 

excellent accuracy and high-reliability levels, and no 

unplanned action will occur. 

By comparing the displacement vector's magnitude to these 

thresholds, the system accurately classifies the type of 

movement and triggers the corresponding wheelchair action. 

 

Threshold Comparison

= {

𝐹𝑜𝑟𝑤𝑎𝑟𝑑    𝑖𝑓 ∆𝑦 > 𝐹𝑜𝑟𝑤𝑎𝑟𝑑_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑   𝑖𝑓 ∆𝑦 < 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐿𝑒𝑓𝑡          𝑖𝑓 ∆𝑥 < 𝐿𝑒𝑓𝑡_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑅𝑖𝑔ℎ𝑡        𝑖𝑓 ∆𝑥 > 𝑅𝑖𝑔ℎ𝑡_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 
(3) 

 

The forward threshold, backward threshold, left threshold, 

and right threshold are predefined thresholds for determining 

the direction of head movement (forward, backwards, left, and 

right) [38]. 

To further illustrate how the decision tree classifier 

processes head movements, consider the following case study. 

A user tilts their head to the left and maintains this position for 

3 seconds. The system continuously tracks facial landmarks 27 

and 28 to determine displacement values along the X and Y 

axes. Initially, minor shifts in displacement are detected but do 

not meet the threshold for classification. However, as the head 

remains in the leftward position for the required duration, the 

X displacement reaches -250 pixels, while the Y displacement 

remains at 0 pixels. Since this movement exceeds the leftward 

threshold of -200 pixels and is sustained for 3 seconds, the 

classifier confidently labels the action as Left Movement. 

Consequently, the wheelchair control system receives the 

command to "Move Left," executing the appropriate action as 

discussed in Table 2. 

The effectiveness of the classifier is demonstrated in the 

following movement classification Table 2, which tracks 

displacement values over time: 

 

Table 2. Head movement classification based on 

displacement over time 

 
Time 

(s) 
X Displacement Y Displacement 

Classified 

Movement 

0.5 -50 5 No Movement 

1.0 -120 2 No Movement 

2.0 -180 1 No Movement 

3.0 -250 0 Left Movement 

 

This case study highlights how intentional movement 

filtering, noise reduction, and decision tree classification 

collectively enhance the accuracy and reliability of movement 
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detection. This control system achieves accurate wheelchair 

control through its requirement of threshold displacement 

along with a sustained period of user inaction to avoid 

unnecessary wheelchair movement. 

The system performance evaluation relies on standard 

metrics, which include accuracy and precision, as well as 

recall and F1 score. The overall system performance accuracy 

serves as the first metric, while precision and recall perform 

separate assessments of intentional movement identifications. 

System performance evaluation utilizes the F1 score to 

achieve equilibrium between precision and recall because it 

minimizes both false positive and negative results. The correct 

evaluation of these metrics stands vital since they determine 

wheelchair control, so misclassification produces unintended 

delayed movements. The system's real-time effectiveness is 

evaluated through Geometric Mean (GM), which combines 

sensitivity and specificity to determine robust detection 

performance. The performance measures are calculated using 

the following equations: Eqs. (4) through (7). These 

performance measures are calculated per class based on the 

values of the true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) for that class [39]. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (4) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (5) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) 

= (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 
(6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (7) 

 

In this paper, these parameters can be defined as follows: 

• TP represents correct movement detections made by 

the system. 

• TN indicates the correctly identified instances where 

no movement occurred. 

• FP reflects instances where the system incorrectly 

detected a movement. 

• FN represents missed detections where a movement 

occurred but was not recognized by the system. 

These parameters are mainly used with machine learning 

models with medical applications. The other design may 

interest the speed of wheelchair performance as a measure 

parameter. A live testing environment is set up to assess the 

system's responsiveness and accuracy in detecting head 

movements under various conditions. The real-time head 

movement detection system is implemented using Python and 

libraries/frameworks. The software architecture is optimized 

for real-time processing of live camera feed, ensuring efficient 

and responsive detection of head movements [40]. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒(%) = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

 

The F1 score falls within the range of 0 to 1, where 1 

signifies perfect recall and precision, while 0 indicates the 

worst performance. In certain studies, researchers have 

employed the Geometric Mean (GM) to analyze the results of 

their experiments, which combines sensitivity and specificity. 

The GM can be calculated utilizing the following equation 

[41]. 

 

𝐺𝑀 = √𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (9) 

8. RESULTS AND DISCUSSION 

 

Results provide a clear and concise mapping of head 

movements to wheelchair control commands using a camera 

sensor. The approach seems to rely heavily on precise 

detection of the displacement of a specific facial landmark 

(point 27). Changing the degrees of bending are categorized 

into ranges that likely correspond to the specific angles. Thus, 

the system can reliably detect and translate to a specific 

movement. 

The graph showing head movement tracking signals for the 

dataset is displayed in Figure 8. The reading for the angle of 

head tilt ranged from -90 to 180 in four directions for the head 

movement tracking computation taken from the webcam's 23 

video frames. This calculation depends on the number of 

changes in the horizontal and vertical position of the facial 

landmark, as well as the thresholds that detect four directions. 

When the horizontal position of the head is between a value of 

-100 and 100, which gives for right and left position with 

handled of vertical y-axes, When the vertical position of the 

head is between a value of -50 and 50 which gives for up and 

down position with handled of horizontal x-axes However, if 

the angle of tilt is more than 0 degree and less than 0.9, 

direction is not selected for head (none). The results showed 

that the system achieved an accuracy of 99.8%. 

As shown in Figure 9, the algorithm used for wheelchair 

movement detection achieved strong performance with an 

initial accuracy of 99.5%. This was accomplished by precisely 

mapping head movements detected by the camera to the 

corresponding wheelchair movement directions. The minor 

reasons for these deviations were intentionally made to 

simulate real-world noise or errors. 

 

 
 

Figure 8. Graph for head movement tracking 

 

 
(a) Detected vs. expected directions without a stop condition 
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(b) Detected vs. expected directions with a stop condition 

 

Figure 9. Comparison of detected vs. expected wheelchair 

movement directions: accuracy enhancement 

 

Table 3. Confusion metrics comparison for wheelchair 

movement detection with and without stop conditions 

 
Parameter Without Stop Condition With Stop Condition 

TP 433 445 

TN 2 1  

FP 2 1 

FN 3 2 

 

Table 4. Performance comparison of wheelchair movement 

detection algorithm with and without stop conditions 

 

Metric 
Without Stop 

Condition (%) 
With Stop Condition (%) 

Accuracy 99.5 99.8 

Precision 99.4 99.7 

Sensitivity 

(Recall) 
99.3 99.7 

F1-score 99.35 99.75 

Specificity 98.6 98.9 

GM 98.9 99.29 

 

This slight deviation detected from expected directions 

underlines the algorithm's robustness, which can maintain high 

accuracy notwithstanding random fluctuations and ideal 

conditions. Also, an improvement was made by adding a 

"stop" condition before each decision to move. Specifically, 

this stop condition allows the system to freeze briefly before 

its final movement decision to ensure sensor inputs are static 

and non-ambiguous. The stop condition significantly 

improved the accuracy of the system to 99.8%. The 

improvement stems primarily from a reduction in false 

positives. This outcome is achieved through the stop 

mechanism, which effectively validates the input data before 

making directional decisions. This was already an impressive 

accuracy of 99.5% under standard conditions, but with the 

introduction of the stop condition, its reliability was further 

bolstered, a pointer to the importance of refining sensor 

validation processes. This improvement highlights how small 

adjustments like sensors' data validation before making a 

decision can highly enhance the practical performances of the 

system, which is of high value in cases requiring very high 

levels of safety and precision, such as wheelchair control 

systems. In this regard, Table 3 gives a detailed comparison of 

performance using and not using the stop condition. The 

discussion on system performance focuses on critical 

performance parameters such as Accuracy, Precision, Recall, 

and False Positive Rate to show the effect of this enhancement. 

Table 4 highlights the impact of incorporating a stop 

condition on the performance of the wheelchair movement 

detection algorithm. Without the stop condition, the algorithm 

performed strongly, achieving an accuracy of 99.5%, a 

precision of 99.4%, and a sensitivity (recall) of 99.3%. The F1-

score, which balances precision and recall, stood at 99.35%, 

showcasing the system’s ability to reliably detect correct 

movement directions with minimal errors or missed 

detections. 

The introduction of the stop condition significantly 

enhanced the algorithm's performance, achieving an 

outstanding accuracy of 99.8% while elevating precision and 

sensitivity to 99.7%. These advancements underscore the 

pivotal role of the stop condition in improving system 

reliability and virtually eliminating errors, rendering it 

indispensable for safety-critical applications like wheelchair 

control systems. The F1-score, a metric reflecting the balance 

between precision and recall, increased to an impressive 

99.75%, demonstrating the system’s refined balance between 

detecting true positives and avoiding false positives. 

This marked improvement in key performance metrics 

highlights how the stop condition reduces errors by ensuring 

that only deliberate and accurate movements are detected and 

executed. The enhancement optimized accuracy and 

reinforced system dependability, making it robust and reliable 

for real-world scenarios. These substantial gains in precision, 

sensitivity, and the F1 score establish a new benchmark for 

performance in wheelchair movement detection systems, 

showcasing the transformative impact of this strategic 

adjustment on system efficacy and safety. 

In the end, it can be ventured that the stop condition feature 

has added to the improvement of the accuracy of decisions 

made by the algorithm when applied in real-time applications, 

especially in wheelchair control. This overview of system 

performance should be taken as the enormous potential to 

revolutionize mobility and independence for persons with 

physical disabilities. Results have shown that head movements 

are successfully mapped onto wheelchair controls using a 

camera sensor, focused mainly on the displacement of the 

facial landmark point 27 as the most important indicator. This 

approach further enhances the responsiveness and reliability 

of the system, setting the bar high for developments to come 

in assistive technologies while showing how convincingly 

available solutions could work together to create critical 

mobility challenges-simplicity and clarity in the technique 

guarantee smooth implementation and fast decision-making. 

At the same time, the optimization of the system faces 

particular challenges: delivering the Complete Detection for 

Subtle Displacements under different light conditions and 

reducing sensor noise for boundary angles. Besides, the users 

may feel discomfort for large head movements (±90 degrees). 

Hence, a finer granularity of angles or adaptive modifications 

within the system could be developed based on usability and 

comfort perspectives. Overall, these findings relieved the 

potentially transformational impact of this system on the 

mobility and independence of persons with varied forms of 

physical impairments. At the same time, however, they 

suggest some room for further refinement to achieve greater 

effectiveness and higher user satisfaction. Thus, continued 

optimization, maybe even extended to further adaptiveness for 

the needs of a wide range of users and diverse environmental 

contexts, may yield an even more enabling system of support 

that is even more impactful in assistive technology. 

The system was tested under various real-world conditions 

to assess its robustness and usability. Scenarios included: 
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1) Different lighting conditions-indoor bright lighting, 

dimly lit environments, and natural daylight. 

The system maintained above 99% accuracy across all 

conditions, confirming that contrast normalization techniques 

effectively handle lighting variations. 

2) User variability-testing with multiple users with 

different head movement speeds and styles, such as 

Users with slow, moderate, and fast head movements 

Adaptive displacement thresholds ensured that users with 

slower movements still achieved high accuracy (99.7%), 

proving system flexibility. 

3) Environmental noise-assessing system performance 

when external movements (e.g., background 

distractions, slight head tremors) were present, where 

a 3-second time-based threshold reduced false 

activations by 40%, confirming robust filtering of 

unintended movements. 

4) Real-time response analysis-measuring detection 

speed and movement execution delays to ensure 

smooth wheelchair operation. 

The system demonstrated an average response time of 0.5 

seconds, ensuring real-time wheelchair control. 

These tests confirmed that the system maintains high 

accuracy and reliability across diverse conditions, 

demonstrating its effectiveness for real-world use, as 

expressed in Table 5. 

This table demonstrates the robustness of the system across 

various real-world conditions. The slight decrease in 

performance under dim lighting and background noise 

suggests that environmental factors impact accuracy, though 

the system maintains high reliability (>98.9%). The highest 

accuracy (99.8%) is observed for slow head movements, 

indicating that the system performs optimally when 

movements are deliberate and well-defined. The results 

highlight the effectiveness of adaptive thresholds in 

maintaining consistent classification accuracy. 

 

Table 5. System performance under different conditions 

 

Condition 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Bright Light 99.7 99.6 99.5 99.55 

Dim Light 99.4 99.3 99.2 99.25 

Background 

Noise 
99.2 99.1 98.9 99.0 

Slow Head 

Movements 
99.8 99.7 99.7 99.75 

Fast Head 

Movements 
99.6 99.5 99.4 99.45 

 

 

9. COMPARISON WITH PREVIOUS WORKS 

 

The research results demonstrate substantial improvement 

over previous investigations, which leads to better accuracy in 

head movement detection for wheelchair control applications. 

For instance, Bui et al. [14] developed a system using an MPU 

6050 sensor, achieving a commendable accuracy of 97%. 

However, their method required external sensors to be 

attached to the user’s head, which posed potential challenges 

to comfort with convenience. Similarly, Prasad et al. [28] 

implemented head movement control using an ATMega328p 

microcontroller and accelerometers, but their system achieved 

a comparatively lower accuracy of 90%. 

This research presents a system that reaches 99.8% accuracy 

by using camera-based facial landmark tracking. The 

technique eliminates the requirement for wearable attachments 

for users, thus providing an invasive and user-friendly design. 

The discoveries represent a crucial development that enhances 

both system precision and user practicality and convenience. 

This wheelchair control technology operates through an 

accessible, non-invasive approach that establishes an 

outstanding standard for real-world usage while delivering an 

enhanced user experience. 

In comparison, Sayeed et al. [19] implemented head and eye 

movement detection using a webcam, reaching 89% accuracy, 

which, while effective, did not achieve the precision necessary 

for real-time wheelchair control with high reliability. Further, 

Majumder and Izaguirre [42] focused on smart-home security 

and motion detection using an IoT framework with IR sensors 

and cameras, reached a detection accuracy of 95.5%, though 

their focus was not specifically on wheelchair control. In 

contrast, Zamir et al. [23] developed a facial recognition 

system using Raspberry Pi and CNN-based face detection, 

achieving 98.3% accuracy. While impressive, the system's 

application was limited to security and facial recognition, not 

head movement detection. Moreover, Phayde et al. [24] 

worked on motion detection and facial recognition for a Smart 

IoT Security System, utilizing motion sensors and cameras to 

reach an accuracy of 91%. Though effective in security 

applications, it did not focus on head movement for wheelchair 

control. 

Regarding advanced applications, Zeng et al. [25] combined 

human activity recognition with face recognition using 1D-

CNN and wearable sensors, achieving 98.1% accuracy, but 

again, this work was more focused on human activity 

monitoring than assistive wheelchair control. Finally, this 

work surpasses all previous efforts by reaching an accuracy of 

99.8% in detecting head movements for real-time wheelchair 

control, utilizing a Raspberry Pi and camera-based system. 

This accuracy is a significant improvement, demonstrating the 

practical viability of the system for assistive mobility. 

Table 6 compares head movement detection and recognition 

systems, focusing on different methods, algorithms, 

controllers, sensors, and accuracy levels. Most studies utilize 

IoT devices, cameras, and machine learning models like CNN, 

achieving accuracy rates from 89% to 98.3%. The current 

work, which employs real-time head movement detection 

using a Raspberry Pi and camera, achieves the highest 

accuracy at 99.8%, indicating significant advancements in 

precision and reliability. 

Unlike sensor-based approaches that require wearable 

devices [14, 28], the proposed system eliminates physical 

discomfort and setup complexity by leveraging facial 

landmark tracking. This approach enhances user convenience 

while maintaining high accuracy (99.8%), surpassing 

accelerometer-based methods that often suffer from false 

activations and misclassification errors. 

Compared to CNN-based facial recognition systems (e.g., 

Zamir et al. [23]), which achieve high accuracy but at the cost 

of computational complexity, our system offers low 

computational cost, real-time processing, and efficient 

implementation on embedded platforms (e.g., Raspberry Pi). 

This makes it more practical for real-world applications, 

particularly for users requiring a lightweight, responsive 

wheelchair control system. 

This research presents a system that reaches 99.8% accuracy 

by using camera-based facial landmark tracking. The 

technique eliminates the requirement for wearable attachments 
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for users, thus providing an invasive and user-friendly design. 

The discoveries represent a crucial development that enhances 

both system precision and user practicality and convenience. 

This wheelchair control technology operates through an 

accessible, non-invasive approach that establishes an 

outstanding standard for real-world usage while delivering an 

enhanced user experience. 

Table 6. Comparison of the result of the current work with previous studies 

References Method Algorithm Controller Sensor 
Acc. 

(%) 
Key Limitation 

Bui et al. [14] Head movement 
Head motion 

recognition 
Arduino MPU 6050 97 

Requires external sensor 

attachment 

Prasad et al. [28] Head movement Head motion controlled 
ATMega 

328p 
Acc. 90 High false activation rate 

Sayeed et al. [19] Head & eye movement 
Head & eye movement 

detection 
Webcam Camera 89 

Low precision, slow 

real-time performance 

Majumder and 

Izaguirre [42] 
Smart-home security Motion detection IoT 

Camera, IR 

sensor 
95 

Limited to security 

applications 

Zamir et al. [23] Facial recognition 

Histogram  

of oriented gradient 

(HOG) 

Rasp-berry Pi 

and CNN 
Camera 98 High computational cost 

Phayde et al. [24] 
Motion detection & 

facial recognition 

Smart IoT security 

system 

Motion sensor 

+camera
91 

Environmental noise affects 

detection accuracy 

Zeng et al. [25] 
Face recognition and 

human activity 

Human-computer  

interface 
1D-CNN 

Wearable

sensor 
98.1 Requires user to wear a sensor 

This work Head movement 
Real-time head 

movement detection 
Raspberry Pi Camera 99.8 

Minor accuracy drop under 

extreme lighting 

The proposed system offers several key advantages, making 

it a non-invasive and user-friendly solution that eliminates the 

need for external sensors such as accelerometers or 

gyroscopes. People achieve comfort and efficiency when they 

use facial landmark tracking systems. Through an adaptive 

filtering mechanism, the system delivers exceptional accuracy 

and retrieval in addition to superior false activation prevention 

compared to preceding techniques. The system can adjust 

thresholds dynamically to optimize performance regardless of 

different user conditions and movement patterns. The real-

time system operates efficiently on Raspberry Pi without the 

need for powerful GPUs, which are required by deep learning-

based solutions for their computationally demanding tasks. 

Such design features make the system light in weight while 

remaining affordable and practical for actual implementation. 

Although this system outperforms many prior approaches, a 

few limitations remain: 

• Lighting sensitivity-while contrast normalization

improves performance, extreme lighting variations

can still slightly impact accuracy.

• Subtle movements-micro-movements (under 5

degrees) may not always trigger a response, requiring

further refinement.

• User comfort-large head tilts (±90°) can cause

discomfort, suggesting the need for adaptive

sensitivity adjustments.

While the current comparison highlights the system's high 

accuracy, a more comprehensive evaluation should consider 

user comfort, cost, adaptability, and real-world usability. 

Unlike wearable sensor-based methods, our camera-based 

approach eliminates physical contact, improving long-term 

usability. Future enhancements may include ergonomic 

assessments for user fatigue. Cost-Effectiveness: Deep 

learning-based methods require high-end GPUs, making them 

expensive and power-hungry. Our Raspberry Pi-based 

solution offers a low-cost alternative while maintaining high 

accuracy. 

Future optimizations could integrate a lightweight AI model 

for better efficiency. 

• Lighting Conditions: While contrast normalization

improves performance, low-light environments

remain a challenge. Future work could explore

infrared (IR) cameras or adaptive brightness

correction.

• Subtle Movements: The system performs well for

defined movements but struggles with micro-

movements (<5° displacement). A hybrid model

integrating optical flow tracking could enhance

detection.

A machine learning-based anomaly detection system would 

extend beyond the existing 3-second threshold to minimize 

accidental movement errors. Expanding Control Capabilities: 

Beyond the four primary directions, the system could integrate 

tilting for speed control or blinking-based commands for 

auxiliary functions. 

By implementing these enhancements, the system can 

further improve usability, reliability, and accessibility, making 

it more practical for real-world assistive applications. 

10. CONCLUSION

Researchers established successful work to create a 

wheelchair electric control system through camera-based 

recognition of facial characteristic points to detect head 

motions. Accurate detection of left-right and forward-

backward head tilts exists in the system through X-Y axis 

displacement analysis, which produces precise wheelchair 

control signals. With and without stop condition application, 

the proposed method showed exceptional outcomes, with 

99.55% accuracy when using the no-stop condition and 99.8% 

accuracy when applying it. Performance evaluation shows 

positive outcomes for data quality and reliability because the 

system achieves precision rates up to 99.7% while recall rates 

rise to 99.7% and the F1-score reaches 99.75% with the stop 

condition activated. The implementation of stop conditions in 

the system reduced false activations, which resulted in better 

safety and greater system dependability. 
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The wider applications of this system incorporate technical 

innovations that could generate a complete transformation in 

mobility support for people who have severe physical 

disabilities. The system tracks users' heads precisely, which 

reduces unintentional movements and provides enhanced 

independence to customers who face physical limitations. The 

affordability of this solution results from its implementation 

based on Raspberry Pi and OpenCV platforms while also 

expanding accessibility because of its low-cost operational 

structure. 

Although the system functions effectively, its future 

implementation needs to tackle existing performance 

weaknesses. A limiting factor for system precision arises from 

its sensitivity to changes in surrounding illumination 

conditions, while it also shows reduced effectiveness when 

detecting small bodily movements with displacements below 

5°. The future version of the system should add infrared 

cameras together with adaptive brightness normalization 

capabilities to enhance its capability to work under diverse 

lighting conditions. The existing displacement threshold 

method in the system does not work well for people with 

reduced mobility because it uses set threshold limits. Improved 

future system versions should include machine learning-based 

adaptive models for dynamic threshold adjustments to extend 

usability to diverse user groups. Moreover, expanding the 

system’s functionality by integrating collision detection, 

obstacle avoidance, and user override mechanisms would 

significantly increase safety and control precision. The 

features would become more powerful through real-time 

machine learning models that adjust movement classifications 

according to individual user behavior. Additional 

enhancements in development will investigate methods to 

combine head tracking with gaze or speech commands as 

alternative wheelchair control techniques. 

The system can transform into a totally adaptive and 

intelligent assistive technology by addressing these 

enhancements, which would lead to better mobility outcomes 

for people with severe physical impairments. This research 

framework establishes the foundation for upcoming 

generations of adaptive wheelchair control systems that will 

enhance user freedom and safety when used in real-

environment applications. 
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