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Numerous novel metaheuristic algorithms have been proposed. Unfortunately, most of 

them are metaphor-inspired ones. This study introduces an innovative approach called 

the adaptive iteration algorithm (AIA). AIA is a metaphor-free metaheuristic. It 

provides novel adaptive techniques and utilizes iteration for choosing the strategy. This 

adaptive measure is implemented through the second search during the iteration where 

explorative search is taken if the first search fails to produce improvement. The 

performance of AIA is assessed by using two use cases: the 23 standard functions and 

the economic emission dispatch (EED) problem in Indonesia. In this assessment, AIA 

is confronted with five metaheuristics: hiking optimization (HO), crayfish optimization 

algorithm (COA), golden search optimization (GSO), lyrebird optimization algorithm 

(LOA), and osprey optimization algorithm (OOA). AIA outperforms HO, COA, GSO, 

LOA, and OOA in 23, 21, 21, 18, and 17 functions respectively out of the 23 functions. 

Meanwhile, AIA is also superior to all its comparative algorithms in the EED problem. 

It is concluded that AIA is the best among the compared algorithms in handling the 23 

standard functions. GSO is the worst technique in handling the high-dimensional 

functions, while HO is the worst technique in handling the fixed-dimensional functions 

and the EED problem.  
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1. INTRODUCTION

Economic emission dispatch (EED) is a popular 

optimization study in power systems. It is the derivative of the 

economic dispatch (ED) problem [1]. EED is the multi-

objective version of ED problem which the goal is to reduce 

both the operational expenses and the environmental impact 

costs. [2]. There have been a lot of studies in EED problems in 

recent years. In these studies, metaheuristic algorithms have 

become popular techniques to solve this problem. For 

example, salp swarm algorithm has been utilized to solve EED 

problem that integrates wind, solar, and thermal power units 

[3]. Grey wolf optimization (GWO) and crow search algorithm 

(CSA) have been combined to solve the mixed unit 

commitment-economic emission dispatch (UC-EED) with the 

use case is IEEE-39 bus system [4]. A derivative of non-

dominated sorting genetic algorithm (NSGA II) has been 

utilized to solve EED problem where the system consists of 

wind and solar power [5]. The modified version of honey 

badger algorithm (HBA) has been utilized to solve EED 

problem in hydrogen microgrid system [5]. Particle swarm 

optimization (PSO) has been combined using non dominated 

sorting which is to find the Pareto-optimal in handling EED 

problem [6]. 

Numerous innovative approaches have emerged over the 

past few years. Many of them use metaphors, including white 

shark optimization (WSO) [7], elk herd optimization [8], zebra 

optimization algorithm (ZOA) [9], lyrebird optimization 

algorithm (LOA), [10], swarm magnetic optimization (SMO) 

[11], osprey optimization algorithm (OOA) [12], crayfish 

optimization algorithm (COA) [13], prairie dog optimization 

algorithm (PDO) [14], golden jackal optimization (GJO) [15], 

horse herd optimization (HHO) [16], red fox optimization 

(RFO) [17], fennec fox optimization (FFO) [18], addax 

optimization algorithm (AOA) [19], cheetah optimization 

(CO) [20], hiking optimization (HO) [21], Komodo mlipir 

algorithm (KMA) [22], and so on. Meanwhile, certain 

metaheuristics operate freely of any metaphorical inspiration, 

including golden search optimization (GSO) [23], fully 

informed search algorithm (FISA) [24], average-subtraction 

based optimization (ASBO) [25], subtraction-average based 

optimization (SABO) [26], quad tournament optimizer (QTO) 

[27], multiple interaction optimizer (MIO) [28], modified 

social forces algorithm (MSFA) [29], and so on. 

There are several reasons that motivate the massive 

development of metaheuristic algorithms. First, there are 

various techniques and parameters that can be exploited to 

construct new techniques. These techniques can be the 

randomized mechanism, utilization of iteration, step size 

calculation, condition for action, target, and so on. Secondly, 

according to the No Free Lunch (NFL) theorem, no single 

method possesses sufficient strength to effectively address 
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every problem. It makes many new methods employ multiple 

search approaches by combining more than one search that is 

conducted sequentially, separately, or conditionally. There are 

a lot of practical optimization problems so that new algorithms 

can be assessed using various use cases whether in their first 

or later appearance.   

Despite the extensive development and utilization of 

techniques, there are certain unresolved problems in this area. 

First, the existence of metaphors has been criticized as 

camouflage of mere novelty. Second, there is high motivation 

to outperform the existing metaheuristics by introducing the 

new one rather than promoting novel approach. Third, the 

proportion of the assessment is far higher than the proportion 

of explanation of the technique. It seems many studies of 

introducing new metaheuristics focus on the assessment rather 

than the algorithm itself. Fourth, many new methods do not 

consider the adaptability of the technique. Many of them 

consider the quality of recent solutions but only a few of them 

consider the improvement or stagnation of the process and act 

regarding this circumstance. Fifth, many of these 

metaheuristics treat the iteration just as a counter although 

some of them treat the iteration to determine the observation 

space or step size. Moreover, only a few of them treat the 

iteration for determining the searching method that will be 

conducted. 

Moreover, the studies that introduce a new technique tend 

to be thicker in paper length. This circumstance occurs 

because of the excessive assessment that the study aims to 

evaluate the effectiveness of the suggested approach. Despite 

its necessity, it is better that the test is not too extensive. For 

example, there are multiple standard use cases that are used in 

a single paper, for example multiple CEC series. On the other 

hand, the portion explaining the concept and the formalization 

of the proposed metaheuristic is too little. Meanwhile, more 

practical use cases in broader fields can be conducted in later 

studies rather than in the first publication of the techniques. 

Moreover, excessive assessments with a lot of benchmark 

techniques seem to be performance competition rather than 

investigating the contrast and resemblance between the 

suggested approach and prior methodologies. 

Based on these unresolved problems, this study focuses on 

creating an innovative method known as the adaptive iteration 

algorithm (AIA) with certain characteristics. First, AIA should 

be free from metaphors so that its novel approach can be traced 

easily. Second, AIA employs adaptive techniques so that it 

behaves differently when facing improvement or stagnation. 

Third, AIA utilizes iteration not only as a counter for the 

iterative process but also controller to make decision of 

choosing the searching method. The presentation of this paper 

is conducted in a concise but comprehensive manner and 

avoids excessive assessment. 

In the meantime, the contributions presented in this paper 

can be outlined as follows: 

• This study presents an innovative technique that is free 

from metaphor and called adaptive iteration algorithm.  

• AIA provides novel techniques in creating adaptability and 

iteration-controlled decision making. 

• AIA is assessed by using two use cases: the 23 standard 

functions representing the unconstrained problem and the 

EED problem in Indonesia representing the constrained 

problem. 

• AIA is confronted with five novel optimization algorithms 

inspired by metaheuristic principles: HO, COA, GSO, 

LOA, and OOA. 

Below is the organization of the remainder of this paper. 

Section two provides discussion regarding the recent 

development of techniques including the searching method, 

the use of iteration, and the existence of the adaptive method. 

Section three provides a detailed description of the proposed 

AIA including the idea, pseudocode, flowchart, and 

mathematical formulation. Section four explains the 

assessment to investigate the performance of AIA including 

the use case; the scenario and outcomes are discussed. The 

fifth section elaborates on this aspect and provides a thorough 

analysis of the outcomes, discoveries, and constraints is 

presented. The sixth section outlines the conclusion and 

potential directions for future research. 

 

 

2. RELATED WORKS 
 

Numerous innovative approaches have emerged over the 

past few years. Most of them use metaphors as inspiration, 

especially animal behavior. Besides, swarm intelligence 

becomes the favorite framework although some of them still 

use the evolution system as a framework. Both frameworks are 

population-based systems. It means that the system consists of 

several entities. The basic difference is that in swarm 

intelligence, all entities are active and autonomous on finding 

improvement in every iteration based on the movement with 

certain direction within the space. On the other hand, in 

evolution-based methods, the improvement is conducted by 

cross overing certain number of entities to each other. In most 

cases, not all entities perform crossover. In many cases, 

crossover is conducted by the high-quality members. Then, 

population selection is conducted to determine which 

members will survive to the next iteration. 

By abstracting the metaphor, swarm intelligence-based 

metaheuristic algorithms have similarities and differences. In 

general, targeted exploration serves as the fundamental 

framework for search methodologies. This approach has four 

components: the moving entity or agent, reference, direction, 

and step size. The moving entity is the entity that moves during 

the searching process. The reference is the entity that becomes 

the guidance for the moving entity to move. The direction is 

the vector that is taken by the moving entity relative to the 

target. Step size is the length of motion that is taken by the 

moving entity. 

There are several common references in swarm-based 

metaheuristics. The best agent becomes the most popular 

reference. This best agent can be the global-best agent like in 

coati optimization algorithm (COA) [30] or KMA [22], local 

best agent, or combination of both like in marine predator 

algorithm (MPA) [31] or GSO [23]. This global best agent can 

be the global best agent in the recent iteration, global best 

agent so far until the recent iteration, or the combination of 

both like in COA [13]. The other references can also be several 

best agents where the number of best agents is static like in 

grey wolf optimization (GWO) [32] and GJO [15] or manually 

determined like in MIO [28]. There are also other common 

references like a randomly selected agent or other agent like in 

zebra optimization algorithm (ZOA) [9], a randomly solution 

within space, like in COA [30], and so on. Each of these 

references has strengths and weaknesses where some 

references tend to be exploitation-oriented reference while the 

others tend to be exploration-oriented reference. 

Certain metaheuristic algorithms utilize a combination of 

search strategies, whereas others rely on a singular search 
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method. The multiple search approach is chosen in many 

recent methods to accommodate the strength and weakness of 

each searching method. This method of conducting multiple 

searches can be implemented in various manners, including 

sequential execution, optional selection, iterative processes, or 

division into swarm segments. 

KMA becomes the example of multiple search-based 

metaheuristic that employs multiple searches in two ways: 

swarm-split and optional execution. The swarm split is 

conducted by splitting the swarm into three groups: the high-

quality agents called big males, the moderate quality agents 

called females, and the low-quality agents called small males 

[22]. Meanwhile, the optional mechanism is conducted as each 

female has two options with equal probability: crossover with 

highest quality agent or move anywhere within space [22]. 

Regarding this explanation, there are several notes in 

developing a new technique due to the shortcomings of many 

recent techniques. First, this proposed technique should be free 

from metaphor so that its true approach can be clearly 

investigated and understood. As mentioned previously, there 

are common methods in many techniques where each common 

method has many names or terms in the metaphor-inspired 

techniques. Second, it is challenging to create a new technique 

that has adaptive mechanisms to handle both improvement and 

stagnation as the adaptive approach is rare to find in many 

techniques so that the exploration and exploitation are 

conducted in the fixed rule where the improvement or 

stagnation is neglected in the decision-making process. Third, 

it is interesting to exploit iteration not only as a counter but 

also part of decision making as also commonly found in many 

techniques. Fourth, it’s important to challenge this technique 

not only using standard or classic use cases but also the 

practical and contemporary ones as many techniques were 

assessed using standard use cases in their first appearance. 

 

 

3. PROPOSED MODEL 
 

The proposed adaptive iteration algorithm (AIA) is 

constructed based on swarm intelligence framework. AIA 

comprises multiple self-governing agents that operate 

independently, striving to identify the optimal solution in each 

iteration. But collaboration among agents is conducted to 

boost its performance. As previously mentioned, AIA is 

developed as a multiple search-based technique. This 

approach is conducted sequentially and optionally. 

The novel approach of AIA relies on the adaptive and 

iteration terms. Regarding the first term, AIA performs 

exploitation-oriented search when it faces improvement and 

performs exploration-oriented search when it faces stagnation. 

Enhancement occurs when the agent discovers a superior 

solution compared to its previous search. Conversely, if the 

agent is unable to identify a more optimal solution during the 

prior search, it is considered unsuccessful. Regarding the 

second term, AIA also utilizes iteration to determine the 

searching method. 

Every agent performs two stages that are performed 

sequentially in every iteration. In both stages, iteration 

controls the searching method that is taken. Meanwhile, the 

adaptive mechanism is taken only in the second stage.  

In the first stage, there are two options. The initial choice 

involves moving in the direction of a randomly selected agent 

from a group comprising the better agents along with the best 

agent. The second option is the motion toward the best agent. 

In the early iteration, the agent tends to choose the first option. 

Then the probability of the first option to be chosen declines 

as iteration goes. Then, in the late iteration, the agent tends to 

choose the second option. This strategy remarks on the shift 

from exploration to exploitation where iteration becomes the 

controller. 

In the second stage, there are three options. The initial 

choice involves moving in the direction of the best agent. The 

next option entails the best agent shifting away from its 

associated counterpart. Lastly, the third alternative represents 

movement in relation to a randomly selected agent. When 

improvement occurs in the first stage, the agent may choose 

the first or second option. At the beginning of the process, the 

likelihood of selecting the first option is considerable. 

However, as the iterations progress, this probability gradually 

decreases. Then, this probability of the second option is high 

in the late iteration. When stagnation occurs in the first stage, 

the agent chooses the third option.  

Stringent acceptance is applied in both stages. A solution 

candidate is generated in every stage. Only when a superior 

solution candidate is found can it take the place of the agent's 

current value. 

The AIA framework is defined through both pseudocode 

and mathematical expressions, with the pseudocode detailed 

in Algorithm 1 and Algorithm 2. Algorithm 1 shows the 

process of the whole optimization process while algorithm 2 

shows the process in the second stage. Meanwhile, the 

mathematical formulation is presented from Eq. (1) to Eq. 

(11). The list of notations that are used in this paper is provided 

in nomenclatures. 

 

Algorithm 1: Adaptive iteration algorithm 

1 start 

2  for i=1 to n(S) 

3   initialize si 

4   update sbest 

5  end for 

6  for t=1 to tm 

7   for i=1 to n(S) 

8    sprev ← si 

9    perform first stage and update sbest 

10    update imp 

11    perform second stage and update sbest 

12   end for 

13  end for 

14  return sbest 

15 stop 

 

Algorithm 2: Second stage process 

1 start 

2  if imp = 1 then 

3   perform improving search 

4  else 

5   perform stagnation search 

6  end if 

7 stop 

 

The optimization process begins with the initialization 

phase. During this stage, agents are initially distributed 

uniformly across the defined space, as described in Eq. (1). 

Subsequently, with each new agent generated, the optimal 

agent is continuously updated following Eq. (2). The rationale 

of choosing uniformity is to provide equal opportunity in the 

beginning of the optimization process as the location of the 
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optimal solution or the trend of it is still unknown. The sbest’ in 

Eq. (2) represents the best agent after updating process. 

 

𝑠𝑖,𝑗 = 𝑏𝑙𝑜𝑤,𝑗 + 𝑟1(𝑏𝑢𝑝,𝑗 − 𝑏𝑙𝑜𝑤,𝑗)  (1) 

 

𝑠𝑏𝑒𝑠𝑡 ′ = {
𝑠𝑖 , 𝑓(𝑠𝑖) < 𝑓(𝑠𝑏𝑒𝑠𝑡)

𝑠𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
  (2) 

 

The first stage is formalized using Eq. (3) to Eq. (6). Eq. (3) 

formalizes the construction of a pool that comprises all better 

agents plus the best agent. Then, Eq. (4) formalizes the random 

selection from this pool. Eq. (5) illustrates the process of 

generating the initial solution candidate, which is derived from 

both the first and second options, with stochastic control 

applied through iterative computation. The stringent 

acceptance of the agent based on the first solution candidate is 

formalized using Eq. (6). The si’ in Eq. (6) represents the agent 

after updating process using the first candidate. 

 

𝑆𝑏𝑒𝑡,𝑖 = {𝑠𝑘 ∈ 𝑆 ∧ 𝑓(𝑠𝑘) < 𝑓(𝑠𝑖)} ∪ 𝑠𝑏𝑒𝑠𝑡   (3) 

 

𝑠𝑠𝑒𝑙1 = 𝑟3(𝑆𝑏𝑒𝑡,𝑖)  (4) 

 

𝑐1,𝑗 = {
𝑠𝑖,𝑗 + 𝑟1(𝑠𝑠𝑒𝑙1,𝑗 − 𝑟2𝑠𝑖,𝑗), 𝑟1 >

𝑡

𝑡𝑚

𝑠𝑖,𝑗 + 𝑟1(𝑠𝑏𝑒𝑠𝑡,𝑗 − 𝑟2𝑠𝑖,𝑗), 𝑒𝑙𝑠𝑒
  (5) 

 

𝑠𝑖
′ = {

𝑐1, 𝑓(𝑐1) < 𝑓(𝑠𝑖)

𝑠𝑖 , 𝑒𝑙𝑠𝑒
  (6) 

 

𝑖𝑚𝑝 = {
1, 𝑓(𝑠𝑖) < 𝑓(𝑠𝑝𝑟𝑒𝑣)

0, 𝑒𝑙𝑠𝑒
  (7) 

 

The improving status is updated by using Eq. (7). Based on 

algorithm 1, the current solution of the agent is stored before 

performing the first stage. Then, the quality of this stored value 

is compared with the quality of the agent after performing the 

first stage. The status is set to 1 if improvement takes place. 

Otherwise, the status is set to 0. 

 

𝑐2,𝑗 = {
𝑠𝑖,𝑗 + 𝑟1(𝑠𝑏𝑒𝑠𝑡,𝑗 − 𝑟2𝑠𝑖,𝑗), 𝑟1 >

𝑡

𝑡𝑚

𝑠𝑏𝑒𝑠𝑡,𝑗 + 𝑟1(𝑠𝑏𝑒𝑠𝑡,𝑗 − 𝑠𝑖,𝑗), 𝑒𝑙𝑠𝑒
  (8) 

 

𝑠𝑠𝑒𝑙2,𝑖 = 𝑟3(𝑆)  (9) 

 

𝑐2,𝑗 = {
𝑠𝑖,𝑗 + 𝑟1(𝑠𝑠𝑒𝑙2,𝑗 − 𝑟2𝑠𝑖,𝑗), 𝑓(𝑠𝑠𝑒𝑙2) < 𝑓(𝑠𝑖)

𝑠𝑖,𝑗 + 𝑟1(𝑠𝑖,𝑗 − 𝑠𝑠𝑒𝑙2,𝑗), 𝑒𝑙𝑠𝑒
  (10) 

 

𝑠𝑖
′ = {

𝑐2, 𝑓(𝑐2) < 𝑓(𝑠𝑖)

𝑠𝑖 , 𝑒𝑙𝑠𝑒
  (11) 

 

The methodology in the second phase is structured through 

Eq. (8) and Eq. (9). The enhancement of the search process is 

defined by Eq. (8), where the second solution candidate is 

generated either by moving toward the best agent or by the best 

agent moving away from another agent. The exploration 

during stagnation is described by Eq. (9) and Eq. (10). 

Specifically, Eq. (9) represents the selection of a random 

agent, while Eq. (10) outlines the agent’s movement—either 

approaching the chosen agent if it exhibits superior 

performance or distancing itself if the selected agent is 

inferior. Lastly, Eq. (11) establishes the strict acceptance 

criteria for the agent based on the second solution candidate. 

The si’ in Eq. (11) represents the agent after updating process 

using the second candidate. 

According to this clarification, the intricacy of AIA is 

demonstrated as O(n(S).d) during the initialization and 

O(n(S)2.d.tm) throughout the repetitive process. The 

complexity scales linearly with either the swarm size or the 

dimensionality during the initialization phase. Meanwhile, the 

complexity is linear to the maximum iteration and dimension 

but quadratic proportional to the swarm size. 
 

 

4. RESULTS 
 

This section provides an assessment of the performance of 

AIA. In this paper, AIA is tested by using two use cases: 

standard use case and practical use case. The group of 23 

standard functions serves as the typical application scenario, 

whereas the EED problem within the Java-Bali power grid 

exemplifies real-world implementation. The first use case 

represents the unconstrained problem where the solution can 

be placed anywhere within the solution space. On the other 

hand, the second use case represents the constrained problem 

where the solution cannot be placed anywhere within space as 

the solution in certain dimension depends on the solution in 

other dimensions. In this paper, the formalization of the use 

cases is not presented as they can be found in many previous 

works so that presenting the model and formalization may 

produce redundancy. 

In this evaluation, AIA encounters five novel metaheuristic 

algorithms: HO, COA, GSO, LOA, and OOA. These five 

metaheuristics are chosen as they represent various techniques 

or approaches. HO, COA, and GSO are metaheuristics that do 

not employ stringent acceptance while LOA and OOA are the 

metaheuristics that employ stringent acceptance. HO, COA, 

and GSO are metaheuristics that employ only directed search 

while LOA and OOA employ both directed search and local 

search. HO uses single reference which is the best agent. COA 

uses two references: the best agent so far and the middle 

between the best agent so far and the best agent in the current 

iteration. GSO uses two references: the global-best agent and 

the local best agent. LOA uses a single reference which is a 

randomly chosen better agent. COA also uses a single 

reference: a randomly chosen agent from the pool that consists 

of all the better agents plus the best agent. 

In the first case, AIA is challenged to solve the set of 23 

standard functions. This case is popular and widely used as 

standard functions to assess new techniques, such as KMA, 

GSO, TIA, and so on. The widespread adoption of this 

application arises from the diverse conditions present within 

these functions. It consists of 13 high-dimensional functions 

and 10 fixed dimensional functions. It also consists of 7 

unimodal functions and 16 multimodal functions. A unimodal 

function refers to a function possessing a single optimal 

solution. In contrast, a multimodal function contains multiple 

optimal solutions, with one being the global optimum while 

the rest are local optimum. A comprehensive explanation of 

these functions is available in reference [23] including the 

mathematical formulation, optimal value, and the solution 

space.  

In this case, the dimension of the high dimensional 

functions is set to 50. In the meantime, the maximum iteration 

is defined as 30, whereas the swarm size is configured to 10. 

The result for this first uses case can be found from Tables 1-

5. In this evaluation, any decimal value smaller than 10⁻⁴ is 
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approximated as zero. There are 20 independent runs for each 

function and each technique in this first case. This number is 

justified as the result shows stability in this low number of 

independent runs. 

Table 1 shows the assessment result on handling seven high 

dimensions unimodal functions. This result reveals the 

supremacy of AIA in handling these functions. AIA produces 

the best result of all seven functions. Moreover, it attains the 

global optimum in both F1 and F2. Additionally, three other 

metaheuristic algorithms including COA, LOA, and OOA are 

also capable of identifying the global optimum for F2. 

Conversely, GSO performs the poorest, yielding the lowest 

accuracy across six functions (F1 to F6) and ranking as the 

second least effective method for F7. HO becomes the second 

worst technique. This result also reveals the wide disparity 

between the best and worst technique. 

Table 2 shows the assessment result on handling six high 

dimension multimodal functions. In these functions, AIA is 

still superior compared to its confronters. AIA produces the 

best result in fixed functions (F9 to F13). Meanwhile, it 

becomes the fourth best in handling F8. AIA successfully 

attains the global optimum for two functions (F9 and F10). 

Conversely, GSO remains the least effective method, yielding 

the poorest performance across four functions (F10 to F13). 

The performance gap between the most effective and least 

effective techniques is substantial in five functions but 

relatively small in one function (F8). 

Table 3 shows the assessment result on handling ten fixed 

dimension multimodal functions. In these functions, AIA is 

also still superior as it achieves the best result in five functions 

(F15 to F17, F21, and F23) and the second-best result in four 

functions (F14, F19, F20, and F22). AIA also achieves the 

global optimal in two functions (F16 and F17). On the other 

hand, HO becomes the worst techniques as it achieves the 

worst result in eight functions (F14-F16, F18, and F20-F23) 

and second worst result in two functions (F17 and F19). The 

result also reveals the narrow disparity between the best 

technique and the worst technique in almost all ten functions. 

Table 1. Result on high dimension unimodal functions 

F Parameter HO COA GSO LOA OOA AIA 

1 

mean 5.8729×101 0.1190 2.5744×104 3.9040 0.0003 0.0000 

standard deviation 3.7494×101 0.5176 5.9146×103 2.4535 0.0002 0.0000 

mean rank 5 3 6 4 2 1 

2 

mean 0.0177 0.0000 6.2169×1023 0.0000 0.0000 0.0000 

standard deviation 0.0812 0.0000 2.7676×1064 0.0000 0.0000 0.0000 

mean rank 5 1 6 1 1 1 

3 

mean 1.4899×103 3.2969×101 6.3120×104 1.1218×104 3.0434×102 1.2412×101 

standard deviation 1.0568×103 1.3534×102 2.4666×104 6.7414×103 4.3642×102 2.6859×101 

mean rank 4 2 6 5 3 1 

4 

mean 2.9604 0.0126 4.2960×101 2.3279 0.0427 0.0010 

standard deviation 0.6251 0.0248 4.3740 1.1228 0.0183 0.0008 

mean rank 5 2 6 4 3 1 

5 

mean 6.0544×104 4.8991×101 2.4887×107 8.8788×101 4.8928×101 4.8811×101 

standard deviation 5.2482×104 0.0147 9.8078×106 3.5022×101 0.0239 0.0966 

mean rank 5 3 6 4 2 1 

6 

mean 1.0235×102 1.5650×101 2.1274×104 1.3874×101 1.0085×101 8.5402 

standard deviation 4.9019×101 1.6518×101 5.7468×103 2.7474 0.5201 0.4606 

mean rank 5 4 6 3 2 1 

7 

mean 3.8201×102 0.0370 1.4995×101 0.0462 0.0183 0.0079 

standard deviation 2.3212×102 0.0448 4.3672 0.0368 0.0081 0.0045 

mean rank 6 3 5 4 2 1 

Table 2. Result on high dimension multimodal functions 

F Parameter HO COA GSO LOA OOA AIA 

8 

mean -1.6074×103 -2.8215×103 -4.2115×103 -4.1872×103 -5.1989×103 -3.7511×103

standard deviation 6.5121 1.2485×103 9.5979×102 6.7849×102 5.1375×102 4.7292×102

mean rank 6 5 2 3 1 4 

9 

mean 5.5057×102 0.4605 3.6017×102 4.7749×101 0.0014 0.0000 

standard deviation 5.0791×101 2.1487 2.5652×101 5.3420×101 0.0020 0.0000 

mean rank 6 3 5 4 2 1 

10 

mean 6.1579 0.0052 1.6660×101 1.1530 0.0035 0.0000 

standard deviation 1.2128 0.0107 0.7982 0.7530 0.0009 0.0000 

mean rank 5 3 6 4 2 1 

11 

mean 0.4216 0.0876 2.3043×102 0.4940 0.0071 0.0007 

standard deviation 0.1662 0.3189 4.5628×101 0.3274 0.0297 0.0034 

mean rank 4 3 6 5 2 1 

12 

mean 5.3729 1.3559 1.4930×107 1.0706 0.8470 0.6623 

standard deviation 1.9022 0.1406 1.2733×107 0.1748 0.1052 0.0793 

mean rank 5 4 6 3 2 1 

13 

mean 4.4155 3.3280 6.9271×107 4.0510 3.1684 2.9412 

standard deviation 3.4172 0.6004 3.1828×107 0.3688 0.0698 0.0568 

mean rank 5 3 6 4 2 1 
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Table 3. Result on fixed dimension multimodal functions 

F Parameter HO COA GSO LOA OOA AIA 

14 

mean 1.2769×101 9.0907 1.0504×101 6.0583 4.9225 5.0757 

standard deviation 0.2095 3.8382 4.3744 3.1060 2.4433 3.3486 

mean rank 6 4 5 3 1 2 

15 

mean 0.0566 0.0357 0.0192 0.0017 0.0020 0.0009 

standard deviation 0.0377 0.0366 0.0233 0.0012 0.0043 0.0011 

mean rank 6 5 4 2 3 1 

16 

mean -0.1084 -0.6309 -1.0316 -1.0292 -1.0310 -1.0316

standard deviation 0.9511 0.3652 0.0000 0.0036 0.0007 0.0000

mean rank 6 5 1 4 3 1 

17 

mean 0.7573 1.5738 0.4047 0.4016 0.3981 0.3980 

standard deviation 0.2580 2.9144 0.0277 0.0036 0.0000 0.0000 

mean rank 5 6 4 3 2 1 

18 

mean 2.5750×102 2.1141×101 8.2033 4.0363 3.0016 5.4545 

standard deviation 2.3161×102 2.8664×101 1.8155×101 4.7204 0.0035 7.7619 

mean rank 6 5 4 2 1 3 

19 

mean -0.0428 -2.2143 -0.0342 -0.0495 -0.0495 -0.0495

standard deviation 0.0116 0.1123 0.0181 0.0000 0.0000 0.0000

mean rank 5 1 6 2 2 2 

20 

mean -0.7481 -1.7841 -2.8434 -3.1064 -3.2137 -3.1487

standard deviation 0.5285 0.6855 0.3589 0.1446 0.0522 0.1219

mean rank 6 5 4 3 1 2 

21 

mean -0.7662 -0.8965 -5.7165 -5.3179 -3.7228 -6.2757

standard deviation 0.3822 0.9895 2.6717 1.7993 1.7221 1.9302

mean rank 6 5 2 3 4 1 

22 

mean -1.0591 -1.4411 -4.8725 -5.0581 -4.7277 -5.0523

standard deviation 0.5072 0.9057 3.0798 1.7269 1.8102 2.0958

mean rank 6 5 3 1 4 2 

23 

mean -1.1842 -1.8559 -3.9834 -4.7913 -4.4489 -6.2953

standard deviation 0.5544 0.9512 1.9768 1.7919 1.8072 2.5109

mean rank 6 5 4 2 3 1 

Table 4. p-value score based on t-test of the comparison between AIA and its benchmarks 

F HO COA GSO LOA OOA 

1 0.000 0.314 0.000 0.000 0.000 

2 0.312 1.000 0.314 1.000 1.000 

3 0.000 0.500 0.000 0.000 0.003 

4 0.000 0.034 0.000 0.000 0.000 

5 0.000 0.000 0.000 0.000 0.000 

6 0.000 0.050 0.000 0.000 0.000 

7 0.000 0.004 0.000 0.000 0.000 

8 0.000 0.002 0.060 0.020 0.000 

9 0.000 0.313 0.000 0.000 0.001 

10 0.000 0.025 0.000 0.000 0.000 

11 0.000 0.301 0.000 0.000 0.322 

12 0.000 0.000 0.000 0.000 0.000 

13 0.064 0.004 0.000 0.000 0.000 

14 0.000 0.000 0.000 0.323 0.865 

15 0.000 0.000 0.000 0.041 0.264 

16 0.000 0.000 0.181 0.004 0.001 

17 0.000 0.065 0.295 0.002 0.000 

18 0.000 0.017 0.525 0.468 0.146 

19 0.012 0.000 0.000 1.000 1.000 

20 0.000 0.000 0.000 0.299 0.027 

21 0.000 0.000 0.439 0.096 0.000 

22 0.000 0.000 0.826 0.992 0.587 

23 0.000 0.000 0.001 0.027 0.007 

Table 5. Group based supremacy of AIA 

Cluster HO COA GSO LOA OOA 

1 7 6 7 6 6 

2 6 6 5 5 5 

3 10 9 9 7 6 

Total 23 21 21 18 17 
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Table 4 provides the significance result based on the p-value 

that is acquired using t-test. In this t-test, AIA is compared 

with its benchmarks. The p-value which is less than 0.05 

remarks the significant difference between AIA and its 

benchmark. Meanwhile, the p-value which is equal to or 

higher than 0.05 remarks the non-significant difference 

between AIA and its benchmark. Based on this explanation, 

AIA is different significantly compared to HO, COA, GSO, 

LOA, and OOA in 21, 16, 17, 16, and 16 functions. 

Table 5 strengthens the supremacy of AIA compared to 

other metaheuristics in handling the 23 standard functions. It 

is better than HO, COA, GSO, LOA, and OOA in 23, 21, 21, 

18, and 17 functions consecutively. This result means AIA is 

absolute better than HO and almost absolute better than COA 

and GSO. 

Figure 1 shows that there is a significant gap between the 

worst technique and the other techniques in the high dimension 

functions. The gap between GSO and the other techniques in 

F1 to F6 and F10 to F13 is high. On the other hand, Figure 2 

also shows that the gap among techniques is narrow in 

handling the fixed dimension functions. 

The second use case is the EED problem in Java-Bali 

electricity system in Indonesia. This system is the biggest one 

in Indonesia as it provides electricity for the most populous 

and industrialized region in Indonesia. It contains eight power 

plants, six of them are thermal power plants and the rest two 

are hydroelectric power plants. 

The EED problem is a multi-objective problem where its 

objective is reducing both operational cost and emission cost. 

It contains two constraints: the equality constraint and the 

inequality constraint. The equality constraint states that the 

total power that is produced by the system should be equal to 

the power demand. Meanwhile, the inequality constraint states 

that the power that is produced by each power plant should be 

within the power range of the power plant. The model, 

mathematical formulation, and the cost constant of this EED 

problem can be found in reference [2]. 

In this assessment, there are four power demand scenarios: 

12,228 MW; 12,863 MW; 13,108 MW; and 13,096 MW. 

These scenarios refer to [2] where they represent the actual 

load of peak hours from 18.00 to 21.00 obtained on June 14, 

2014. The result is provided in Tables 6-9. Like in the first 

case, the swarm size is set to 10 and maximum iteration is set 

to 30. Like in the first case, there are 20 independent runs for 

every scenario and every technique with the same reasoning as 

in the first case. 

Table 6. Mean and standard deviation on handling EED with 12,228 MW demand 

Metaheuristic Mean Standard Deviation Rank 

HO 22,773,462,758 844,563,562 6 

COA 22,150,790,659 593,851,032 5 

GSO 21,453,604,830 440,608,764 4 

LOA 21,138,064,112 172,145,219 3 

OOA 21,057,809,930 122,554,283 2 

AIA 20,654,579,368 72,824,954 1 

Table 7. Mean and standard deviation on handling EED with 12,863 MW demand 

Metaheuristic Mean Standard Deviation Rank 

HO 24,150,497,082 700,743,707 6 

COA 23,207,933,717 602,064,090 5 

GSO 22,939,966,295 253,533,730 4 

LOA 22,762,388,426 221,139,144 3 

OOA 22,679,233,377 138,863,621 2 

AIA 22,305,494,174 65,435,999 1 

Table 8. Mean and standard deviation on handling EED with 13,108 MW demand 

Metaheuristic Mean Standard Deviation Rank 

HO 24,599,876,167 672,548,588 6 

COA 24,013,353,210 709,170,702 5 

GSO 23,663,797,782 362,394,912 4 

LOA 23,401,829,892 162,566,648 3 

OOA 23,363,039,718 119,900,158 2 

AIA 22,942,691,779 49,450,402 1 

Table 9. Mean and standard deviation on handling EED with 13,096 MW demand 

Metaheuristic Mean Standard Deviation Rank 

HO 24,571,829,121 629,955,718 6 

COA 23,910,355,011 591,248,630 5 

GSO 23,422,580,577 420,128,554 4 

LOA 23,359,607,355 161,379,789 3 

OOA 23,283,689,221 113,294,632 2 

AIA 22,900,490,278 30,310,629 1 
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Figure 2. Mean on handling EED problem 

 

General motion is employed to handle the inequality 

constraint. This inequality constraint is like the independent 

solution space in the first case. It means that when the value of 

a generating unit is above the maximum power, then this value 

is set to its maximum power. On the other hand, when the 

value of a generating unit is below the minimum power, then 

this value is set to its minimum power. After the inequality 

constraint is handled, the next fixation is to handle the equality 

constraint. 

The round robin mechanism is employed to handle the 

equality constraint in this EED problem. If the total power of 

the system is above the power demand, then the iterative 

decrease is applied. On the other hand, if the total power of the 

system is below the power demand, the iterative increase is 

applied. A it uses round robin; the circular increase or decrease 

is applied where the circulation starts from the first generating 

unit. The maximum increase/decrease is 10 MW for every turn 

and the circulation stops after the equality constraint is met. 

Besides, the power range for each generating unit is 

considered. If the decreasing mechanism is applied, the 

generating unit whose produced power is equal to its minimum 

power is skipped. On the other hand, if the increasing 

mechanism is applied, the generating unit whose produced 

power is equal to its maximum power is skipped. 

Tables 6-9 reveal the supremacy of AIA in handling the 

EED problem. It achieves the best result in all four scenarios. 

On the other hand, HO is consistent as the worst technique in 

this EED problem. The result also shows the very narrow 

disparity between the best and the worst techniques which 

means the competition among techniques is fierce. The result 

also shows the very low standard deviation representing the 

stability of the result by every technique. This very narrow gap 

among the techniques is also shown in Figure 2. 

 

 

5. DISCUSSION 

 

The findings indicate that AIA demonstrates strong 

performance in managing both the 23 benchmark functions 

and the EED problem, marking it as an initial discovery. The 

result in the first use case shows that AIA has good 

exploitation capability, exploration capability, and balancing 

capability between exploitation and exploration. This 

capability can be traced based on the result on handling the 

high dimension unimodal functions for exploitation capability, 

high dimension multimodal functions for exploration 

capability, and fixed dimension multimodal functions for 

exploration/exploitation balancing capability. The result in the 

second case reveals that AIA also performs well in tackling the 

constrained problem with fierce competition. 

The result also reveals that the multiple search approach is 

better than the single search one as the second finding. GSO 

and HO are the metaheuristic that employ single search 

approach while COA, LOA, OOA, and AIA are metaheuristic 

that employ multiple search approach. COA and LOA employ 

multiple searches based on options. OOA employs multiple 

searches sequentially. AIA employs multiple searches based 

on option and sequence. 

The third finding is that stringent acceptance still performs 

better than loose acceptance. This circumstance occurs in 

almost all cases, especially in 23 standard functions. AIA, 

OOA, and LOA tend to be better than HO, COA, and GSO.  

The fourth finding is that the NFL theory is still relevant. 

AIA is proven as superior metaheuristics compared to its 

confronters. But its performance is not superior in all 

problems. In some functions like F8, its performance is 

moderate. By investigating the terrain of F8, this function has 

a lot of global optimal, and these global optimal solutions are 

distributed across the solution space. It is different with many 

other multimodal functions that consist of multiple optimal 

solutions but there is a trend for the global optimal solution. 

On the other hand, GSO can find the global optimal in 

handling F16 although its performance is poor in many other 

functions. The NFL also influences the degree of variation in 

performance gaps among different techniques, with some 

functions exhibiting significant disparities while others show 

only moderate or minimal differences.  

Moreover, the superiority of AIA cannot be concluded that 

it comes from single reason. This superiority comes from a 

whole package of the approach including the multiple 

searching mechanism, stringent acceptance, selection of the 

reference, step size, and the adaptive mechanism. As also 

relevant to the NFL theory, a single approach may perform 

superior in some cases but expose inferiority in other cases.  

The analysis regarding the exploitation and exploration of 

AIA can be traced back to the formalization. In general, the 

first stage is exploitation in its nature. But the second option is 

more exploitative rather than the first option because the best 

agent is used in the second option while a randomized better 

agent is used in the first option. In the second stage, the first 

and second option is also exploitation in its nature as both 

options employ the best agent as the reference. But the second 

option is more exploitative as the best agent becomes the 

moving agent. On the other hand, the third option is 

exploitation. Due to this analysis, it can be said that AIA tends 

to be an exploitative technique. 

Overall, there is a trade-off between exploitation and 

exploration in developing a new technique. In general, a 

balance between both exploitation and exploration is needed. 

More exploitative techniques are better in handling unimodal 

problems while more exploring techniques are better in 

handling multimodal problems. But the real problem in the 

practical optimization problems is the constraint as shown in 

EED problem. In this problem, the superiority of AIA is 
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narrow compared to GSO and HO whose performance is 

inferior in handling the theoretical problems. This result also 

becomes the reason why old techniques like genetic 

algorithms, simulated annealing, particle swarm optimization, 

and so on; are still widely used in many studies related to 

practical optimization problems. 

Despite its supremacy, there is still limitation regarding this 

method and this work. There exist additional conventional 

applications, including the CEC series and four well-known 

engineering design challenges, which are frequently utilized to 

evaluate the effectiveness of emerging methodologies. 

However, evaluating a novel metaheuristic across all standard 

cases within a single paper is unfeasible. There are also a lot 

of practical optimization problems that can be used as 

additional use cases, whether these problems are still in the 

power system, such as ELD problem or OPF problem, or 

outside the power system, such as production scheduling, 

vehicle routing problem, and so on. Moreover, there are also a 

lot of other searching methods that are impossible to 

accommodate in a single metaheuristic. 

 

 

6. CONCLUSIONS 

 

This study introduces the adaptive iteration algorithm 

(AIA), a novel metaheuristic approach that operates without 

relying on metaphors. This presentation comprises the 

concept, formalization, assessment, and discussion. According 

to the evaluation outcomes, AIA has demonstrated its 

effectiveness as a robust method, capable of identifying near-

optimal solutions to various problems. Furthermore, it 

outperforms its competitors in both 23 standard benchmark 

functions and the EED problem in Indonesia. AIA outperforms 

HO, COA, GSO, LOA, and OOA by effectively managing 23, 

21, 21, 18, and 17 functions out of a total of 23, respectively. 

Additionally, AIA achieves the optimal performance across all 

four scenarios in the ELD problem. 

This study can be expanded in the future by modifying this 

proposed AIA or employing AIA to solve more practical 

optimization problems. The modification of AIA can be done 

by combining AIA with other techniques, implementing other 

adaptive methods, or changing the random method. At the 

same time, various optimization challenges continue to arise 

in power systems as well as in other domains like 

manufacturing and operations research. 
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NOMENCLATURE 

s agent 

S set of agents / swarm 

sbest the best agent 

sbet better agent 

Sbet set of better agents 

ssel selected agent 

c1, c2 solution candidate 

imp improving status 

r1 floating point uniform random [0,1] 

r2 integer uniform random [1,2] 

r3 uniform random within population 

t iteration 

tm maximum iteration 

f objective function 
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