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Cognitive radio sensor networks (CRSNs) are characterized by their ability to adapt to 

dynamic spectrum availability. Computation power in cognitive radio network (CRN) 

is essential for efficient spectrum utilization and seamless connectivity among nodes in 

a sensor-based health monitoring system. The proposed algorithm, Cognitive Adaptive 

Metaheuristic Optimization Algorithm (CAMOA) is a Hybrid Particle Swarm-Tabu 

Search Optimization (HPSTSO) technique that integrates two optimization methods: 

Particle Swarm Optimization (PSO) and Tabu Search (TS). It dynamically selects the 

best resource allocation algorithm based on the healthcare network requirements of 

quality of service and channel conditions, traffic load, and network topology to enhance 

the performance of communication, and contribute to optimal allocation, and maximize 

resource productivity in resource-constrained CRSNs. The evaluation metrics are 

recorded and exported into a newly created dataset named Cognitive Adaptive 

Metaheuristic Optimization Dataset (CAMOD.csv), which is used to train a machine 

learning model as Multilayer Perceptron (MLP) neural network—to provide the best 

prediction of spectrum sensing of secondary users with consideration resource 

utilization for each cognitive radio sensor node. Results of HPSTSO showed that the 

average of processing time compared to existing approaches is 30.0675 seconds, packet 

delivery ratio is 99.08%, channel utilization is 99.166%, probability of channel collision 

is 0.0508, total network utilization is 7.0604 KB and total resource utilization is 

23.0871%. In addition, the MLP accuracy of RadioML2016.10B dataset compared to 

existing approaches is 98.7%, Precision is 99.98%, Recall is 95.76% and F1 Score is 

97.82%. Furthermore, MLP accuracy, precision, recall and F1 score of the CAMOD 

dataset are 99.45%, 1.0, 98.38%, and 99.18% respectively. 
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1. INTRODUCTION

One of the most important uses of wireless communications 

technologies is their contribution to supporting a wide range 

of different applications in the fields of electronic health, 

which contribute to the transfer of medical data and patient 

information to the hospital and the medical side [1]. However, 

the use of wireless communications technology in the fields of 

medical specialties represents a major challenge, as it can 

affect the electromagnetic interference caused by these vital 

devices as a result of their wireless devices, which poses a 

threat to their performance. In addition, different types of e-

health applications have different priorities, so these must be 

given priority to the wireless channel by the relevant 

corresponding devices influencing its operation [2]. 

One of the most important basic requirements in the field of 

wireless communications service is the availability of radio 

spectrum, and it is considered a major challenge as the 

spectrum used in the field of wireless radio is a limited and 

expensive natural resource, and the tremendous growth of the 

wireless communications market has led to the scarcity of 

radio spectrum [3]. As for the remaining part of the spectrum, 

it is unused or little used. Therefore, there is a need to improve 

the use of the spectrum, and the ideal choice is dynamic access 

to the spectrum and defining a cognitive radio network [4].  

The principle of operation of cognitive radio networks is to 

adapt to the surrounding radio environment by relying on the 

knowledge generated from this environment [5]. They can 

access the licensed spectrum intelligently, opportunistically, 

and more efficiently without affecting the licensed spectrum, 

which improves the general use of the radio spectrum [6]. 

Cognitive radio networks are based on spectrum sensing to 

discover vacancies and obtain appropriate use of the spectrum 

through dynamic access It discovers spectrum gaps efficiently 

and accesses the spectrum in an optimal, opportunistic manner 

[7]. 
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One of the important uses of radio-based cognitive wireless 

communications is emergency networks designed for disaster 

situations and healthcare systems [8]. It is the nature of the 

radio system's work and perception and its dealing with 

channels of the spectrum that are not sufficiently used. It 

transmits data of various types and media and does not take 

the access of secondary or low-priority users into account [9]. 

Cognitive radio in healthcare applications is used in sensitive 

medical devices that are supposed to be protected from 

interference as a result of wireless transmissions. They are 

including incubators, infusion pumps, and pacemakers, as 

medical devices can transmit data in a representative manner 

by using wireless signal for example, these devices include 

telemetry monitoring devices, wireless Holter monitors, and 

wireless electrocardiogram devices [10]. The data 

transmission of these active medical devices can be interfered 

with through wireless transmission, relying on other non-

medical devices, such as medical devices and information 

networks [11]. 

Since every user in radio networks has access to the radio 

spectrum, the secondary user does not need to be aware of the 

presence of the primary user [12]. However, restrictions 

regarding user interference in protected applications still exist, 

and prioritization between different users and applications will 

be required to access the channel. To achieve the best service 

differentiation [13]. This is through the ability to monitor the 

spectrum and its characteristics and study the behavior of the 

node that operates in this spectrum and access it dynamically, 

as the cognitive radio node allows access to the spectrum and 

taking into account the quality of service during its different 

health normalization. It also allows relying on a spectrum or 

supports the spectrum as an ideal associated channel behavior 

[14]. 

Radio resources can then be allocated, such as transmission 

and reception time periods, specifying frequency bands, 

transmitting antennas, transmission power, etc., according to 

the current channel condition. Dynamic resource allocation 

schemes can rely on these variations in the frequency 

resources and thus lead to much better performance compared 

to static resource allocation schemes [15]. In addition, 

dynamic resource allocation works to resolve conflicts 

between competing nodes to exploit multiple resources and to 

ensure achieving fairness and avoiding interference and 

collisions, as dynamic resource allocation schemes deal 

efficiently with spectrum movement and take care of the 

quality-of-service requirements and priorities of different 

services and different nodes [16]. 

Besides, artificial intelligence learning technologies have 

gained many applications in the field of cognitive radio 

devices, as these technologies aim to make machines perform 

tasks in a way that resembles experts, such as inference, 

reasoning, problem-solving, knowledge representation, and 

learning approaches [17]. 

The main research problems are the dynamic spectrum 

allocation, how to ensure the quality of service, increase 

network life, and ensure the lack of interference between 

nodes and the network elements, reducing sensing information 

overhead, as well as computational interference operations 

which affect primary and secondary users. 

The objectives of the proposed system are resource 

allocation, which results in increasing throughput and 

maximum resource usage of the entire network, and reduced 

processing time of sent/received packets. Balancing of the 

sensed spectrum between multiple sensor nodes, and efficient 

use of spectrum during the sensing process. Optimally meeting 

QoS requirements reducing or avoiding interference with the 

primary user network, and eliminating unnecessary transfers 

of the spectrum to reduce the overall power consumption, 

reduce the overall delay, and improve the reliability of 

transmission. 

This paper is organized into several key sections. Section 1 

showed the general introduction about cognitive radio sensor 

network (CRSN) and resource optimization based on 

Metaheuristic with Machine Learning Algorithms. Section 2 

reviewed common related works of the proposed system. 

Section 3 showed the proposed methodology based on hybrid 

Particle Swarm Optimization (PSO) and Tabu Search (TS) 

algorithms as hybrid approach Particle Swarm-Tabu Search 

Optimization (HPSTSO) for resource allocation in cognitive 

radio network. Section 4 presented the proposed 

implementation method based on OMNET++ for network 

simulation and Java for trained model of MLP machine 

learning algorithm. Section 5 and Section 6 showed the 

proposed system results and system comparison. The proposed 

system is concluded in Section 7. 

 

 

2. RELATED WORKS  
 

This section represents an overview of the most related 

works in the field of cognitive radio sensor health monitoring 

systems, which use different types of metaheuristic 

optimization algorithms and machine learning algorithms to 

enhance spectrum sensing and resource allocation. 

A throughput in energy-aware harvesting model of 

cognitive radio network (CRN) is proposed by Bakshi et al. 

[18] to improve the performance of the energy harvesting 

process of CRN (EHCRN). The main focus was to find the 

optimal solution to deal with the problem of maximizing 

productivity. The proposed method is Rank-Based Multi-

Objective Antlion Optimization (RMOALO). The proposed 

model is illustrated based on five reference mathematical 

functions and compared to Multi-Objective Particle Swarm 

Optimization (MOPSO), Multi-Objective Moth Flame 

Optimization (MOMFO), Multi-Objective Antlion Optimizer 

(MOALO)-Tournament, and MOALO-Roulette. The results 

showed RMOALO improvement of average throughput 

arrived to 16.33% with the optimal value of the sensing 

duration for a different amount of limited energy compared to 

MOPSO, MOMFO, MOALO-Roulette, and MOALO-

Tournament. 

Support Vector Machine-based Red Deer Algorithm (SVM-

RDA) based on Spectrum Handoff (SHO) decision-making 

has been proposed by Srivastava et al. [19] to make the CRN 

handoff procedure more efficient. The hybrid SVM-RDA and 

evaluates network metrics such as throughput and the number 

of failed transmissions and receptions. This approach allows 

the secondary user to move to a channel that is not previously 

occupied, thus reducing failures during the connection. This 

hybrid handover technology ensures that accurate predictive 

techniques are produced by examining all possible outcomes 

even when the execution environment is unknown. The results 

showed that the SVM-RDA is flexible and does not require 

any complexity to implement. This study presented improved 

system performance during the spectrum handover process. 

The inferred technique predicts delivery delays and reduces 

delivery numbers. The results also show that the adopted 

method is the best in making predictions with a smaller 
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number of deliveries compared to other related methods. 

Energy efficiency design techniques have been used by 

Eappen and Shankar [20] for various spectrum sensing 

scenarios to solve the problem of improving efficiency and 

detecting spectrum holes while improving energy utilization 

using Particle Swarm Optimization (PSO) and Gravitational 

Search Algorithm (GSA) called hybrid PSO-GSA. From the 

new hybridization of the proposed system, it is possible to 

achieve a balanced trade-off between exploration and 

exploitation capabilities and to efficiently integrate the 

mutation and crossover factor to discover spectrum openings 

using improved values of transmission power, sensing 

bandwidth, and power spectral density, thus improving the 

efficiency of energy use in sensing the radio spectrum. The 

simulation results demonstrated the efficiency of the proposed 

system in improving the energy efficiency of spectrum sensing 

in terms of transmission capacity, spectrum sensing 

bandwidth, and power spectral density compared to the PSO 

or Artificial Bee Colony (ABC) algorithm. The results of the 

proposed algorithm showed that it is effective in the field of 

spectrum sensing compared to other algorithms, as it obtained 

optimal energy efficiency during spectral sensing. 

An algorithm for channel allocation in cognitive radio 

networks has been proposed by Latif et al. [21] represented by 

the evolutionary optimization algorithm. The proposed 

method consists of PSO as Differential Evolution-Based 

Particle Swarm Optimization with the Repair Process 

(DEPSO-RP). As a sign of this, the system proposed fixing 

conflicts between the secondary cognitive network units to 

increase spectrum allocation in the network. The performance 

of the algorithm was also evaluated through a large-scale 

simulation process. The results showed that the spectrum 

allocation process had better performance concerning the 

channel compared to other existing algorithms. The results 

showed that the proposed algorithm converged. With the 

results of the best solutions much faster than other algorithms, 

it combines the good characteristics of the PSO or Differential 

Evolution (DE) algorithm. 

A cooperative spectrum sensing of CRNs is implemented 

with the Machine Learning model by Tavares et al. [22] to 

enhance spectrum sensing based on a statistical analysis of the 

energy detection model. It is based on deriving the probability 

of detection and false alarm based on the number of samples 

and the Signal to Noise Ratio (SNR) ratio for Secondary Users 

(SUs), where the channel exploitation detection is obtained 

from analytical techniques such as AND/OR. The used ML 

algorithms are Multilayer Perceptron (MLP), Support Vector 

Machine (SVM), and Naive Bayes (NB), depending on the 

operating characteristics of the receiver and the Area Under 

the Curve (AUC) scales. Using standard development tools, 

the performance of the cloud models was obtained. The results 

demonstrated that the proposed algorithm provided an optimal 

range between the training time and the channel discovery 

performance. 

An opportunistic routing that contributes to increasing the 

efficiency and reliability of cognitive radio networks has been 

proposed by Abdullah et al. [23]. They addressed the issue of 

delay and degradation of the packet delivery rate, taking into 

account the network’s frequency cleanliness and throughput. 

They used the Hybrid Firefly and Grey-Wolf Optimization-

based Spectrum Map-Empowered Opportunistic Routing 

(SMOR) (HFGWOSMOR) to improve performance by 

analyzing the relationship between delay and throughput. A set 

of cooperative multi-path connections were created between 

cognitive nodes and the energy values of the received signals 

were calculated during routing to be within the bandwidth and 

time thresholds, as well as dealing with performance issues 

according to user requirements. The results showed that the 

proposed system works efficiently in opportunistic routing 

compared to other models. 

Multi-channel path scheduling is proposed by Dasari and 

Venkatram [24] due to the difficulty of communication and 

spectrum utilization due to the climatic effects of radio signal. 

A multi-channel path scheduling optimization system is 

proposed to systematically enhance network performance and 

reliability for various scheduling problems. The path is 

scheduled effectively and accurately to increase the packet 

delivery ratio, spectrum utilization, reduce interference level 

and increase energy efficiency. The Optimizing Multichannel 

Path Scheduling (OMPS) model is proposed as it shows a 

reduction in access time for real-time applications, improve 

spectrum efficiency, reduce channel interference and increase 

throughput. The results show network performance 

enhancement that a variety of multi-channel path scheduling 

is simulated according to the network evaluation parameters. 

Spectrum sensing in cognitive radio requires an analytical 

approach based on data due to the inaccuracy of data in 

advanced wireless radio networks. A deep architecture as 

Primary User-Detection Network (PU-DetNet) was proposed 

by Soni et al. [25] that detects the primary user and decodes 

both the analytical approach and the data-based approach. The 

system is based on a description of a technique that reduces 

the computation of the inference time and the number of 

interval operations, as it involves linking the loss function so 

that each layer of the proposed architecture has its own loss 

function, and this function is improved during training the 

system. The results showed a signal-to-noise ratio of 10 dB, 

and the primary user detection rate for the Long Short Term 

Memory (LSTM) algorithm reached 39% and 56%, and the 

CNN between 45% and 84%, and the Artificial Neural 

Network (ANN) algorithm was 53% and 128%. The best 

accuracy of the proposed system was superior by ANN as 

93.15%, and the throughput improved by 69.52% of ANN 

compared to other models. 

The proposed system contributions are the signal-to-noise 

ratio witnessed improvements in the quality of the data 

transmission signal with less interference, which improves the 

effective use of the spectrum, as well as the optimal allocation 

of resources in the network in the hybrid system, which led to 

a decrease in channel collisions and interruptions during 

erection, as resources were allocated effectively and 

efficiently, which contributed to maximizing productivity in 

the cognitive radio network, especially in health monitoring 

systems, where reliability and speed of transmission are Data 

is very important. 

 

 

3. THE PROPOSED METHODOLOGY  
 

The proposed system employed an HPSTSO for resource 

allocation, utilizing two optimization methods as an adaptive 

Metahuristic approach PSO and TS algorithms. The PSO has 

been applied to CRNs to optimize spectrum allocation, power 

control, and other resource allocation problems. Besides, TS 

has been used in CRNs to optimize spectrum allocation, 

channel assignment, and other resource allocation tasks. 
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3.1 PSO 

 

This algorithm is implemented to optimize and manage 

network resources within the Fusion Center (FC), which 

allows dynamic adaptation to different network conditions to 

improve resource allocation based on recent evaluations of 

network performance metrics. The steps to implement this 

algorithm are as follows: The first step is to determine the 

number of particles represented by secondary users and to 

know their locations and their movement speed randomly 

within the spectrum limits of the network. The second step is 

to evaluate the fitness of each body based on a function that 

takes into account the spectrum usage, efficiency, and quality 

of service metrics for each secondary user. The third step is to 

compare the current fitness of each secondary user to 

determine the best node to receive data and fix the best 

position for this node. The fourth step is to update the speed 

for each secondary user based on inertia and perception. The 

fourth step is to repeat the evaluation and update steps until 

obtaining the best node that contributes to allocating resources 

and using them to find the output results as the optimal 

solution for allocating resources to secondary users in the 

network by coordinating between the FC and secondary users. 

The used PSO based on the population size is 25 particles, 

inertia weight is 0.5 and coefficients is 1.5. 

 

3.2 TS 

 

This algorithm was implemented in the Cognitive radio 

network FC to facilitate cooperation between secondary users 

and the FC. The steps for implementing this algorithm are as 

follows:  

Step 1: Initialization, which is based on determining the 

initial solution for allocating resources based on spectrum 

bands and user assignments and finding solutions to avoid 

redirecting data to the same node.  

Step 2: Finding solutions for allocating resources by making 

adjustments to the characteristics of spectrum bands between 

secondary users.  

Step 3: Evaluate the suitability of solutions for all nodes 

participating with the FC, taking into account productivity, 

interference levels, and quality of service for each secondary 

user.  

Step 4: Select the best node based on performance 

evaluation and ensure that it is not in the prohibited list for 

nodes that do not respond to resource allocation.  

Step 5: Continuous updating of the transition between nodes 

to choose the best oldest suitable one to respond to the FC.  

Step 6: Outputting the best solution found to allocate 

optimal resources to secondary users. The used Tabu Search 

Parameters based on the length of the tabu list is 10% of the 

solution space size, total number of iterations is 20 and 

candidate set size of around 10. 

 

3.3 HPSTSO 

 

The HPSTSO model is applied and configured in the central 

point node as a FC to provide head management for all 

Secondary Users (SUs) nodes. The FC works based on 

collecting spectrum sensing information from SUs nodes 

across the network. It used this spectrum sensing information 

to enhance allocating spectrum bands and mitigate 

interference dynamically according to SUs requirements and 

availability.  

The main objective of the collaboration between the FC and 

the secondary users is to share the spectrum sensing data and 

performance metrics of each secondary user with the FC, 

which allows it to make clear central decisions after collecting 

information from the secondary users to evaluate and improve 

resource allocation strategies collectively. The FC provides 

feedback on the resource allocation performance of each 

secondary user and thus contributes to modifying their 

operations based on the knowledge generated from this 

information. It dynamically adapts to the evolution of network 

conditions, which enhances the overall network efficiency and 

improves resource allocation while minimizing interference 

and maximizing the quality of communication between 

secondary users. 

 

Pseudocode of the proposed HPSTSO algorithm 

1- Initialize parameters:  

    number_of_SUs, dimensions, bounds 

    max_iterations, PSTSO_list_size 

2- Initialize SUs: 

    For each SU i do 

        Randomly initialize position x[i] and velocity v[i] 

        Set personal_best_position[i] = x[i] 

        Set personal_best_fitness[i] = evaluate_fitness(x[i]) 

    EndFor 

3- Initialize global_best_position and 

global_best_fitness 

Set up empty PSTSO list 

While iteration < max_iterations do 

    For each SU i do 

        Update velocity v[i]  

        Update position x[i] using v[i] 

 If evaluate_fitness(x[i]) < personal_best_fitness[i] then 

            Update personal_best_position[i] 

            Update personal_best_fitness[i] 

        EndIf 

        If personal_best_fitness[i] < global_best_fitness then 

            Update global_best_position 

            Update global_best_fitness 

        EndIf 

    EndFor 

    For each SU i do 

        Generate neighborhood solutions based on x[i] 

        For each neighbor solution do 

            If neighbor is not in PSTSO list then 

                Evaluate fitness of neighbor solution 

                If fitness is better than current solution then 

                    Move to neighbor solution and update PSTSO 

list 

                    Add current solution to PSTSO list with size 

limit 

                EndIf 

            EndIf 

        EndFor 

    EndFor 

    Update iteration count 

EndWhile 

4- Output global_best_position as optimal resource 

allocation solution 

 

The proposed system is based on an adaptive Cognitive 

Adaptive Metaheuristic Optimization Algorithm (CAMOA) 

model to allocate network and device resources and share the 

best channel of spectrum sensing among secondary users. The 
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collected network behavior is registered during the running 

time of the network topology. Reading of Cognitive Radio 

(CR) nodes are stored in the dataset and then passed into the 

learning model to predict primary user absence or appearance 

during secondary user channel allocation to eliminate 

interference and ensure that the secondary user is not harmful 

to the primary user in addition to decreasing a total number of 

sensing packets which effects on resources and consuming 

network lifetime. In addition, the architecture of the cognitive 

radio sensor health monitoring system is secondary users, base 

station nodes with network devices such as routers or access 

points and primary users. 

In addition, FC decreases the sensing information of 

primary users generated in each SUs by providing an optimal 

channel to share with all SUs in the network using a 

cooperative spectrum sensing technique. Spectrum sensing 

information collected by FC and exported into the 

CAMOD.csv dataset is represented in Table 1.

  

Table 1. Spectrum sensing information attributes of CAMOD dataset 

 
Spectrum Sensing 

Metric 
Description Purpose 

Channel Bandwidth 
It represents the channel width used for communication between 

the receiving and sending nodes in megahertz. 

Evaluating the effect of the channel bandwidth 

on the spectrum sensing performance and data 

transfer rate. 

Received-Signal-

Strength (RSS) 

The power level of the received signal from each channel. It is 

represented by −10 dBm to −20 dBm. 

To estimate the presence or absence of primary 

users (PU) nodes. 

Spectrum 

Occupancy 

It describes spectrum bands utilized by PUs or SUs. It is 

represented by 450 to 2700 MHz. 
To identify available frequency bands. 

Signal to Noise 

Ratio (SNR) 

It is a measure of the ratio of the radio signal strength to the 

noise strength in the wireless communication channel. It is 

represented by -10 dB to -20 dB. 

Detecting the presence of PUs and enhancing 

reliable channel quality. 

Interference Level 
It quantifies the presence of unwanted signals or noise from 

outside spectrum sources. 
To monitor interference levels. 

Channel Quality 

Metrics 

Channel Quality attributes are represented by: 

Channel fading 

Multipath propagation 

Channel coherence time 

To determine the suitability of communication 

channel. 

Modulation Coding 

Schemes (MCS) 

It is used to transmit data in CRNs. It is represented by: 

BPSK (Binary Phase Shift Keying) 

QPSK (Quadrature Phase Shift Keying) 

16-QAM (Quadrature Amplitude Modulation) 

To optimize spectrum sensing efficiency. 

Primary User 

Activity Metrics 

These metrics are represented by: 

Probability of Detection (Pd) 

Probability of False Alarm (Pfa) 

Sensing Time (Ts) 

To identify opportunities for spectrum sharing 

among PUs and SUs. 

User Density 
Refers to the number of secondary users in a given area, which 

affects influencing spectrum availability and sensing accuracy. 

Analysis of the impact of secondary user density 

on the performance of spectrum sensing 

algorithms. 

The spectrum sensing information metrics are exported into 

a CSV dataset file as cognitive radio spectrum sensing 

information attributes. The CRSSI.csv dataset is tested and 

evaluated with machine learning methods to enhance the 

resource allocation of cognitive radio spectrum sensing in the 

health monitoring system. So, the primary objectives of the 

Hybrid system under consideration are Decrease Cost, High 

Scalability, High Flexibility, Maximum Resource Utilization, 

Decrease Processing Time, Increase Availability and High 

Throughput. Figure 1 shows the flowchart of the proposed 

system. 

The machine learning model consists of the following steps: 

(1) Data gathering from the OMNET ++ simulation 

environment: Network simulation records are exported into 

a dataset (CAMOD.csv) file which contains the same 

attributes from the first stage of resource allocation 

parameters in Table 1. The system is executed for 60 minutes 

to record statistics of network evaluation metrics are 16 

attributes and the total number of records is about 207993 

records. 

(2) Preprocessing of collected CAMOD.csv dataset: 

The pre-processing methods to improve the performance of 

the proposed multi-layer neural network include several 

methods that contribute to improving spectrum sensing, as it 

is important to build an effective data set before training the 

system, as the following methods include: 

A- Data cleaning involves dealing with missing values 

by removing records that contain missing data or empty 

values, such as strategies for entering the mean or arithmetic 

mean to fill in empty records. 

B- Measuring features is done by unifying the criteria for 

normalization features to values within the network 

parameters used in the dataset, and this is done by applying the 

minimum and maximum normalization measurement by 

setting values for measuring features with a fixed range, often 

between zero and one. 

C- Encoding categorical variables by encoding values 

within categorical attributes by converting them into numeric 

formats, which is more compatible with the proposed 

algorithm. 

D- The data is divided into a data set, 70% of the training 

set, 20% of the test set, and 10% of the validation set. The 

proposed division contributes to the effective evaluation of the 

model to ensure the highest accuracy in spectrum validation 

detection. 

E- Regularize imbalanced data by applying 

oversampling techniques from minority classes or under-

sampling from the least dominant class to ensure that the 

model is trained effectively across all data classes. 

The trained MLP model was built and evaluated in Java 
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using Eclipse Deeplearning4j for detecting primary user 

appearance with high accuracy, precision, recall, and F1-score 

to assess the model's performance. The steps of the 

experiments using this dataset are shown in Figure 2. 

 

 
 

Figure 1. The proposed CAMOA 

 

 
 

Figure 2. The proposed machine learning algorithm model 

The reason for choosing the MLP algorithm over other 

neural network algorithms is attributed to several factors as 

strengths of this algorithm, as follows: ease of implementation, 

as it is relatively simple in construction from connected layers 

to process the inputs directly, which allows for an easier 

implementation period and faster training time compared to 

other more complex algorithms, which makes it suitable for 

applications with limited resources and require fast decision-

making processes. It is also characterized by low demand for 

processing power without the additional cost associated with 

building the algorithm, and thus it is quick to respond during 

the execution of tasks. Furthermore, the MLP algorithm has 

shown high accuracy when trained in situations where data 

availability is restricted and linked to the effectiveness of 

resource management. 

 

Pseudocode of the proposed integration model of 

CAMOA algorithm and MLP algorithm 

1- Initialize MLP parameters:  

input_layer_size, hidden layer as 

number_of_neurons_in_each_hidden_layer and output 

layer as number_of_classes 

2- Definition objective function as 

evaluate_MLP(params) 

3- Initialize CAMOA parameters 

 

population Initialization P with random hyperparameter 

sets (learning_rate, batch_size) 

fitness evalution P using evaluate_MLP() 

Set p_best and g_best based on fitness 

4. Optimization process  

While the condition of termination not met do: 

For each individual x in P do 

Cognitive para. updating α and β based on 

network operation performance 

Update position using cognitive learning 

update: 

x_new = x_old + α * (p_best - x_old) + β * 

(g_best - x_old) 

Evaluating new position based on MLP: 

 new_fitness = evaluate_MLP(x_new) 

             If new_fitness is better than p_best then 

                         Update p_best with x_new 

                         If p_best is better than g_best then 

                              Update g_best with p_best 

             End if 

 End if 

       End For 

End While 

5. Return optimal g_best parameters for MLP 

 

The proposed MLP algorithm is a complementary 

component of the neural network, as it consists of three 

separate layers, represented by the input layer, the output 

layer, and the hidden layer. The proposed model is based on 

relying on different configurations by changing several hidden 

layers within the neurons of this algorithm, and the best model 

to accomplish the specific task is determined, as it is proposed 

within the system with 20 layers. This algorithm is hidden by 

performing cross-validation and setting the number of folds to 

ten folds. This model is based on being the most in-depth 

method for determining general properties. Use the trained 

MLP model to predict initial resource allocations based on 

updated input features derived from the current state of the 
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system with current transmission conditions. MLP model 

incorporates these predictions into the decision-making 

processes of Hybrid HPSTSO approach of both PSO and Tabu 

Search algorithms.  

 

 

4. THE PROPOSED IMPLEMENTATION  

 

The proposed system is implemented in OMNET ++ to 

simulate the network architecture of CRSNs and the system is 

evaluated based on the network evaluator. The outcome of the 

CRSNs network is a spectrum sensing CAMOD dataset which 

is then tested based on JAVA programming language to build 

and execute a machine learning approach. In OMNET++ the 

health monitoring systems in the cognitive network use 

different types of data to monitor the patient's health and 

transfer it effectively from the network, where this data 

includes the following: 

(a) Text data includes information in text format such as 

patient names, medical history, and information about 

their health condition.  

(b) Image data, where data is transferred in the simulator in 

the form of images such as X-rays and MRI images for 

patient analyses.  

(c) Video data, which includes a summary of a short video 

model from monitoring devices that monitor the patient's 

movement or condition in real-time, which is exchanged 

between the nodes of the cognitive radio network. 

(d) Group of audio files or documents that were captured 

from special sensors and exchanged in the proposed 

system, which represents the network inputs that are 

relied upon during the packet routing process, and then 

the network is evaluated. Besides, the machine learning 

approach dataset is based on two datasets:  

(e) Own created from the OMNET++ simulation tool as 

CAMOD dataset. The own created CAMOD dataset is 

generated from the implementing HPSTSO approach in 

OMNET++, the dataset attributes of spectrum sensing 

are Channel Bandwidth, Received-Signal-Strength 

(RSS), Spectrum Occupancy, Signal to Noise Ratio 

(SNR), Interference Level, Channel Quality Metrics, 

Modulation Coding Schemes (MCS), Primary User 

Activity Metrics and User Density. The main goal of 

integrating MLP on data attribute of HPSTSO approach 

is to utilize the MLP model to predict resource demands 

for optimal allocations based on generated historical 

data, which can then improve the HPSTSO algorithm's 

decision-making process. 

(f) RadioML2016.10B dataset is used to evaluate the 

proposed system. 

Furthermore, the key components of the proposed network 

include Secondary Users (SUs), a FC, Primary Users (PUs), 

and Base Stations for Primary Users (BS-PUs). 

A. Secondary Users (SUs): The SUs are the nodes 

responsible for transmitting and receiving data in the 

cognitive network. They are equipped with cognitive 

radio capabilities, allowing them to dynamically 

access and utilize available spectrum channels. The 

SUs performs spectrum sensing, maintain routing 

tables, and select optimal paths for data transmission 

based on the information provided by the FC. 

B. The FC: It acts as the central entity that manages the 

overall spectrum and channel allocation decisions. It 

collects entire spectrum sensing data from the SUs, 

maintains a spectrum availability database, and 

performs dynamic spectrum allocation. The FC also 

calculates optimal routing paths and shares this 

information with the SUs to guide their routing 

decisions. 

C. Primary Users (PUs): They are the licensed users of 

the spectrum, and their communication has priority 

over the SUs. The SUs must ensure that their 

transmissions do not interfere with the PUs' 

communication.  

D. The Base Stations for Primary Users (BS-PUs): It 

serves as the access points for the PUs, providing 

them with connectivity to the network infrastructure. 

The proposed cognitive network supports wireless 

communication and mobility, allowing SUs to move freely 

within the network. Different mobility types, such as linear 

and random mobility, are supported. The dynamic spectrum 

access feature enables the SUs to adapt to changing spectrum 

availability and network conditions, ensuring efficient and 

reliable data transmission. In the proposed architecture, each 

component plays a crucial role in ensuring reliable 

communication and efficient resource management in 

cognitive radio networks. These components create a robust 

framework for HPSTSO applications, as it shown in Figure 3. 

 

 
 

Figure 3. The proposed network topology 

 

During the modeling and validation phase of the predictive 

model, there is a set of settings and assumptions that show that 

the basic data follows a normal distribution in building 

statistical methods. These assumptions were applied to all 

study cases, whether for the hybrid HPSTSO resource 

management system or the machine learning system for a MLP 

algorithm and for all datasets used, whether the dataset that 

was own created CAMOD dataset from the first stage of 

resource allocation, as well as the standard dataset that was 

used and compared with the proposed MLP system. 

Besides, simulation parameters of the proposed system 

sorted in Table 2. 

The proposed system implemented in OMNET ++. The 

network topology which consists of 10 Primary Users as 

available channels, 20 Secondary Users, as Cognitive radio 

nodes which send and receive data types (Text, Image and 

Files). Figure 4 showed the node connectivity of the proposed 

HPSTSO system case study. 

Figure 5 showed message passing among FC and SU to 

share their positions parameters, data signal, route information 
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and velocities to optimize resource allocation effectively in the 

proposed cognitive radio network. 

Figure 6 showed channel optimization between BS-PUs and 

PUs and acknowledged channel idle by BS-PUs to the FC 

which is used as free channel for spectrum allocation of SUs 

nodes.

 

 
 

Figure 4. Node connectivity of the proposed HPSTSO approach 

 

 
 

Figure 5. Message-passing of HPSTSO among FC and SUs 
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Figure 6. PU channel optimization by HPSTSO approach 

 

Table 2. Simulation parameters and considered values of the 

proposed system 

 
Simulation Parameters Considered Value 

Network area 500 m × 500 m 

Mobility of SU nodes Dynamic 

Mobility speed of SU node 5 ms 

Nodes distance Random 

Bandwidth size for each channel 5 MB/s 

Number of PU 10 

Number of SU nodes 20 

Transmission range of PU 300 meters 

FCs and Sus 500 meters 

Total no. of FCs 1 

Channel availability probability 0.95 

Data Type 

Text data signal size 100 B 

Image data signal size 80 KB 

Audio data signal size 580 KB 

Video data signal size 950 KB 

Simulation time 1800 seconds 

Type of channel Wireless 

Simulator name OMNET ++ 6.0 

RAM size 8 GB 

CPU Core i 7 

 

 

5. RESULTS  

 

The proposed system relied on a variety of data traffic that 

simulates the application of cognitive radio in healthcare in 

terms of the nature of data traffic in the network. The proposed 

system addressed a set of scenarios for different types of data 

such as text data, image data, and audio, videos and files, with 

different data sizes passing through radio channels and 

transmitted between SU nodes in the network. The results 

summarized the importance of resource management in the 

network in order to ensure the best scenario for data traffic and 

ensure the quality of communication for secondary users in 

cognitive radio networks. 

The proposed system results are explained as follows: 

 

5.1 Network evaluation results 

 

The results of the proposed system depend on the 

performance improvement of the proposed hybrid algorithm, 

as it showed significant improvements in many performance 

measures compared to other algorithms, as the packet delivery 

rate improved as a result of the ease of transferring data more 

efficiently and maintaining reliable communication between 

secondary users in the cognitive radio network, as the packet 

delay was reduced from the beginning of its creation to the 

second party that receives this packet, which shows the 

algorithm's ability to accelerate data processing and 

transmission time and thus make a faster decision in a dynamic 

environment compared to other methods followed by the two 

proposed algorithms. The proposed results are based on four 

case studies: without resource optimization, optimization 

using the PSO algorithm, optimization using the TS algorithm, 

and resource optimization using the hybrid HPSTSO 

algorithm. 

A. Results without optimization 

In the absence of resource optimization techniques, the 

results and evaluation of the system showed poorer 

performance compared to systems using algorithms, as 

traditional methods struggle to route data through available 

channels, causing inefficiency for secondary users in the 

cognitive radio network due to increased packet delay and 

communication delays, putting it in real-time monitoring 

capabilities, as well as less effective decision-making 

processes and poor signal quality due to increased 

susceptibility to interference, which causes a higher 

probability of channel collision due to insufficient 

management of channel access, and thus a decrease in the 

overall efficiency of spectrum utilization, which causes 

drawbacks when using this strategy to manage resources in the 

network. 

B. Results of PSO 

The results showed resource optimization improvement 

compared to the system of without resource optimization or 

the TS algorithm, the noticeable increase in the evaluation 

metrics as a result of improving the data transmission path, 

reducing packet loss, and reducing the delay of its arrival time, 

as well as improving decision-making processes after reducing 

the waiting time to reach the channel, as well as reducing the 

processing time in general, as this algorithm has proven its 

ability to choose the channel with the best quality and the least 

interference to maintain a strong, stable connection and reduce 

the possibility of collisions between channels, which clarified 
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the effectiveness of this algorithm in improving the 

performance of systems based on the health aspect in cognitive 

radio networks compared to both cases without improvement 

and the case of the TS algorithm. 

C. Results of TS optimization 

The results of this algorithm showed an improvement 

compared to the case without resource allocation and to a 

lesser degree than the PSO algorithm, as it proved its ability to 

transfer data, reduce packet delay, enhance data routing 

efficiency and deliver it faster. It also showed its ability to find 

solutions to simplify decision-making processes and increase 

the signal-to-noise ratio, which results in choosing channels 

with better signal quality and less interference, in addition to 

maximizing productivity and improving system performance, 

especially in scenarios that require strong and reliable 

communications between different network components. 

D. Results of HPSTSO 

The results area of the hybrid system is an advantage 

compared to the previous study cases of the PSO and TS 

algorithm in evaluating the network performance, as it has 

proven significant improvements in increasing the packet 

delivery ratio, which reflects the effectiveness and externality 

of the hybrid in improving data transmission paths and 

reducing packet loss with a decrease in the latency of arrival. 

It also showed the ease of making decisions to choose the 

empty channel and the decrease in the probability of secondary 

users colliding to obtain the channel, as this algorithm 

combines the strengths of both the PSO algorithm and the TS 

algorithm to enhance decision-making processes and simplify 

computational processes in improving productivity while 

ensuring effective spectrum use and increasing reliability and 

efficiency in improving resource utilization for the cognitive 

radio network.  

Figure 7 showed that the hybrid system significantly 

outperforms the other methods in terms of throughput, 

achieving 21,379 Mb/s, which is significantly higher than both 

PSO and TS algorithms, as well as the case without 

optimization, in which the throughput dropped to only 8624 

Mb/s. This performance is attributed to the strength of the 

hybrid approach, which effectively outperforms all the PSO 

and TS algorithms, and its more efficient use of resources, 

which contributed to enhancing the data processing 

capabilities of the network. 

 

 
 

Figure 7. The average of throughput in Mbps for packets 

sent and packets received 

 
 

Figure 8. The average processing time in seconds of the used 

algorithms 

 

 
 

Figure 9. The average of packet delivery ratio of the 

proposed hybrid approach 

 

Figure 8 showed the hybrid HPSTSO is an efficient 

approach characterized by an average processing time of 30 

seconds, which makes it the fastest option compared to the 

PSO and TS algorithms. This proposed system not only 

achieves higher productivity, but also significantly reduces the 

processing time, which enhances the overall performance of 

the system and the speed of response. 

Figure 9 showed the percentage of average packet delivery 

ratio demonstrates the effectiveness of the hybrid HPSTSO 

approach compared to other methods, achieving a delivery 

ratio of 99%, indicating that almost all packets were 

successfully delivered. These results confirm the HPSTSO 

system ability to maintain high packet delivery rates, which is 

critical in ensuring reliable communication and data integrity 

in a cognitive radio network. 

Figure 10 showed the average packet delay for the different 

algorithms in the proposed system, where the hybrid HPSTSO 

approach proved an average delay of 30,929 milliseconds as 

the lowest average delay for packet transmission in the 

network. The results indicate the efficiency of the hybrid 

HPSTSO system in reducing packet delay, which is reflected 
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in the efficiency of the network in general compared to other 

methods. 

Figure 11 showed the efficiency of the hybrid HPSTSO 

system compared to the PSO algorithm and the TS algorithm 

in finding the congestion-free channel rate of 99.17%, which 

indicates reducing channel congestion and reducing 

unjustified channel occupation, which reduces network 

performance and affects the smooth transmission of data. 

Figure 12 showed average probability of channel collision 

in the network where the HPSTSO method achieved a low 

collision probability of 0.0508 which indicates the use of a 

high efficiency which enhances the overall performance of the 

network and makes it a superior choice for improving channel 

utilization in cognitive radio networks. 

Figure 13 showed that the hybrid HPSTSO system is 

effective in maximizing network capacity and resource 

efficiencies compared to other algorithms, highlighting the 

efficiency of the proposed hybrid system in improving the 

overall system performance and network resources. 

 

 
 

Figure 10. The average end-to-end packet delay of the 

proposed HPSTSO approach 

 

 
 

Figure 11. The average of channel utilization of the proposed 

HPSTSO approach 

 

 
 

Figure 12. The average probability of channel collision of 

the proposed HPSTSO approach 

 

 
 

Figure 13. The average of network and resource utilization 

of the proposed HPSTSO approach 

 

Figure 14 showed the differences in performance for the 

signal-to-noise ratio results. The hybrid HPSTSO approach 

achieved a ratio of 7.33 dB, which indicates its effectiveness 

in maintaining a strong signal in a light environment. This is 

much higher than the proposed PSO and TS algorithms. The 

hybrid approach shows its superior ability to improve signal 

strength, making it the most reliable choice for effective 

communication in noisy environments. 

 

 
 

Figure 14. The average of SNR of the proposed HPSTSO 

approach 
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Table 3. Average PDR of the proposed system compared with other related works 

 

References No. of SU, PU Nodes Environment Method 
Average 

PDR% 

[23] 100,10 MATLAB 

Hybrid Firefly and Grey-Wolf Optimization-Based 

Spectrum Map-Empowered Opportunistic Routing 

(HFGWOSMOR) 

97.5% 

[24] 10 to 50,10 to 50 
Network 

Simulator 

Optimizing Multichannel Path Scheduling (OMPS) 97% 

Path Discovery for End-to-End Data Transmission (PDDT) 93.5% 

The proposed 

hybrid optimization 

approach 

20, 10 OMNET ++ 

HPSTSO 99.08% 

PSO algorithm 96.84% 

TS algorithm 85.98% 

 

Table 3 showed the proposed Hybrid Particle Swarm-Tabu 

Search Optimization (HPSTSO) approach compared with 

other related works associated with the routing approach in 

cognitive radio network. There is a gap in the relevant work 

related to the shortage of spectrum resources and low 

utilization rate without impact on licensed users in cognitive 

radio networks. The high average results, especially the packet 

delivery results, indicate that the proposed spectrum 

management approach is effective in ensuring reliable 

communication between nodes in a cognitive radio network. 

The implications for future spectrum management are 

improved spectrum efficiency due to the effectiveness of the 

proposed approach in managing the active spectrum while 

reducing interference between primary and secondary users, 

as well as supporting dynamic spectrum access, which allows 

real-time adjustments based on network conditions and data 

user requirements. 

 

5.2 Results of machine learning algorithm 

 

The proposed system results are based on two datasets 

(CAMOD and RadioML2016.10B) mainly each dataset is split 

into (70% training and 30% testing. The preprocessing model 

used is the same for both datasets. The first created dataset 

CAMOD contains the total number of columns and rows 

explained in Table 4. 

 

Table 4. Number of records and attributes of CAMOD 

dataset 

 
CAMOD Dataset Features 

Number of records 207993 

Number of attributes 15 

 

A. Results of hybrid optimization HPSTSO without 

preprocessing of CAMOD dataset 

 

Table 5. The results without preprocessing of the MLP 

algorithm on the CAMOD dataset 

 

Method 

Name 
Accuracy 

Confusion Matrix 

Time 
False 

Positive 

Rate 

False 

Negative 

Rate 

MLP 94.144% 0.9075 5.6499 
132728 

ms 

 

The results show that applying the hybrid optimization 

algorithm without preprocessing on the CAMOD dataset, a 

single performance of 94.14% is considered a high level of 

predictive accuracy, as well as a false positive rate of 0.9075, 

which requires room for improvement in reducing false 

positives based on the total processing time of 132728 ms, 

which reflects the computational requirements for training and 

evaluating the complex neural network in general and needs 

further improvement. Table 5 shows the accuracy and time 

results of the used dataset. 

The results in Table 6 showed the algorithm's ability to 

handle classification effectively and its ability to achieve 

accuracy even in the absence of database refinement. 

Table 7 showed a set of evaluation parameters for the 

proposed algorithm on the CAMOD dataset. The results 

showed that the model predicted the positive class with an 

accuracy of 0.91791, a detection rate of 0.1503, and a false 

alarm rate of 90%. These highs indicate a large number of 

negative cases that were incorrectly classified as positive, as 

well as a set of other parameters that indicate the presence of 

discrepancies between the predicted and actual values, a low 

detection rate, and a high false alarm rate, which require 

further improvement of the overall performance of the model. 

 

Table 6. Correctly and incorrectly classified the MLP 

algorithm on the CAMOD dataset 

 
Machine Learning 

Algorithm 

Correctly 

Classified 

Incorrectly 

Classified 

MLP Neural 
195812 = 

94.1440% 
12180 = 5.8559% 

 

Table 7. Evaluation of MLP algorithm based on the 

CAMOD dataset 

 

Evaluation Parameters 

Machine Learning 

Algorithms 

MLP 

Precision 0.91791 

Detection Rate (DR) 0.1503 

False Alert Rate (FAR) 0.9075 

Area Under Curve (AUC) 0.2166 

True Positive (TP) Rate 0.9994 

True Negative (TN) Rate 0.0924 

Mean Absolute Error 0.04857 

Relative Absolute Error (RAE) 74.1629 

Root Relative Squared Error 

(RRSE) 
95.2216 

Error Rate 0.05855 

 

Table 8 showed the performance of the proposed MLP 

algorithm on the CAMOD dataset. The low Recall value 

indicates that the model is able to identify 9% of the actual 

positive cases, which highlights the major challenge in 

capturing cases. Also, the F-value between precision and recall 

is relatively low, so the model struggles for overall 

effectiveness in case classification. As for the Kappa 

coefficient, which measures the agreement between predicted 

and actual classifications, it is also low, which requires better 

model performance. 
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Table 8. Recall, the F-Measure and Kappa coefficient of the 

without preprocessing of MLP algorithm based on the 

CAMOD dataset 

 
Machine Learning 

Algorithm 
Recall 

F-

Measure 

Kappa 

Coefficient 

Multilayer Perceptron 

(MLP) Neural 
0.0924 0.1680 0.1581 

 

B. Results of hybrid optimization HPSTSO with 

preprocessing of CAMOD dataset 

This case depends on refining the CAMOD database that 

was created in the first part of the system using resource 

optimization techniques and managing the data transfer 

process in the network, as the proposed algorithm is based on 

the MLP machine learning model, which achieved detection 

accuracy in sectarian sensing, whether sensing the radio 

spectrum, whether from secondary users or primary users, as 

Table 9 showed a percentage of 99.45%, a high level of 

performance according to a low false positive rate of 0.0085, 

which indicates the effectiveness of the proposed refinement 

system in correctly identifying categories and high prediction 

capabilities according to a very short processing time that 

contributes to investing time to move between the channels 

proposed by FC. 

 

Table 9. The accuracy of hybrid optimization HPSTSO with 

preprocessing of CAMOD dataset 

 

Method 

Name 
Accuracy 

Confusion Matrix 

Time 
False 

Positive 

Rate 

False 

Negative 

Rate 

MLP 

Neural 
99.4503 % 0.00855 0.0 

109902 

ms 

 

Table 10 showed the exceptional performance in classifying 

data from the proposed database and the low error rate as a 

result of the reliability of the model and its strength in making 

predictions related to radio spectrum sensing. It is considered 

suitable for applications that require very accurate 

classification results and high-level performance applicable in 

realistic scenarios. 

 

Table 10. Correctly and incorrectly classified of HPSTSO 

with preprocessing of CAMOD dataset 

 
Machine 

Learning 

Algorithm 

Correctly 

Classified 

Incorrectly 

Classified 

MLP Neural 206850 = 99.4503% 1143 = 0.5496% 

 

The results in Table 11 and Table 12 showed that all the 

positive predictions made by the model were correct, which 

indicates complete accuracy that contributed to a detection rate 

that correctly identifies all actual positive cases, as well as a 

low false alert rate, as the model generates very few false 

positives, and thus false alerts are few and do not cost the 

system any acquisition operations. The model's ability to 

distinguish between categories was high, as it succeeded in 

identifying all positive cases as well as identifying negative 

cases. 

The results indicate a significant improvement in resource 

allocation efficiency when employing the hybrid PSTSO 

optimization compared to traditional methods. Specifically, 

the hybrid approach demonstrated a marked increase in 

throughput and resource utilization while effectively reducing 

interference among SUs. The evaluation metrics revealed that 

the hybrid optimization outperformed both the PSO and TS 

methods individually, showcasing the benefits of combining 

these two powerful algorithms. Furthermore, the 

preprocessing of data prior to applying the MLP model yielded 

superior results in terms of accuracy and F-measure, indicating 

that data quality plays a crucial role in enhancing machine 

learning outcomes. Overall, the results highlight the 

effectiveness of the HPSTSO model in optimizing spectrum 

allocation within CRNs, providing a robust framework for 

future research and practical applications in cognitive radio 

systems. 

 

Table 11. Evaluation of HPSTSO with preprocessing of 

CAMOD dataset 

 

Evaluation Parameters 

Machine Learning 

Algorithms 

MLP 

Precision 1.0 

Detection Rate (DR) 1 

False Alert Rate (FAR) 0.00855 

Area Under Curve (AUC) 0.99789 

True Positive (TP) Rate 1.0 

True Negative (TN) Rate 0.9914 

Mean Absolute Error 0.00626 

Relative Absolute Error (RAE) 1.75699 

Root Relative Squared Error 

(RRSE) 
12.1041 

Error Rate 0.0054 

 

Table 12. Recall, F-Measure and Kappa coefficient of 

HPSTSO with preprocessing of CAMOD dataset 

 
Machine Learning 

Algorithm 
Recall 

F-

Measure 

Kappa 

Coefficient 

MLP Neural 0.9838 0.9918 0.9922 

 

C. Results of the preprocessing approach of 

RadioML2016.10B dataset 

The proposed algorithm is tested with the 

RadioML2016.10B dataset with a total sample sum of 

240,000. The entire sample sets, which include both signal and 

noise, have been labelled for training, validation, and 

classification. The RadioML2016.10b dataset includes several 

specific attributes that characterize the radio signals it 

contains. The main attributes are as follows:11 Modulation 

Type, SNR, Sample Frame Size, Number of Samples, and 

Channel Effects. Table 13 showed number of records and 

attributes of RadioML2016.10B dataset. 

 

Table 13. Number of records and attributes of 

RadioML2016.10B dataset 

 
RadioML2016.10B Dataset Features 

Number of records 240000 

Number of attributes 15 

 

In cognitive radio networks, spectrum sensing is crucial for 

identifying unused frequency bands that can be utilized by 

secondary users without interfering with primary users. Table 

14 showed the resulting accuracy of 98.7% in this context 

means that the MLP can reliably detect these opportunities, 

leading to better resource utilization and reduced interference. 
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Table 14. Accuracy, confusion matrix and time of the 

RadioML2016.10B dataset after the preprocessing approach 

 

Method 

Name 
Accuracy 

Confusion Matrix 

Time 
False 

Positive 

Rate 

False 

Negative 

Rate 

MLP 

Neural 
98.7 0.02281 1.28406 

121494 

ms 

 

Table 15. Correctly and incorrectly classified the 

RadioML2016.10B dataset after the preprocessing approach 

 
Machine Learning 

Algorithm 

Correctly 

Classified 

Incorrectly 

Classified 

MLP Neural 236880 = 98.7% 3120 = 1.3% 

 

Table 16. Evaluation of the RadioML2016.10B dataset after 

the preprocessing approach 

 

Evaluation Parameters 

Machine Learning 

Algorithms 

MLP 

Precision 0.9998 

Detection Rate (DR) 0.4377 

False Alert Rate (FAR) 0.0228 

Area Under Curve (AUC) 0.9919 

True Positive (TP) Rate 0.9998 

True Negative (TN) Rate 0.9771 

Mean Absolute Error 0.01191 

Relative Absolute Error (RAE) 3.4233 

Root Relative Squared Error 

(RRSE) 
18.7016 

Error Rate 0.013 

 

Table 17. Recall, the F-Measure and Kappa coefficient of the 

RadioML2016.10B dataset after the preprocessing approach 

 
Machine Learning 

Algorithm 
Recall 

F-

Measure 

Kappa 

Coefficient 

MLP Neural 0.9576 0.9782 0.9809 

 

Tables 15-17 show the extent of improvement shown by the 

proposed system based on correctly classified cases at a rate 

of 98.7% of the total data set. This is a result of the 

effectiveness of the preprocessing method in increasing the 

efficient network performance on the database, as it led to 

increasing the accuracy of the model in classifying and 

identifying signal modifications within the 

RadioML2016.10B database and reducing the low error rate. 

In addition, the vast majority of positive predictions provided 

by the model are correct, which indicates an exceptional level 

of accuracy and the detection rate of actual positive cases is 

normal, as well as the low percentage of false alert rates and 

the ability of the proposed system to distinguish between 

categories based on the proposed algorithm contributed to the 

increase in the true positive rate with a decrease in the average 

absolute error, which contributed to improving the algorithm's 

ability to find efficient practical detection in classifying 

wireless signals for the RadioML2016.10B database. 

 

 

6. SYSTEM COMPARISON  

 

The results are compared with other works as well as the 

comparison with the system for both cases before and after 

data preprocessing, where the comparison showed an increase 

in the accuracy of the sensitivity detection of the radio 

frequency spectrum and the extent of the improvement that 

occurred in a group of evaluation parameters, as in Table 18. 

In addition, the practical implications of the proposed system 

results inspired from the real-world scenarios and the model 

expansion to adapt to different environmental conditions 

showed that the system adapts to heavy wireless traffic, 

making it suitable for implementation in different contexts 

from urban areas to rural environments, depending on the 

nature of data traffic in the network, with high density and very 

fast data transfer capacity, taking into account different 

channel conditions, whether with or without noise and 

collision in the network, and providing actionable insights for 

real-world applications for spectrum management, as well as 

addressing the increasing demands on wireless 

communications while ensuring efficient performance across 

different environments.

 

Table 18. The proposed HPSTSO system comparison 

 
References Dataset Algorithm Accuracy Precision Recall F1 Score 

[25] RadioML2016.10A PU-DetNet 97.55% 0.925 0.872 0.898 

[26] RadioML2016.10B RBRLG 95.7% 0.957 0.860 0.906 

[27] RadioML2016.10B CNN-TN 97% 0.957 0.895 0.925 

The proposed system 
RadioML2016.10B 

MLP 
98.7 0.9998 0.9576 0.9782 

Own created (CAMOD dataset) 99.45 % 1.0 0.9838 0.9918 

 

 

7. CONCLUSIONS 

 

The broader implications of applying the proposed 

CAMOA based HPSTSO system contributed to improving 

problem solving to face the challenges of limited energy 

systems and logistics communications by achieving an 

effective balance between exploring operations and exploiting 

resources to implement hybrid method by moving across 

execution operation spaces more efficiently than traditional 

methods of the single method resource optimization system as 

well as the ability to adapt and be flexible for the HPSTSO 

system with changing and symmetrical environments in 

problems, which advances to adapting the system to different 

applications requirements without reconfiguring the system 

intensively by integrating time-reducing strategies with 

improving the quality of the solution, as traditional 

optimization techniques are affected due to these techniques 

exhausting requirements for resources. The future research 

directions of the proposed system are real-time spectrum 

allocation based on dynamic network conditions of user 

requirements, building secure framework that protect against 

jamming and eavesdropping of cognitive radio networks 

vulnerabilities. 

  

2338



 

REFERENCES  

 

[1] Alam, M.M., Malik, H., Khan, M.I., Pardy, T., Kuusik, 

A., Le Moullec, Y. (2018). A survey on the roles of 

communication technologies in IoT-based personalized 

healthcare applications. IEEE Access, 6: 36611-36631. 

https://doi.org/10.1109/ACCESS.2018.2853148 

[2] Aceto, G., Persico, V., Pescapé, A. (2018). The role of 

information and communication technologies in 

healthcare: Taxonomies, perspectives, and challenges. 

Journal of Network and Computer Applications, 107: 

125-154. https://doi.org/10.1016/j.jnca.2018.02.008 

https://doi.org/10.1016/j.jnca.2018.02.008 

[3] Vidakis, K., Mavrogiorgou, A., Kiourtis, A., Kyriazis, D. 

(2020). A comparative study of short-range wireless 

communication technologies for health information 

exchange. In 2020 International Conference on 

Electrical, Communication, and Computer Engineering 

(ICECCE), Istanbul, Turkey, pp. 1-6. 

https://doi.org/10.1109/ICECCE49384.2020.9179478 

[4] Kartsakli, E., Lalos, A.S., Antonopoulos, A., Tennina, S., 

Di Renzo, M., Alonso, L., Verikoukis, C. (2014). A 

survey on M2M systems for mHealth: A wireless 

communications perspective. Sensors, 14(10): 18009-

18052. https://doi.org/10.3390/s141018009 

[5] Hamood, A.S., Sadkhan, S.B. (2017). Cognitive radio 

network security status and challenges. In 2017 Annual 

Conference on New Trends in Information & 

Communications Technology Applications (NTICT), 

Baghdad, Iraq, pp. 1-6. 

https://doi.org/10.1109/NTICT.2017.7976105 

[6] Aslam, M.M., Du, L., Zhang, X., Chen, Y., Ahmed, Z., 

Qureshi, B. (2021). Sixth generation (6G) cognitive radio 

network (CRN) application, requirements, security 

issues, and key challenges. Wireless Communications 

and Mobile Computing, 2021(1): 1331428. 

https://doi.org/10.1155/2021/1331428 

[7] Ding, H.C., Fang, Y.G., Huang, X.X., Pan, M., Li, P., 

Glisic, S. (2017). Cognitive capacity harvesting 

networks: Architectural evolution toward future 

cognitive radio networks. IEEE Communications 

Surveys & Tutorials, 19(3): 1902-1923. 

https://doi.org/10.1109/COMST.2017.2677082 

[8] Hamood, A.S., Sadkhan, S.B. (2017). Keywords 

sensitivity recognition of military applications in secure 

CRNs environments. In 2017 Second Al-Sadiq 

International Conference on Multidisciplinary in IT and 

Communication Science and Applications (AIC-

MITCSA), Baghdad, Iraq, pp. 96-101. 

https://doi.org/10.1109/AIC-MITCSA.2017.8722991 

[9] Le, T.T.T., Moh, S. (2019). A spectrum-aware priority-

based link scheduling algorithm for cognitive radio body 

area networks. Sensors, 19(7): 1640. 

https://doi.org/10.3390/s19071640 

[10] Ahmadi, H., Arji, G., Shahmoradi, L., Safdari, R., 

Nilashi, M., Alizadeh, M. (2019). The application of 

internet of things in healthcare: A systematic literature 

review and classification. Universal Access in the 

Information Society, 18: 837-869. 

https://doi.org/10.1007/s10209-018-0618-4 

[11] Castaneda, E., Silva, A., Gameiro, A., Kountouris, M. 

(2016). An overview on resource allocation techniques 

for multi-user MIMO systems. IEEE Communications 

Surveys & Tutorials, 19(1): 239-284. 

https://doi.org/10.1109/COMST.2016.2618870 

[12] Kamal, M.A., Raza, H.W., Alam, M.M., Su’ud, M.M., 

Sajak, A.B.A.B. (2021). Resource allocation schemes for 

5G network: A systematic review. Sensors, 21(19): 6588. 

https://doi.org/10.3390/s21196588 

[13] Siddiqi, M.H., Alruwaili, M., Ali, A., Haider, S.F., Ali, 

F., Iqbal, M. (2020). Dynamic priority-based efficient 

resource allocation and computing framework for 

vehicular multimedia cloud computing. IEEE Access, 8: 

81080-81089. 

https://doi.org/10.1109/ACCESS.2020.2990915 

[14] Tsiropoulos, G.I., Dobre, O.A., Ahmed, M.H., Baddour, 

K.E. (2014). Radio resource allocation techniques for 

efficient spectrum access in cognitive radio networks. 

IEEE Communications Surveys & Tutorials, 18(1): 824-

847. https://doi.org/10.1109/COMST.2014.2362796 

[15] Freitas, D., Lopes, L.G., Morgado-Dias, F. (2020). 

Particle swarm optimisation: A historical review up to 

the current developments. Entropy, 22(3): 362. 

https://doi.org/10.3390/e22030362 

[16] Kaur, A., Kumar, K. (2022). A comprehensive survey on 

machine learning approaches for dynamic spectrum 

access in cognitive radio networks. Journal of 

Experimental & Theoretical Artificial Intelligence, 

34(1): 1-40. 

https://doi.org/10.1080/0952813X.2020.1818291 

[17] Abbas, N., Nasser, Y., Ahmad, K.E. (2015). Recent 

advances on artificial intelligence and learning 

techniques in cognitive radio networks. EURASIP 

Journal on Wireless Communications and Networking, 

2015: 1-20. https://doi.org/10.1186/s13638-015-0381-7 

[18] Bakshi, S., Sharma, S., Khanna, R. (2022). A novel 

metaheuristic optimization for throughput maximization 

in energy harvesting cognitive radio network. 

Elektronika ir Elektrotechnika, 28(3): 78-89. 

https://doi.org/10.5755/j02.eie.31245 

[19] Srivastava, V., Singh, P., Malik, P.K., Singh, R., Tanwar, 

S., Alqahtani, F., Tolba, A., Marina, V., Raboaca, M.S. 

(2023). Innovative spectrum handoff process using a 

machine learning-based metaheuristic algorithm. 

Sensors, 23(4): 2011. https://doi.org/10.3390/s23042011 

[20] Eappen, G., Shankar, T. (2020). Hybrid PSO-GSA for 

energy efficient spectrum sensing in cognitive radio 

network. Physical Communication, 40: 101091. 

https://doi.org/10.1016/j.phycom.2020.101091 

[21] Latif, S., Akraam, S., Malik, A.J., Abbasi, A.A., Habib, 

M., Lim, S. (2021). Improved channel allocation scheme 

for cognitive radio networks.  Intelligent Automation & 

Soft Computing, 27(1): 103-114. 

http://doi.org/10.32604/iasc.2021.014388 

[22] Tavares, C.H.A., Marinello, J.C., Proenca Jr, M.L., 

Abrao, T. (2020). Machine learning—based models for 

spectrum sensing in cooperative radio networks. IET 

Communications, 14(18): 3102-3109. 

https://doi.org/10.1049/iet-com.2019.0941 

[23] Abdullah, H.M.A., Kumar, A.S., Ahmed, A.A.Q., 

Mosleh, M.A.S. (2023). Hybrid optimization based on 

spectrum aware opportunistic routing for cognitive radio 

ad hoc networks. Информатика и автоматизация, 

22(4): 880-905. https://doi.org/10.15622/ia.22.4.7 

[24] Dasari, R., Venkatram, N. (2024). Optimizing 

multichannel path scheduling in cognitive radio Ad HoC 

networks using differential evolution. Scalable 

Computing: Practice and Experience, 25(2): 1199-1218. 

2339



 

https://doi.org/10.12694/scpe.v25i2.2649 

[25] Soni, B., Patel, D.K., Shah, S.B., López-Benítez, M., 

Govindasamy, S. (2022). Pu-DetNet: Deep unfolding 

aided smart sensing framework for cognitive radio. IEEE 

Access, 10: 98737-98751. 

https://doi.org/10.1109/ACCESS.2022.3206814 

[26] Vijay, E.V., Aparna, K. (2023). RNN-BIRNN-LSTM 

based spectrum sensing for proficient data transmission 

in cognitive radio. e-Prime-Advances in Electrical 

Engineering, Electronics and Energy, 6: 100378. 

https://doi.org/10.1016/j.prime.2023.100378 

[27] Vijay, E.V., Aparna, K. (2024). Deep learning-CT based 

spectrum sensing for cognitive radio for proficient data 

transmission in wireless sensor networks. e-Prime-

Advances in Electrical Engineering, Electronics and 

Energy, 9: 100659. 

https://doi.org/10.1016/j.prime.2024.100659 

 

2340




