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This study presents an intelligent speed control model for Separately Excited DC motors 

(SEDCM), consisting of three main steps. The first step follows a conventional 

Proportional-Integral-Derivative (PID) controller, which typically controls the speed 

under varying load conditions. The second step applies improved PID controller 

performance through optimization algorithms such as Particle Swarm Optimization 

(PSO) and Grey Wolf Optimization (GWO) to fine-tune PID parameters more precisely. 

The third step uses an intelligent, internet-connected Artificial Neural Network (ANN)-

based controller capable of effectively handling any operating condition, as well as 

motor parameters. This novel approach utilizes artificial intelligence techniques and 

optimization algorithms to improve the efficiency of SEDCM speed control. Among 

existing control approaches, ANNs excel at learning from training data and self-tuning 

under changing operating conditions. Simulation results confirm the internet-connected 

ANN controller's superiority over conventional and optimization-based PID controllers 

in terms of efficiency and accuracy. These findings establish the abilities of ANNs to 

optimize instantly while ensuring true dynamic feedback for control applications. 
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1. INTRODUCTION

According to this study, a novel idea of Artificial Neural 

Networks (ANNs) for speed estimation and control of 

discretely stimulated DC motors is introduced via motor 

voltage control in conjunction with artificial intelligence 

approaches [1]. ANNs, MATLAB, and Simulink tools are 

some of the most significant contemporary technologies for 

control applications. Simulation results show how reliable 

neural network-based speed controllers are. Better dynamic 

performance, shorter rise times, and less overshoot and 

undershoot are the outcomes of neural network speed 

controllers [2]. This study explores voltage regulation-based 

speed control using conventional techniques, such as 

Proportional-Integral-Derivative (PID), and innovative 

approaches, such as ANN and nature-inspired optimization 

algorithms. It is crucial to keep in mind that the maximum 

voltage permitted limits the highest speed that can be attained 

using motor voltage management techniques [3]. The 

recommended techniques are applied in designing and 

implementing a speed controller to control the speed of a DC 

motor that is stimulated separately. The PID type speed 

controller, which reduces steady-state error and offers quick 

control, is used to regulate the speed of the Separately Excited 

DC motor (SEDCM) to its maximum rated speed [4]. In many 

applications, speed control is essential to achieving desired 

levels of operation. Field current control and motor voltage 

control are two basic techniques. The performance of PID 

controllers, which use motor voltage control technology to 

control speed, is compared. Utilizing existing literature, such 

as the application of fuzzy logic controllers to regulate the 

operations of DC motors, the study extends the scope of 

previous research. The researchers demonstrated the benefits 

of axiomatic logic-based controllers by applying fuzzy logic 

controllers and ANFIS and comparing them with conventional 

proportional-integral-differential controllers. Furthermore, 

investigations into the use of ANN to speed up estimation and 

control revealed accurate control and effective operation [5]. 

In 1991, Weerasooriya and El-Sharkawi [6] presented a 

high-performance speed-control system for a DC motor based 

on ANNs is presented. It is possible to set the DC motor's rotor 

speed to follow any chosen path. Accurate trajectory control 

of the speed is the goal, particularly in situations where the 

load and motor parameters are unknown. The ANN captures 

the unknown nonlinear dynamics of the load and the motor. 

To accomplish trajectory control of speed, a desired reference 

model is paired with the trained neural network identification. 

By simulating the identification and control algorithms on a 

standard DC motor model, their performances are assessed. It 

is demonstrated that an ANN can effectively regulate a DC 

motor. [6]. In 2017, Alhanjouri [7] estimated and controlled an 

SEDCM using ANNs. This method is one of the most 

important contemporary methods for increasing the control 

efficiency of SEDCM, and control applications. The rotor 

speed of a DC motor can be adjusted to follow a randomly 

selected path. The goal is to achieve precise speed trajectory 

control, especially in cases where load and motor parameters 

are unknown. The Levenberg-Marquardt backpropagation 
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algorithm is used to train the model. By comparing the system 

with a conventional proportional-integral controller, 

simulation results demonstrate the benefits, effectiveness, and 

performance of ANN controllers. Consequently, the results 

demonstrate that ANN approaches provide accurate control 

and optimal performance in real-time [7, 8]. 

Mahmood et al. [9] presented a high-performance speed 

controller designed for discretely excited DC motor SEDCM 

applications in high-power, for instance, traction electric in 

naval vessels and air vehicles. The controller modifies the 

motor terminal voltage using a reference voltage that is 

generated based on estimated speed, which is estimated by a 

neural network. To control the motor speed, the authors put 

forward a three-layer neural network, which had superior 

performance compared to regular control models in speed 

regulation and response accuracy. The results indicate that 

neural networks can be used to effectively control dynamic 

speed in complex systems. 

In 2024, Prasad et al. [10] suggested a Neural Network 

Predictive Controller (NNPC) based on deep learning (DL) for 

accurate DC motor speed control. Based on the motor's current 

condition and control inputs, the controller forecasts how the 

motor will behave in the future. After that, the controller 

produces inputs in the best possible way to lower tracking 

mistakes and enhance system performance. These numerical 

findings validate the suggested predictive controller's 

dependability and resilience for DC motor system speed 

control in a variety of applications. 

In 2021, Dutta and Nayak [11] introduced the Grey Wolf 

Optimization (GWO) method for optimizing the parameters of 

traditional PID controllers. They stated that real-time 

parameter adjustment is one of the problems with PID 

controllers. The Particle Swarm Optimization (PSO) 

algorithm has been shown in recent research to be effective in 

fine-tuning the PID controller for brushless DC motors; 

however, GWO provides an enhanced alternative. With better 

dynamic performance and reactivity to shifting operating 

conditions, the GWO algorithm was proven to perform better 

than the PSO approach when used in PID tuning. This 

demonstrates that when compared to traditional optimization 

techniques, the suggested GWO-based strategy provides better 

performance [11, 12]. 

Hatta et al. [13] presented the GWO as a method for 

obtaining, optimizing, and finding the best possible solution to 

a given problem, regardless of its constraints. This algorithm 

adopts the hierarchical nature of gray wolves, their leadership 

structure, and their natural hunting behavior. The algorithm 

ranks the best solutions, and its search method-tracking, 

encircling, and attacking-is mathematically designed to find 

the best optimized solution. The characteristics of GWO, used 

in many problems, are discussed, such as parameter tuning and 

how it mitigates problems in different applications. 

However, despite the widespread use of traditional control 

methods, such as PID, PSO, and GWO, these methods barely 

meet the requirements of high accuracy and dynamic 

adjustment in highly volatile systems. Considerable efforts 

have been made to apply limited integration of ANNs to 

remove limitations and increase the effectiveness of speed 

control in SEDCMs. This study seeks to address this 

shortcoming with online ANN-based controllers, which offer 

real-time adaptation, increased accuracy, and improved 

performance compared to traditional control methods. The use 

of direct back-propagation neural networks for real-time 

control of motor voltage improves system response and 

accuracy and represents a promising solution for 

contemporary speed control applications. 

2. MODELLING OF SEDCM

The corresponding circuit of a DC motor with separate 

excitation is depicted in Figure 1 [14]. 

Figure 1. Equivalent circuit of SEDCM [15] 

The electromagnetic equations of the system can be used to 

determine the dynamic behavior of DC motors, and the 

following equations govern the field and armature voltages 

[15]: 

𝑉𝑎 = (𝑟𝑎 +
𝑑𝐿𝑎

𝑑𝑡
) 𝑖𝑎 + 𝜔𝑟𝐿𝑎𝑓𝑖𝑎 (1) 

𝑉𝑓 = (𝑟𝑓 + (𝑑𝐿𝑎)/𝑑𝑡)𝑖𝑎 (2) 

where, the self-resistance of the field winding 𝑟𝑓, the armature

winding 𝑟𝑎, along with their respective self-inductances 𝐿𝑓, for

the field and 𝐿𝑎 for the armature, the currents flowing through

the field 𝑖𝑓 and armature windings 𝑖𝑎, the rotor speed 𝜔𝑟, and

the mutual inductance between the field and armature 

windings 𝐿𝑎𝑓 , all contribute to determining the

electromagnetic torque 𝑇𝑒.

𝑉𝑓 = (𝑟𝑓 + (𝑑𝐿𝑎)/𝑑𝑡)𝑖𝑎 (3) 

The relationship between load torque (TL) and 

electromagnetic torque is as follows [15]: 

𝑇𝑒 = 𝐽 (
𝑑𝑤𝑟

𝑑𝑡
) + 𝐵𝑤𝑟 + 𝑇𝐿 (4) 

where, J is the rotor's inertia plus any mechanical load that is 

connected. B represents the dampening coefficient related to 

the machine's mechanical rotation mechanism. 

3. THE SPEED CONTROL OF SEDCM

3.1 Using PID-controller 

Conventional PID controllers have been the control method 

of choice for numerous industrial processes and motor control 
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applications. The currently used trial-and-error method to 

adjust the controller parameters is time-consuming and labor-

intensive. Although the PID control technique is simple and 

reliable, increasing the gain of the PID controller remains a 

challenging task [15]. Figure 2 shows the structure of the 

controller PID [12]. 

Figure 2. Traditional PID controller [8] 

𝑈(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝑘𝑑

𝑑

𝑑𝑡
𝑒(𝑡) (5) 

The time-dependent error signal, or the control output, is 

represented by the control signal, U(t). The input signal of a 

PID controller, e(t), is also known as the error signal, as it is 

used to determine how much deviation exists between the 

desired data input and actual output value. The full impact of 

each controller parameter (𝑘𝑝, 𝑘𝑖, 𝑘𝑑) on a typical closed-loop

system is crucial to achieving optimal voltage regulation. In 

this study, tuning these parameters is a key focus to enhance 

the speed control performance of SEDCM, ensuring improved 

dynamic response and stability [16]. The objective function is 

initially constructed by taking the intended specifications and 

limitations into account before designing the PID controller 

using an optimization technique. An appropriate objective 

function is selected to adjust the controller parameters from 

two groups: (a) criteria based on the complete response or 

integrated criteria, and (b) criteria based on a few selected 

areas in the response. The Squared Error Integral (ISE), Eq. 

(6), was generally chosen because of its good performance in 

meeting the requirements of this study. The total of the squares 

of the variations between the reference signal (or desired 

value) and the actual system response over a given period is 

determined by the integral of the squared error. This helps to 

reduce long-term errors and ensures that the system behaves 

in a stable and well-controlled manner throughout the entire 

response period [11, 12, 17]: 

𝐼𝑆𝐸 = ∫ 𝑒2 (𝑡)𝑑𝑡 (6) 

where, ISE is the integral square error objective value, and e(t) 

is a measurement of the error of the measured process output 

variable as compared to a desired set point. 

3.2 PSO algorithm 

PSO is an ensemble-based evolutionary algorithm, initially 

developed by Eberhardt and Kennedy. PSO is designed to 

optimize continuous nonlinear functions. A notable advantage 

of PSO is its ease of implementation and the lack of gradient 

information [18]. PSO can be used to solve a range of 

optimization problems. As with other evolutionary algorithms, 

the PSO algorithm searches a population of particles, one of 

which might represent a candidate solution to the problem at 

hand. The particles move through the multidimensional search 

space until their computational budget is exhausted. The PSO 

algorithm used to update the particles is given by Eqs. (7)-(8). 

The PID controller proposed and developed here, as shown in 

Figure 3, has also been optimized using the PSO algorithm 

[16]. It is worth noting that the PSO algorithm is used to fine-

tune the PID parameters by simulating a population of 

particles searching the parameter space for optimal values. The 

position and velocity parameters of the particles are updated 

based on past experiences to find the best solution. Its 

parameters are set with an inertia weight of 0.9, a perception 

coefficient of 2, and a social coefficient of 1.5. Convergence 

occurs when, after several generations, performance reaches a 

satisfactory level or no significant progress is achieved. 

Figure 3. PSO algorithm 

𝑉𝑖
𝑘+1 = 𝑤𝑡𝑣𝑖

𝑘 + 𝑐1𝑟[𝑃𝑏𝑒𝑠𝑡
𝑘 − 𝑋𝑖

𝑘] + 𝑐2𝑟2[𝐺𝑏𝑒𝑠𝑡
𝑘 − 𝑋𝑖

𝑘] (7) 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (8) 

where, 𝑉𝑖
𝑘+1 is the velocity of the ith particle at iteration k. The

position of the ith particle at iteration k is a particular particle’s 

personal best position, which is the best location found in the 

time interval [0, t]; 𝑐1 and 𝑐2 are cognitive and social factors, 

respectively are random coefficients, and 𝑤𝑡  is the inertia

weight [16]. 

However, the PSO algorithm simulates optimization of PID 

parameters by simulating a population of particles searching 

the parameter space to determine optimal values. Particle 

velocity and position parameters are adjusted based on 

experience with possible optimal solutions. This method 

maximizes control performance by minimizing errors and 

improving dynamic response. Convergence is achieved when 

performance is within a satisfactory range or when no further 

improvements are observed after several generations. The 

PSO algorithm does not include gradient information and can 

therefore be used for complex, nonlinear problems. 

3.3 GWO algorithm 

Mirjalili et al. [19] described the improvement of the grey 

wolf’s optimization. The social hierarchies will be shown in 

Figure 4. 

In the wolf hierarchy, there are three dominant types: Alpha 

(α), Beta (β), and Delta (β), which lead and dominate the 

Omega (Ꞷ) wolves. The pack is further organized into specific 

roles, including scouts, guards, elders, hunters, and caretakers. 

Scouts keep an eye on the territory's borders and warn the pack 

of any threats. Caretakers ensure the safety of all members 
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within the pack. Hunters assist Alpha and Beta wolves in 

gathering food and hunting prey. Wolves that are weak, ill, or 

injured must be cared for by caregivers. This hierarchy forms 

the basis of the wolf’s hunting mechanism (algorithm), which 

is used to locate and pursue prey (i.e., the resolution or 

decision). The hunting process consists of three basic steps 

[17]: 

1. Following, tracking, and approaching the victim.

2. Disrupting the prey to prevent it from moving and turning

around it to ensure a successful hunt. 

3. It is forceful to take the prey.

Figure 5 shows the flowchart for detecting and updating

parameter usage. 

Figure 4. Grey wolf hierarchy [20] 

Figure 5. GWO algorithm flowchart [17] 

3.4 Online neural network-based PID controller design 

Online Neural Networks (NNs) are used to change the 

parameters of input and output. Backpropagation (BP) 

learning networks are one method for training this. The results 

of simulations and experiments show that the suggested 

controller is reliable and effective in controlling SEDCM 

speed, according to modeling and experimental data [21, 22]. 

The proposed controller leverages a neural network to 

optimize the parameters of a conventional controller. This 

involves performing a detailed analysis, during which the 

controller output (the voltage that powers the motor) is 

modified. After determining the parameters of the 

conventional controller, appropriate values are set to ensure 

stable operation of the motor. This process is designed to 

maintain the desired motor speed and match it to the intended 

output across a range of load conditions and operating 

techniques, regardless of variations in load or operating time. 

The ANN controller's construction is depicted in Figure 6 [17]. 

Figure 6. Structure of NN [17] 

The controller in question recognizes inputs as well as 

outputs listed below: 

𝑋𝑖 = [
𝑒
𝑁

] (9) 

𝑦𝑜 = [
𝐾𝑃

𝐾𝑖
𝑘𝑑

] (10) 

where, 𝑋𝑖: The input vector is equivalent to the neural network

controller's input vector. A neural network controller's output 

vector, represented by the symbol  𝑦0  [23], is crucial to

ensuring the overall operating efficiency of the system shown 

in Figure 7. 

Figure 7. Block schematic of a separately DC motor by a 

neural network [17] 
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Figure 8. The neural-PID controller constructed using a 

MATLAB model 

Figure 9. Flow chart of the backpropagation training [12, 24] 

The proposed controller uses the PID neuron controller, as 

shown in Figure 8, to modify the output parameters. 

The algorithm structure of the BPA learning system is 

illustrated in Figure 9 with the help of a flow chart. In this flow 

chart, the input data (xi) is provided in the form of a vector 

consisting of some rows equal to S and some columns equal to 

the number of input neurons. In contrast, the target output data 

(d) is represented as a column vector with S rows.

4. RESULTS AND DISCUSSION

Table 1. Parameter specifications for the proposed motors 

[25] 

Motor Parameters Symbol Value Unit 

Field inductance Lf 0.167 H 

Armature inductance La 0.1215 H 

Mutual inductance Laf 0.004 H 

Armature resistance ra 11.2 Ω 

Field resistance rf 1.43 Ω 

Armature voltage Va 240 V 

Field voltage Vf 12 V 

Rotor inertia J 0.02215 kg.m2 

Friction coefficient B 0.002953 N.m.s/rad

Torque constant Kt 1.28 N.m/A

Torque constant ke 0.167 V.Sec/rad

Load torque TL 0.1215 N.m

desired speed N 1500 rpm

Figure 10. Uncontrolled DC motor speed response of SEDC 

Figure 11. A model of an SEDCM using transfer function 

blocks in Simulink (uncontrolled) [14] 

Figure 12. Block diagram for the SEDC motor’s overall 

modeling (controlled) 

The PID controller should be adjusted according to the 

motor requirements, and a trial-and-error method was used in 

this test. The motor specifications are shown in Table 1. Figure 

10 shows the response of speed control of the SEDC motor 

without a PID controller (uncontrolled). 

The controlled plant in this paper is an SEDC motor. 

Figures 11 and 12 show the block diagram for the SEDC motor 

speed control system using a PID controller. 

MATLAB R2020a was used to simulate the SEDC motor. 

The PID controller parameters were determined through trial 

and error, and Table 2 also presents the settings of the 

conventional controller. 

Table 2. Parameters for PID controller 

Algorithm KP KI KD 

PID 350 83 50.49 
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Figure 13. Speed control response of the SEDC motor using 

a PID controller 

Figure 13 illustrates the speed control response of the SEDC 

motor using a PID controller. When first introduced to 

industrial applications in 1939, PID controllers lacked 

optimization algorithms and methods yet quickly became 

popular due to their simplicity and effectiveness. The 

presented plots demonstrate the outcomes of applying 

conventional PID control to a separately excited DC (SEDC) 

motor. These plots specifically depict the closed-loop speed 

response when the PID controller is utilized for speed 

regulation. As shown in Figure 13, the motor speed rises from 

0 to a peak of 1504 rpm during start-up, followed by a slight 

drop to 1501 rpm upon applying a 10 Nm load torque (full 

load) at the 10-second mark [12]. 

Additionally, PSO is utilized to identify the optimal 

parameters of PID controllers for achieving precise motor 

speed control. The process requirements and PID controller 

parameters optimized with PSO are compiled in Tables 3 and 

4. 

Table 3. Parameter values of basic algorithms 

All Algorithms [PSO and GWO] Value 

Maximum Search Agents 50 

Repeated Iterations 20 

Table 4. Parameters for PSO-algorithm 

Algorithm KP KI KD 

PSO 360 85 45.45 

Figure 14. The response of speed control of SEDC motor - 

PSO algorithm 

Figure 15. Convergence curve of the algorithm over 

iterations 

Figure 14 shows the response of speed control of the SEDC 

motor with the PSO algorithm. The graphs displayed here 

show the motor speed attained by optimizing the parameters 

of the traditional PID controller for speed regulation in SEDC 

motors using the PSO method. As shown in Figure 14, the 

speed remains steady at 1500 rpm during the start-up phase. 

When a load torque of 10 N.m (maximum load) is applied for 

10 seconds, no speed drop is observed, and the motor remains 

at 1500 rpm. 

Figure 15 shows the convergence curve of the algorithm 

with iteration. 

Table 5 outlines the details and key specifications of the 

GWO algorithm. 

Table 5. Parameters for GWO-algorithm 

Algorithm KP KI KD 

GWO 367 86 46 

Figure 16. Speed control response of the SEDC motor using 

the GWO algorithm 

Figure 16 illustrates the speed control response of the SEDC 

motor using the GWO algorithm. Comparative tests conducted 

under identical conditions with a standard PID controller and 

the GWO-optimized controller reveal that the GWO algorithm 

effectively identifies the PID controller's ideal speed control 

parameters without changing the motor speed. Motor speed 

regulation and torque feedback were significantly improved by 

using the GWO method to optimize the PID controller. As 

shown in Figure 16, during the startup phase, the motor speed 
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remains steady, reaching a maximum of 1500 rpm. The motor 

maintains a steady speed of 1500 rpm when a load torque of 

10 Nm (maximum load) is applied for 10 seconds, improving 

speed regulation by about 99.99% when compared to a typical 

PID controller. The difference between the desired and 

achieved speeds disappears. 

Figures 17 (a) and (b) show the convergence curve of the 

algorithm with iteration. 

This study focuses on optimizing a PID controller by 

integrating a neural network to develop an advanced speed 

controller. Simulations were performed in MATLAB using the 

data provided in the tables. In addition to improving 

performance, the neural network created using this method 

provides a more effective speed regulation control mechanism. 

This enhancement shows how the neural network approach 

may improve motor efficiency, precisely control several 

operational parameters, and greatly improve system 

performance. According to Simulink statistics, the neural 

network approach performs noticeably better than the 

conventional PID controller, enhancing motor speed stability 

and guaranteeing more seamless operation. A dataset of inputs 

and their associated outputs is needed for algorithms like 

backpropagation, which are employed in neural networks to 

learn the links between inputs and outputs. During training, the 

network adjusts its internal weights and parameters in a 

manner that minimizes the difference between the desired and 

predicted outputs. In this work, the optimized weight values 

and equations obtained by training are provided, as shown 

below. The tuned weights play a significant role in improving 

the performance of the neural network to regulate motor speed 

and adapt to changing system conditions, leading to improved 

stability and control accuracy. With new input data, the neural 

network can predict system behavior in post-training 

simulations [7, 12, 17, 22]. 

The following equations can be used to calculate the 

mathematical expression defining the neural network, as per 

scholarly conventions [12, 23, 24, 26]. 

(a) 

(b) 

Figure 17. GWO search space and pattern of search 
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where, 

The output of the hidden layers is represented as 𝑦𝑗
𝑘.

The outputs of the neural network are represented as 𝑦𝑜
𝑘.

𝑊𝑗𝑖 is the weight of the input neurons to those neurons that

are hidden. 

𝑊𝑜𝑗 is the weight-to-output ratio of hidden neurons.

𝑏𝑗
𝑘 is the concealed layers' bias.

𝑏𝑜
𝑘 is the output layers' bias.

K is the training set and K = 1:S 

S is the total number of training sets. 

The parameters of neural networks are as follows: 

The following weights are found in the hidden layer: 

0.0981;8.3681

0.2807;7.3165

0.5491;6.6357

0.9578;8.1126

0.9661;6.7686

jiW

 
 
 
 =
 
 
 
 

; 

8.3404

6.7652

6.5860

8.4154

6.9203

jh

 
 
 
 =
 
 
 
 

Weights of output layers: 

0

4.4548;5.3611;6.6078;6.1310;6.3472

2.9305;3.0235;3.4087;2.7614;3.4326

2.6306;2.4944;2.5736;3.2655;3.1662

jW

 
 

=
 
  

7.4066

3.0332

2.8529

oh

 
 

=
 
  
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Table 6. Parameters for ANN-algorithm 

Algorithm KP KI KD 

ANN 330 35.11 10 

Figure 18. Speed control response of the SEDC motor using 

the ANN algorithm 

The speed is then increased by connecting the neural 

network and PID controller. The ability of neural networks to 

manage complex, nonlinear systems makes them effective 

tools for modeling and control. The basic features and 

specifications of the ANNs used in this work are illustrated in 

Table 6 and Figure 18. 

4.1 Comparison of speed control performance: PID, PSO, 

GWO, and ANN algorithms 

The SEDC motor's speed responses for the four approaches 

are depicted in Figure 19, and the motor's performance using 

the aforementioned procedures is displayed in Table 7. 

Figure 19. Comparison of speed responses for PID, PSO, 

GWO, and ANN controllers 

Table 7. Shows the performance values of the four methods 

Algorithm 
Rise Time 

(sec) 

Overshoot 

(%) 

Settling Time 

(sec) 

PID 0.3099 0.2302 0.5399 

PSO 0.2732 0 0.4869 

GWO 0.2330 0 0.4286 

ANN 0.0998 0 0.1752 

Many optimization problems can be solved using the PSO 

method. Like other evolutionary algorithms, this method 

searches a population of particles, each representing a unique 

solution to the problem at hand. In PSO, the particles move 

through a multidimensional search space until computational 

constraints are met, allowing for necessary adjustments. 

The third method, based on a PID controller optimized 

using the GWO algorithm, outperforms the previous method 

in response time. However, it responds more slowly than the 

next method. The fourth method, which uses an ANN-based 

PID controller connected to the internet, provides the most 

efficient response in terms of motor speed control. The ANN-

based PID controller ensures a constant motor speed in real 

time and demonstrates its ability to effectively handle sudden 

speed changes, ensuring stable and reliable motor 

performance. When compared to the previous three 

controllers, the online ANN-based PID controller 

demonstrates significant improvement, achieving a 100% 

increase in overall performance and motor speed regulation 

efficiency. 

5. CONCLUSIONS

Numerous factors determine the best way to regulate an 

SEDC motor's speed, including: 

• If it requires a straightforward, proven control technique

that reacts fast to modifications in the intended application, 

PID controls may be the best option. 

• GWO is a great option if you want to minimize

implementation effort while simultaneously optimizing and 

fine-tuning settings. 

• If a system's behavior is complicated and non-linear and

there is enough training data available, ANN can improve its 

performance and adaptability. 

The gap between traditional PID controllers and PSO, 

GWO, and ANN algorithm-tuned controllers continues to 

have improved performance in most fields. Traditional PID 

controllers have been limited in power control and flexibility 

in managing long-term parameter variations. Though PSO and 

GWO algorithms improve grid flexibility, energy efficiency, 

and efficiency, they are more efficient. ANNs strive to lead in 

providing long-term, accurate stability in fluctuating 

electronics and non-coordination, thus the ideal option to 

invest in complex applications. 
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NOMENCLATURE 

B damping coefficient, Ns/rad./sec 

E electromagnetic force, V 

i current, A 

j inertia, Kg.m2 

K constant 

L inductance, H 

R resistance,  

T torque, N.m. 

V voltage, V 

Greek symbols 

 speed, rad./sec 
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Subscripts 

a armature 

b back 

D derivative 

e electromagnetic 

I integral 

L load 

P proportional 

t torque 

v velocity 
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