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Precise lesion segmentation is necessary for the identification of skin cancer using 

dermoscopic pictures, but this is still difficult since lesion color, texture, and border 

abnormalities vary. In order to overcome this, we suggest a brand-new design named 

DoubleU-Net, which is very different from other multi-stage variations like U-Net++ 

and layered U-Nets. DoubleU-Net uses two different U-Net models in a sequential 

pipeline, in contrast to U-Net++, which combines dense skip connections within a single 

U-Net framework. In our method, the first U-Net creates an initial segmentation mask

by acting as a coarse lesion extractor. The original input image is then concatenated

with this mask and sent into a second U-Net, which concentrates on improving

boundary regions and correcting early segmentation problems. Better feature learning

and border delineation are made possible by this explicit two-stage refinement method,

which is not included in the U-Net++ architectural philosophy, where refinement is

carried out implicitly through layered connections. We assess DoubleU-Net using the

International Skin Imaging Collaboration (ISIC) 2017, 2018, and 2019 benchmark

public datasets. Intersection over Union (IoU), Dice Coefficient, Sensitivity, and

Precision are used to evaluate performance. The proposed model performs better than

the most advanced techniques on every metric. We obtain 98.89% in IoU, 91.04% in

Dice Coefficient, 92.77% in Sensitivity, and 97.52% in Precision for ISIC 2017. The

corresponding values for ISIC 2018 are 93.50%, 97.79%, 91.52%, and 97.78%. We

achieve 92.86%, 98.55%, 92.64%, and 96.89% for ISIC 2019. The findings show that

DoubleU-Net is useful for improving lesion boundary visual clarity and quantitative

accuracy.
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1. INTRODUCTION

Particularly in body parts that are often exposed to sunlight 

or artificial ultraviolet (UV) sources like tanning beds, 

prolonged exposure to UV radiation can cause inappropriate 

skin cell growth, which can result in skin cancer [1]. 

Melanoma, which starts in the melanocyte cells that produce 

melanin, is the most aggressive and deadly type of skin cancer 

[2] among the others [3-5]. When melanoma is discovered

early, the 5-year survival rate is above 99%, but it drastically

decreases if the disease spreads to other organs, according to

the American disease Society. This emphasizes the vital role

that early diagnosis and treatment play in enhancing patient

outcomes [6].

However, the clinical diagnosis of skin cancer can be 

subjective and open to human error, which makes it expensive 

and time-consuming. In an effort to improve accuracy and 

decrease diagnostic variability, researchers have been 

investigating computer-aided diagnosis (CAD) systems that 

use dermoscopic pictures for analysis more and more [7]. One 

of the core tasks in these systems is skin lesion segmentation, 

which involves identifying each pixel as either healthy or 

diseased [8]. Segmentation is the first and most important 

phase in the image analysis pipeline, and it has a big influence 

on how well later classification or diagnostic stages work [9]. 

Low contrast, erratic borders, and aberrations like hair, pen 

markings, or gel reflections are some of the reasons why 

traditional techniques like thresholding (bi-level and multi-

level) frequently fail [10]. Dermoscopic pictures of skin 

lesions impacted by these problems are shown in Figure 1. 

Additionally, the segmentation method becomes more 

complicated and less precise due to changes in lesion color, 

size, and texture. 

In order to get around these issues, current research has used 

pre-processing [11-13] and post-processing [14-16] methods 

in addition to color space conversion (e.g., Red Green Blue 

(RGB) to Hue Saturation and Value (HSV), Luminance and 

Chrominance (YUV), or Cyan, Magenta and Yellow (CMY)) 
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to improve lesion visibility [17]. Most significantly, the field 

of medical picture segmentation has changed as a result of 

deep learning (DL). Multi-level features are automatically 

extracted by Convolutional Neural Networks (CNNs), and in 

pixel-wise segmentation tasks, designs such as Fully 

Convolutional Networks (FCNs) and U-Net-based models 

have shown higher performance [7, 8, 10, 12]. 

 

 
 

Figure 1. Image samples of skin lesions with (a) gel, (b) pen 

marks, (c) irregular boundaries, (d) unclear lesion, (e) dark 

color lesion area, (f) light color lesion area, (g) lesion with 

hair 

 

In sophisticated medical image segmentation, U-Net 

continues to show limits despite its efficacy. Ineffective 

feature fusion, semantic gaps between encoder and decoder 

routes, and information loss from recurrent downsampling are 

some of the issues that U-Net may face, as noted in references 

[6, 8, 13, 16]. In difficult circumstances, these issues may lead 

to either under or over segmentation. Improvements to address 

these problems are suggested by studies like MAGRes-UNet 

[8] and IDUNet++ [16], although segmenting lesions with 

fuzzy borders or poor contrast is still a difficulty. 

Furthermore, the generalizability of conventional deep 

models is further hampered by the fact that medical datasets 

are frequently small and need domain expertise for annotation. 

The creation of improved architectures specifically suited for 

medical segmentation tasks has been prompted by these 

constraints. 

The U-Net architecture, which minimizes information loss 

by using skip links between the encoding and decoding 

channels, is one of the most well-known designs to handle 

these issues. Nonetheless, a persistent obstacle is the semantic 

disparity between encoder and decoder properties [15, 18]. We 

suggest the DoubleU-Net, which combines two U-Net 

modules in a cascaded manner, to address these drawbacks. In 

order to solve edge misclassifications and enable multi scale 

feature augmentation, this architecture enables the first U-Net 

to produce a coarse mask that is concatenated with the original 

input and sent to the second U-Net for refinement. 

The following briefly describes the contributions of our 

work: 

• Creation of U-Net for Skin Lesion Segmentation: A basic 

U-Net model was developed in order to effectively detect 

lesion boundaries.  

• DoubleU-Net Architecture Advancement: To increase 

segmentation accuracy across lesion types, we suggest an 

improved architecture that combines twin U-Nets with staged 

learning and fine-tuned skip connections. 

• Comprehensive Dataset Evaluation: We assess our 

approach using the International Skin Imaging Collaboration 

(ISIC) 2017, 2018, and 2019 datasets, which serve as 

benchmarks for the segmentation of skin lesions.  

• Robust Evaluation Metrics: To give a thorough 

performance evaluation, our analysis uses the Dice 

Coefficient, Intersection over Union (IoU), Sensitivity, and 

Precision. 

• Visualization Techniques: To demonstrate the efficacy of 

the model, segmentation outputs are compared with ground 

truth.  

• Clinical Potential and Research Impact: In addition to 

providing dermatologists with useful insights, the suggested 

model points to exciting paths for practical applications and 

AI-assisted diagnostics.  

• Future Extensions: For data augmentation, real-time 

deployment, and usability enhancements for clinical settings, 

we recommend integration with generative models. 

This paper's remaining sections are arranged as follows: In 

Section 2, relevant literature is reviewed; in Section 3, the 

suggested architecture is explained; in Section 4, the 

experimental setup, results, and comparisons are covered; and 

in Section 5, conclusions and future directions are presented. 

 

 

2. RELATED WORK 
 

Many methods have been developed for automatic skin 

lesion segmentation in the last ten years [19-21]. Performance 

across a range of segmentation difficulties has significantly 

improved with the change from conventional hand-crafted 

feature engineering to deep learning-based architectures, 

particularly CNNs [22, 23]. 

 

2.1 Segmentation using traditional techniques 

 

Early segmentation attempts were based on low-level pixel 

features, such as histogram thresholding [24-26], unsupervised 

color clustering [27], and region-merging techniques [28, 29]. 

Although morphological procedures, edge detectors, and 

active contour methods [30] were also investigated [31], these 

methods were not able to generalize to different lesion sizes, 

shapes, and colors. As a result, they were less appropriate for 

practical clinical applications due to their limited performance, 

particularly in low contrast or noisy image conditions. 

 

2.2 Segmentation using deep learning techniques 

 

By utilizing CNNs' feature learning capabilities, deep 

learning has significantly increased segmentation accuracy by 

enabling the automatic extraction of complex patterns. To 

improve lesion border precision and lower segmentation 

errors, a number of enhanced CNN-based models have been 

suggested. 

Many researchers have investigated cutting-edge methods 

to enhance the categorization and segmentation of skin lesions. 

Using Mask-CN and Coarse-SN, Xie et al. [29] combined 

segmentation and classification in a multitask framework, 

enabling lesion delineation and disease prediction at the same 

time. In order to improve resilience under a range of lighting 

circumstances, Kumar et al. [30] used shading-attenuated and 

grayscale picture representations to overcome illumination 

variance.  

Hasan et al. [31] developed lightweight structures using 

depth-wise separable convolutions to simplify the model while 

preserving pixel-level accuracy, which made their method 

appropriate for real-time or resource-constrained applications. 
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A hybrid JAEO-LeNet model with TransUNet-based 

preprocessing was presented by Babu and Philip [32], with an 

emphasis on improved feature extraction for early skin cancer 

detection. To enhance the acquisition of fine lesion 

boundaries, Xie et al. [33] created spatial and channel attention 

modules with high-resolution input handling. In order to 

guarantee structural consistency and contextual 

comprehension, Khan et al. [34] used DenseNet for deep 

feature extraction after first segmenting using MASK-RCNN. 

Similar to this, Qamar et al. [35] improved boundary 

localization by combining multi-scale feature aggregation and 

edge prediction, which enabled the model to retain intricate 

textures and subtle lesion edges. When taken as a whole, these 

papers show the variety of methodological developments 

meant to increase automated skin lesion analysis's precision, 

resilience, and effectiveness. 

Considering these developments, a large number of current 

models still mostly rely on single-stage encoder-decoder 

architectures, which have significant drawbacks. One of these 

is insufficient feature fusion across spatial scales, which 

results in less-than-ideal segmentation of lesions with varied 

sizes and textures. Furthermore, these models frequently have 

trouble generalizing to lesions with hazy or ambiguous 

borders, which leads to inadequate lesion margin delineation. 

Moreover, their capacity to rectify inaccurate predictions is 

restricted due to the lack of a specific refinement step 

following initial segmentation. The DoubleU-Net architecture, 

a two-stage cascaded segmentation framework that improves 

multi-scale feature extraction, lesion border localization, and 

offers an extra refinement step for higher segmentation 

accuracy, is proposed in this work to address these issues. 

 

2.3 Segmentation using color-based techniques 

 

To improve segmentation performance, a number of recent 

methods have combined color space transformations with 

attention mechanisms. Pour and Seker [36] used feature map 

concatenation and the International Commission on 

Illumination (IELAB) color space to enhance lesion visibility, 

particularly under different lighting circumstances. By 

combining Squeeze and Excitation Network (SENet) with 

multiscale cross attention (MSC) modules and Cross-Scale 

Feature Fusion (CSFF) blocks, Liu et al. [37] were able to 

increase contextual comprehension and spatial precision. In a 

similar vein, Tran and Pham [38] used fuzzy logic in 

conjunction with additive attention mechanisms, adding fuzzy 

energy-based shape distances to the loss function to improve 

shape conformance. Despite improving saliency detection and 

lesion localization, these attention-based methods are still 

mostly focused on single-stage segmentation frameworks. 

Because of this, they frequently struggle to handle complex, 

multi-scale lesion patterns or high noise conditions, which 

reduces their generalizability and resilience. The need for 

multi-stage architectures, such as the DoubleU-Net proposal, 

which specifically addresses these problems through 

structured refinement and deeper contextual learning, is 

further highlighted by this. 

 

2.4 Gap and motivation for DoubleU-Net 

 

It is clear from the reviewed literature that single-stage U-

Net models are the backbone of current segmentation 

techniques, which frequently fail to capture fine-grained lesion 

borders, particularly when there is low contrast or unclear 

edges. While multi-branch topologies and attention methods 

have been developed to improve performance, they often 

result in a more complex model without adequately refining 

coarse segmentation results. Remarkably, relatively few 

studies use a real two-stage segmentation pipeline, in which a 

second network explicitly refines the output of an initial 

segmentation network. A cascaded dual-stage design is 

introduced in the proposed DoubleU-Net architecture to 

overcome these drawbacks. A typical U-Net generates a coarse 

segmentation mask in the first step. After concatenating this 

mask with the original input image, it is fed into a second U-

Net for more precise refining. By using this technique, the 

model may reduce the semantic gap between intermediate and 

final outputs, enhance border precision, and fix early 

segmentation errors. DoubleU-Net successfully fills the 

architectural gap in the existing literature by ignoring 

traditional single-pass models and concentrating on structured 

multi-stage refinement, providing an accurate method for 

precise lesion segmentation in intricate dermoscopic pictures. 

 

 

3. PROPOSED METHOD 
 

We developed an effective skin lesion segmentation 

algorithm to aid in the early detection of skin cancer. Because 

skin lesions vary widely in size, shape, color, and physical 

appearance, it can be complicated to differentiate between 

healthy skin and the affected regions. Therefore, appropriate 

skin lesion segmentation is essential. Sometimes these 

variations are too large for conventional segmentation 

methods to handle, which results in inaccurate or insufficient 

lesion borders. To overcome these challenges, we developed a 

detailed method utilizing the Double U-Net architecture, 

which has advanced feature extraction capabilities and 

accurate border identification. The technical architecture and 

execution of the suggested segmentation pipeline are 

addressed in this section. 

 

3.1 Design flow 
 

A simplified and effective method for segmenting skin 

lesions utilizing the Double U-Net architecture is shown in 

Figure 2. The pipeline employs deep learning for accurate and 

automatic lesion border detection while preserving the 

structural integrity of dermoscopic images. 

 

 
 

Figure 2. Design procedure for DoubleU-Net skin lesion 

segmentation 
 

Dermatoscope devices, which are professional instruments 

used by dermatologists to obtain high-resolution pictures of 

skin lesions, are the initial step in the procedure. By offering 

vital details like lesion color, texture, and border features that 

are significant in the diagnosis of skin malignancies like 

melanoma, these devices improve the imaging of both surface 

and underlying skin structures. After being taken, the photos 

are gathered during the Skin Image Acquisition stage, when 

2255



 

they are digitally processed and systematically kept in the 

Images database. This makes up the segmentation system's 

input dataset. This pipeline retains full-color (RGB) pictures 

throughout, when compared to conventional image processing 

methods that transform pictures to grayscale. This choice is 

consistent with standard dermoscopic procedures, in which the 

ability to differentiate between various kinds of lesions 

depends on color information. Color asymmetry and 

pigmentation variations serve as essential diagnostic 

indicators for melanoma identification. Thus, the ability of the 

model to learn sensitive visual characteristics is enhanced by 

the retention of RGB information. 

The pictures pass through a masking stage, where additional 

preprocessing techniques will be used to highlight regions of 

interest (e.g., erasing marks, hair, or non-lesion artifacts). This 

ensure that the model preserves crucial context while 

processing just the necessary lesion locations. The Double U-

Net Segmentation module then obtains the preprocessed 

picture. Double U-Net utilizes a cascaded dual U-Net structure 

in which the second U-Net enhances the first's segmentation 

output. With the assistance of this architecture, the model can 

recognize lesion boundaries with high accuracy by learning 

complex spatial hierarchies and fixing any mistakes in the 

initial mask prediction. 

The segmented skin lesions, which identify the lesion 

region with pixel-level precision, are the model's final result. 

Lesion size, symmetry, border irregularity, and other crucial 

clinical characteristics might be measured using these binary 

masks in additional diagnostic analysis. 

 

3.2 DoubleU-Net architecture 

 

The recommended DoubleU-Net design uses a cascaded 

dual U-Net architecture, in which two identical U-Net 

networks repeatedly process the input picture, to increase 

segmentation accuracy. In Figure 3, the complete architecture 

is shown. Four encoder blocks, each with two convolutional 

layers and a 3×3 kernel size, analyze the input picture in 

Network 1 first. Batch normalization and ReLU activation are 

then performed. Following each encoder block, the feature 

maps are down sampled and dominating spatial characteristics 

are preserved using max-pooling with a 2×2 window and stride 

of 2. Deeper semantic characteristics are captured by passing 

these encoder outputs via a bottleneck block with 1024 filters.  
 

 
 

Figure 3. DoubleU-Net architecture 

Similar to the encoder structure, Network 1's decoder path 

upsamples feature maps using transposed convolutions (2×2). 

In order to restore spatial information lost during 

downsampling, matching encoder features at each level are 

concatenated to their corresponding decoder blocks via skip 

connections. The decoder generates the first segmentation 

mask, Output1, by performing a sigmoid activation after a 1×1 

convolution. In contrast to conventional U-Nets, DoubleU-Net 

incorporates Network 2 to add a refining method. The original 

input picture and the segmentation mask Output1 generated by 

Network 1 are multiplied element by element to provide the 

input to Network 2. The second U-Net can concentrate on 

specific characteristics since this multiplication improves 

areas that are probably related to lesions. With four encoder 

blocks, a bottleneck, and four decoder blocks, Network 2 is 

structurally identical to Network 1. Each decoder block in 

Network 2 only gets features from its associated encoder block 

in Network 2 since skip connections in Network 2 are internal. 

The impact of Network 1 is exclusively transferred through the 

improved input picture via multiplication; there are no 

common skip connections between the two U-Nets.  

A sigmoid activation function is used after a 1×1 

convolution to create Network 2's output, or Output2. The 

revised segmentation mask is then produced by concatenating 

Output1 and Output2 and running them through a final 1×1 

convolution with sigmoid activation. A two-step refinement is 

made possible by this cascaded architecture: Network 1 

produces a coarse segmentation, while Network 2 improves 

accuracy and specificity by sharpening the borders and 

correcting misclassified areas. 

 

i) Encoder Explanation 

The encoders in the first U-Net, Encoder1, and the second, 

Encoder2, have the same configurations. To add non-linearity 

and stabilize training, each encoder block consists of two 3x3 

convolutional layers, followed by batch normalization and 

ReLU activation. A 2×2 max-pooling operation with a stride 

of 2 is used to produce downsampling, which reduces 

dimensionality while maintaining important spatial 

characteristics. For high-level abstract feature representation, 

a bottleneck layer uses 1024 filters, whereas the number of 

filters gradually rises via encoder levels, usually utilizing 64, 

128, 256, and 512 filters. After processing the original input 

picture, Encoder1 creates a coarse segmentation mask 

(Output1) by sending encoded features to Decoder1. The 

original image and Output1 are multiplied element-wise to 

provide an upgraded input that Encoder2 may use to extract 

more fine-grained characteristics and focus more accurately on 

possible lesion locations. 

 

ii) Decoder Explanation 

Every decoder reflects this structure backwards, matching 

its corresponding encoder. In order to preserve spatial and 

contextual features, the decoder blocks first upsample using 

2×2 transposed convolutions, then concatenate using encoder-

derived skip connections. Skip connections from Encoder 1 

are used by Decoder1, and Decoder2 incorporates Encoder2's 

skip connections. Batch normalization, ReLU activation, and 

two 3×3 convolutional layers are also included in each decoder 

block. Each decoder ends with a pixel-wise probability map 

(Output1 from the first stage and Output2 from the second) 

produced by a 1×1 convolution with sigmoid activation. To 

create the final refined segmentation mask, these two outputs 

are concatenated and then subjected to a further 1×1 
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convolution and sigmoid activation. This cascaded dual 

decoder method improves resilience against complicated and 

low-contrast skin lesion pictures, improves border accuracy, 

and corrects early prediction mistakes to enable 

comprehensive segmentation. 

 

 

4. EXPERIMENTAL RESULTS 

 

This section contains details on the training process, 

evaluation criteria, and description of each dataset we used to 

judge our methodology. 

 

4.1 Training process 

 

The proposed method used the Keras framework, with 

TensorFlow as the backend. In this research NVIDIA RTX 

3090 GPU device is used, which offers the computing power 

required for deep learning applications. The proposed 

DoubleU-Net model consists of approximately 64 million 

trainable parameters, which is nearly double that of the 

traditional U-Net architecture, 31 million parameters. Despite 

the increase in complexity, the model achieves significantly 

better segmentation accuracy across multiple datasets. The 

model was trained with 100 epochs, batch size 16, learning 

rate 1e-4, and binary cross-entropy is used as a loss function 

to optimize memory utilization and improve the stability of 

gradient updates. Adam optimizer was chosen for training, as 

it adapts the learning rate for each parameter and has shown 

effective performance in a variety of deep learning tasks. 

Binary cross-entropy was the loss function that was employed. 

Since it reduces the divergence between the predicted and 

actual pixel values in the segmentation output, this option is 

frequently used for segmentation tasks using binary masks. 

The model was trained using training and validation datasets. 

When run on the designated hardware setup, the suggested 

DoubleU-Net model took about 20 minutes per epoch to train 

on the ISIC 2019 dataset. The overall training time was around 

34 hours approximately, for a full training cycle of 100 epochs. 

This demonstrates the higher computational cost of the dual-

stage design, which requires more training time than 

traditional single-stage models even if it offers better 

segmentation performance. 

Figure 4 illustrates the training and validation accuracy 

graph of the DoubleU-Net for 100 epochs. Initially, during the 

first 20 epochs, the training accuracy shows a steady increase 

from a low starting point, while the validation accuracy 

exhibits some fluctuations. This indicates that the model is in 

its early learning phase and adapting to the data. As training 

progresses into the middle phase (epochs 20–50), both 

accuracies improve significantly, with the gap between the two 

curves narrowing. This demonstrates that the model is learning 

effectively and generalizing better to the validation data. 

In the later phase (epochs 50–100), the training and 

validation accuracies converge and stabilize at high values, 

close to 1.0, showing that the model has achieved near perfect 

performance. The near overlap of the two curves indicates 

strong generalization with minimal overfitting. Early 

fluctuations in validation accuracy around epochs 10–20 

suggest minor overfitting initially, but this resolves as the 

model continues training. The graph shows that the model 

performed extremely well overall, attaining high accuracy and 

indicating efficient training with balanced generalization. 

 
 

Figure 4. DoubleU-Net's training and validation accuracy 

graph 
 

 
 

Figure 5. DoubleU-Net's training and validation loss graph 
 

The training and validation loss for 100 epochs is shown in 

Figure 5. DoubleU-Net successfully learned from the training 

data is first demonstrated by the training loss fast drop. On the 

other hand, the validation loss begins higher and fluctuates 

throughout the early epochs (up to epoch 30), indicating that 

the model is adjusting to the validation data while controlling 

for random overfitting tendencies.  

The model's performance significantly improves as training 

goes on, as indicated by the steady decrease in both training 

and validation losses. The validation loss stabilizes and 

follows the training loss's declining trend around the middle 

epochs (30–60), suggesting that the model is improving its 

performance in identifying new data. 

Both curves converge close to zero in the latter stage 

(epochs 60–100), indicating little loss and highlighting the 

model's remarkable capacity for precise data segmentation. A 

well-trained model with good generalization and little 

overfitting is shown by the training and validation loss curves' 

near overlap over the latter epochs. 
 

 
 

Figure 6. Graph representing key metrics on ISIC 2017 
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Figure 7. Graph representing key metrics on ISIC 2018 
 

 
 

Figure 8. Graph representing key metrics on ISIC 2019 

 

For the ISIC 2017, ISIC 2018, and ISIC 2019 datasets, the 

training curves for measures like Dice Coefficient, IoU, 

Sensitivity, and Precision are plotted and shown in Figures 6-

8. Throughout the training epochs, they consistently improved. 

The model's capacity for learning was demonstrated by the 

initial sharp rise in all metrics, which was followed by 

stabilization as training went on. The model's ability to 

precisely detect lesion boundaries is demonstrated by 

precision, which commonly exceeded the other requirements. 

The model's robustness and suitability for skin lesion 

segmentation tasks are demonstrated by the consistent patterns 

observed in all datasets. 

 

4.2 Evaluation metrics 

 

The effectiveness of the suggested model is assessed using 

different performance metrics, each of which provides details 

on the model's capability to accurately identify skin lesions 

and distinguish them from healthy tissue. Table 1 indicates the 

metrics for segmentation. 

 

4.3 Datasets 

 

The DoubleU-Net was evaluated using ISIC 2019 [39], 

ISIC 2018 [40], and ISIC 2017 [41]. These datasets are part of 

the ISIC and are widely used in research on the diagnosis of 

skin cancer. They are publicly available datasets. Statistics 

related to datasets are indicated in Table 2. Additionally, we 

reduced the input images spatial dimension to 256X256 pixels 

using the resize method. 

Table 1. Metrics for evaluating skin lesion segmentation 
 

Performance Metrics Metric Description Formula 

Dice Coefficient (DC) 

Dice Coefficient measures the 

overlap between the predicted 

segmentation and the ground 

truth. 

DC =
2. |A ∩ B|

|A| + |B|
 

A: ground truth (the actual skin lesion segmentation). 

B denotes the predicted segmentation. 

|A ∩ B|: number of pixels that are common between the ground truth and the 

predicted segmentation. 

|A| indicates the number of pixels in the ground truth. 

|B| indicates the number of pixels in the predicted segmentation. 

Intersection over Union 

(IoU) 

IoU quantifies the ratio of the 

overlap area to the total 

combined area of the 

predicted and ground truth 

masks. 

IoU =
|A ∩ B|

|A ∪ B|
 

|A ∩ B| is the region of overlap between the ground truth and predicted masks 

∣A∪B∣ is the total area covered by both the ground truth and predicted masks. 

Sensitivity 

It measures the proportion of 

predicted TP that are correctly 

identified by model. 

Sensitivity =
TP

TP + FN
 

TP: It describes the number of pixels that are accurately predicted to be a part 

of the skin lesion (the model correctly detects the lesion). 

FN: It describes the quantity of pixels that are incorrectly recognized as 

background while, in fact, they are part of the skin lesion (the model fails to 

detect a lesion). 

Precision 

It measures the proportion of 

predicted positive cases TP 

and FP that are actually TP. 

Precision =
TP

TP + FP
 

TP: It describes the number of pixels that are accurately predicted to be a part 

of the skin lesion (the model correctly detects the lesion). 

FP: It describes the quantity of pixels that are incorrectly identified as 

belonging to a skin lesion when, in fact, they are part of the background (the 

model inaccurately labels healthy skin as a lesion). 
 

Table 2. Dataset statistics before augmentation 
 

Citation Dataset Total Number of Images Training Dataset (70%) Validation Dataset (10%) Testing Dataset (20%) 

[39] ISIC 2019  25,331 17732 2533 5066 

[40] ISIC 2018 2594 1815 259 520 

[41] ISIC 2017 2000 1400 200 400 
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Table 3. Dataset statistics after augmentation 
 

Dataset Total Number of Images Training Dataset (70%) Validation Dataset (10%) Testing Dataset (20%) 

ISIC 2019  103000 72100 10300 20600 

ISIC 2018 46935 32855 4693 9387 

ISIC 2017 4116 2881 412 823 

 

Oversampling-based data augmentation was used in all 

datasets to address the problem of class imbalance that arises 

in skin lesion datasets. To maintain class distribution and 

reduce bias, we used a Random Over sampler with 70% 

training, 10% validation, and 20% testing in a stratified split 

due to computational resource limitations. In order to match 

the majority class, counts for each dataset, other classes were 

enhanced using transformations such as rotation, flipping, 

zooming, and contrast changes. With 1,372 photos, the nevus 

class made up the majority of the three classes in the ISIC 2017 

collection. After augmentation, the overall dataset size was 

4,116 pictures, with the remaining two classes being enhanced 

to this amount. There are seven classifications in the ISIC 2018 

dataset, with melanocytic nevi being the most prevalent with 

6,705 photos. The dataset was expanded from 10,019 to 

46,935 images by upsampling each of the other classes to 

6,705 images. 

Similarly, melanocytic nevi once again emerged as the 

majority class with 12,875 photos in the ISIC 2019 dataset, 

which has 8 classes. Following augmentation, all classes were 

equal to this number, yielding a 103,000-image enhanced 

dataset. 

Table 3 shows the number of images after augmentation. 

Class-wise balancing not only makes the datasets uniform but 

it also improves the model's generalization and reduces 

overfitting. This is particularly important for tiny or skewed 

class distributions, which are typical in medical picture 

datasets. 

 

4.4 Results 
 

The DoubleU-Net model's segmentation results are 

evaluated on three popular datasets: ISIC2017, ISIC2018, and 

ISIC2019. DoubleU-Net's dual-network architecture resulted 

in a more prolonged training period, but the smooth 

segmentation outputs and accuracy gains compensate the 

computational burden. Both quantitative and qualitative 

factors are taken consideration while analyzing the 

effectiveness of the recommended method. The suggested 

method improves the SOTA approaches, according on the 

quantitative findings of the proposed approach on ISIC 2017, 

which are shown in Table 4. A few visualization outputs of the 

suggested method on the ISIC 2017 are displayed in Figure 9. 

The DoubleU-Net is capable of producing high-quality 

segmentation results, as shown by its efficacy on the ISIC2017 

dataset. The model correctly represents the borders of the 

lesions while retaining uniformity among lesions of various 

sizes and shapes. Even in the presence of objects or 

background noise, and the outcomes demonstrate reliable and 

flawless lesion area segmentation. The ability of the model to 

generalize and adapt to the unique challenges of the ISIC2017 

dataset illustrates its reliability for skin lesion segmentation 

challenges in the real world.

 

Table 4. Comparison of suggested segmentation model with SOTA segmentation models 
 

Citation Method Dataset Sensitivity Precision DC IoU 

[2] LSCS-Net ISIC2017 91.95 95.14 91.17 85.88 

[6] L-UNet PH2 91.15 97.22 91.15 90.98 

[8] MAGRes-UNet HAM10000 91.06 95.47 94.68 95.89 

[18] UCM-Net 
ISIC2017 

ISIC2018 
- - 

88.45 

89.35 

79.29 

80.85 

[21] GA-UNet ISIC2018 90.41 91.99 90.18 82.13 

[37] M-VAN Unet, ISIC2018 92.58 96.69 91.27 84.17 

[42] SICU-Net ISIC2017 86.37 94.65 85.15 74.13 

[42] DICU-Net ISIC2017 85.38 94.79 84.77 73.56 

[42] TICU-Net ISIC2017 83.64 96.21 85.63 74.88 

[35] FAT-Net ISIC2017 83.92 97.25 85.00 76.53 

[43] FRCU-Net ISIC2017 91.50 98.61 - 97.27 

[42] SICU-Net ISIC2018 89.39 96.95 90.94 83.39 

[42] DICU-Net ISIC2018 92.02 94.61 90.44 82.55 

[42] TICU-Net ISIC2018 91.57 95.85 90.96 83.42 

[44] CKD-Net ISIC2018 90.55 97.01 87.79 80.41 

[45] FAT-Net ISIC2018 91.00 96.99 89.03 82.02 

[46] AFLN-DGCL ISIC2018 - - 90.00 83.50 

[47] FRCU-Net ISIC2018 90.40 97.90 - 96.30 

 
Proposed Method 

Double U-Net 

ISIC2017 

ISIC2018 

ISIC2019 

92.77 

93.50 

92.86 

97.52 

97.79 

98.55 

91.04 

91.52 

92.64 

98.89 

97.78 

96.89 
 

In order to compare the outcomes with SOTA methods, we 

also evaluated our approach on ISIC 2018. Table 4 shows that 

this approach improves performance significantly when 

compared to the other approaches. Figure 10 exhibits a 

qualitative assessment of the suggested approach efficacy. The 

segmentation outcomes further illustrate the model's ability to 

determine lesion boundaries for the ISIC 2018 dataset. In 

challenging circumstances with overlapping textures and 

varying lesion intensities, the model works excellently. The 

extraordinary commitment of the segmented outputs to the 

ground truth masks highlights the ability of the models to 

generalize across multiple lesion patterns. The model's ability 

to recognize aberrant regions and understand complex patterns 

is shown by the precision with which lesions are distinguished 
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from the background. 

The ISIC 2019 dataset was used in assessing our methods 

later, and Table 4 indicates the proposed approach 

outperformed the current methodologies by a wide margin. In 

addition, we also present some qualitative segmentation 

results of the suggested method on the ISIC2019 dataset in 

Figure 11, indicating that the model can generate continuous 

and accurate segmentation outputs that precisely match the 

offered ground truth masks. The smoothness around the lesion 

boundaries shows how well the model preserves the 

morphological features of the lesions. Because DoubleU-Net 

can correctly learn the features of the lesion, these results 

suggest that it is very efficient for clinical applications in skin 

cancer analysis. 
 

 
 

Figure 9. DoubleU-Net segmentation results on ISIC2017 
 

 
 

Figure 10. DoubleU-Net segmentation results on ISIC2018 
 

 
 

Figure 11. DoubleU-Net segmentation results on ISIC2019 

5. CONCLUSION AND FUTURE DIRECTIONS 
 

Using the ISIC 2017, ISIC 2018, and ISIC 2019 benchmark 

datasets, this study validated the efficacy of its DoubleU-Net 

architecture for skin lesion segmentation. The model 

outperformed the traditional U-Net by using a cascaded dual 

U-Net structure, especially in fine-grained segmentation and 

border localization. High performance was achieved by the 

DoubleU-Net in terms of Precision with 97.52% on ISIC 2017, 

97.79% on ISIC 2018, and 98.55% on ISIC 2019, respectively, 

sensitivity 92.77% on ISIC 2017, 93.50% on ISIC 2018, and 

92.86% on ISIC 2019, dice coefficient 91.04% on ISIC 2017, 

91.52% ON 2018, and 92.64% on ISIC 2019, and intersection 

over union 98.89% with ISIC 2017, 97.78% with ISIC 2018, 

and 96.89% on ISIC 2019. These findings indicate the model's 

ability to aid in early identification of skin cancer. 

It is essential to realize a few limitations though. The 

datasets used during the current research are carefully selected. 

Variations in illumination, resolution, and background noise 

can cause the model's performance to decrease in real world 

clinical scenarios, particularly when using low-quality or 

smartphone acquired photos. Moreover, DoubleU-Net's two-

stage architecture greatly increases the memory and 

computational demands, restricting its use on edge devices 

often observed in smart healthcare applications. 

Future research should concentrate on improving the 

architecture for lightweight implementation in order to 

overcome such challenges. To minimize the model's size and 

training time without reducing accuracy, methods including 

knowledge distillation, quantization, and model pruning might 

be considered. Additionally, cross modal fusion techniques, 

which include medical information such as age, lesion 

location, and patient history with image data, can improve 

diagnostic precision and enhance the system's clinical utility. 

Model comprehension must be given the highest priority 

when applying AI systems in healthcare from an ethical point 

of view, making sure that predictions can be publicly 

communicated to doctors. Adherence to data protection laws 

like the GDPR is also essential, especially when managing 

private patient information. In conclusion, this suggested 

DoubleU-Net architecture has potential in developing 

automated dermatological evaluation and provides an 

excellent framework for accurate skin lesion segmentation. Its 

effective deployment in actual smart healthcare systems will 

depend on continuing developments in effectiveness, 

generalizability, and ethical integration. 
 

 

REFERENCES  

 

[1] Ichim, L., Popescu, D. (2020). Melanoma detection using 

an objective system based on multiple connected neural 

networks. IEEE Access, 8: 179189-179202. 

https://doi.org/10.1109/ACCESS.2020.3028248 

[2] Din, S., Mourad, O., Serpedin, E. (2024). LSCS-Net: A 

lightweight skin cancer segmentation network with 

densely connected multi-rate atrous convolution. 

Computers in Biology and Medicine, 173: 108303. 

https://doi.org/10.1016/j.compbiomed.2024.108303 

[3] Adegun, A., Viriri, S. (2021). Deep learning techniques 

for skin lesion analysis and melanoma cancer detection: 

A survey of state-of-the-art. Artificial Intelligence 

Review, 54(2): 811-841. https://doi.org/10.1007/s10462-

020-09865-y 

[4] Ashraf, R., Afzal, S., Rehman, A.U., Gul, S., et al (2020). 

2260



 

Region-of-interest based transfer learning assisted 

framework for skin cancer detection. IEEE Access, 8: 

147858-147871. 

https://doi.org/10.1109/ACCESS.2020.3014701 

[5] Adegun, A.A., Viriri, S. (2019). Deep learning-based 

system for automatic melanoma detection. IEEE Access, 

8: 7160-7172. 

https://doi.org/10.1109/ACCESS.2019.2962812 

[6] Alafer, F., Siddiqi, M.H., Khan, M.S., Ahmad, I., 

Alhujaili, S., Alrowaili, Z., Alshabibi, A.S. (2024). A 

comprehensive exploration of L-UNet approach: 

Revolutionizing medical image segmentation. IEEE 

Access, 12: 140769-140791. 

https://doi.org/10.1109/ACCESS.2024.3413038 

[7] Kumar, K.A., Vanmathi, C. (2024). Segmentation and 

detection of skin cancer using fuzzy cognitive map and 

deep Seg Net. Soft Computing, 28(5): 4575-4592. 

https://doi.org/10.1007/s00500-024-09644-9 

[8] Hussain, T., Shouno, H. (2024). MAGRes-UNet: 

Improved medical image segmentation through a deep 

learning paradigm of multi-attention gated residual U-

Net. IEEE Access, 12: 40290-40310. 

https://doi.org/10.1109/ACCESS.2024.3374108 

[9] Khan, S., Khan, M.A., Noor, A., Fareed, K. (2024). 

SASAN: Ground truth for the effective segmentation and 

classification of skin cancer using biopsy images. 

Diagnosis, 11(3): 283-294. https://doi.org/10.1515/dx-

2024-0012 

[10] Talavera-Martinez, L., Bibiloni, P., Gonzalez-Hidalgo, 

M. (2020). Hair segmentation and removal in 

dermoscopic images using deep learning. IEEE Access, 

9: 2694-2704. 

https://doi.org/10.1109/ACCESS.2020.3047258 

[11] Chen, P., Huang, S., Yue, Q. (2022). Skin lesion 

segmentation using recurrent attentional convolutional 

networks. IEEE Access, 10: 94007-94018. 

https://doi.org/10.1109/ACCESS.2022.3204280 

[12] Alahmadi, M.D. (2022). Multiscale attention U-Net for 

skin lesion segmentation. IEEE Access, 10: 59145-

59154. https://doi.org/10.1109/ACCESS.2022.3179390 

[13] Bindhu, A., Thanammal, K.K. (2023). Segmentation of 

skin cancer using Fuzzy U-network via deep learning. 

Measurement: Sensors, 26: 100677. 

https://doi.org/10.1016/j.measen.2023.100677 

[14] Tang, P., Liang, Q., Yan, X., Xiang, S., Sun, W., Zhang, 

D., Coppola, G. (2019). Efficient skin lesion 

segmentation using separable-Unet with stochastic 

weight averaging. Computer Methods and Programs in 

Biomedicine, 178: 289-301. 

https://doi.org/10.1016/j.cmpb.2019.07.005 

[15] Zhou, Z., Quan, X., Niu, Y. (2023). IDUNet++: An 

improved convolutional neural network for melanoma 

skin lesion segmentation based on UNet++. In Second 

International Conference on Electronic Information 

Engineering, Big Data, and Computer Technology 

(EIBDCT 2023), Xishuangbanna, China, pp. 568-573. 

https://doi.org/10.1117/12.2674749 

[16] Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, 

V.K. (2018). Recurrent residual convolutional neural 

network based on U-Net (R2U-Net) for medical image 

segmentation. arXiv preprint arXiv:1802.06955. 

https://doi.org/10.48550/arXiv.1802.06955 

[17] Hajabdollahi, M., Esfandiarpoor, R., Khadivi, P., 

Soroushmehr, S.M.R., Karimi, N., Samavi, S. (2020). 

Simplification of neural networks for skin lesion image 

segmentation using color channel pruning. 

Computerized Medical Imaging and Graphics, 82: 

101729. 

https://doi.org/10.1016/j.compmedimag.2020.101729 

[18] Yuan, C., Zhao, D., Agaian, S.S. (2024). UCM-Net: A 

lightweight and efficient solution for skin lesion 

segmentation using MLP and CNN. Biomedical Signal 

Processing and Control, 96: 106573. 

https://doi.org/10.1016/j.bspc.2024.106573 

[19] Sharen, H., Jawahar, M., Anbarasi, L.J., Ravi, V., 

Alghamdi, N.S., Suliman, W. (2024). FDUM-Net: An 

enhanced FPN and U-Net architecture for skin lesion 

segmentation. Biomedical Signal Processing and 

Control, 91: 106037. 

https://doi.org/10.1016/j.bspc.2024.106037 

[20] Liu, X., Song, L., Liu, S., Zhang, Y. (2021). A review of 

deep-learning-based medical image segmentation 

methods. Sustainability, 13(3): 1224. 

https://doi.org/10.3390/su13031224 

[21] Khouy, M., Jabrane, Y., Ameur, M., Hajjam El Hassani, 

A. (2023). Medical image segmentation using automatic 

optimized U-Net architecture based on genetic 

algorithm. Journal of Personalized Medicine, 13(9): 

1298. https://doi.org/10.3390/jpm13091298 

[22] Ünver, H.M., Ayan, E. (2019). Skin lesion segmentation 

in dermoscopic images with combination of YOLO and 

grabcut algorithm. Diagnostics, 9(3): 72. 

https://doi.org/10.3390/diagnostics9030072 

[23] Yuan, Y., Chao, M., Lo, Y.C. (2017). Automatic skin 

lesion segmentation using deep fully convolutional 

networks with Jaccard distance. IEEE Transactions on 

Medical Imaging, 36(9): 1876-1886. 

https://doi.org/10.1109/TMI.2017.2695227 

[24] Abraham, N., Khan, N.M. (2019). A novel focal Tversky 

loss function with improved attention U-Net for lesion 

segmentation. In 2019 IEEE 16th International 

Symposium on Biomedical Imaging (ISBI 2019), 

Venice, Italy, pp. 683-687. 

https://doi.org/ 10.1109/ISBI.2019.8759329 

[25] Cao, Y., Liu, S., Peng, Y., Li, J. (2020). DenseUNet: 

densely connected U-Net for electron microscopy image 

segmentation. IET Image Processing, 14(12): 2682-

2689. https://doi.org/10.1049/iet-ipr.2019.1527 

[26] Ibtehaz, N., Rahman, M.S. (2020). MultiResUNet: 

Rethinking the U-Net architecture for multimodal 

biomedical image segmentation. Neural Networks, 121: 

74-87. https://doi.org/10.1016/j.neunet.2019.08.025 

[27] Ganesan, P., Sathish, B.S., Leo Joseph, L.M.I. (2020). 

HSL color space based skin lesion segmentation using 

fuzzy-based techniques. In Advances in Electrical 

Control and Signal Systems: Select Proceedings of 

AECSS 2019, pp. 903-911. https://doi.org/10.1007/978-

981-15-5262-5_69 

[28] Chi, W., Ma, L., Wu, J., Chen, M., Lu, W., Gu, X. (2020). 

Deep learning-based medical image segmentation with 

limited labels. Physics in Medicine & Biology, 65(23): 

235001. https://doi.org/10.1088/1361-6560/abc363 

[29] Xie, Y., Zhang, J., Xia, Y., Shen, C. (2020). A mutual 

bootstrapping model for automated skin lesion 

segmentation and classification. IEEE Transactions on 

Medical Imaging, 39(7): 2482-2493. 

https://doi.org/10.1109/TMI.2020.2972964 

[30] Kumar, A., Hamarneh, G., Drew, M.S. (2020). 

2261



 

Illumination-based transformations improve skin lesion 

segmentation in dermoscopic images. In Proceedings of 

the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition Workshops, Seattle, WA, USA, pp. 

3132-3141. 

https://doi.org/10.1109/CVPRW50498.2020.00372 

[31] Hasan, M.K., Dahal, L., Samarakoon, P.N., Tushar, F.I., 

Martí, R. (2020). DSNet: Automatic dermoscopic skin 

lesion segmentation. Computers in Biology and 

Medicine, 120: 103738. 

https://doi.org/10.1016/j.compbiomed.2020.103738 

[32] Babu, R.R., Philip, F.M. (2024). Optimized deep 

learning for skin lesion segmentation and skin cancer 

detection. Biomedical Signal Processing and Control, 95: 

106292. https://doi.org/10.1016/j.bspc.2024.106292 

[33] Xie, F., Yang, J., Liu, J., Jiang, Z., Zheng, Y., Wang, Y. 

(2020). Skin lesion segmentation using high-resolution 

convolutional neural network. Computer Methods and 

Programs in Biomedicine, 186: 105241. 

https://doi.org/10.1016/j.cmpb.2019.10524 

[34] Khan, M.A., Akram, T., Zhang, Y.D., Sharif, M. (2021). 

Attributes based skin lesion detection and recognition: A 

mask RCNN and transfer learning-based deep learning 

framework. Pattern Recognition Letters, 143: 58-66. 

https://doi.org/10.1016/j.patrec.2020.12.015 

[35] Qamar, S., Ahmad, P., Shen, L. (2021). Dense encoder-

decoder–based architecture for skin lesion segmentation. 

Cognitive Computation, 13(2): 583-594. 

https://doi.org/10.1007/s12559-020-09805-6 

[36] Pour, M.P., Seker, H. (2020). Transform domain 

representation-driven convolutional neural networks for 

skin lesion segmentation. Expert Systems with 

Applications, 144: 113129. 

https://doi.org/10.1016/j.eswa.2019.113129 

[37] Liu, S., Zhuang, Z., Zheng, Y., Kolmaniè, S. (2023). A 

VAN-based multi-scale cross-attention mechanism for 

skin lesion segmentation network. IEEE Access, 11: 

81953-81964. 

https://doi.org/10.1109/ACCESS.2023.3298826 

[38] Tran, T.T., Pham, V.T. (2022). Fully convolutional 

neural network with attention gate and fuzzy active 

contour model for skin lesion segmentation. Multimedia 

Tools and Applications, 81(10): 13979-13999. 

https://doi.org/10.1007/s11042-022-12413-1 

[39] ISIC Challenge Datasets 2019. https://challenge.isic-

archive.com/data/#2019. 

[40] ISIC Challenge Datasets 2018. https://challenge.isic-

archive.com/data/#2018. 

[41] ISIC Challenge Datasets 2017. https://challenge.isic-

archive.com/data/#2017. 

[42] Ramadan, R., Aly, S. (2022). CU-Net: A new improved 

multi-input color U-Net model for skin lesion semantic 

segmentation. IEEE Access, 10: 15539-15564. 

https://doi.org/10.1109/ACCESS.2022.3148402 

[43] Xie, Y., Zhang, J., Lu, H., Shen, C., Xia, Y. (2020). 

SESV: Accurate medical image segmentation by 

predicting and correcting errors. IEEE Transactions on 

Medical Imaging, 40(1): 286-296. 

https://doi.org/10.1109/TMI.2020.3025308 

[44] Shorfuzzaman, M. (2022). An explainable stacked 

ensemble of deep learning models for improved 

melanoma skin cancer detection. Multimedia Systems, 

28(4): 1309-1323. https://doi.org/10.1007/s00530-021-

00787-5 

[45] Arora, R., Raman, B., Nayyar, K., Awasthi, R. (2021). 

Automated skin lesion segmentation using attention-

based deep convolutional neural network. Biomedical 

Signal Processing and Control, 65: 102358. 

https://doi.org/10.1016/j.bspc.2020.102358 

[46] Wang, X., Jiang, X., Ding, H., Zhao, Y., Liu, J. (2021). 

Knowledge-aware deep framework for collaborative skin 

lesion segmentation and melanoma recognition. Pattern 

Recognition, 120: 108075. 

https://doi.org/10.1016/j.patcog.2021.108075 

[47] Sarker, M.M.K., Rashwan, H.A., Akram, F., Singh, 

V.K., et al. (2021). SLSNet: Skin lesion segmentation 

using a lightweight generative adversarial network. 

Expert Systems with Applications, 183: 115433. 

https://doi.org/10.1016/j.eswa.2021.115433 

 

2262




