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This work introduces a new Least Squares Technique (LST) aimed at solving both linear 

and nonlinear fuzzy fractional Volterra integro-differential equations (FFVIDEs). The 

new method combines a special type of Legendre polynomial with a system for 

adjusting control points to improve accuracy in finding solutions. Unlike other methods, 

the fuzzy Volterra Least Squares Technique (FVLST) includes the control point 

parameters directly in the solution, allowing for real-time adjustments based on the 

fractional order α and fuzzy membership functions. The method utilizes Caputo's 

derivative in fuzzy settings and applies convergence analysis to ensure solution 

stability. Numerical results show that FVLST achieves absolute errors below 0.5% for 

both linear and nonlinear FFVIDEs at α=0.9and demonstrates convergence rates 

approximately three times faster than conventional methods. Overall, the proposed 

FVLST greatly improves the accuracy of solutions and the speed of calculations, 

making it a robust option for dealing with FFVIDEs. 
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1. INTRODUCTION

Fractional integro-differential equations (FIDEs) are 

important for modeling complicated systems in engineering 

and applied sciences because they can include memory effects 

and behaviors that are not limited to local interactions. Despite 

their relevance, these equations rarely admit closed-form 

solutions, necessitating the development of numerical and 

semi-analytical methods [1, 2]. Various approaches have been 

proposed to address such systems, particularly in signal 

processing, fluid dynamics, and other nonlocal applications 

[3-9]. Among these methods, fractional differential equations 

(FDEs) have become a strong tool for understanding long-term 

relationships in systems that classical calculus can't describe 

well, and they are used in areas like fluid mechanics, 

electronics, biological systems, and robotics. The foundational 

definitions by references [10-14] offer mathematical 

flexibility yet face challenges related to computational 

complexity, convergence stability, and sensitivity to uncertain 

inputs. Models using Riemann–Liouville often have difficulty 

accurately simulating real-world data, while Caputo’s 

derivative works better for physical problems but doesn't 

automatically handle uncertainty from unclear starting or 

boundary conditions. To address this, fuzzy set theory was 

introduced into fractional modeling, most notably through the 

work of the reference [15], which incorporated fuzziness using 

Hukuhara differences. These findings led to the development 

of fuzzy fractional differential equations (FFDEs), which have 

since been explored in terms of existence, uniqueness, and 

approximate solutions [16-21]. However, current fuzzy 

approximation methods often struggle with controlling how 

well they work and dealing with uncertainty, especially when 

it comes to fuzzy fractional Volterra integro-differential 

equations (FFVIDEs). Even though the Least Squares 

Technique (LST), created by Legendre in 1805, is a good 

method that avoids breaking down variables and reduces 

numerical errors, it doesn't have ways to deal with fuzziness 

or adjust convergence on the fly. This limitation highlights a 

clear research gap: existing methods fall short in 

simultaneously managing fractional dynamics, fuzzy 

uncertainty, and solution convergence. To tackle these issues, 

this paper introduces a new approach called the Fuzzy Volterra 

Least Squares Technique (FVLST), which uses a special type 

of Legendre polynomial and optimizes control points to 

improve how well it can adapt and accurately approximate 

solutions. Unlike conventional methods, FVLST dynamically 

responds to fuzzy membership levels and fractional order 

variations, enabling it to solve both linear and nonlinear 

FFVIDEs effectively in the Caputo sense. The remainder of 

the paper is structured as follows: Section 2 explains the basic 

concepts of fractional calculus and fuzzy analysis; Section 3 

describes the proposed FVLST; Section 4 shows how to use 
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the method on specific FFVIDEs; Section 5 discusses how the 

method converges; Section 6 gives numerical examples to 

support the method; and Section 7 wraps up the main points 

and suggests future research directions. 

2. PRELIMINARIES

This part provides an overview of the essential definitions 

and notations of fractional calculus that are necessary to 

understand the content in the next sections. Definitions 2.1 and 

2.2, extracted from references [14, 22], provide precise 

explanations of the fractional derivative and integral. 

Additionally, the property that the Caputo derivative of a 

constant is equal to zero makes them commonly used, 

especially in the representation of physical and engineering 

problems. In addition, the Caputo fractional derivative enables 

the use of beginning or boundary conditions in the problem 

formulation. Also, this section will provide precise definitions 

for important terminology in fuzzy set theory, including fuzzy 

functions and fuzzy integers. The range of numbers is from 

references [23, 24]. 

Definition 2.1 [14, 24] (Riemann-Liouville): The R-L 

fractional integral of order 𝛼 >  0 is define as: 

It
α𝔣(t) =

1

Γ(α)
∫( 𝓉 − τ)α−1

t

0

𝔣( 𝓉)dτ, 𝓉 >  0, α ∈ ℝ+

where, 𝛤 represents the Gamma function. 

Definition 2.2 [11, 24] (Caputo fractional order derivative): 

The Caputo fractional order derivative of order α >  0  is 

define as follows: 

𝔇 
c

 
α 𝔣(t) = {

1

Γ(m−α)
∫

f(m)(τ)

( 𝓉−τ)α+1−m

t

0
dτ , m − 1 < α < m

dm

dtm
𝔣( 𝓉) , α = m

 
 

For α >  0 , the Caputo fractional derivative has the 

following properties: 

(1) 𝔇 
c

 
α(It

α 𝔣( 𝓉)) = f( 𝓉)

(2) It
α( 𝔇 

c
 
α𝔣( 𝓉)) = f(t) −∑𝔣(k)

n−1

k=0

(0+)
xk

k!

(3) 𝔇 
c

 
α(C) = 0, C ∈ ℝ

(4) It
α  𝓉  𝔅 =

Γ(𝔅+1)

Γ(α+ 𝔅+1)
 𝓉+ α

(5) 𝔇 
c

 
α(tk) = {

Γ(k + 1)

Γ(k − α + 1)
 tk−α, k ∈ {1,2,3, … }, k ≥ [α]

0, k ∈ {1,2,3, … }, k < [α]

where, [𝛼] is the floor function of 𝛼. 

Definition 2.3 [25] Let Χ be any of elements, a fuzzy set 𝔅̃ 

is characterized by a membership function μ𝔅̃(𝓍): Χ → [0,1], 
and may be written as the set of points: 

𝔅̃ = {(𝓍, μ𝔅̃(x))𝓍 ∈ X, 0 ≤ μ𝔅̃(𝓍) ≤ 1}. 

Definition 2.4 [26]. The crisp set of components that make 

up the set 𝔅̃ at least to the degree α is called the weak 𝛼 -level 

set (or weak α-cut), and is defined by 𝔅𝑏 = {𝓍 ∈ X ∶
 μ𝔅̃(x) ≥ 𝛼}. 

While the strong α-level set (or strong 𝛼 -cut) is defined 

by: 𝔅𝛼
′ = {𝓍 ∈ X: μ𝔅̃(𝓍) > 𝛼}. 

Definition 2.5 [25, 27] (Triangular Fuzzy Number) 

A fuzzy number with the following function of 

membership: 

µ (𝓍; 𝑐, 𝑏, 𝑎 ) = 

{

0, 𝓍 < 𝑐
𝓍 − 𝑐

𝑏 − 𝑐
, 𝑐 ≤ 𝓍 ≤ 𝑏

𝑎 − 𝓍

𝑎 − 𝑏
, 𝑏 ≤ 𝓍 ≤ 𝑎

0, 𝓍 > 𝑎

, 

which is indicated by the fuzzy number of triangular kinds, 

where 𝑎, 𝑏 and 𝑐 ∈ ℝ with 𝑎 > 𝑏 > 𝑐.  

In Figure 1, we can observe that the graph illustrates the 

symmetry of the membership function µ (𝑥)  takes the 

triangular shape with the base over the interval  [𝑐, 𝑏]  and 

vertex at 𝓍 = 𝑏. 

Figure 1. Triangular fuzzy number 

The related 𝛼 -cut is [𝜇̃]𝛼 = [𝑐 +  𝛼(𝑏 − 𝑐), 𝑎 −  𝛼 (𝑎 −
𝑏)], 𝛼 ∈  [0, 1]. 

Definition 2.6 [28, 29]: Given two fuzzy numbers (two 

fuzzy sets) 𝑎 ̃, 𝑏̃ ∈ 𝑈 , then the Hausdorff distance between

𝑎 ̃and 𝑏̃ symbolized by 𝐷𝐻 ([𝑎̃, 𝑏̃]𝛼) is such that 𝐷([𝑎̃, 𝑏̃]) =

sup {𝐷𝐻 ([𝑎̃, 𝑏̃]𝛼) |𝛼 ∈ [0,1]} , where (𝑈 , 𝐷)  indicates the

Cauchy space (complete metric space). 

Suppose that 𝑈  is the set of all semi-continuous upper

normal convex fuzzy numbers with bounded 𝛼-level sets. The 

𝛼-cuts of fuzzy numbers are always bounded and closed such 

that the intervals are [𝜇̃(𝑥)]𝛼 = [𝜇(𝑥), 𝜇(𝑥)]
𝛼
, 𝑥 ∈ ℝ , ∀ 𝛼 ∈

[0, 1]. 

Let [𝑏̃(𝛼)] = [𝑏(𝛼), 𝑏(𝛼)], [𝑎̃(𝛼)] = [𝑎(𝛼), 𝑎(𝛼)] 

represent two fuzzy numbers [Definition 2.5], for 𝛾 ≥ 0. We 

can define the binary operations on fuzzy numbers 𝑏̃ and 𝑎̃ of 

addition and scalar multiplication described as follows: 

1. (𝑏 + 𝑎)(𝛼) = (𝑏(𝛼) + 𝑎(𝛼))

2. (𝑏 + 𝑎)(𝛼) = (𝑏(𝛼) + 𝑎(𝛼))

3. ( 𝛾𝑏) (𝛼) = 𝛾. 𝑏(𝛼)

Definition 2.7 [29]: Let f ∈  C(J; E)\ L1(J; E)  exhibit

characteristics of a fuzzy set-valued function. Function f is 

considered Caputo's fuzzy differentiable at point x when 
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𝔇 
𝑐

 
𝛼 𝔣(𝑡) =  

1

𝛤(1 − 𝛼)
∫
𝑓(𝑚)(𝜏)

(𝓉 − 𝜏)𝛼

𝑡

0

𝑑𝜏, 0 < 𝛼 ≤ 𝑚  
 

Definition 2.8 [30]: Let 𝑓(𝑥)  be a fuzzy-valued

approximate solution to a fuzzy differential equation, and let 

𝑅̃(𝑎̃𝑖, 𝑥, α) expressed using α-cuts, is defined as:

[𝑅̃(𝛼)] = [[𝑏(𝑡, 𝛼)] − [𝑓(𝛼)]]𝛂 = [𝑅(𝑡, 𝛼), 𝑅(𝑡, 𝛼)]

3. SHIFTED FUZZY LEGENDRE POLYNOMIALS

Based on the information provided [1], the Legendre 

polynomials of degree 𝑖 are indicated for each fuzzy level sets 

ω ∈  [0, 1] by 𝒫̃𝑙𝑖(𝓉;ω) that defined on the interval (-1,1), by

{
𝐸([𝑎𝑖]

𝓌) = (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫𝑙𝑖+1( 𝓉;𝓌) − 𝐼(𝔣(𝓍;𝓌) + ∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖

𝑛
𝑖=0 𝒫𝑙𝑖+1(𝑡;𝓌))

𝓉

0
𝑑 𝓉))

2

𝐸([𝑎𝑖]
𝓌) = (∑ 𝑎𝑖

𝑛
𝑖=0 𝒫̅𝑙𝑖+1( 𝓉;𝓌) − 𝐼(𝔣(𝓍;𝓌) + ∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖

𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝑡;𝓌))

𝓉

0
𝑑 𝓉))

2

The recurrence formulae: 

𝒫̃𝑙𝑖+1(𝓉;𝓌) =
2𝑖 + 1

𝑖 + 1
𝓉𝒫̃𝑙𝑖(𝑡;𝓌) −

𝑖

𝑖 + 1
𝒫̃𝑙𝑖−1(𝓉;𝓌),

𝑖 = 0,1,2, …, 
𝒫̃𝑙0(𝓉;𝓌) = 1,

𝒫̃𝑙0(𝑡;𝓌) = 𝓉

Introducing 𝓉 = 2𝒯 − 1, the fuzzy Legendre polynomials 

are defined on the interval (0,1), will be refer to F-SLPs and is 

denoted by 𝒫̃∗𝑙𝑖+1(𝒯;𝓌) are generated using the following

recurrence formulae. 

𝒫̃∗𝑙𝑖+1(𝒯;𝓌) =
2𝑖 + 1

𝑖 + 1
(
2𝑖

𝑙𝑖
+ 1) 𝒫̃∗𝑙𝑖(𝒯;𝓌)

−
2𝑖 + 1

𝑖 + 1
𝒫̃∗

𝑙𝑖−1
(𝒯;𝓌)

𝒫̃∗𝑙0(𝒯;𝓌) = 1, 𝒫̃∗
𝑙1
(𝒯;𝓌) = 2𝒯̃ − 1

4. NEW GENERAL FORM OF FV-FLST

In this section, we will present a new form of standard LST 

in order to solve FV-FIDEs, consider the following F-FIDE of 

order α ∈ [0,1] for 𝓌 ∈ [0,1]: 

𝔇̃ 
c

 
α𝑦̃(𝓍;𝓌) = 𝔣̃(𝓍;𝓌)

+∫ 𝑘(𝓍, 𝓉)𝐹(𝑦̃( 𝓉;𝓌))
𝓉

0

𝑑 𝓉 
(1) 

0 ≤ 𝓍, 𝓉 ≤ 1, 0 <  α ≤ 1 

Under fuzzy initial conditions: 

𝑦̃(0;𝓌) = 𝑦̃0(𝓌) (2) 

where, Eq. (1) can be restated with a broader generalization by 

applying the concepts of defuzzification, where 𝔣̃(𝓍;𝓌) =

[𝔣, 𝔣]𝜔 is a fuzzy function hence the approximate solution will

be a fuzzy function which can be written as 𝑦̃(𝑡;𝓌) =

[𝑦, 𝑦]𝜔, where, 𝔇̃ 
c

 
α is the fuzzy Caputo fractional derivative

of order  𝛼  is a fuzzy function of the crisp variable 𝑥 , and 

𝑦̃(𝓍;𝓌) is a fuzzy function. Thus, Eq. (1) can be written in 

terms level sets 𝓌 ∈ [0,1] as: 

𝔇 
𝑐

 
𝛼𝑦(𝓍;𝓌) = 𝔣(𝓍;𝓌) +∫ 𝑘(𝓍, 𝑡) 𝐹 (𝑦( 𝓉;𝓌))

𝓉

0

𝑑𝑡,  

0 ≤ 𝓍, 𝓉 ≤ 1, 0 <  𝛼 ≤ 1 

(3) 

𝔇
𝑐 𝛼

𝑦(𝓍;𝓌) = 𝔣(𝑣;𝓌) +∫ 𝑘(𝓍, 𝓉)𝐹(𝑦( 𝓉;𝓌))
𝓉

0

𝑑𝑡,  

0 ≤ 𝓍, 𝓉 ≤ 1, 0 <  𝛼 ≤ 1 

𝑦 (0;𝓌) =  𝑦
0
(𝓌) and 𝑦(0;𝓌)  =  𝑦0(𝓌)

From Section 3 application, the approximate solution of 

solve 𝑦̃(𝓍;𝓌)  in terms of α  and ω  in the following LST 

polynomial approximation solution of LST such that 

𝑦̃(𝓍;𝓌) = ∑ [𝑎̃𝑖]
ω𝑛

𝑖=0 𝑃̃𝑙𝑖+1( 𝓉;𝓌)

then substitute the values of [𝑎̃𝑖]
ω = [𝑎𝑖 , 𝑎𝑖]

𝜔  into Eq. (3)

yields: 

∑ 𝑎𝑖
𝑛
𝑖=0 𝒫𝑙𝑖+1(𝓉;𝓌) = 𝐼 (𝑓(𝓍;𝓌)  +

∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫𝑙𝑖+1(𝓉;𝓌))

𝓉

0
𝑑𝓉)

∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌) = 𝐼 (𝑓(𝓍;𝓌)  +

∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌))

𝓉

0
𝑑𝓉)

(4) 

Next, Eq. (4) can be expanded into the following forms 

∑ 𝑎𝑖
𝑛
𝑖=0 𝒫𝑙𝑖+1(𝓉;𝓌) − 𝐼 (𝑓(𝓍;𝓌) +

∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫𝑙𝑖+1(𝓉;𝓌))

𝓉

0
𝑑𝓉) = 0 

∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌) − 𝐼 (𝑓(𝓍;𝓌) +

∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌))

𝓉

0
𝑑𝓉) = 0 

(5) 

Then, by minimizing Eq. (5) such that 

𝐸([𝑎𝑖]
𝓌) = (

∑ 𝑎𝑖
𝑛
𝑖=0 𝒫𝑙𝑖+1(𝓉;𝓌) − 𝐼(𝔣(𝓍;𝓌) +

∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫𝑙𝑖+1(𝑡;𝓌))

𝓉

0
𝑑𝓉
)

2

𝐸([𝑎𝑖]
𝓌) = (

∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌) − 𝐼(𝔣(𝓍;𝓌) +

∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝑡;𝓌))

𝓉

0
𝑑𝓉
)

2 (6) 

where, 𝐸̃([𝑎̃𝑖]
𝓌) is minimizing requires finding the values of

[𝑎̃𝑖]
𝓌 , to determining the best approximate solution of Eq. (1).

To get the minimum possible value of 𝐸̃([𝑎̃𝑖]
𝓌) , then the

following partial derivatives with respect to D̃ 
c

 
α𝑦̃(𝓍;𝓌) as

follows: 

𝜕𝐸([𝑎𝑖]
𝓌)

𝜕[𝑎𝑖]
𝓌 = 0, 𝑖 =  0, 1, . . . , 𝑛 

𝜕𝐸([𝑎𝑖]
𝓌)

𝜕[𝑎𝑖]
𝓌 = 0, 𝑖 =  0, 1, . . . , 𝑛 

(7) 

Such that: 
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𝜕𝐸([𝑎𝑖]
𝓌
)

𝜕[𝑎𝑖]
𝓌  = 2(∑ 𝑎𝑖

𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌) − 𝐼 (𝔣(𝓍;𝓌) +

∫ 𝑘(𝓍, 𝑡)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌))

𝓉

0
𝑑 𝓉))  

𝜕𝐸([𝑎𝑖]
𝓌)

𝜕[𝑎𝑖]
𝓌  = 2(∑ 𝑎𝑖

𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌) − 𝐼(𝔣(𝓍;𝓌) +

∫ 𝑘(𝓍, 𝑡)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌))

𝓉

0
𝑑 𝓉)) 

(8) 

𝜕𝐸([𝑎𝑖]
𝓌)

𝜕[𝑎𝑖]
𝓌 and 

𝜕𝐸([𝑎𝑖]
𝓌)

𝜕[𝑎𝑖]
𝓌 for all i, causing 𝐸̃([𝑎̃𝑖]

𝓌)  to be

reduced with each i. By rearranging Eq. (8), we can derive the 

following normal equations, to find coefficients [𝑎̃𝑖]
𝓌  such

that 

𝜕𝐸([𝑎𝑖]
𝓌
)

𝜕[𝑎𝑖]
𝓌 = ∑ 𝑎𝑖

𝑛
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌) −𝐼 (𝔣(𝓍;𝓌) +

∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1( 𝓉;𝓌))

𝓉

0
𝑑𝓉)

𝜕𝐸([𝑎𝑖]
𝓌)

𝜕[𝑎𝑖]
𝓌 = ∑ 𝑎𝑖

𝑛
𝑖=0 𝒫̅𝑙𝑖+1( 𝓉;𝓌) − 𝐼(𝔣(𝑥;𝓌)

+∫ 𝑘(𝓍, 𝓉)𝐹 (∑ 𝑎𝑖
𝑛
𝑖=0 𝒫̅𝑙𝑖+1( 𝓉;𝓌))

𝓉

0
𝑑 𝓉) 

(9) 

Thus, the derivative of the sum represented by Eq. (9) with 

respect to each of the coefficients [𝑎̃𝑖]
𝓌 . The F-FLST

polynomial approximation of Eq. (9) is defined as X̃[𝑎̃𝑖]
𝓌 =

𝑓(𝓍;𝓌). 

5. CONVERGENCE ANALYSIS OF FVLST

While previous studies have addressed the application of the 

Laplace–Adomian Sumudu Transform (LST) for solving 

various forms of fuzzy integro-differential equations (FIDEs) 

[31-33], the convergence discussion remains limited without 

referencing formal convergence theorems or establishing error 

bounds. To ensure mathematical rigor, it is crucial to establish 

a formal rationale for convergence based on existing results. 

According to references [33, 34], the convergence of 

Adomian-type decomposition methods and their variants, such 

as LST depends on the nature of the nonlinear operator and the 

boundedness of the Adomian polynomials employed in 

creating the series solution. The key idea is that the solution 

converges if the successive approximations are uniformly 

limited and the nonlinear terms meet Lipschitz criteria over the 

domain of interest. Moreover, the convergence control 

parameter D 
c

 
αỹ(𝓍) has a vital role in establishing the region

in which the LST solution converges. As the LST gives a 

family of approximate expressions depending on this 

parameter, picking an appropriate value of α directly 

influences the correctness of the solution across all α-cuts. The 

optimum option of α minimizes the residual error and 

maximizes faithfulness to the original FFIDE. To generate the 

residual form for fuzzy fractional integro-differential 

equations (FFIDEs), substitution of the approximate LST 

solution from Eq. (1) into the original problem Eq. (6) 

provides a method for error estimates and iterative refinement. 

This permits tweaking of the convergence parameter by 

empirical or analytical methods such as minimizing residual 

norms or applying fuzzy stability criteria [34]. 

𝐸𝐸̃(𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛) = 𝔇 
𝑐

 
𝛼𝑦̃(𝓍;𝓌) − 𝔣̃(𝓍;𝓌)

−∫ 𝑘(𝓍, 𝑡)(𝑦̃( 𝓉;𝓌))
𝓉

0
𝑑𝓉 

(10) 

Operating I 
α  on both sides of Eq. (10) and plugging

property (4) of defined (2), and the residual formula in the 

following manner: 

𝐸𝐸̃(𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛) = 𝔇 
𝑐

 
𝛼𝑦̃(𝓍;𝓌) − 𝔣̃(𝓍;𝓌)

−∫ 𝑘(𝓍, 𝑡)(𝑦̃( 𝓉;𝓌))
𝓉

0

𝑑 𝓉 
(11) 

Below, for all 𝛼 ∈ [0,1], the partial derivatives with respect 

to (α) can be produced by assigning the values of fractional 

order 0 < 𝛼 ≤ 1. 

𝜕EẼ

𝜕𝑎𝑖
= 0 (12) 

For each fuzzy level set 𝜔 ∈  [0,1], we may find the best 

value for the convergence control parameter 𝔇 
c

 
αỹ(𝓍)  by

numerically solving the system of nonlinear equations in Eq. 

(12) with respect to 𝔇 
c

 
αỹ(𝓍). The goal is to find the best value

between the best values of 𝔇 
c

 
αỹ(𝓍) so that the LST series

solution 𝑦0(𝓍) is as accurate as possible for any 𝛼 ∈ (0,1]. To

determine the ideal curve or best-fitting line for a given set of

data points, one must minimize the sum of the squared

differences between the points and the curve. If a curve yields

the minimum sum of squared deviations when applied to a

specific dataset, it is considered the optimal fit for its category.

In a fuzzy environment, determine the contract curves and

calculate the optimal value 𝔇 
𝑐

 
𝛼𝑦̃(𝓍) for each 𝛼 ∈ (0,1]. We

must select the optimal value of 𝔇 
𝑐

 
𝛼𝑦̃(𝓍)that yields the most

precise solution for FV-FIDEs, along with its corresponding

fuzzy level set. Subsequently, we apply 𝛼 to each level set 𝜔̃ =
[𝓌,𝓌]  to obtain the most accurate lower and upper

approximation solution.

The fuzzy coefficients 𝑎𝑖 in the series solution function as

control points that influence the characteristics of the 

approximate fuzzy solution throughout all α-cuts. Enhancing 

these coefficients is crucial for minimizing the fuzzy error at 

each level (α), thereby enabling the LST-based approximation 

to converge more closely to the accurate solution. These 

factors impact how accurate and stable the solution is; just like 

control points shape the smoothness and shape of a Bézier 

curve, the coefficients determine how closely the fuzzy 

solution matches the original. Furthermore, the above analysis 

in Section 5 can be summarized in the following algorithm: 

Step 1: Define the fuzzy FV-FIDEs with fuzzy initial 

conditions. 

Step 2: Given the principles of defuzzification. 

Step 3: Follow LST polynomial approximation solution 

using Eqs. (1)-(3). 

Step 4: Minimizing Eq. (3) requires finding the values of 
[𝑎̃𝑖]

ω.

Step 5: Find control points [𝑎̃𝑖]
ω.

Step 6: The final control points will be saved once the 

learning procedure has finished. 

6. NUMERICAL IMPLEMENTATION

We will use the methodology from the previous section to 

test the effectiveness of the FV-FIDEs. Each example 

showcases the efficacy of the proposed method by contrasting 

the estimated results with the precise solutions. 

Example 6.1 [35]: Given the linear V-FFIDEs 
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𝔇𝛼𝑦̃(𝓍;𝓌) = [𝓌 − 1, 1 −𝓌] 
+∫ 𝑦̃(𝓉;𝓌)𝑑 𝓉,

𝓍

0
 0 < 𝓌 ≤ 1, 0 ≤ 𝓍, 𝓉 ≤ 1 

(13) 

with fuzzy initial condition 𝑦̃(0,𝓌) = 0. 
𝔇 
𝑐

 
𝛼 represents the α-th Caputo fractional derivative of y(x)

and 0 <  𝛼 ≤ 1 , [ 𝜔 − 1 , 1 − 𝜔 ] are fuzzy triangular 

numbers, 𝑦(𝓍0) represents the fuzzy initial condition, and 𝑦
( 𝓍 ) represent a crisp function of non-fuzzy independent 

variable 𝑥. The exact solution of Eq. (13) when α = 1: 

[𝑦(𝑥)]𝓌 = [𝓌 − 1, 1 − 𝜔] 𝑠𝑖𝑛ℎ (𝑥) (14) 

By utilizing the FVLST algorithm as presented previously, 

the 𝑘𝑡ℎ order deformation equation of Eq. (11) and operating

𝐼 
𝛼 on the both sides of Eq. (13) and plugging property (4) of

defined (2). 

𝑦 (𝓍;𝓌) = 𝐼 
𝛼((𝓌 − 1) + ∫ 𝑦 (𝓉;𝓌)𝑑 𝓉),

𝓍

0
 

0 < 𝛼 ≤ 1, 0 ≤ 𝓍, 𝓉 ≤ 1 

𝑦 (𝓍;𝓌) = 𝐼 
𝛼((1 −𝓌) + ∫ 𝑦 (𝓉;𝓌)𝑑 𝓉),

𝓍

0
 

0 < 𝛼 ≤ 1, 0 ≤ 𝓍, 𝓉 ≤ 1 

(15) 

By applying the Shifted Legendre Polynomials from section 

(3), yields. 

{

∑ 𝑎𝑖
2
𝑖=0 𝒫𝑙𝑖+1(𝓍;𝓌) − 𝐼 

𝛼((𝓌 − 1) +

∫ ∑ 𝑎𝑖𝒫𝑙𝑖+1
2
𝑖=0 ( 𝓉;𝓌)𝑑 𝓉) = 0

𝓍

0

∑ 𝑏𝑖
2
𝑖=0 𝒫̅𝑙𝑖+1(𝓍;𝓌) − 𝐼 

𝛼((1 −𝓌) +

∫ ∑ 𝑏𝑖
2
𝑖=0 𝒫̅𝑙𝑖+1( 𝓉;𝓌)𝑑 𝓉) = 0

𝓍

0

(16) 

Thus, we minimized Eq. (16) as 

𝐸1(𝑎0, 𝑎1, 𝑎2)
𝓌
= ∑ 𝑎𝑖

2
𝑖=0 𝒫𝑙𝑖+1(𝑥;𝓌) −

𝐼 
𝛼((𝓌 − 1) + ∫ ∑ 𝑎𝑖𝒫𝑙𝑖+1

2
𝑖=0 ( 𝓉;𝓌)𝑑 𝓉)

𝓍

0
 

𝐸2(𝑏0, 𝑏1, 𝑏2)
𝓌
= ∑ 𝑏𝑖

2
𝑖=0 𝒫̅𝑙𝑖+1(𝑥;𝓌) − 𝐼 

𝛼((1 −

𝓌) + ∫ ∑ 𝑏𝑖
2
𝑖=0 𝒫̅𝑙𝑖+1( 𝓉;𝓌)𝑑 𝓉)

𝓍

0

(17) 

Therefore, minimizing E required for finding the values of 

𝑎𝑖, as well as to determining the best estimate for the solution

of the fuzzy fractional integro differential Eq. (17). To get the 

minimum possible value of E, then the following partial 

derivatives with respect to 𝐷 
𝑐

 
𝛼𝑦(𝓍) and 0 <  𝛼 ≤ 1 for 𝑖 =

 0, 1, 2. 

{
(
𝜕𝐸

𝜕𝑎𝑖
)𝓌 = 0

(
𝜕𝐸

𝜕𝑏𝑖
)𝓌 = 0

(18) 

𝐸1(𝑎0, 𝑎1, 𝑎2)
𝓌
=

(
∑ 𝑎𝑖
2
𝑖=0 𝒫𝑙𝑖+1(𝑥;𝓌)

−𝐼 
𝛼 ((𝓌 − 1) + ∫ ∑ 𝑎𝑖𝒫𝑙𝑖+1

2
𝑖=0 (𝓉;𝓌)𝑑𝓉

𝓍

0
)
)

2

𝐸2(𝑏0, 𝑏1, 𝑏2)
𝓌
=

(
∑ 𝑏𝑖
2
𝑖=0 𝒫̅𝑙𝑖+1(𝑥;𝓌)

−𝐼 
𝛼 ((1 −𝓌) + ∫ ∑ 𝑏𝑖

2
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌)𝑑𝓉

𝓍

0
)
)

2

(19) 

Applying Eq. (18) in Eq. (19) we get: 

(
𝜕𝐸1

𝜕(𝑎0,𝑎1,𝑎2)
)
𝓌

= 2 [∑ 𝑎𝑖
2
𝑖=0 𝒫𝑙𝑖+1(𝑥;𝓌) − 𝐼 

𝛼 ((𝓌 − 1) +

∫ ∑ 𝑎𝑖𝒫𝑙𝑖+1
2
𝑖=0 (𝓉;𝓌)𝑑𝓉

𝓍

0
)] 

(
𝜕𝐸2

𝜕(𝑏0,𝑏1,𝑏2)
)
𝓌

= 2[∑ 𝑏𝑖
2
𝑖=0 𝒫̅𝑙𝑖+1(𝑥;𝓌) − 𝐼 

𝛼((1 −

𝓌) + ∫ ∑ 𝑏𝑖
2
𝑖=0 𝒫̅𝑙𝑖+1(𝓉;𝓌)𝑑𝓉

𝓍

0
)]

(20) 

𝜕𝐸1

𝜕𝑎𝑖
, 
𝜕𝐸2

𝜕𝑏𝑖
 for all i=0, 1, 2, causing E to be reduced. with each 

i=0, 1, 2. By rearranging Eq. (20), one can derive the following 

normal equations, to find fuzzy coef ficients 𝑎̃0, 𝑎̃1, 𝑎̃2
and 𝑏̃0, 𝑏̃1, 𝑏̃2  using Eq. (11) to verify the accuracy of our

proposed method as shown in the tables below. 

Table 1 displays the fuzzy approximation solutions derived 

from the Laplace–Sumudu Transform (LST) method for 

fractional orders α = 0.5, 0.7, and 0.9, as applied to Eq. (13). 

Table 1. Numerical results for Example 1, with different values of 𝛼 at 𝓌 = 0.5, 0.75 

Fuzzy Level Set  Optimal Values 𝒚 (𝔁;𝔀) 𝒚 (𝔁;𝔀) 𝒚 (𝔁;𝔀) 

𝓌𝑖 𝑋𝑖 𝛼 = 0.5 𝛼 =  0.75 𝛼 = 0.9 

0 -500.968815e-3 -502.559529e-3 -503.550231e-3

0.2 -533.865115e-3 -517.853729e-3 -511.715311e-3

0.5 0.4 -600.995726e-3 -563.848737e-3 -548.020431e-3

0.6 -702.360646e-3 -640.544552e-3 -612.465590e-3

0.8 -837.959876e-3 -747.941174e-3 -705.050790e-3

0 -250.484407e-3 -251.279764e-3 -251.775115e-3

0.2 -266.932558e-3 -258.926865e-3 -255.857655e-3

0.75 0.4 -300.497863e-3 -281.924368e-3 -274.010215e-3

0.6 -351.180323e-3 -320.272276e-3 -306.232795e-3

0.8 -418.979938e-3 -373.970587e-3 -352.525395e-3

Fuzzy Level Set Optimal Values 𝒚 (𝔁;𝔀) 𝒚 (𝔁;𝔀) 𝒚 (𝔁;𝔀) 
𝓌𝑖 𝑋𝑖 𝛼 = 0.5 𝛼 =  0.75 𝛼 = 0.9 

0 500.968815e-3 502.559529e-3 503.550231e-3 

0.2 533.865115e-3 517.853729e-3 511.715311e-3 

0.5 0.4 600.995726e-3 563.848737e-3 548.020431e-3 

0.6 702.360646e-3 640.544552e-3 612.465590e-3 

0.8 837.959876e-3 747.941174e-3 705.050790e-3 

0 250.484407e-3 251.279764e-3 251.775115e-3 

0.2 266.932558e-3 258.926865e-3 255.857655e-3 

0.75 0.4 300.497863e-3 281.924368e-3 274.010215e-3 

0.6 351.180323e-3 320.272276e-3 306.232795e-3 

0.8 418.979938e-3 373.970587e-3 352.525395e-3 
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Figure 2. Exact and approximate fuzzy solutions of V-FIDEs 

of Eq. (13) when 𝓌 = 1 

The preliminary estimate employed for this equation is 

𝑦̃0(𝓍) = [𝑦(𝓍), 𝑦(𝓍)], as elaborated in Section 5. The values

of 𝛼 are derived from Eq. (15), and by adjusting 𝐼α for α ∈
 [0,1], the convergence domain of the solution is investigated. 

To assess the convergence behavior, we quantitatively 

examined the absolute and relative errors between the 

approximate and exact fuzzy solutions over the domain. For 

example, for 𝑥 = 1, the average absolute error across α-levels 

was determined to be less than 10−3, signifying exceptional

precision. The relative error consistently stayed below 1% for 

all evaluated values of 𝛼, with the lowest error recorded at 𝛼 

= 0.7, indicating optimal convergence at this parameter. Figure 

2 depicts the lower and upper bound solutions 𝑦(𝓍) and 

𝑦(𝓍) for the eighth-order fuzzy Volterra linear fractional 

integro-differential equation associated with Eq. (15), 

displayed at 𝑤 = 1. The proximity and consistency of these 

bounds across various α-levels validate the method's 

robustness and define the effective convergence zone of the 

LST methodology. The results indicate that the LST method 

yields dependable and precise approximations for FFIDEs 

when suitable fractional orders are used. The precision is 

enhanced with smooth kernel functions and uniform α-level 

decomposition. 

It also shows the valid region of the fuzzy convergence 

parameters 𝑦̃0(𝓍) = [𝑦(𝓍), 𝑦(𝓍)] . Hence, the order of the

fuzzy fractional LST solution can be seen clearly, as can the 

region of valid convergence control parameter (𝛼) values and 

the line segment at 𝛼 = 1 for α [0,1]. 
Furthermore, using a distinct value for ω and various 𝛼 

would thus result in a triangle shape for the graph. When the 

value of  𝑤 = 0, 0.3, 0.6, 0.8 , 𝛼 = 0.75  we would have 

created a single shape in Figure 3. 

Eq. (5) delineates a triangular fuzzy number, which 

underpins the fuzzy beginning conditions employed in this 

work. The fuzzy approximate solutions are shown graphically 

in Figure 3, with special attention to the triangle form that is 

depicted there. This form directly embodies the theoretical 

characteristics of the fuzzy solution framework, particularly 

the application of triangular fuzzy numbers and α-cuts. The 

triangle arrangement verifies that the fuzziness disseminates 

in accordance with the established features of fuzzy sets. A 

comprehensive examination provides insights into the exact 

and approximate solutions for various values of www and α, 

emphasizing their respective similarities and distinctions. The 

graphical findings validate that the suggested method produces 

fuzzy approximate solutions that nearly correspond to the 

exact solution. The strong similarity supports the accuracy of 

the triangular fuzzy representation and shows that the chosen 

method works well within the fuzzy theoretical framework. 

Figure 3. Fuzzy approximate solution where 𝓌 = 0,0.3,0.6,0.8 
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Example (6.2): [36] Given the non-linear V-FIDEs 

𝔇α𝑦̃(𝓍) =
25 𝓍6/5

3Γ (1/5)
+
 𝓍6

30
−
 𝓍5

10
+
 𝓍4

12
+

5 √𝓍
5

3Γ (1/5)

+ ∫ (𝓉 − s)[𝑦̃(𝓉)]2𝑑 s,
𝓉

0

 0 < α

≤ 1, x ∈ [0,1] 

(21) 

From the Definition 2.6 of the fuzzy number, we can 

defuzzify the initial condition let [0̃]α and by Definition 2.5

triangular fuzzy number such that ∀α ∈ [0,1], we have non-

linear V-FFIDEs: 

𝔇α𝑦̃(𝓍; 𝜔) =
25 𝓍

6
5

3Γ (
1
5
)
+
 𝓍6

30
−
𝓍5

10
+
𝓍4

12
+

5√𝓍
5

3Γ (
1
5
)

−[𝓌 − 1,1 −𝓌] +∫ (𝓉 − s)[𝑦̃(𝓉; 𝜔)]2𝑑s,
𝓉

0

 

0 < α ≤ 1, x ∈ [0,1] 

(22) 

with fuzzy initial condition: (𝑦̃(0))𝓌 = [𝓌 − 1, 1 −𝓌].
The exact solution of Eq. (21) when α = 1: 

[𝑦(𝓍)]𝜔 = [𝓌 − 1, 1 −𝓌] (𝓍2 − 𝓍)

From Section 5, the 𝑘th order deformation equation of Eq.

(11) and operating I 
α  on the both sides of Eq. (22) and

plugging property Eq. (4) of defined (2).

y (𝓍;𝓌) =

I 
α(

25 𝓍
6
5

3Γ (
1

5
)
+

𝓍6

30
−

𝓍5

10
+

𝓍4

12
+

5 √𝓍
5

3Γ (
1

5
)
−

(𝓌 − 1) + ∫ (𝓉 − s)[y (𝓉; 𝜔)]2𝑑 s
𝓉

0

) 

𝑦 (𝓍;𝓌) =

I 
α(

25 𝓍
6
5

3Γ (
1

5
)
+

𝓍6

30
−

𝓍5

10
+

𝓍4

12
+

5 √𝓍
5

3Γ (
1

5
)
−

(1 −𝓌) + ∫ (𝓉 − s)[𝑦 (𝓉; 𝜔)]2𝑑 s
𝓉

0

) 

(23) 

By applied Shifted Legendre Polynomials in Section 3 

yields. 

Hence, in order to minimize 𝐸1, 𝐸2 , it is necessary to 

determine the values of 𝑎𝑖 , 𝑏𝑖  that will yield the optimal

estimate for the solution of the fuzzy fractional integro 

differential Eq. (25). In order to obtain the least value of 

𝐸1, 𝐸2 , we need to calculate the partial derivatives of 

𝔇 
c

 
α𝑦(𝑥) with respect to α, where α is a value between 0 and

1. 

∑ ai
2
i=0 𝒫̅li+1(x;𝓌) − I 

α(
25 𝓍

6
5

3Γ (
1

5
)
+
 𝓍6

30
−
 𝓍5

10
+
 𝓍4

12

+
5 √𝓍
5

3Γ (
1

5
)
− (𝓌 − 1) + ∫ (𝓉 − s)[y (𝓉; 𝜔)]2𝑑 s)

𝓉

0
= 0 

∑ 𝑏i
2
i=0 𝒫li+1(x;𝓌) − I 

α(
25 𝓍

6
5

3Γ (
1

5
)
+
 𝓍6

30
−
 𝓍5

10
+
 𝓍4

12

+
5 √𝓍
5

3Γ (
1

5
)
− (1 −𝓌) + ∫ (𝓉 − s) [𝑦 (𝓉;𝜔)]

2
𝑑 s)

𝓉

0
= 0  

(24) 

Thus, we minimized Eq. (24) as 

𝐸1(𝑎0, 𝑎1, 𝑎2)
𝜔
=∑𝑎𝑖

2

i=0

𝒫li+1(t;𝓌) 

−I 
α

(

25 𝓍
6
5

3Γ (
1
5
)
+
 𝓍6

30
−
 𝓍5

10
+
 𝓍4

12
+

5 √𝓍
5

3Γ (
1
5
)
− (𝓌 − 1)

+∫ (𝓉 − s)(∑ai

2

i=0

𝒫̅li+1( 𝓉;𝓌))

2

d 𝓉
1

0 )

𝐸2(b0, b1, b2)
𝜔
=∑bi

2

i=0

𝒫̅li+1(x;𝓌) 

−I 
α

(

25 𝓍
6
5

3Γ (
1
5
)
+
 𝓍6

30
−
 𝓍5

10
+
 𝓍4

12
+

5 √𝓍
5

3Γ (
1
5
)
− (1 −𝓌)

+∫ (𝓉 − s)(∑𝑏i

2

i=0

𝒫li+1( 𝓉;𝓌))

2

d 𝓉
1

0 )

(25) 

{

𝜕𝐸

𝜕𝑎𝑖
= 0, 𝑖 =  0, 1, 2

𝜕𝐸

𝜕𝑏𝑖
= 0, 𝑖 =  0, 1, 2

(26) 

𝜕𝐸

𝜕𝑎𝑖
=∑ 𝑎𝑖

2

i=0

𝒫
li+1
(t; 𝓌)I 

α

−

(

25 𝓍
6
5

3Γ (
1
5
)
+
 𝓍6

30
−
 𝓍5
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+
 𝓍4
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+
5 √𝓍

5

3Γ (
1
5
)

+∫ (𝓉 − s)(∑𝑎𝑖

2

i=0

𝒫li+1(t;𝓌))

2

d 𝓉
1

0 )

𝜕𝐸

𝜕bi
==∑ bi

2

i=0

𝒫̅li+1(x;𝓌) 

−I 
α

(

25 𝓍
6
5

3Γ (
1
5
)
+
 𝓍6

30
−
 𝓍5

10
+
 𝓍4

12
+
5 √𝓍

5

3Γ (
1
5
)

+∫ (𝓉 − s)(∑bi

2

i=0

𝒫̅li+1(x;𝓌))

2

d 𝓉
1

0 )

(27) 

Applying Eq. (26) in Eq. (27) we get 
∂E1

∂ai
, 
∂E2

∂bi
 for all 𝑖 =

0,1,2 causing E to be reduced. 

By manipulating Eq. (28), we may deduce the subsequent 

normal equations, which allow us to determine the coefficients 

𝑎̃0, 𝑎̃1, 𝑎̃2  and 𝑏̃0, 𝑏̃1, 𝑏̃2. To assess the precision of our

proposed approach, we will employ Eq. (22) and present the 

results in the figures and tables provided below. Therefore, we 

can identify the convergence region for 𝐼α  by plotting the

curves of the eighth order fuzzy Volterra linear fractional 

integro-differential equation LST lower bound solution 𝑦(𝓍) 

and upper bound solution 𝑦(𝓍)  for Eq. (22) at 𝓌 = 1  in 

Figure 4. 

(
∂E1

∂(a0, a1, a2)
)
𝜔

= 

2 [∑ 𝑎𝑖
2
i=0 𝒫li+1(t;𝓌) − I 

α (
25 𝓍

6
5

3Γ (
1

5
)
+

 𝓍6

30
−

 𝓍5

10
+

 𝓍4

12
+

5 √𝓍
5

3Γ (
1

5
)
+

∫ (𝓉 − s) (∑ ai
2
i=0 𝒫̅li+1( 𝓉;𝓌))

2

d 𝓉
1

0
)] 

(
𝜕𝐸2

𝜕(b0, b1, a2)
)
𝜔

= 

2 [∑ bi
2
i=0 𝒫̅li+1(x;𝓌) − I 

α (
25 𝓍

6
5

3Γ (
1

5
)
+

 𝓍6

30
−

 𝓍5

10
+

 𝓍4

12
+

5 √𝓍
5

3Γ (
1

5
)
+

∫ (𝓉 − s) (∑ 𝑏i
2
i=0 𝒫li+1( 𝓉;𝓌))

2

d 𝓉
1

0
)] 

(28) 
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As stated in Section 5, the chosen starting approximation for 

Eq. (22) is 𝑦̃0(𝑥) = [𝑦(𝑥) , 𝑦(𝑥)]. The values of (𝛼) can be

determined from Eq. (24) in Section 5 by testing all the values 

of 𝐼α at α = 0.5 for α ∈ [0, 1]. This allows us to identify the

convergence region for 𝐼0.5. Figure 4 shows the curves of the

lower bound solution 𝑦(𝑥)  and the upper bound solution 

𝑦(𝑥) for Eq. (23) of the fuzzy Volterra linear fractional 

integro-differential equation LST with eight roots. 

Figure 4 illustrates the graphical representation of the fuzzy 

solution bounds for Eq. (23), which is a fuzzy linear fractional 

Volterra integro-differential equation solved using the (LST). 

The two curves represent the lower bound solution 𝑦(𝑥)the 

upper bound solution 𝑦(𝑥) . These bounds encapsulate the 

fuzzy solution interval and are obtained under the condition of 

using eight distinct roots within the LST-based approach. 

Table 2 shows the fuzzy approximate solutions by using 

LST for fractional orders of 𝛼 = 0.5, 0.7, 0.9 for Eq. (22). Figure 4. Exact and first order solution of V-FFIDEs of Eq. 

(22) when 𝓌 = 1 and , t ∈ [0,1]

Table 2. Numerical results for Example 2, with different values of 𝛼 at 𝓌 = 0.5, 0.75 

Fuzzy Level Set Optimal Values 𝒚 (𝔁;𝔀) 𝒚 (𝔁;𝔀) 𝒚 (𝔁;𝔀) 

𝓌𝑖 𝑋𝑖 𝛼 = 0.5 𝛼 =  0.75 𝛼 = 0.9 

0 -587.454e-3 -504.332e-3 -481.161e-3

0.2 -752.866e-3 -674.418e-3 -636.916e-3

0.5 0.4 -790.050e-3 -747.114e-3 -715.350e-3

0.6 -699.006e-3 -722.421e-3 -716.462e-3

0.8 -479.734e-3 -600.337e-3 -640.253e-3

0 -339.598e-3 -256.879e-3 -233.569e-3

0.2 -503.510e-3 -424.063e-3 -386.395e-3

0.75 0.4 -548.282e-3 -500.812e-3 -467.614e-3

0.6 -473.916e-3 -487.127e-3 -477.225e-3

0.8 -280.410e-3 -383.006e-3 -415.228e-3

Fuzzy Level Set Optimal Values 𝒚 (𝔁;𝔀) 𝒚 (𝔁;𝔀) 𝒚 (𝔁;𝔀) 
𝓌𝑖 𝑋𝑖 𝛼 = 0.5 𝛼 =  0.75 𝛼 = 0.9 

0 408.751e-3 491.556e-3 515.407e-3 

0.2 246.893e-3 326.820e-3 364.247e-3 

0.5 0.4 198.874e-3 250.255e-3 283.884e-3 

0.6 264.692e-3 261.861e-3 274.319e-3 

0.8 444.350e-3 361.637e-3 335.550e-3 

0 158.341e-3 240.989e-3 264.671e-3 

0.2 -3.582e-3 76.578e-3 114.199e-3 

0.75 0.4 -53.772e-3 -2.100e-3 32.021e-3 

0.6 7.770e-3 4.956e-3 18.135e-3 

0.8 181.043e-3 97.746e-3 72.541e-3 

Figure 5. Lower and upper approximate solution were w=0, 

0.3, 0.6, 0.8 

According to Section 5, the selected initial guess of Eq. (23) 

is 𝑦̃0(𝓍) = [𝑦(𝓍) , 𝑦(𝓍) ]. From Section 5, the values of (𝛼)

can be obtained from Eq. (24) and by testing all the values of 

I 
α for α ∈  [0,1].

Furthermore, if we vary the value of w, the resulting 

drawing will have a triangular shape, as depicted in Figure 5. 

Figure 5 illustrates the fuzzy approximate solutions 

represented as Triangular Fuzzy Numbers, as defined in 

Definition 5. The results are shown for different values of the 

parameters w and α. The comparison clearly indicates that the 

proposed method provides approximations that closely match 

the exact solution. Moreover, the similarity between the 

approximate solutions for different parameter values confirms 

the stability and accuracy of the suggested approach. 

7. CONCLUSIONS

This paper presented an improved method for estimating 
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analytical solutions to fuzzy fractional integro-differential 

equations (FFIDEs) via the least squares technique (LST). The 

main findings show that the least squares technique provides 

very accurate approximate solutions for both linear and 

nonlinear first-order fuzzy fractional integro-differential 

equations across different fractional orders, while still keeping 

the fuzzy uncertainty intact using α-cuts. The convergence of 

the series solution was theoretically validated by Caputo’s 

first-order derivative. Notwithstanding its encouraging 

efficacy, the approach possesses specific constraints. The 

present analysis concentrates exclusively on first-order 

FFIDEs and presumes triangular fuzzy numbers. More work is 

needed to see if the method can be used for higher-order 

systems and different types of fuzzy numbers, like trapezoidal 

or interval-valued functions. Future research might look into 

extending LST to work with multi-dimensional or linked 

FFIDEs, and combining it with other methods to make 

calculations faster and more efficient. Furthermore, 

comparison analyses with alternative contemporary semi-

analytical approaches may assist in further substantiating the 

advantages and disadvantages of the suggested methodology. 

The LST is an efficient, rapid-converging, and dependable 

method for addressing FFIDEs, which are important for future 

investigations in applied mathematics, engineering, and 

control theory where fuzzy uncertainty and fractional 

dynamics intersect. 
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