
Algebraic Structure of Moore Cellular Automata - Finite Triangular Lattice 

Arjun Bhavadharani , Dickson Kamala Sheena Christy*

Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, 

Kattankulathur 603203, Chengalpattu, Tamil Nadu, India 

Corresponding Author Email: sheenac@srmist.edu.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.120726 ABSTRACT 

Received: 27 March 2025 

Revised: 13 June 2025 

Accepted: 19 June 2025 

Available online: 31 July 2025 

Cellular Automata serve as powerful tools for modeling dynamic processes in real-

world systems. The geometric structure of a cellular automaton directly influences its 

algebraic properties, which are governed by the underlying local transition rules. In this 

work, we explore the algebraic structure of finite linear Triangular Lattice Moore 

Cellular Automata under null boundary conditions. The Moore neighborhood of a 

triangular lattice includes 13 neighbors at radius 1. We construct the rule matrices for 

finite linear Triangular Lattice Moore Cellular Automata under null boundary 

condition. We present an algorithm for the pattern evolution of such automata and 

observe the emergence of intricate patterns such as hexagonal fractals and radially 

symmetric structures. These patterns are characterized by recursive growth making 

them suitable for applications in algorithmic art, digital textiles, and architectural tiling. 

Reversibility in two-dimensional Cellular Automata is difficult to determine due to 

complex neighborhood interactions. By constructing rule matrices, we provide an 

algebraic framework that enables the decidability of the reversibility and retrieval of 

previous configurations. This framework offers a systematic approach to study 

reversibility in complex lattice structures, laying the foundation for further theoretical 

and applied research in finite linear Triangular Lattice Moore Cellular Automata. 
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1. INTRODUCTION

The interrelationship between elements of a system greatly 

influences its behavior. From the mid-20th century, various 

scientists started proposing multiple models for this approach. 

Cellular Automata (CA) is one of the magnificent models 

scientists welcome in this direction of study. Cellular 

Automata is a discrete model of computation that plays a 

significant role in the simulation of real-world systems. In 

1996, von Neumann and Burks [1] initiated the concept of CA 

by modeling self-reproduction in biological systems. CA is 

modeled with a grid of cells that evolve over discrete 

generations depending upon the local transition rules. The 

major factors influencing the evolution of two-dimensional 

cellular automaton is the lattice shape, type of neighborhood, 

the set of states and the nature of the local transition rule. 

Cellular Automata rules can be categorized into two main 

classifications: linear rules and non - linear rules. The majority 

of research in Cellular Automata has focused on one-

dimensional models where the lattice shape is not a critical 

factor. However, in two-dimensional Cellular Automata, the 

geometry of the underlying lattice significantly influences the 

system's dynamics and evolution. In this context, researchers 

have extended traditional square lattice models to explore 

more complex topologies such as hexagonal and triangular 

lattices. These alternative lattice structures introduce different 

neighborhood configurations, which directly affect rule 

formulation, propagation behavior, and pattern formation. 

Notable studies have examined the impact of such lattice 

variations on Cellular Automata behavior, particularly in 

modeling natural systems, pattern generation, and 

computational complexity. 

The choice of lattice geometry such as square, triangular [2], 

hexagonal [3, 4], or pentagonal [5] significantly influences 

neighborhood configurations and consequently the system's 

evolution. Triangular grids produce certain shapes and 

patterns that are not possible to achieve with the typical square 

grid CA. Zawidzki [6] introduced the concept of Cellular 

Automata on a triangular tessellation. Saadat and Nagy [7, 8] 

and Morita [9] examined the approach of Cellular Automata 

on a triangular grid. One major factor of a Cellular Automata 

is the type of neighborhood considered. John von Neumann 

proposed a neighborhood model that depends on the current 

cell and its adjacent cells. In 1962, Moore [10] proposed an 

extended form of the neighborhood proposed by von Neumann. 

In this case, the neighborhood depends upon the center cell, its 

adjacent cells, and the cells connected with the nodes of the 

center cell. The Moore neighborhood of the triangular lattice 

consists 13 neighbors which is the highest of any other lattice 

for neighborhood of radius 1. 

The geometric structure of Cellular Automata promotes 

curiosity about decoding the algebraic characterization behind 

the automata. A finite Cellular Automata comprises of a finite 

number of cells, each mapping to a state. A specific local 
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transition rule computes each cell state at the next generation. 

A concise and clear representation of the rules using 

mathematical logic aids in understanding how the automata 

compute the next generation. Das et al. [11, 12], Ganguly et al. 

[13], and Pal Chaudhuri et al. [14] characterized the behavior 

of CA’s state transition using matrix algebra. The work by 

Kaspar et al. [15] on two-dimensional automata laid the 

motivation to explore the properties of two-dimensional 

Cellular Automata. Two-dimensional CAs, due to their variety 

of purposes, are investigated by Packard and Wolfram [16], 

Terrier [17], Durand [18], de Oliveira et al. [19], Kari [20], and 

many others. References [21-26] investigated the algebraic 

properties of two-dimensional CA using matrix algebra. 

In infinite Cellular Automata, boundary conditions are 

inherently absent, and thus have no influence on the system's 

evolution. However, in finite Cellular Automata, boundary 

conditions become integral to the dynamics, as they directly 

affect the evolution of configurations over time. The 

interaction between the finite grid and its boundaries can lead 

to emergent behaviors that significantly impact the global 

evolution of the system. The two most prevalent boundary 

conditions are the null and periodic boundaries and their 

effects can be explored from the study of LuValle [27]. The 

work by Sahin et al. [28] explores the various boundary 

conditions of two-dimensional Cellular Automata using von 

Neumann neighborhood. In this work, we consider the finite 

Cellular Automata in a two-dimensional grid on a triangular 

lattice. In 2017, Uguz et al. [29] examined the reversibility and 

structure of the linear, triangular, two-dimensional von 

Neumann Cellular Automata with null boundary condition. 

However, in their formulation, the current (center) cell was not 

included as part of the neighborhood and was therefore 

excluded from the rule matrix construction. This omission 

deviates from the conventional CA framework, where the 

current cell is typically considered an essential part of the 

neighborhood. In the present work, we address this limitation 

by explicitly incorporating the center cell into the 

neighborhood definition and the corresponding rule matrix. 

Triangular lattice Cellular Automata are known for their 

ability to generate aesthetically pleasing and highly symmetric 

patterns that are often difficult to replicate using square or 

hexagonal lattices. The inherent angular structure and 

rotational symmetry of the triangular grid allows for intricate 

interlocking motifs, radial formations, and fractal-like growth 

that are naturally aligned with equilateral geometry. These 

properties make triangular lattices particularly well-suited for 

visual complexity and symmetry, often resembling traditional 

tessellations and decorative art. The triangular lattice has 

gained significant attention in recent Cellular Automata 

research due to its geometric versatility and ability to generate 

complex, symmetric patterns which are not easily achievable 

with traditional square grids. Saadat and Nagy [8] further 

illustrated the expressive potential of triangular lattice Cellular 

Automata by generating intricate patterns like mandalas and 

trees through alternating rule applications. Ray et al. [30] 

utilized probabilistic Cellular Automata on two-dimensional 

structures to preserve quantum information, showing how 

lattice geometry influences memory stability under noise. 

Verhodubs [31] combined ontological frameworks with 

Cellular Automata to simulate cognitive processes, leveraging 

triangular lattices for spatial efficiency in representing thought 

dynamics. 

The Moore neighborhood on a triangular lattice is more 

complicated than those on square and hexagonal lattices 

because it has more neighbors and different ways they interact. 

Despite its rich dynamics, the algebraic characterization of 

Triangular Lattice Moore Cellular Automata (TLMCA) 

remains largely unexplored in the current literature. This 

research aims to fill that gap by creating a way to represent the 

rules of how these automata change both locally and globally 

using a matrix. By using matrix algebra, we can break down 

the complicated local connections, making it easier to analyze 

the overall rule structure. This approach simplifies the 

complexity and opens a path to examine the reversibility. 

In this work, we study the algebraic structure of finite linear 

TLMCA under null boundary condition. We consider the 

Moore neighborhood under null boundary condition. The 

structure of the paper is as follows: Section 2 provides some 

basic definitions. The rule matrix for finite linear TLMCA 

with null boundary condition is given in Section 3. In Section 

4, we provided a method to find the 𝑠𝑡ℎ configuration from the 

𝑠 +  1𝑡ℎ configuration of the finite linear TLMCA with null 

boundary condition. Also presented an algorithm to generate 

patterns with finite linear TLMCA and the patterns generated 

using finite linear TLMCA in Section 4. The illustration of the 

pattern evolution and rule matrix evolution is presented in 

Section 5. 

 

 

2. PRELIMINARY DEFINITIONS 

 
The basic definitions of CA are recalled in this section. To 

explore more about the fundamentals of CA, refer to the 

lecture notes by Kari [32]. 

 

Definition 1. A Cellular Automata is stated as a quadruple 

(𝐿, 𝑄, 𝑁 , 𝐹), where, 𝐿 ⊆  𝑍𝑚 is the m-dimensional lattice, 𝑄 

is the finite set of states, 𝑁 =  (𝑣1, 𝑣2, . . . , 𝑣𝑛)  is the set of 

neighborhood vectors of distinct states of 𝐿,  𝑓 ∶  𝑄𝑝  →  𝑄 is 

the local transition rule [33]. 

This work deals with two-dimensional triangular lattice 

with Moore neighborhood. The value p denotes the number of 

neighbors. In triangular lattice Cellular Automata with Moore 

neighborhood, we have n=13. 

 

Definition 2. A configuration of the m-dimensional Cellular 

Automata with state set Q is defined by the mapping 𝐶 ∶
 𝑍𝑚  →  𝑄 where 𝑍𝑚  is a m-dimensional lattice and 𝑄 is the 

finite set of states [23]. 

Each (𝑖, 𝑗)𝑡ℎ element in 𝑍𝑚  is labelled as 𝑥𝑖,𝑗 . The 

configuration of the two-dimensional Cellular Automata is 

represented by a matrix of order m × n. The configuration at 

time ′𝑠′ is 

 

C(s) =  (

𝑣1,1
(s) ⋯ 𝑣1,n

(s)

⋮ ⋱ ⋮

𝑣m,1
(s) ⋯ 𝑣m,n

(s)
)  

 

where, 𝜈𝑖,𝑗
(𝑠)

 represents the state of each cell 𝑥𝑖,𝑗 at time ′𝑠′. 

The 𝑚 ×  𝑛  ( 𝑚  rows and 𝑛  columns) arrangement of 

lattice points for a two-dimensional finite triangular lattice is 

explained in Figure 1. 

Definition 3. von Neumann Neighborhood put forth by von 

Neumann is two-dimensional and relies on 4 neighborhood 

dependency, including the center cell and its adjacent ones [1]. 
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Figure 1. 𝑚 × 𝑛 triangular lattice 

 

 
 

Figure 2. von Neumann neighborhood configuration of the 

cell 𝑥𝑖,𝑗 to be inside upright triangle 

 

 
 

Figure 3. von Neumann neighborhood configuration of the 

cell 𝑥𝑖,𝑗 to be inside inverted triangle 

 

For the triangular lattice Cellular Automata there are two 

types of von Neumann neighborhood dependencies. 

If the cell 𝑥𝑖,𝑗 lies inside the upward triangle (Figure 2), the 

neighborhood vector is given by 

 

(𝑥𝑖,𝑗, 𝑥𝑖,𝑗+1, 𝑥𝑖+1,𝑗, 𝑥𝑖,𝑗−1) 

 

If the cell 𝑥𝑖,𝑗 lies inside the inverted triangle (Figure 3), the 

neighborhood vector is given by 

 

(𝑥𝑖,𝑗, 𝑥𝑖−1,𝑗, 𝑥𝑖,𝑗+1, 𝑥𝑖,𝑗−1) 

 

Definition 4. Moore Neighborhood is the extended 

neighborhood dependency of von Neumann neighborhood, in 

which neighborhood depends on adjacent cells and the cells 

connected to the nodes of the center cell (Figure 4 and Figure 

5) [10]. 

 

Definition 5. The case where the cells on the boundary are 

connected to 0 logic state is known as null boundary Cellular 

Automata [27]. 

Table 1 represents the 3 × 3 null boundary CA where each 

𝜈𝑖,𝑗 represents the state of the corresponding cell 𝑥𝑖,𝑗. Table 2 

represents the 3 × 3 periodic boundary cellular automaton. 

 

 
 

Figure 4. Moore neighborhood configuration of the cell 

𝑥𝑖,𝑗  to be inside upright triangle 

 

 
 

Figure 5. Moore neighborhood configuration of the cell 𝑥𝑖,𝑗  

to be inside inverted triangle 

 

Table 1. A 3 × 3 null boundary CA 

 
0 0 0 0 0 

0 νi−1,j−1 νi−1,j νi−1,j+1 0 

0 νi,j−1 νi,j νi,j+1 0 

0 νi+1,j−1 νi+1,j νi+1,j+1 0 

0 0 0 0 0 

 

Table 2. A 3 × 3 periodic boundary CA  

 
νi−1,j−1 νi−1,j νi+1,j νi+1,j+1 νi+1,j−1 

νi−1,j+1 νi−1,j−1 νi−1,j νi−1,j+1 νi−1,j−1 

νi,j+1 νi,j−1 νi,j νi,j+1 νi,j−1 

νi+1,j+1 νi+1,j−1 νi+1,j νi+1,j+1 νi+1,j−1 

νi−1,j+1 νi−1,j−1 νi−1,j νi−1,j+1 νi−1,j−1 

 

 
(a)                                             (b) 

 

Figure 6. (a) Null boundary; (b) Periodic boundary 

 

Definition 6. The case where the extreme cells are next to 

one another is known as periodic boundary Cellular Automata. 
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Figure 6(a) and Figure 6(b) depict the mapping of cells 

based on boundary conditions for a finite 3×3 CA [27]. 

 

 

3. FINITE LINEAR TLMCA WITH NULL BOUNDARY 

 

This section defines the Moore neighborhood and 

associated linear transition rule for a cell in a triangular lattice. 

Let 𝑟(𝜈𝑖,𝑗) be the transition rule for each cell in the triangular 

lattice. The transition rule is defined in two distinct ways due 

to the presence of two categories of neighborhood states, 

which are determined by the position of the triangle (upward 

and downward). This finite linear TLMCA deals with finite 

number of states. We consider ternary state set throughout this 

work. 

 

Definition 7. Moore neighborhood of a triangular lattice 

Cellular Automata is defined as a 13 − tuple. 

If the cell 𝑥𝑖,𝑗  lies inside the inverted triangle, then the 

neighborhood vector is defined as 

 

(𝜈𝑖,𝑗 , 𝜈𝑖−1,𝑗, 𝜈𝑖,𝑗+1, 𝜈𝑖,𝑗−1, 𝜈𝑖−1,𝑗+1, 𝜈𝑖−1,𝑗+2, 𝜈𝑖,𝑗+2,  

 𝜈𝑖+1,𝑗+1, 𝜈𝑖+1,𝑗, 𝜈𝑖+1,𝑗−1 , 𝜈𝑖,𝑗−2, 𝜈𝑖−1,𝑗−2, 𝜈𝑖−1,𝑗−1) 

 

If the cell 𝑥𝑖,𝑗  lies inside the upright triangle, then the 

neighborhood vector is defined as 

 

(𝜈𝑖,𝑗 , 𝜈𝑖,𝑗+1, 𝜈𝑖+1,𝑗 , 𝜈𝑖,𝑗−1, 𝜈𝑖,𝑗+2, 𝜈𝑖+1,𝑗+2, 𝜈𝑖+1,𝑗+1, 

 𝜈𝑖+1,𝑗−1 , 𝜈𝑖+1,𝑗−2, 𝜈𝑖,𝑗−2, 𝜈𝑖−1,𝑗−1, 𝜈𝑖−1,𝑗, 𝜈𝑖−1,𝑗+1) 

 

where, each 𝜈𝑖,𝑗 represents the state of the cell 𝑥𝑖,𝑗 . 

 

Definition 8. Local transition rule of the finite linear 

TLMCA is defined as 𝑅 ∶  𝐶𝑡  →  𝐶𝑡+1  where 𝑅 = {𝑟(𝜈𝑖,𝑗)}. 

𝜈𝑖,𝑗 represents the state of the cell 𝑥𝑖,𝑗. 

If 𝜈𝑖,𝑗 lies inside the inverted triangle 

 

𝑟(𝜈𝑖,𝑗) = (𝑎0𝜈𝑖,𝑗  + 𝑎𝜈𝑖−1,𝑗  + 𝑏𝜈𝑖,𝑗+1  + 𝑐𝜈𝑖,𝑗−1

+ 𝑎1𝜈𝑖−1,𝑗+1 + 𝑎2𝜈𝑖−1,𝑗+2  

+ 𝑎3𝜈𝑖,𝑗+2 + 𝑏1𝜈𝑖+1,𝑗+1  

+ 𝑏2𝜈𝑖+1,𝑗 + 𝑏3𝜈𝑖+1,𝑗−1

+ 𝑐1𝜈𝑖,𝑗−2  +  𝑐2𝜈𝑖−1,𝑗−2  

+  𝑐3𝜈𝑖−1,𝑗−1) 𝑚𝑜𝑑 3 

(1) 

 

If 𝜈𝑖,𝑗 lies inside the upright triangle 

 

𝑟(𝜈𝑖,𝑗) = (𝑑0𝜈𝑖,𝑗  + 𝑑𝜈𝑖,𝑗+1  + 𝑒𝜈𝑖+1,𝑗 + 𝑓𝜈𝑖,𝑗−1 +

𝑑1𝜈𝑖,𝑗+2  + 𝑑2𝜈𝑖+1,𝑗+2  + 𝑑3𝜈𝑖+1,𝑗+1 + 𝑒1𝜈𝑖+1,𝑗−1  +

𝑒2𝜈𝑖+1,𝑗−2  + 𝑒3𝜈𝑖,𝑗−2 + 𝑓1𝜈𝑖−1,𝑗−1  +  𝑓2𝜈𝑖−1,𝑗 +

 𝑓3𝜈𝑖−1,𝑗+1) mod 3 

(2) 

 

where, 

 

𝑎0, 𝑏, 𝑐, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, 𝑐3, 𝑑0, 𝑒, 𝑓, 
𝑑1, 𝑑2, 𝑑3, 𝑒1, 𝑒2, 𝑒3, 𝑓1, 𝑓2, 𝑓3  ∈  𝑍𝑘 

 

Definition 9. A finite linear TLMCA is defined as a 

quadruple 𝑇𝑀  =  (𝐿, 𝑄, 𝑁, 𝑅) where, 𝐿 is a two-dimensional 

triangular lattice 𝐿 ⊆  𝑍2, 𝑄 is the finite set of states denoted 

by 𝜈𝑖,𝑗 , 𝑁 is the set of all 13-tuple neighborhood vectors 

(𝑛1, 𝑛2, . . . , 𝑛13)  for all 𝑚 ⋅  𝑛  cells of the triangular lattice 

Cellular Automata and 𝑅  is the local transition rule 𝑅 ∶

 𝐶(𝑠)  →  𝐶(𝑠+1) and 𝑅 = {𝑟(𝜈𝑖,𝑗)}. 

The rule matrices for obtaining the next step configurations 

of finite linear TLMCA are derived in the following theorems. 

 

Theorem 1. Let 𝑇𝑀  be a finite linear TLMCA under null 

boundary condition over the field 𝑍3. Then the rule matrix of 

order 𝑚 × 𝑚  which updates the 𝑠𝑡ℎ  finite linear TLMCA 

configuration 𝐶(𝑠) to (𝑠 +  1)𝑡ℎ configuration 𝐶(𝑠+1) is given 

by 

 

𝒯ℛ
𝒪𝒪 = 

(

 
 
 
 

𝛼1 𝛽1 𝒪
𝛾1 𝛼2 𝛽2

𝒪 𝛾2 𝛼1

⋯
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋮ ⋱ ⋮
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋯

𝛼1 𝛽1 𝒪
𝛾1 𝛼2 𝛽2

𝒪 𝛾2 𝛼1)

 
 
 
 

  

 

where, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2  are 𝑛 ×  𝑛  submatrices and 𝒪  is 

an 𝑛 ×  𝑛 null matrix. Here m and n are odd positive integers. 

Proof. Let 𝑇𝑀  =  (𝐿, 𝑄, 𝑁 , 𝑅) be the finite linear TLMCA. 

𝐿 is an 𝑚 × 𝑛 two-dimensional triangular lattice where 𝑚 and 

𝑛 are odd positive integers. 𝑄 is the finite set of states. Let us 

consider the cellular automaton has 3 states {0,1,2}. 𝑁 is the 

set neighborhood vectors. 𝑅 is the set of local transition rules. 

𝑅 is defined as 𝑅 ∶  𝐶(𝑠)  →  𝐶(𝑠+1) where 𝑅 = {𝑟(𝜈𝑖,𝑗)}. 

If 𝜈𝑖,𝑗 lies inside the inverted triangle, from Eq. (1) 

 

𝑟(𝜈𝑖,𝑗) =  (𝑎0𝜈𝑖,𝑗  + 𝑎𝜈𝑖−1,𝑗  + 𝑏𝜈𝑖,𝑗+1  + 𝑐𝜈𝑖,𝑗−1  +

𝑎1𝜈𝑖−1,𝑗+1  + 𝑎2𝜈𝑖−1,𝑗+2  + 𝑎3𝜈𝑖,𝑗+2  + 𝑏1𝜈𝑖+1,𝑗+1  +

𝑏2𝜈𝑖+1,𝑗 + 𝑏3𝜈𝑖+1,𝑗−1  +  𝑐1𝜈𝑖,𝑗−2  +  𝑐2𝜈𝑖−1,𝑗−2  +

 𝑐3𝜈𝑖−1,𝑗−1) 𝑚𝑜𝑑 3  

 

If 𝜈𝑖,𝑗 lies inside the upright triangle, from Eq. (2) 

 

𝑟(𝜈𝑖,𝑗) =  (𝑑0𝜈𝑖,𝑗  + 𝑑𝜈𝑖,𝑗+1  + 𝑒𝜈𝑖+1,𝑗 + 𝑓𝜈𝑖,𝑗−1  +

𝑑1𝜈𝑖,𝑗+2  + 𝑑2𝜈𝑖+1,𝑗+2  + 𝑑3𝜈𝑖+1,𝑗+1  + 𝑒1𝜈𝑖+1,𝑗−1  +

𝑒2𝜈𝑖+1,𝑗−2  + 𝑒3𝜈𝑖,𝑗−2  +  𝑓1𝜈𝑖−1,𝑗−1  +  𝑓2𝜈𝑖−1,𝑗 +

 𝑓3𝜈𝑖−1,𝑗+1) 𝑚𝑜𝑑 3  

 

where, 

 

𝑎0, 𝑏, 𝑐, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, 𝑐3, 𝑑0, 𝑒, 𝑓, 
𝑑1, 𝑑2, 𝑑3, 𝑒1, 𝑒2, 𝑒3, 𝑓1, 𝑓2, 𝑓3  ∈  𝑍𝑘 

 

Let 𝜈𝑖,𝑗 = 0  when 𝑖 ∉  {1, 2,⋯𝑚}  or 𝑗 ∉ {1, 2,⋯  𝑛} 

because of employing null boundary conditions. By applying 

the local transition rule from Eqs. (1) and (2) to each cell in 

the automata, 𝑚 ⋅  𝑛 linear equations are obtained.  

 

𝑟(𝜈1,1) = (𝑑0𝜈1,1 + 𝑑𝜈1,2 + 𝑒𝜈2,1 + 𝑓𝜈1,0 + 𝑑1𝜈1,3

+ 𝑑2𝜈2,3 + 𝑑3𝜈2,2 + 𝑒1𝜈2,0

+ 𝑒2𝜈2,−1+ 𝑒3𝜈1,−1+ 𝑓1𝜈0,0

+ 𝑓2𝜈0,1 + 𝑓3𝜈0,2) 𝑚𝑜𝑑 3 

(3) 

 

𝑟(𝜈1,2) = (𝑎0𝜈1,2 + 𝑎𝜈0,2 + 𝑏𝜈1,3 + 𝑐𝜈1,1 + 𝑎1𝜈0,3

+ 𝑎2𝜈0,4 + 𝑎3𝜈1,4 + 𝑏1𝜈2,3

+ 𝑏2𝜈2,2 + 𝑏3𝜈2,1 + 𝑐1𝜈1,0 + 𝑐2𝜈0,0

+ 𝑐3𝜈0,1) 𝑚𝑜𝑑 3 

(4) 
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𝑟(𝜈1,𝑛)  = (𝑑
0
𝜈1,𝑛 + 𝑑𝜈1,𝑛+1 + 𝑒𝜈2,𝑛 + 𝑓𝜈1,𝑛−1

+ 𝑑1𝜈1,𝑛+2 + 𝑑2𝜈2,𝑛+2 + 𝑑3𝜈2,𝑛+1

+ 𝑒1𝜈2,𝑛−1 + 𝑒2𝜈2,𝑛−2 + 𝑒3𝜈1,𝑛−2

+ 𝑓
1
𝜈0,𝑛−1 + 𝑓

2
𝜈0,𝑛

+ 𝑓
3
𝜈0,𝑛+1) 𝑚𝑜𝑑 3 

(5) 

 

𝑟(𝜈2,1)  = (𝑎0𝜈2,1 + 𝑎𝜈1,1 + 𝑏𝜈2,2 + 𝑐𝜈2,0 + 𝑎1𝜈1,2

+ 𝑎2𝜈1,3 + 𝑎3𝜈2,3 + 𝑏1𝜈3,2

+ 𝑏2𝜈3,1 + 𝑏3𝜈3,0 + 𝑐1𝜈2,−1

+ 𝑐2𝜈1,−1 + 𝑐3𝜈1,0) 𝑚𝑜𝑑 3 

(6) 

 

𝑟(𝜈2,2)  = (𝑑0𝜈2,2 + 𝑑𝜈2,3 + 𝑒𝜈3,2 + 𝑓𝜈2,1 + 𝑑1𝜈2,4

+ 𝑑2𝜈3,4 + 𝑑3𝜈3,3 + 𝑒1𝜈3,1

+ 𝑒2𝜈3,0 + 𝑒3𝜈2,0 + 𝑓1𝜈1,1 + 𝑓2𝜈1,2

+ 𝑓3𝜈1,3) 𝑚𝑜𝑑 3 

(7) 

 

𝑟(𝜈2,𝑛)  = (𝑎0𝜈2,𝑛 + 𝑎𝜈1,𝑛 + 𝑏𝜈2,𝑛+1 + 𝑐𝜈2,𝑛−1

+ 𝑎1𝜈1,𝑛+1 + 𝑎2𝜈1,𝑛+2 + 𝑎3𝜈2,𝑛+2

+ 𝑏1𝜈3,𝑛+1 + 𝑏2𝜈3,𝑛 + 𝑏3𝜈3,𝑛−1

+ 𝑐1𝜈2,𝑛−2 + 𝑐2𝜈1,𝑛−2

+ 𝑐3𝜈1,𝑛−1) 𝑚𝑜𝑑 3 

(8) 

 

𝑟(𝜈𝑚,1)  = (𝑑0𝜈𝑚,1 + 𝑑𝜈𝑚,2 + 𝑒𝜈𝑚+1,1 + 𝑓𝜈𝑚,0

+ 𝑑1𝜈𝑚,3 + 𝑑2𝜈𝑚+1,3 + 𝑑3𝜈𝑚+1,2

+ 𝑒1𝜈𝑚+1,0 + 𝑒2𝜈𝑚+1,−1 + 𝑒3𝜈𝑚,−1

+ 𝑓1𝜈𝑚−1,0 + 𝑓2𝜈𝑚−1,1

+ 𝑓3𝜈𝑚−1,2) 𝑚𝑜𝑑 3 

(9) 

 

𝑟(𝜈𝑚,2)  = (𝑎0𝜈𝑚,2 + 𝑎𝜈𝑚−1,2 + 𝑏𝜈𝑚,3 + 𝑐𝜈𝑚,1

+ 𝑎1𝜈𝑚−1,3 + 𝑎2𝜈𝑚−1,4 + 𝑎3𝜈𝑚,4

+ 𝑏1𝜈𝑚+1,3 + 𝑏2𝜈𝑚+1,2

+ 𝑏3𝜈𝑚+1,1 + 𝑐1𝜈𝑚,0 + 𝑐2𝜈𝑚−1,0

+ 𝑐3𝜈𝑚−1,1) 𝑚𝑜𝑑 3 

(10) 

 

𝑟(𝜈𝑚,𝑛)  = (𝑑0𝜈𝑚,𝑛 + 𝑑𝜈𝑚,𝑛+1 + 𝑒𝜈𝑚+1,𝑛 + 𝑓𝜈𝑚,𝑛−1

+ 𝑑1𝜈𝑚,𝑛+2 + 𝑑2𝜈𝑚+1,𝑛+2

+ 𝑑3𝜈𝑚+1,𝑛+1 + 𝑒1𝜈𝑚+1,𝑛−1

+ 𝑒2𝜈𝑚+1,𝑛−2 + 𝑒3𝜈𝑚,𝑛−2

+ 𝑓1𝜈𝑚−1,𝑛−1 + 𝑓2𝜈𝑚−1,𝑛

+ 𝑓3𝜈𝑚−1,𝑛+1) 𝑚𝑜𝑑 3 

(11) 

 

These equations can be represented in matrix form as: 
 

𝒯ℛ
𝒪𝒪 = 

(

 
 
 
 

𝛼1 𝛽1 𝒪
𝛾1 𝛼2 𝛽2

𝒪 𝛾2 𝛼1

⋯
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋮ ⋱ ⋮
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋯

𝛼1 𝛽1 𝒪
𝛾1 𝛼2 𝛽2

𝒪 𝛾2 𝛼1)

 
 
 
 

  

 

where, 
 

𝛼1 =

(

 
 
 
 
 
 

d0 d d1 0 0

c a0 b a3 0

e3

0
0

f
c1

0

d0

c
e3

d
0
f

d1

b
d0

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

d0 d d1

c a0 b
e3 f d0)

 
 
 
 
 
 

 

 

𝛼2 =

(

 
 
 
 
 
 

a0 b a3 0 0

f d0 d d1 0
c1

0
0

c
e3

0

a0

f
c1

b
d0

c

a3

d
a0

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

a0 b a3

f d0 d
c1 c a0)

 
 
 
 
 
 

 

 

𝛽1 =

(

 
 
 
 
 
 

e d3 d2 0 0

b3 b2 b1 0 0

e2

0
0

e1

0
0

e
b3

e2

d3

b2

e1

d2

b1

e

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯
e d3 𝑑2

b3 b2 b1

e2 e1 e )

 
 
 
 
 
 

 

 

𝛽2 =

(

 
 
 
 
 
 

b2 b1 0 0 0
e1 e d3 d2 0

0
0
0

b3

e2

0

b2

e1

0

b1

e
b3

0
d3

b2

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

b2 b1 0
e1 e d3

0 b3 b2)

 
 
 
 
 
 

 

 

𝛾1 =

(

 
 
 
 
 
 

a a1 a2 0 0

f1 f2 f3 0 0
c2

0
0

c3

0
0

a
f1
c2

a1

f2
c3

a2

f3
a

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

a a1 𝑎3

f1 f2 f3
c2 c3 a )

 
 
 
 
 
 

 

 

𝛾2 =

(

 
 
 
 
 
 

f2 f3 0 0 0
c3 a a1 a2 0

0
0
0

f1
c2

0

f2
c3

0

f3
a
f1

0
a1

f2

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯
f2 f3 0
c3 a a1

0 f1 f2)

 
 
 
 
 
 

 

 

Example 1. Consider a 3 × 3 finite linear TLMCA under 

null boundary with 3 states {0,1,2}. Find the next 

configuration of  

 

𝐶(𝑠) =  [
1 2 1
1 1 2
2 1 2

]  

where, 

 

𝑎0 = 𝑑0 =  0, 
𝑎 =  𝑏 =  𝑐 = 𝑑 =  𝑒 =  𝑓 =  𝑎1  =  𝑎2  

= 𝑎3  =  𝑏1  =  𝑏2 = 𝑏3  =  𝑐1 = 𝑐2  =  𝑐3  = 𝑑1  
= 𝑑2  =  𝑑3 = 𝑒1 = 𝑒2  =  𝑒3  =  𝑓1  =  𝑓2  =  𝑓3  =  1 

 

Solution 1. Given 𝑚  and 𝑛  are odd. Therefore, the rule 

matrix for the CA is 

 

2482



 

𝒯ℛ
𝒪𝒪 = 

[
 
 
 
 
 
 
 
 
0 1 1
1 0 1
1 1 0

1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

0 1 1
1 0 1
1 1 0

1 1 0
1 1 1
0 1 1

0 0 0
0 0 0
0 0 0

1 1 0
1 1 1
0 1 1

0 1 1
1 0 1
1 1 0]

 
 
 
 
 
 
 
 

 

 

We have 

 

𝐶′(𝑠+1) = 𝒯ℛ
𝑚𝑛 ⋅ 𝐶′(𝑠) (12) 

 

𝐶
(𝑠)

= [1 2 1 1 1 2 2 1 2]𝑇  

 

The superscript T denotes the transpose of the matrix. 

 

𝒯ℛ
𝒪𝒪 × 𝐶(𝑠) = [1 0 1 1 2 2 1 1 0]𝑇  

 

The configuration at the next time step is  

 

𝐶(𝑠+1) = [
1 0 1
1 2 2
1 1 0

] 

 

Theorem 2. Let 𝑇𝑀  be a finite linear TLMCA under null 

boundary condition over the field 𝑍3. Then the rule matrix of 

order 𝑚 × 𝑚  which updates the 𝑠𝑡ℎ  finite linear TLMCA 

configuration 𝐶(𝑠) to (𝑠 +  1)𝑡ℎ configuration 𝐶(𝑠+1) is given 

by 

 

𝒯ℛ
𝒪ℰ = 

(

 
 
 
 

𝜆1 𝜇1 𝒪
𝜔1 𝜆2 𝜇2

𝒪 𝜔2 𝜆1

⋯
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋮ ⋱ ⋮
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋯

𝜆1 𝜇1 𝒪
𝜔1 𝜆2 𝜇2

𝒪 𝜔2 𝜆1)

 
 
 
 

 

 

where, 𝜆1, 𝜆2, µ1, µ2, 𝜔1, 𝜔2 are 𝑛 ×  𝑛  submatrices and 𝒪 is 

an 𝑛 ×  𝑛 null matrix. Here m is an odd positive integer and 

is an even positive integer. 

Proof. Let 𝑇𝑀  =  (𝐿, 𝑄, 𝑁 , 𝑅) be the finite linear TLMCA. 

𝐿 is an 𝑚 × 𝑛 two-dimensional triangular lattice where 𝑚 and 

𝑛 are odd and even positive integers. 𝑄 is the finite set of states. 

Let us consider the cellular automaton has k states. 𝑁 is the set 

neighborhood vectors. 𝑅 is the set of local transition rules. 𝑅 

is defined as 𝑅 ∶  𝐶(𝑠)  →  𝐶(𝑠+1) where 𝑅 = {𝑟(𝜈𝑖,𝑗)} . Let 

𝜈𝑖,𝑗 = 0 when 𝑖 ∉  {1, 2,⋯𝑚} or 𝑗 ∉ {1, 2,⋯  𝑛} because of 

employing null boundary conditions. By applying the local 

transition rule from Eqs. (1) and (2) to each cell in the 

automata, 𝑚 ⋅  𝑛 linear equations are obtained.  

 

𝑟(𝜈1,1) = (𝑑0𝜈1,1 + 𝑑𝜈1,2 + 𝑒𝜈2,1

+ 𝑓𝜈1,0+𝑑1𝜈1,3+𝑑2𝜈2,3+𝑑3𝜈2,2

+ 𝑒1𝜈2,0 + 𝑒2𝜈2,−1 + 𝑒3𝜈1,−1

+ 𝑓1𝜈0,0 + 𝑓2𝜈0,1 + 𝑓3𝜈0,2)𝑚𝑜𝑑 3 

(13) 

 

𝑟(𝜈1,2) = (𝑎0𝜈1,2 + 𝑎𝜈0,2 + 𝑏𝜈1,3 + 𝑐𝜈1,1 + 𝑎1𝜈0,3

+ 𝑎2𝜈0,4 + 𝑎3𝜈1,4 + 𝑏1𝜈2,3

+ 𝑏2𝜈2,2 + 𝑏3𝜈2,1 + 𝑐1𝜈1,0 + 𝑐2𝜈0,0

+ 𝑐3𝜈0,1) 𝑚𝑜𝑑 3 

(14) 

 

𝑟(𝜈1,𝑛) = (𝑎0𝜈1,𝑛 + 𝑎𝜈0,𝑛 + 𝑏𝜈1,𝑛+1 + 𝑐𝜈1,𝑛−1

+ 𝑎1𝜈0,𝑛+1 + 𝑎0𝜈1,𝑛 + 𝑎𝜈0,𝑛

+ 𝑏𝜈1,𝑛+1 + 𝑐𝜈1,𝑛−1 + 𝑎1𝜈0,𝑛+1

+ 𝑏3𝜈2,𝑛−1 + 𝑐1𝜈1,𝑛−2 + 𝑐2𝜈0,𝑛−2

+ 𝑐3𝜈0,𝑛−1) 𝑚𝑜𝑑 3 

(15) 

 

𝑟(𝜈2,1)  = (𝑎0𝜈2,1 + 𝑎𝜈1,1 + 𝑏𝜈2,2 + 𝑐𝜈2,0 + 𝑎1𝜈1,2

+ 𝑎2𝜈1,3 + 𝑎3𝜈2,3 + 𝑏1𝜈3,2

+ 𝑏2𝜈3,1 + 𝑏3𝜈3,0 + 𝑐1𝜈2,−1

+ 𝑐2𝜈1,−1 + 𝑐3𝜈1,0) 𝑚𝑜𝑑 3 

(16) 

 

𝑟(𝜈2,2)  = (𝑑0𝜈2,2 + 𝑑𝜈2,3 + 𝑒𝜈3,2 + 𝑓𝜈2,1 + 𝑑1𝜈2,4

+ 𝑑2𝜈3,4 + 𝑑3𝜈3,3 + 𝑒1𝜈3,1

+ 𝑒2𝜈3,0 + 𝑒3𝜈2,0 + 𝑓1𝜈1,1 + 𝑓2𝜈1,2

+ 𝑓3𝜈1,3) 𝑚𝑜𝑑 3 

(17) 

 

𝑟(𝜈2,𝑛)  = (𝑑0𝜈2,𝑛 + 𝑑𝜈2,𝑛+1 + 𝑒𝜈3,𝑛 + 𝑓𝜈2,𝑛−1

+ 𝑑1𝜈2,𝑛+2 + 𝑑2𝜈3,𝑛+2 + 𝑑3𝜈3,𝑛+1

+ 𝑒1𝜈3,𝑛−1 + 𝑒2𝜈3,𝑛−2 + 𝑒3𝜈2,𝑛−2

+ 𝑓1𝜈1,𝑛−1 + 𝑓2𝜈1,𝑛

+ 𝑓3𝜈1,𝑛+1) 𝑚𝑜𝑑 3 

(18) 

 

𝑟(𝜈𝑚,1)  = (𝑑0𝜈𝑚,1 + 𝑑𝜈𝑚,2 + 𝑒𝜈𝑚+1,1 + 𝑓𝜈𝑚,0

+ 𝑑1𝜈𝑚,3 + 𝑑2𝜈𝑚+1,3 + 𝑑3𝜈𝑚+1,2

+ 𝑒1𝜈𝑚+1,0 + 𝑒2𝜈𝑚+1,−1 + 𝑒3𝜈𝑚,−1

+ 𝑓1𝜈𝑚−1,0 + 𝑓2𝜈𝑚−1,1

+ 𝑓3𝜈𝑚−1,2) 𝑚𝑜𝑑 3 

(19) 

 

𝑟(𝜈𝑚,2) = (𝑎0𝜈𝑚,2 + 𝑎𝜈𝑚−1,2 + 𝑏𝜈𝑚,3 + 𝑐𝜈𝑚,1

+ 𝑎1𝜈𝑚−1,3 + 𝑎2𝜈𝑚−1,4 + 𝑎3𝜈𝑚,4

+ 𝑏1𝜈𝑚+1,3 + 𝑏2𝜈𝑚+1,2

+ 𝑏3𝜈𝑚+1,1 + 𝑐1𝜈𝑚,0 + 𝑐2𝜈𝑚−1,0

+ 𝑐3𝜈𝑚−1,1) 𝑚𝑜𝑑 3 

(20) 

 

𝑟(𝜈𝑚,𝑛)  = (𝑎0𝜈𝑚,𝑛 + 𝑎𝜈𝑚−1,𝑛 + 𝑏𝜈𝑚,𝑛+1 + 𝑐𝜈𝑚,𝑛−1

+ 𝑎1𝜈𝑚−1,𝑛+1 + 𝑎2𝜈𝑚−1,𝑛+2

+ 𝑎3𝜈𝑚,𝑛+2 + 𝑏1𝜈𝑚+1,𝑛+1

+ 𝑏2𝜈𝑚+1,𝑛 + 𝑏3𝜈𝑚+1,𝑛−1

+ 𝑐1𝜈𝑚,𝑛−2 + 𝑐2𝜈𝑚−1,𝑛−2

+ 𝑐3𝜈𝑚−1,𝑛−1) 𝑚𝑜𝑑 3 

(21) 

 

These equations can be represented in matrix form as: 

 

𝒯ℛ
𝒪ℰ = 

(

 
 
 
 

𝜆1 𝜇1 𝒪
𝜔1 𝜆2 𝜇2

𝒪 𝜔2 𝜆1

⋯
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋮ ⋱ ⋮
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋯

𝜆1 𝜇1 𝒪
𝜔1 𝜆2 𝜇2

𝒪 𝜔2 𝜆1)

 
 
 
 

 

 

where, 

 

𝜆1 =

(

 
 
 
 
 
 

d0 d d1 0 0

𝑐 a0 b a3 0

e3

0
0

f
c1

0

d0

c
e3

d
a0

f

d1

b
d0

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

a0 b 𝑎3

f d0 d
c1 c a0)
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𝜆2 =

(

 
 
 
 
 
 

a0 b a3 0 0

f d0 d d1 0
c1

0
0

c
e3

0

a0

f
c1

b
d0

c

a3

d
a0

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

d0 d 𝑑1

c a0 b
e3 f d0)

 
 
 
 
 
 

 

 

𝜇1 =

(

 
 
 
 
 
 

e d3 d2 0 0

b3 b2 b1 0 0
e3

0
0

f
c1

0

0
c
e3

d
0
f

d1

d
0

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

b2 b1 0
e1 e d3

0 b3 b2)

 
 
 
 
 
 

 

 

𝜇2 =

(

 
 
 
 
 
 

b2 b1 0 0 0
e1 e d3 d2 0

0
0
0

b3

e2

0

b2

e1

0

b1

e
b3

0
d3

b2

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

e d3 𝑑2

b3 b2 b1

e2 e1 e )

 
 
 
 
 
 

 

 

𝜔1 =

(

 
 
 
 
 
 

a a1 a2 0 0

f1 f2 f3 0 0
c2

0
0

c3

0
0

a
f1
c2

a1

f2
c3

a2

f3
a

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

f2 f3 0
c3 a a1

0 f1 f2)

 
 
 
 
 
 

 

 

𝜔2 =

(

 
 
 
 
 
 

f2 f3 0 0 0
c3 a a1 a2 0

0
0
0

f1
c2

0

f2
c3

0

f3
a
f1

0
a1

f2

⋯

0 0  0
0 0 0
0 0  0
0 0 0
0 0  0

⋮ ⋱ ⋮
0  0  0  0  0
0  0  0  0  0
0 0  0  0  0

⋯

a a1 𝑎2

f1 f2 f3
c2 c3 a )

 
 
 
 
 
 

 

 

Example 2. Consider a 3 × 4 finite linear TLMCA under 

null boundary with 3 states {0,1,2}. Find the next 

configuration of  
 

𝐶(𝑠) =  [
1 2 0 1
1 1 2 1
2 1 1 0

]  

 

where, 
 

𝑎0 = 𝑑0 = 0, 

𝑎 =  𝑏 =  𝑐 = 𝑑 =  𝑒 =  𝑓 = 1,  𝑎1  =  𝑎2  
= 𝑎3  =  𝑏1  =  𝑏2 = 𝑏3  =  𝑐1 = 𝑐2  =  𝑐3  = 𝑑1  

=  𝑑2  =  𝑑3 = 𝑒1 = 𝑒2  =  𝑒3  =  𝑓1  =  𝑓2  =  𝑓3  =  2 
 

 

Solution. Here 𝑚 is an odd positive integer and 𝑛 is an even 

positive integer. 
 

𝒯ℛ
𝒪ℰ =

[
 
 
 
 
 
 
 
 
 
 
 
0 1 2
1 0 1
2 1 0

0 1 2
2 2 2
1 2 1

2 0 0 0 0 0
2 0 0 0 0 0
0 1 0 0 0 0

0 2 1
1 2 2
2 2 2

0 0 2
0 0 1
0 1 0

1 0 0 0 0 0
2 0 2 2 0 0
1 2 2 1 2 2

2 2 1
0 0 2
0
0
0
0

0
0
0
0

0
0
0
0

2 2 1
2 0 2
0
0
0
0

2
2
0
0

2
1
2
2

0 1 0 2 2 2
1 0 0 2 2 1
0
2
2
2

0
2
2
1

0 1 2 0
1 0 1 2
2 1 0 1
0 2 1 0]

 
 
 
 
 
 
 
 
 
 
 

 

 

𝐶
(𝑠)

= [1 2 0 1 1 1 2 1 2 1 1 0]𝑇 
 

The superscript T denotes the transpose of the matrix. 
 

𝒯ℛ
𝒪ℰ × 𝐶

(𝑠)

= [9 11 9 8 16 18 16 10 7 12 13 10]𝑇 
 

𝐶
(𝑠+1)

= [0 2 0 2 1 0 1 1 1 0 1 1]𝑇 
 

The configuration at next time step is 
 

𝐶(𝑠+1) = [
0 2 0 2
1 0 1 1
1 0 1 1

] 

 

Theorem 3. Let 𝑇𝑀  be a finite linear TLMCA under null 

boundary condition over the field 𝑍3. Then the rule matrix of 

order 𝑚 × 𝑚  which updates the 𝑠𝑡ℎ  finite linear TLMCA 

configuration 𝐶(𝑠) to (𝑠 +  1)𝑡ℎ configuration 𝐶(𝑠+1) is given 

by 
 

𝒯ℛ
ℰ𝒪 = 

(

 
 
 
 

𝛼1 𝛽1 𝒪
𝛾1 𝛼2 𝛽2

𝒪 𝛾2 𝛼1

⋯
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋮ ⋱ ⋮
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋯

𝛼2 𝛽2 𝒪
𝛾2 𝛼1 𝛽1

𝒪 𝛾1 𝛼2)

 
 
 
 

 

 

where, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2  are 𝑛 ×  𝑛  submatrices and 𝒪  is 

an 𝑛 ×  𝑛 null matrix. Here m is an even positive integer and 

n is an odd positive integer. 

Proof. Let 𝑇𝑀  =  (𝐿, 𝑄, 𝑁 , 𝑅) be the finite linear TLMCA. 

𝐿 is an 𝑚 × 𝑛 two-dimensional triangular lattice where 𝑚 and 

𝑛 are even and odd positive integers. 𝑄 is the finite set of states. 

Let us consider the cellular automaton has 3 states {0,1,2}. 

𝑁 is the set neighborhood vectors. 𝑅  is the set of local 

transition rules. 𝑅  is defined as 𝑅 ∶  𝐶(𝑠)  →  𝐶(𝑠+1) where 

𝑅 = {𝑟(𝜈𝑖,𝑗)} . Let 𝜈𝑖,𝑗 = 0  when 𝑖 ∉  {1, 2,⋯𝑚}  or 𝑗 ∉

{1, 2,⋯  𝑛} because of employing null boundary conditions. 

By applying the local transition rule from Eqs. (1) and (2) to 

each cell in the automata, 𝑚 ⋅ 𝑛 linear equations are obtained. 
 

𝑟(𝑣1,1) = (𝑑0𝑣1,1 + 𝑑𝑣1,2 + 𝑒𝑣2,1 + 𝑓𝑣1,0 + 𝑑1𝑣1,3

+ 𝑑2𝑣2,3 + 𝑑3𝑣2,2 + 𝑒1𝑣2,0

+ 𝑒2𝑣2,−1 + 𝑒3𝑣1,−1

+ 𝑓1𝑣0,0+𝑓2𝑣0,1 + 𝑓3𝑣0,2)𝑚𝑜𝑑3 

(22) 
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𝑟(𝜈1,2) = (𝑎0𝜈1,2 + 𝑎𝜈0,2 + 𝑏𝜈1,3 + 𝑐𝜈1,1 + 𝑎1𝜈0,3

+ 𝑎2𝜈0,4 + 𝑎3𝜈1,4 + 𝑏1𝜈2,3

+ 𝑏2𝜈2,2 + 𝑏3𝜈2,1 + 𝑐1𝜈1,0 + 𝑐2𝜈0,0

+ 𝑐3𝜈0,1) 𝑚𝑜𝑑 3 

(23) 

 

𝑟(𝜈1,𝑛)  = (𝑑0𝜈1,𝑛 + 𝑑𝜈1,𝑛+1 + 𝑒𝜈2,𝑛 + 𝑓𝜈1,𝑛−1

+ 𝑑1𝜈1,𝑛+2 + 𝑑2𝜈2,𝑛+2 + 𝑑3𝜈2,𝑛+1

+ 𝑒1𝜈2,𝑛−1 + 𝑒2𝜈2,𝑛−2 + 𝑒3𝜈1,𝑛−2

+ 𝑓1𝜈0,𝑛−1 + 𝑓2𝜈0,𝑛

+ 𝑓3𝜈0,𝑛+1) 𝑚𝑜𝑑 3 

(24) 

 

𝑟(𝜈2,1)  = (𝑎0𝜈2,1 + 𝑎𝜈1,1 + 𝑏𝜈2,2 + 𝑐𝜈2,0 + 𝑎1𝜈1,2

+ 𝑎2𝜈1,3 + 𝑎3𝜈2,3 + 𝑏1𝜈3,2

+ 𝑏2𝜈3,1 + 𝑏3𝜈3,0 + 𝑐1𝜈2,−1

+ 𝑐2𝜈1,−1 + 𝑐3𝜈1,0) 𝑚𝑜𝑑 3 

(25) 

 

𝑟(𝜈2,2) = (𝑑0𝜈2,2 + 𝑑𝜈2,3 + 𝑒𝜈3,2 + 𝑓𝜈2,1 + 𝑑1𝜈2,4

+ 𝑑2𝜈3,4 + 𝑑3𝜈3,3 + 𝑒1𝜈3,1 

                +𝑒2𝜈3,0 + 𝑒3𝜈2,0 + 𝑓1𝜈1,1 

               +𝑓2𝜈1,2 + 𝑓3𝜈1,3) 𝑚𝑜𝑑 3  

(26) 

 

𝑟(𝜈2,𝑛) = (𝑎0𝜈2,𝑛 + 𝑎𝜈1,𝑛 + 𝑏𝜈2,𝑛+1 + 𝑐𝜈2,𝑛−1 

      +𝑎1𝜈1,𝑛+1 + 𝑎2𝜈1,𝑛+2 + 𝑎3𝜈2,𝑛+2 

+𝑏1𝜈3,𝑛+1 + 𝑏2𝜈3,𝑛 + 𝑏3𝜈3,𝑛−1 

                +𝑐1𝜈2,𝑛−2 + 𝑐2𝜈1,𝑛−2 + 𝑐3𝜈1,𝑛−1) 𝑚𝑜𝑑 3  

(27) 

 

𝑟(𝜈𝑚,1) = (𝑎0𝜈𝑚,1 + 𝑎𝜈𝑚−1,1 + 𝑏𝜈𝑚,2 + 𝑐𝜈𝑚,0

+ 𝑎1𝜈𝑚−1,2 + 𝑎2𝜈𝑚−1,3 + 𝑎3𝜈𝑚,3

+ 𝑏1𝜈𝑚+1,2 + 𝑏2𝜈𝑚+1,1

+ 𝑏3𝜈𝑚+1,0 + 𝑐1𝜈𝑚,−1 + 𝑐2𝜈𝑚−1,−1

+ 𝑐3𝜈𝑚−1,0) 𝑚𝑜𝑑 3 

(28) 

 

𝑟(𝜈𝑚,2) = (𝑑0𝜈𝑚,2 + 𝑑𝜈𝑚,3 + 𝑒𝜈𝑚+1,2 + 𝑓𝜈𝑚,1 

+𝑑1𝜈𝑚,4 + 𝑑2𝜈𝑚+1,4 + 𝑑3𝜈𝑚+1,3 + 𝑒1𝜈𝑚+1,1 

+𝑒2𝜈𝑚+1,0 + 𝑒3𝜈𝑚,0 + 𝑓1𝜈𝑚−1,1 + 𝑓2𝜈𝑚−1,2 

+𝑓3𝜈𝑚−1,3) 𝑚𝑜𝑑 3  

(29) 

 

𝑟(𝜈𝑚,𝑛) = (𝑎0𝜈𝑚,𝑛 + 𝑎𝜈𝑚−1,𝑛 + 𝑏𝜈𝑚,𝑛+1 + 𝑐𝜈𝑚,𝑛−1 

       +𝑎1𝜈𝑚−1,𝑛+1 + 𝑎2𝜈𝑚−1,𝑛+2 + 𝑎3𝜈𝑚,𝑛+2 

      +𝑏1𝜈𝑚+1,𝑛+1 + 𝑏2𝜈𝑚+1,𝑛 + 𝑏3𝜈𝑚+1,𝑛−1 

+𝑐1𝜈𝑚,𝑛−2 + 𝑐2𝜈𝑚−1,𝑛−2 

+𝑐3𝜈𝑚−1,𝑛−1) 𝑚𝑜𝑑 3  

(30) 

 

These equations can be represented in matrix form as: 
 

𝒯ℛ
ℰ𝒪 = 

(

 
 
 
 

𝛼1 𝛽1 𝒪
𝛾1 𝛼2 𝛽2

𝒪 𝛾2 𝛼1

⋯
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋮ ⋱ ⋮
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋯

𝛼2 𝛽2 𝒪
𝛾2 𝛼1 𝛽1

𝒪 𝛾1 𝛼2)

 
 
 
 

 

 

where, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2 are 𝑛 ×  𝑛 submatrices which can 

be referred from Theorem 1 and 𝒪 is an 𝑛 ×  𝑛 null matrix. 

Example 3. Consider a 4 × 3 finite linear TLMCA under null 

boundary with 4 states {0,1,2,3}. Find the next configuration 

of  

 

𝐶(𝑠) =  [

0 1 2
3 0 1
2
1

3
2

0
3

] 

with 

 

𝑎0 = 𝑑0 =  0, 
𝑎 =  𝑏 =  𝑐 = 𝑑 =  𝑒 =  𝑓 = 2,  𝑎1  =  𝑎2  

= 𝑎3  =  𝑏1  =  𝑏2 = 𝑏3  =  𝑐1 = 𝑐2  =  𝑐3  = 𝑑1  
= 𝑑2  =  𝑑3 = 𝑒1 = 𝑒2  =  𝑒3  =  𝑓1  =  𝑓2  =  𝑓3  =  1. 

 

Solution. Here 𝑚  is an even positive integer and 𝑛  is an 

even positive integer. 

 

𝒯ℛ
ℰ𝒪 =

[
 
 
 
 
 
 
 
 
 
 
 
0 2 1
2 0 2
1 2 0

2 1 1
1 1 1
1 1 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2 1 1
1 1 1
1 1 2

0 2 1
2 0 2
1 2 0

1 1 0 0 0 0
1 2 1 0 0 0
0 1 1 0 0 0

0 0 0
0 0 0
0
0
0
0

0
0
0
0

0
0
0
0

1 1 0
1 2 1
0
0
0
0

1
0
0
0

1
0
0
0

0 2 1 2 1 1
2 0 2 1 1 1
1
2
1
1

2
1
1
1

0 1 1 2
1 0 2 1
1 2 0 2
2 1 2 0]

 
 
 
 
 
 
 
 
 
 
 

 

 

𝐶
(𝑠)

= [0 1 2 3 0 1 2 3 0 1 2 3]𝑇 

 

𝒯ℛ
ℰ𝒪 × 𝐶

(𝑠)

= [11 8 7 9 19 11 16 14 18 14 13 10]𝑇 

 

𝐶
(𝑠+1)

= [2 2 1 0 1 2 1 2 0 2 1 1]𝑇 

 

The configuration at next time step is 

 

𝐶(𝑠+1) = [

2 2 1
0 1 2
1
2

2
1

0
1

] 

 

Theorem 4. Let 𝑇𝑀  be a finite linear TLMCA under null 

boundary condition over the field 𝑍3. Then the rule matrix of 

order 𝑚 × 𝑚  which updates the 𝑠𝑡ℎ  finite linear TLMCA 

configuration 𝐶(𝑠) to (𝑠 +  1)𝑡ℎ configuration 𝐶(𝑠+1) is given 

by 

 

𝒯ℛ
ℰℰ = 

(

 
 
 
 

𝜆1 𝜇1 𝒪
𝜔1 𝜆2 𝜇2

𝒪 𝜔2 𝜆1

⋯
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋮ ⋱ ⋮
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋯

𝜆2 𝜇2 𝒪
𝜔2 𝜆1 𝜇1

𝒪 𝜔1 𝜆2)

 
 
 
 

 

 

where, 𝜆1, 𝜆2, µ1, µ2, 𝜔1, 𝜔2 are n × n submatrices and 𝒪 is an 

n × n null matrix. Here m and n are even positive integers. 

Proof. Let 𝑇𝑀  =  (𝐿, 𝑄, 𝑁 , 𝑅) be the finite linear TLMCA. 

𝐿 is an 𝑚 × 𝑛 two-dimensional triangular lattice where 𝑚 and 

𝑛 are even positive integers. 𝑄 is the finite set of states. Let us 

consider the cellular automaton has k states. 𝑁 is the set 

neighborhood vectors. 𝑅 is the set of local transition rules. 𝑅 

is defined as 𝑅 ∶  𝐶(𝑠)  →  𝐶(𝑠+1) where 𝑅 = {𝑟(𝜈𝑖,𝑗)} . Let 

𝜈𝑖,𝑗 = 0 when 𝑖 ∉  {1, 2,⋯𝑚} or 𝑗 ∉ {1, 2,⋯  𝑛} because of 

employing null boundary conditions. By applying the local 

transition rule from Eqs. (1) and (2) to each cell in the 

automata, 𝑚 ⋅  𝑛 linear equations are obtained.  
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𝑟(𝜈1,1) = (𝑑0𝜈1,1 + 𝑑𝜈1,2 + 𝑒𝜈2,1 + 𝑓𝜈1,0 + 𝑑1𝜈1,3

+ 𝑑2𝜈2,3 + 𝑑3𝜈2,2 + 𝑒1𝜈2,0

+ 𝑒2𝜈2,−1 + 𝑒3𝜈1,−1+ 𝑓1𝜈0,0

+ 𝑓2𝜈0,1 + 𝑓3𝜈0,2 𝑚𝑜𝑑 3 

(31) 

 

𝑟(𝜈1,2) = (𝑎0𝜈1,2 + 𝑎𝜈0,2 + 𝑏𝜈1,3 + 𝑐𝜈1,1 + 𝑎1𝜈0,3

+ 𝑎2𝜈0,4 + 𝑎3𝜈1,4 + 𝑏1𝜈2,3

+ 𝑏2𝜈2,2 + 𝑏3𝜈2,1 + 𝑐1𝜈1,0 + 𝑐2𝜈0,0

+ 𝑐3𝜈0,1) 𝑚𝑜𝑑 3 

(32) 

 

𝑟(𝜈1,𝑛)  = (𝑎0𝜈1,𝑛 + 𝑎𝜈0,𝑛 + 𝑏𝜈1,𝑛+1 + 𝑐𝜈1,𝑛−1

+ 𝑎1𝜈0,𝑛+1𝑎0𝜈1,𝑛 + 𝑎𝜈0,𝑛

+ 𝑏𝜈1,𝑛+1 + 𝑐𝜈1,𝑛−1 + 𝑎1𝜈0,𝑛+1

+ 𝑏3𝜈2,𝑛−1 + 𝑐1𝜈1,𝑛−2 + 𝑐2𝜈0,𝑛−2

+ 𝑐3𝜈0,𝑛−1) 𝑚𝑜𝑑 3 

(33) 

 

𝑟(𝜈2,1)  = (𝑎0𝜈2,1 + 𝑎𝜈1,1 + 𝑏𝜈2,2 + 𝑐𝜈2,0 + 𝑎1𝜈1,2

+ 𝑎2𝜈1,3 + 𝑎3𝜈2,3 + 𝑏1𝜈3,2

+ 𝑏2𝜈3,1 + 𝑏3𝜈3,0 + 𝑐1𝜈2,−1

+ 𝑐2𝜈1,−1 + 𝑐3𝜈1,0) 𝑚𝑜𝑑 3 

(34) 

 

𝑟(𝜈2,2)  = (𝑑0𝜈2,2 + 𝑑𝜈2,3 + 𝑒𝜈3,2 + 𝑓𝜈2,1 + 𝑑1𝜈2,4

+ 𝑑2𝜈3,4 + 𝑑3𝜈3,3 + 𝑒1𝜈3,1

+ 𝑒2𝜈3,0 + 𝑒3𝜈2,0 + 𝑓1𝜈1,1 + 𝑓2𝜈1,2

+ 𝑓3𝜈1,3) 𝑚𝑜𝑑 3 

(35) 

 

𝑟(𝜈2,𝑛)  = (𝑑0𝜈2,𝑛 + 𝑑𝜈2,𝑛+1 + 𝑒𝜈3,𝑛 + 𝑓𝜈2,𝑛−1

+ 𝑑1𝜈2,𝑛+2 + 𝑑2𝜈3,𝑛+2 + 𝑑3𝜈3,𝑛+1

+ 𝑒1𝜈3,𝑛−1 + 𝑒2𝜈3,𝑛−2 + 𝑒3𝜈2,𝑛−2

+ 𝑓1𝜈1,𝑛−1 + 𝑓2𝜈1,𝑛

+ 𝑓3𝜈1,𝑛+1) 𝑚𝑜𝑑 3 

(36) 

 

𝑟(𝜈𝑚,1)  = (𝑎0𝜈𝑚,1 + 𝑎𝜈𝑚−1,1 + 𝑏𝜈𝑚,2 + 𝑐𝜈𝑚,0

+ 𝑎1𝜈𝑚−1,2 + 𝑎2𝜈𝑚−1,3 + 𝑎3𝜈𝑚,3

+ 𝑏1𝜈𝑚+1,2 + 𝑏2𝜈𝑚+1,1

+ 𝑏3𝜈𝑚+1,0 + 𝑐1𝜈𝑚,−1 + 𝑐2𝜈𝑚−1,−1

+ 𝑐3𝜈𝑚−1,0) 𝑚𝑜𝑑 3 

(37) 

 

𝑟(𝜈𝑚,2)  = (𝑑0𝜈𝑚,2 + 𝑑𝜈𝑚,3 + 𝑒𝜈𝑚+1,2 + 𝑓𝜈𝑚,1

+ 𝑑1𝜈𝑚,4 + 𝑑2𝜈𝑚+1,4 + 𝑑3𝜈𝑚+1,3

+ 𝑒1𝜈𝑚+1,1 + 𝑒2𝜈𝑚+1,0 + 𝑒3𝜈𝑚,0

+ 𝑓1𝜈𝑚−1,1 + 𝑓2𝜈𝑚−1,2

+ 𝑓3𝜈𝑚−1,3) 𝑚𝑜𝑑 3 

(38) 

 

𝑟(𝜈𝑚,𝑛)  = (𝑑0𝜈𝑚,𝑛 + 𝑑𝜈𝑚,𝑛+1 + 𝑒𝜈𝑚+1,𝑛 + 𝑓𝜈𝑚,𝑛−1

+ 𝑑1𝜈𝑚,𝑛+2 + 𝑑2𝜈𝑚+1,𝑛+2

+ 𝑑3𝜈𝑚+1,𝑛+1 + 𝑒1𝜈𝑚+1,𝑛−1

+ 𝑒2𝜈𝑚+1,𝑛−2 + 𝑒3𝜈𝑚,𝑛−2

+ 𝑓1𝜈𝑚−1,𝑛−1 + 𝑓2𝜈𝑚−1,𝑛

+ 𝑓3𝜈𝑚−1,𝑛+1) 𝑚𝑜𝑑 3 

(39) 

 

These equations can be represented in matrix form as: 

 

𝒯ℛ
ℰℰ = 

(

 
 
 
 

𝜆1 𝜇1 𝒪
𝜔1 𝜆2 𝜇2

𝒪 𝜔2 𝜆1

⋯
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋮ ⋱ ⋮
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪
𝒪 𝒪 𝒪

⋯

𝜆2 𝜇2 𝒪
𝜔2 𝜆1 𝜇1

𝒪 𝜔1 𝜆2)

 
 
 
 

 

where, 𝜆1, 𝜆2, µ1, µ2, 𝜔1, 𝜔2 are n × n submatrices which can 

be referred from Theorem 2 and 𝒪 is an n × n null matrix. 

Example 4. Consider a 4 × 4 finite linear TLMCA under null 

boundary with 5 states {0,1,2,3,4}. Find the next configuration 

of 

 

𝐶(𝑠) = [

0 1 2 3
4 0 1 2
3
2

4
3

0
4

1
0

] 

 

where, 

 

𝑎0 = 𝑑0 =  0, 
𝑎 =  𝑏 =  𝑐 = 𝑑 = 𝑒 = 𝑓 = 0,  

𝑎1  =  𝑎2  =  𝑎3  = 𝑑1 = 𝑑2 = 𝑑3 = 1, 
𝑏1 = 𝑏2 = 𝑏3 = 𝑒1 = 𝑒2 = 𝑒3 = 2,  
𝑐1 = 𝑐2 = 𝑐3 = 𝑓1 = 𝑓2 = 𝑓3 = 3. 

 

Solution. Given 𝑚  and 𝑛  are even. Therefore, the rule 

matrix for the cellular automaton is 

 

𝒯ℛ
𝒪ℰ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0
0 0

1 0
0 1

2 0
0 3

0 0
0 0

0 1
2 2

1 0
2 0

2 0
0 3

0 0
0 0

0 1
3 3

1 0
3 0

3 3
0 0

0 1
3 3

0 0
0 0

1 0
0 1

3 0
0 2

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

2 2
2 0

0 0
1 1

0 2
0 2

2 2
2 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

3 3
3 0

0 0
1 1

0 3
0 3

3 3
3 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

2 0
0 3

0 0
0 0

0 1
2 2

1 0
2 0

2 0
0 3

0 0
0 0

0 1
3 3

1 0
3 0

3 3
0 0

0 1
3 3

0 0
0 0

1 0
0 1

3 0
0 2

0 0
0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
𝐶̅(𝑠) = [0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0]𝑇  

 

The superscript T denotes the transpose of the matrix. 

 

𝒯ℛ
𝜀𝜀 × 𝐶

(𝑠)
=

 [3 11 8 3 18 18 28 23 19 34 19 24 8 21 28 9]𝑇  
 

𝐶
(𝑠+1)

=
 [0 2 2 0 0 0 1 2 1 1 1 0 2 0 1 0]𝑇  

 

The configuration at next time step is 

 

𝐶(𝑠+1) = [

0 2 2 0
0 0 1 2
1
2

1
0

1
1

0
0

]  

 

 

4. REVERSIBILITY OF FINITE LINEAR TLMCA 

WITH NULL BOUNDARY 

 

In general, a cellular automaton is not memory conserving. 

Current investigations suggest that the reversibility of two-

dimensional Cellular Automata is generally undecidable [25]. 

With the help of rule matrices we can trace back previous 

configurations of the cellular automaton using the concept of 

invertible matrices. The rule matrices are employed in 

obtaining the next state configurations. In turn the previous 

configurations of the cellular automaton can be obtained using 

the inverse of the rule matrices. In accordance to the concept 
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used here, a cellular automaton is reversible if the rule matrix 

associated with it is invertible. If there exists inverse for the 

rule matrices then the following theorem presents the steps 

involved in tracing back previous configurations of the cellular 

automaton using the information matrix of the current cellular 

automaton configuration and inverse of the rule matrix. The 

reversibility of the system depends on the reversibility of the 

rule matrix. The rule matrix depends on the co-efficient 

considered. 

 

4.1 Finding the previous configuration of finite linear 

TLMCA 

 

Let 𝑇𝑀 be a finite linear TLMCA with null boundary and ′𝑘′ 
possible states per cell. The evolution of this cellular 

automaton is governed by the rule matrix 𝒯ℛ
𝑚𝑛. Suppose we 

are given the information matrix associated with a 

configuration at time step ′𝑠 + 1′, denoted by 𝐶′(𝑠+1), and to 

determine the configuration at the previous time step 𝑠 , 

denoted 𝐶(𝑠). The following steps outline how this can be done, 

provided the rule matrix is invertible. 

Step 1: Convert the information matrix 𝐶′(𝑠+1)  of order 

𝑚𝑛 × 𝑚𝑛 into a column vector of order 𝑚𝑛 × 1 using row-

major ordering. 

Step 2: The rule matrix is invertible and hence (𝒯ℛ
𝑚𝑛)−1 

exists. Compute 

 

𝐶′(𝑠)  =  (𝒯ℛ
𝑚𝑛)−1 ⋅  𝐶′(𝑠+1) (40) 

 

Step 3: By converting the resulting one-dimensional vector 

𝐶′(𝑠) of order 𝑚𝑛 ×  1 into a two-dimensional matrix of order 

𝑚 ×  𝑛, we get the configuration at previous time step 𝐶(𝑠). 
The computation of a cellular automaton’s configuration at 

previous time step is provided in Example 5. 

Example 5. Consider a 3 × 4 finite linear TLMCA under null 

boundary with 3 states {0,1,2}. Find the previous 

configuration of  
 

𝐶(𝑠+1) =  [
0 2 0 2
1 0 1 1
1 0 1 1

] 

 

where, 
 

𝑎0 = 𝑑0 =  0, 
𝑎 =  𝑏 =  𝑐 = 𝑑 =  𝑒 =  𝑓 = 1,  𝑎1  =  𝑎2  

= 𝑎3  =  𝑏1  =  𝑏2 = 𝑏3  =  𝑐1 = 𝑐2  =  𝑐3  = 𝑑1  
=  𝑑2  =  𝑑3 = 𝑒1 = 𝑒2  =  𝑒3  =  𝑓1  =  𝑓2  =  𝑓3  =  2. 

 

The information matrix associated with 𝐶̅(𝑠+1) is given by  

 
𝐶̅′(𝑠+1) = [9 11 9 8 16 18 16 10 7 12 13 10]𝑇 

  

Solution. Here 𝑚 is an odd positive integer and 𝑛 is an even 

positive integer. 
 

𝒯ℛ
𝒪ℰ =

[
 
 
 
 
 
 
 
 
 
 
 
0 1 2
1 0 1
2 1 0

0 1 2
2 2 2
1 2 1

2 0 0 0 0 0
2 0 0 0 0 0
0 1 0 0 0 0

0 2 1
1 2 2
2 2 2

0 0 2
0 0 1
0 1 0

1 0 0 0 0 0
2 0 2 2 0 0
1 2 2 1 2 2

2 2 1
0 0 2
0
0
0
0

0
0
0
0

0
0
0
0

2 2 1
2 0 2
0
0
0
0

2
2
0
0

2
1
2
2

0 1 0 2 2 2
1 0 0 2 2 1
0
2
2
2

0
2
2
1

0 1 2 0
1 0 1 2
2 1 0 1
0 2 1 0]

 
 
 
 
 
 
 
 
 
 
 

 

(𝒯ℛ
𝒪ℰ)

−1

=

[
 
 
 
 
 
 
 
 
 
 
 

1.15 1.75 −2.49
−0.85 −0.68 1.11
0.45 −0.58 0.65

−0.70 −1.47 1.15
0.76 0.74 −0.42

−0.28 0.18 −0.12

1.69 −2.20    0.42 −2.53 1.58    0.39
−0.72 0.84 −0.25 1.18 −0.91 −0.07
−0.32 0.58 −0.15 0.25 −0.18 −0.20

−1.22 −0.70 1.67
−0.10 −0.60 0.90
0.72 0.72 −1.21

0.64 0.90 −0.60
−0.08 0.58 −0.49
−0.19 −0.82 0.39

−1.16   1.54  −0.42 1.54 −1.07 −0.22
−0.40 0.55 0.00 0.89 −0.53 −0.22
0.88 −0.99 0.38 −1.32 1.10 0.00

−0.20 0.50 −0.44
−0.74 −1.64 2.59
−0.55
0.21

−0.73
1.33

−0.02
−0.45
0.11
1.33

0.25
0.27
0.16

−2.66

0.14 −0.02 0.18
0.38 0.94 −0.68
0.19

−0.36
0.47

−0.66

0.40
0.33
0.07

−1.33

−0.03
−0.38
0.29
0.66

0.01 −0.29 −0.10 0.03 −0.18 0.35
−1.56 1.90 −0.58 1.90 −1.20 −0.04
−0.41
0.16

−0.55
2.00

0.30
0.15
0.35

−2.00

0.16 0.30 −0.01 −0.34
−0.05 0.15 −0.03 0.07
0.13 0.35 −0.54 0.17
0.33 −2.00 1.66 0.00 ]

 
 
 
 
 
 
 
 
 
 
 

 

 

The superscript T denotes the transpose of the matrix. 

 

(𝒯ℛ
𝒪ℰ)

−1
 ×  𝐶̅′(𝑠+1) =

[1 2 0 1 1 1 2 1 2 1 1 0]𝑇  

 

The configuration at the previous time step is 

 

𝐶(𝑠) = [
0 2 0 2
1 0 1 1
1 0 1 1

] 

 

In order to accurately compute the previous configuration 

of a cellular automaton, it is essential to store not only the 

current configuration but also an associated information 

matrix. This matrix captures critical details or auxiliary 

variables required to reverse the evolution process. In 

simulations that aim to model real-world phenomena, such 

information must be recorded during the forward evolution. 

Without this, the system's dynamics become irreversible, and 

reconstructing past states becomes infeasible.  

• Reversibility in Cellular Automata is ensured only when 

the rule matrix is invertible; otherwise, the system cannot 

uniquely determine its past configurations.  

• A non-invertible rule matrix results in information loss 

during evolution, rendering the automaton fundamentally 

irreversible.  

• To support backward evolution, it is essential to store an 

accompanying information matrix along with the 

configuration during the forward simulation process. 

•  The invertibility of the rule matrix depends entirely on the 

coefficients used in its construction, as these coefficients 

directly determine the transition dynamics of the system, 

rather than the matrix entries alone. 

 

4.2 Pattern evolution 

 

A significant application of 2D CA is the pattern evolution. 

CA can simulate various simple discrete mathematical models 

of physical, biological, and computational phenomena. 

Applications for symmetric CAs include picture compression, 

self-assembling nanostructures, pattern recognition, and 

crystal growth simulation. Some symmetric CA designs have 

characteristics that can be applied to optimization problems 

and cryptography. Bilateral symmetry is a common feature in 

simulating biological phenomena or processes. A creative tool 

for generating symmetrical patterns in art and design is CA. A 

vast array of visually appealing patterns is produced by 

adjusting the CA’s rules and parameters. Wall designing is 

another area where symmetric CA is used. The employment of 

symmetrical patterns offers flexibility in the design aspects, 

visual balance, and ease of planning and implementation. A 

CA is an algorithmic method for creating patterns. The 

proposed model generates intricate patterns such as hexagonal 

fractals and radial symmetric structures, both of which are 

characterized by recursive growth. These patterns emerge 

through repeated application of local rules, resulting in self-
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similar and visually coherent motifs. These aesthetically 

appealing forms hold strong potential for application in 

algorithmic art, digital textile design, and architectural tiling, 

where geometric precision and visual regularity are highly 

valued.  

Algorithm 1 outlines the generation of patterns using the 

proposed finite linear TLMCA. In the Algorithm 1, the 

transition rule for a state to be inside upright (𝑖 + 𝑗)%2 =  0 

and inverted triangle (𝑖 + 𝑗)%2 =  1  can be referred from 

Definition 8. 

 

Algorithm 1 

function GET_NEIGHBORS(𝑖, 𝑗) 

       𝑥 ←  𝑖, 𝑦 ←  𝑗 
       if (𝑥 +  𝑦) % 2 =  0 then 

            neighbor_coords ← [ 

                   (x, y + 2), (x, y - 1), (x, y - 2), (x + 1, y), 

                   (x + 1, y + 1), (x + 1, y - 1), (x + 1, y - 2), 

                   (x - 1, y), (x - 1, y + 1), (x - 1, y - 1) 

                   ] 

       else 

           neighbor_coords ← [ 

                  (x, y + 1), (x, y + 2), (x, y - 1), (x, y - 2), 

                  (x - 1, y), (x - 1, y + 1), (x - 1, y + 2), (x - 1, y - 1),  

                  (x - 1, y - 2), (x + 1, y), (x + 1, y + 1), (x + 1, y - 1) 

                  ] 

       end if 

 

       neighbors ← empty list 

       for each (a, b) in neighbor_coords do 

             p ← x + a 

             q ← y + b 

              if (0 ≤ p < m) ∧ (0 ≤ q < n) then 

                  neighbors.append(lattice[p][q]) 

             else 

                  neighbors.append(0) 

             end if 

       end for 

 

       return neighbors(i, j) 

end function 

 

for i = 0 to m - 1 do 

     for j = 0 to n - 1 do 

          neighbors ← GET_NEIGHBORS(i, j) 

          if (i + j) % 2 = 0 then 

              lattice[i][j] ← f₁(lattice[i][j], neighbors) 

         else 

              lattice[i][j] ← f₂(lattice[i][j], neighbors) 

         end if 

    end for 

end for 

 

return m × n lattice 

 

4.3 Algorithm for triangular lattice evolution of Moore 

neighborhood CA 

 

Algorithm 1 presents the steps involved in updating the cell 

states of finite linear TLMCA. 

 

Input: 

Triangular lattice of size m × n 

Assign initial state 𝑄 ∈  {0, 1, 2} for each cell (𝑖, 𝑗) of the 

triangular lattice of size m × n 

𝑓1 : Transition rule for cell (𝑖, 𝑗)  when (𝑖 +  𝑗)%2 =
 0; and 0 ≤  𝑖 ≤  𝑚 −  1, 0 ≤  𝑗 ≤  𝑛 −  1. 

𝑓2 : Transition rule for cell (𝑖, 𝑗)  when (𝑖 +  𝑗)%2 =

 1; and 0 ≤  𝑖 ≤  𝑚 −  1, 0 ≤  𝑗 ≤  𝑛 −  1 

 

Output: 

Updated state of the triangular lattice after applying 

transition rules. 

The steps involved in the Algorithm 1 are explained as 

follows: 

Step 1: Initialize each cell in the m × n triangular lattice 

with an initial state selected from the finite state set to set up 

the initial configuration. 

Step 2: For every cell at position (i, j), determine the type 

of neighborhood it should use by checking whether the sum i 

+ j is even or odd. Based on this parity, assign the appropriate 

set of neighbor coordinates. 

Step 3: Collect the states of all neighboring cells. If a 

neighbor lies within the bounds of the lattice, use its actual 

state. If it falls outside the boundary, assume its state to be 0 

to handle edge cases (null boundary). 

Step 4: Apply the local transition rule to compute the new 

state of each cell. Use function 𝑓₁ if the cell has even parity, 

and use function 𝑓₂ if the cell has odd parity. This decision is 

made individually for each cell. 

Step 5: Store all newly computed states in a separate lattice 

to prevent overlapping updates. Once all cells have been 

processed, return the final updated lattice as the result of next 

generation for the initial configuration. 

In Algorithm 1, the rule 𝑓1 corresponds to the rule defined 

for an upright triangle (Eq. (2)) and the rule 𝑓2 corresponds to 

the rule defined for an inverted triangle (Eq. (1)). 

 

 
 

Figure 7. Application of rule 𝑟(𝜈𝑖,𝑗) for the seed pattern 1 at 

time step ‘𝑡 =  1, 2,⋯  7’ 

 

 
 

Figure 8. Application of rule 𝑟(𝜈𝑖,𝑗) for the seed pattern 2 at 

time step ‘𝑡 =  1, 2,⋯  7’ 
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Figure 9. Application of rule 𝑟(𝜈𝑖,𝑗) for the seed pattern 3 at 

time step ‘𝑡 =  0,2,4, … ,14’ 

 

 
 

Figure 10. Application of rule 𝑟(𝜈𝑖,𝑗) for the seed pattern 4 

at time step ‘𝑡 =  0,2,4,… ,14’ 

 

 
 

Figure 11. Application of rule 𝑟(𝜈𝑖,𝑗) for the seed pattern 

5 at time step ‘𝑡 =  0,2,4, … ,14’ 

 

Figures 7 and 8 depict the patterns evolved by applying the 

rule 𝑟(𝜈𝑖,𝑗) for the seed pattern 1-2. The generations of seed 

pattern 1 is vertically symmetric and the generations of seed 

pattern 2 is both horizontally and vertically symmetric. The 

symmetric property is preserved through all the iterations or 

time steps by applying the rule 𝑟(𝜈𝑖,𝑗). By applying Algorithm 

1, the triangular lattice CA with 20 rows and 21 columns is 

updated with the states in the consecutive pattern evolutions. 

For each generation of the triangular lattice CA, the states 0,1 

and 2 are coloured with three different colours such as, for seed 

pattern 1 - white, black, purple; for seed pattern 2 - white, pink, 

blue respectively.  

A variety of patterns that cannot be generated by square 

lattice CA are observed to emerge in triangular lattices, often 

exhibiting extreme symmetry and well-organized structures. 

Unlike the square lattice, where a uniform neighborhood is 

applied throughout, the triangular lattice alternates between 

two different types of neighborhood configurations based on 

cell position. Despite this alternating scheme, the evolution 

process still produces highly aesthetic and coherent patterns, 

highlighting the richness and expressive power of the 

triangular lattice structure. 

A set of figures are presented to illustrate the intricate 

structures produced by the algorithm. These figures display the 

emergence of hexagonal fractals and radially symmetric 

formations by their recursive growth. These patterns showcase 

its potential for creative applications in areas such as 

algorithmic art, digital textiles, and architectural tiling. Figures 

9-11 depict the emergence of such aesthetic patterns from 

simple initial configurations. The patterns are generated using 

three distinct states, where white represents 0, black represents 

1, and magenta represents 2. Figure 12 depicts the pattern 

generation with binary states. Square lattices possess only 4-

fold rotational symmetry (90°), which restricts the formation 

of naturally radial or hexagonal patterns. Figures 9-11 exhibit 

3-fold rotational symmetry and Figure 12 demonstrates a 6-

fold rotational symmetry. 

 

 
 

Figure 12. Application of rule 𝑟(𝜈𝑖,𝑗) for the seed pattern 6 

at time step ‘𝑡 =  0,2,4,… ,14’ 

 

 

5. PATTERN EVOLUTION AND RULE MATRIX 

EVOLUTION 

 

Transition rules are employed in computing the next 

configuration of the CA. Using a matrix allows for efficient 

application of transition rules across all cells simultaneously. 

The patterns evolved by applying the transition rule 

individually to each cell and the configurations obtained by 

applying the rule matrix method produce the same result for 

any finite 𝑚 × 𝑛 cellular automaton under any linear rule of 

the finite linear TLMCA 

In particular, the Triangular Lattice Moore neighborhood 

CA has to deal with 13 neighborhood including itself. For 

instance, the configuration of a 5 ×  5 TLMCA is taken here. 

2489



 

The next configuration of current configuration is computed 

using both transition rule and transition rule matrices. Figure 

13 depicts the lattice representing of states of the TLMCA. 

Black colour represents state 2, grey colour represents state 1 

and white colour represents state 0. 

 

5.1 Transition rule 

 

Form the Figure 13, we have 𝜈1,1  =  𝜈1,5  =  𝜈2,2  =

 𝜈3,3  =  𝜈4,1  =  𝜈5,4  =  2, 𝜈1,2  =  𝜈1,4  =  𝜈2,1  =  𝜈2,3  =

 𝜈2,4  =  𝜈3,2  =  𝜈3,4  =  𝜈3,5  =  𝜈4,3  =  𝜈4,4  =  𝜈4,5  =  1 

and 𝜈1,3  =  𝜈2,5  =  𝜈3,1  =  𝜈4,2  =  𝜈5,5  =  0.  
The values 𝑎0  = 𝑑0  =  0, 𝑎 =  𝑏 =  𝑐 =  𝑎1  =  𝑎2  =

 𝑎3  =  𝑏1  =  𝑏2  =  𝑏3  =  𝑐1  =  𝑐2  =  𝑐3  =  𝑑 =  𝑒 =
 𝑓 =  𝑑1  =  𝑑2  =  𝑑3  =  𝑒1  =  𝑒2  =  𝑒3  =  𝑓1  =  𝑓2  =
 𝑓3  =  1. 

By applying the transition rule to each cell individually, we 

get 

 

𝑟(𝜈1,1) =  𝑟(𝜈1,3) =  𝑟(𝜈1,4) =  𝑟(𝜈2,3) =  𝑟(𝜈2,4) 

=  𝑟(𝜈3,2) =  𝑟(𝜈3,4) =  𝑟(𝜈4,5) =  𝑟(𝜈5,2) 

=  𝑟(𝜈5,4) =  𝑟(𝜈5,5) =  2, 𝑟(𝜈1,2)  =  𝑟(𝜈2,1)  

=  𝑟(𝜈2,2) =  𝑟(𝜈2,5)  =  𝑟(𝜈3,5)  =  𝑟(𝜈4,3)  =  𝑟(𝜈4,4) 

=  𝑟(𝜈5,1)  =  1 and 𝑟(𝜈1,5)  =  𝑟(𝜈3,1)  =  𝑟(𝜈3,3) 

=  𝑟(𝜈4,1) =  𝑟(𝜈4,2)  =  𝑟(𝜈5,3)  =  0. 
 

Therefore, the resulting next step configuration of the 

considered triangular lattice is depicted in Figure 14. 

 

 
 

Figure 13. Configuration at time ‘s’ 

 

 
 

Figure 14. Configuration at time ‘s+1’ 

 

5.2 Rule matrix 

 

The order of the considered CA is 5 × 5. Here m and n are 

odd positive integers. By proceeding with the methodology 

involved in theorem 1, the rule matrix is as follows of order 25 

× 25. 

𝒯ℛ
55 = 

[
 
 
 
 
𝛼1 𝛽1 𝒪 𝒪 𝒪
𝛾1 𝛼2 𝛽2 𝒪 𝒪

𝒪
𝒪
𝒪

𝛾2

𝒪
𝒪

𝛼1

𝛾1

𝒪

𝛽1

𝛼2

𝛾2

𝒪
𝛽2

𝛼1]
 
 
 
 

 

 

where, 

 

𝛼1 = 

[
 
 
 
 
0 1 1 0 0
1 0 1 1 0
1
0
0

1
1
0

0
1
1

1
0
1

1
1
0]
 
 
 
 

     𝛼2 = 

[
 
 
 
 
0 1 1 0 0
1 0 1 1 0
1
0
0

1
1
0

0
1
1

1
0
1

1
1
0]
 
 
 
 

 

𝛽1 = 

[
 
 
 
 
1 1 1 0 0
1 1 1 0 0
1
0
0

1
0
0

1
1
1

1
1
1

1
1
1]
 
 
 
 

     𝛽2 = 

[
 
 
 
 
1 1 0 0 0
1 1 1 1 0
0
0
0

1
1
0

1
1
0

1
1
1

0
1
1]
 
 
 
 

 

𝛾1 = 

[
 
 
 
 
1 1 1 0 0
1 1 1 0 0
1
0
0

1
0
0

1
1
1

1
1
1

1
1
1]
 
 
 
 

     𝛾2 =

[
 
 
 
 
1 1 0 0 0
1 1 1 1 0
0
0
0

1
1
0

1
1
0

1
1
1

0
1
1]
 
 
 
 

 

 

[𝑇𝑅
𝑚𝑛] ⋅ 𝐶′(𝑠)  =  𝐶′(𝑠+1) 

 

We obtain a matrix which is the next step configuration of 

the given CA by applying rule matrix concept and is denoted 

by 𝐶(𝑠+1) 

𝐶(𝑠+1) =  

[
 
 
 
 
2 1 2 2 0
1 1 2 2 1
0
0
1

2
0
2

0
1
0

2
1
2

1
2
2]
 
 
 
 

 

 

The configuration matrix 𝐶(𝑠+1)  exactly resembles the 

configuration obtained by applying the transition rule to all 

cells individually. 

 

 

6. CONCLUSION 

 

This study offers a comprehensive analysis of the algebraic 

structure and dynamic behavior of finite linear TLMCA under 

null boundary conditions. The Moore neighborhood for a 

triangular lattice is very complex, involving 13 neighbors. The 

local complexity influences the global complexity. The very 

common types of lattices involved in Cellular Automata are 

the square, triangular, and hexagonal lattices. This work 

decodes the logic behind the complex Moore triangular lattice 

Cellular Automata. By constructing rule matrices for the 

triangular lattice geometry and proposing an algorithm for 

their evolution, we have shown that such systems can generate 

distinct and complex patterns that are not possible with 

traditional square lattice Cellular Automata. The incorporation 

of a backward-tracing mechanism enables the exploration of 

reversible configurations, contributing to a more profound 

understanding of the conditions under which triangular lattice 

Cellular Automata exhibit reversibility. This has significant 

implications for applications such as cryptography, where 

reversibility and complexity are vital for secure key generation 

and encryption schemes. The proposed triangular lattice CA 

model successfully generates complex and structured patterns 

such as hexagonal fractals and radial symmetric motifs, 

characterized by recursive growth. The aesthetic coherence 
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and geometric regularity of these patterns align with 

fundamental design principles, offering promising 

applications in fields such as algorithmic art, digital textile 

design, and architectural tiling. In the future, we will explore 

the integration of fuzzy logic or probabilistic transitions into 

this framework, expanding its applicability to uncertain or 

noisy environments. The analytical tools developed in this 

work also pave the way for classifying triangular CA rules 

based on complexity, reversibility, and computational 

universality. 
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