
A Fuzzy Logic-Enhanced Optimizer for RNA Binding Site Prediction Using CNN-GCN

Architectures

Susilo Hariyanto* , Siti Khabibah , Retno Putri Dwi Rahmawati , Bibit Waluyo Aji

Department of Mathematics, Universitas Diponegoro, Semarang 50275, Indonesia

Corresponding Author Email: susilohariyanto@lecturer.undip.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120734 ABSTRACT

Received: 19 April 2025

Revised: 3 July 2025

Accepted: 10 July 2025

Available online: 31 July 2025

Accurate prediction of ribonucleic acid (RNA) binding sites is essential for deciphering

RNA–protein interactions and understanding post-transcriptional gene regulation.

While Graph Convolutional Networks (GCNs) effectively capture complex topological

features in biological data, their performance heavily relies on the choice of

optimization algorithm. This study proposes FuzzyAdam, a novel gradient-based

optimizer that integrates fuzzy logic into the adaptive learning framework of standard

Adam to improve convergence behavior in CNN-GCN hybrid models. Unlike Adam,

FuzzyAdam dynamically adjusts learning rates based on fuzzy inference over gradient

trends, aiming to reduce oscillations and misclassification. To assess its effectiveness,

we trained a CNN-GCN architecture on a balanced dataset of 997 image-encoded RNA

binding and non-binding sequences. Compared to standard Adam, FuzzyAdam

achieved higher performance across all metrics: 98.39% accuracy, 98.39% F1-score,

98.42% precision, and 98.39% recall, with more stable convergence and reduced false

negatives as indicated by confusion matrix analysis. Although the model does not

explicitly model regulatory mechanisms, improved classification of binding sites can

facilitate downstream analyses related to post-transcriptional control. FuzzyAdam

offers a robust and interpretable optimization strategy, with potential utility for broader

bioinformatics tasks involving graph-based or structurally encoded inputs.

Keywords:

ribonucleic acid (RNA) binding site, graph

convolutional network, hybrid deep learning,

FuzzyAdam optimizer, bioinformatics, deep

learning

1. INTRODUCTION

Ribonucleic acid (RNA)-binding proteins (RBPs) are

integral to post-transcriptional regulation in eukaryotic cells,

orchestrating a wide array of biological processes including

RNA splicing, transport, stability, localization, and translation

control [1, 2]. By forming ribonucleoprotein complexes

(RNPs) through interactions with coding and non-coding

RNAs, RBPs establish dynamic regulatory networks that fine-

tune gene expression in a context-dependent manner [3, 4].

Disruption in RBP-RNA interactions has been implicated in a

variety of pathophysiological conditions, ranging from

neurodegenerative disorders like amyotrophic lateral sclerosis

(ALS) and frontotemporal dementia to tumorigenesis in

various cancers [5, 6].

Conventional experimental methods for RBP identification,

such as cross-linking immunoprecipitation followed by

sequencing (CLIP-seq) [7, 8], RNA immunoprecipitation

sequencing (RIP-seq) [9], and electrophoretic mobility shift

assays (EMSAs) [10], have provided foundational insights

into RNA–protein interactions. However, these techniques are

inherently labor-intensive, low-throughput, and require

significant experimental optimization, which limits their

scalability in large-scale or dynamic cellular contexts.

In response to these limitations, computational

approaches—especially those based on machine learning—

have emerged as viable alternatives for predicting RBP

binding sites directly from nucleotide sequences. Among

these, deep learning methods have shown remarkable promise

due to their ability to automatically learn complex patterns

from raw biological data without the need for manual feature

engineering [11-13]. Specifically, convolutional neural

networks (CNNs) have been widely adopted to capture local

sequence motifs relevant to RBP binding, as demonstrated by

DeepCLIP [14], which combines CNN and long short-term

memory (LSTM) layers to model both spatial and contextual

dependencies in sequence data.

Building upon the success of CNN-based models, recent

studies have explored the incorporation of graph-based

architectures such as graph convolutional networks (GCNs),

which allow the integration of structural relationships between

RNA nucleotides into the prediction framework. For instance,

DeepPN [15] combines CNNs and GCNs to simultaneously

leverage both local sequence context and the underlying RNA

secondary structure, achieving improved predictive

performance without explicit structural input.

In addition to these neural models, ensemble learning

methods like HydRA [16] and DeepFusion [17] have further

extended the scope of RBP prediction by integrating diverse

data modalities, including protein sequence features and

evolutionary information, to enhance classification accuracy

and generalizability. NucleicNet [18], for example, frames

Mathematical Modelling of Engineering Problems
Vol. 12, No. 7, July, 2025, pp. 2563-2572

Journal homepage: http://iieta.org/journals/mmep

2563

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120734&domain=pdf

RBP prediction as a residue-level classification task, offering

fine-grained insights into protein-RNA recognition

mechanisms at atomic resolution.

Despite remarkable progress in the development of deep

learning models for RNA–protein binding site prediction,

these methods often fall short in capturing the full complexity

of RNA–protein interactions. Such interactions are governed

by a wide array of biochemical, topological, and

thermodynamic factors that are difficult to model using

standard neural architectures. Moreover, many state-of-the-art

models lack interpretability, functioning as “black boxes” that

hinder biological validation and limit translational

applicability. This poses a significant barrier, especially in

biomedical contexts where model explainability is crucial for

generating actionable insights.

To address these limitations, recent studies have

increasingly explored the integration of fuzzy logic into

machine learning and deep learning pipelines. Fuzzy logic has

been applied across various machine learning domains [19-21]

and has consistently improved model performance by

enhancing robustness, convergence, and generalization. Fuzzy

logic offers a mathematically grounded framework for

handling uncertainty, ambiguity, and data imprecision—

characteristics that are highly prevalent in biological datasets.

For instance, hybrid neuro-fuzzy systems have demonstrated

improved transparency and interpretability in complex models

through rule-based reasoning mechanisms without sacrificing

predictive performance [22]. Likewise, the intuitionistic fuzzy

broad learning system (IF-BLS) has shown superior diagnostic

accuracy in noisy datasets such as Alzheimer’s disease

classification [23]. Among recent contributions, reference [24]

provided a systematic review of predictive uncertainty

estimation techniques in machine learning, highlighting the

value of probabilistic frameworks such as fuzzy logic for

improving both the reliability and robustness of model

outcomes under uncertain or imbalanced conditions.

The practical utility of fuzzy logic is further exemplified in

clinical applications, where real-time interpretability and

robustness are paramount. In stroke rehabilitation systems,

fuzzy logic has been instrumental in enabling responsive

feedback control, thereby enhancing therapy outcomes in

environments characterized by patient variability and

uncertainty. For instance, Das et al. [25] introduced a hybrid

model combining fuzzy logic with machine learning to

monitor lower limb exercises in stroke patients, facilitating

real-time feedback and progress tracking without human

intervention [25].

In the realm of medical imaging, fuzzy-augmented deep

learning frameworks have demonstrated superior performance

over traditional architectures by effectively managing

ambiguous pixel-level data and improving diagnostic

reliability. A comprehensive survey by Zheng et al. [26]

highlighted the efficacy of fuzzy deep learning models in

handling uncertain medical data, emphasizing their

advantages in enhancing model interpretability and

generalization across various clinical scenarios. Additionally,

a novel ensemble fuzzy deep learning approach was proposed

for brain MRI analysis, integrating volumetric fuzzy pooling

and attention mechanisms to improve the segmentation of

brain tissues and abnormalities, thereby advancing diagnostic

accuracy [27].

Motivated by these challenges and limitations, we focus our

methodological innovation on the development of a novel

fuzzy logic-augmented optimizer, named FuzzyAdam,

specifically tailored for RNA–protein binding site prediction

in noisy, imbalanced, and temporally dynamic biological

datasets. Unlike conventional optimizers such as Adam,

FuzzyAdam introduces an adaptive learning mechanism

driven by fuzzy inference rules that respond to fluctuations in

loss dynamics and gradient behaviour. This approach

enhances training stability, improves generalization, and

promotes interpretability, without requiring architectural

changes or manual reweighting.

Our contribution is centered on the design and

implementation of FuzzyAdam, which enhances convergence

stability without requiring any modification to the underlying

model architecture or data representation. This approach offers

a principled mechanism for handling uncertainty during

training—a characteristic often presents in biological

datasets—even when explicit noise or imbalance is not

modeled.

To the best of our knowledge, this is the first application of

fuzzy-enhanced optimization within the context of RBP

interaction modeling, offering a new dimension of control and

interpretability in biological deep learning frameworks.

2. ADAM OPTIMIZER

The Adam (Adaptive Moment Estimation) optimizer is a

first-order gradient-based method widely used in deep learning

due to its empirical effectiveness, particularly in training large-

scale and noisy models. It combines the advantages of two

other popular optimization techniques: AdaGrad and

RMSProp, by computing adaptive learning rates for each

parameter.

Formally in reference [28], let 𝜃𝑡 ∈ ℝ𝑑 denote the

parameter vector at iteration 𝑡 , and 𝑔𝑡 = ∇𝜃ℒ(𝜃𝑡) be the

stochastic gradient of a loss function ℒ at step 𝑡 . Adam

maintains exponential moving averages of both the gradients

and their squares:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (1)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (2)

To correct initialization bias, Adam computes bias-

corrected moment estimates:

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 , 𝑣̂𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡 (3)

The parameter update rule is then given by:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣̂𝑡 + 𝜀
𝑚̂𝑡 (4)

where, 𝜂 is the learning rate, 𝛽1, 𝛽2 ∈ [0,1) are decay rates for

the moment estimates, 𝜀 ≪ 1 is a small constant to avoid

division by zero (typically 𝜀 = 10−8).

This formulation allows Adam to adaptively scale learning

rates for each parameter based on its gradient history, thereby

improving optimization stability and convergence speed—

especially in problems with sparse gradients or non-stationary

objectives.

2564

3. METHODOLOGY

3.1 Conceptual overview

The FuzzyAdam optimizer is a novel extension of the

standard Adam optimizer, incorporating fuzzy logic-based

adaptation into the learning rate dynamics. While Adam

utilizes first and second moment estimates of gradients to

perform parameter updates with adaptive learning rates,

FuzzyAdam introduces a fuzzy inference mechanism that

dynamically adjusts the effective learning rate scaling at each

iteration based on recent training dynamics.

Let 𝜃𝑡 denote the model parameters at iteration 𝑡, and let

ℒ(𝜃𝑡) be the corresponding loss. The update rule for

FuzzyAdam is defined as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 · 𝜆𝑡 ·
𝑚̂𝑡

√𝑣̂𝑡 + 𝜀
(5)

where:

• 𝜂 > 0 is the base learning rate,

• 𝑚̂𝑡 and 𝑣̂𝑡 are the bias-corrected first and second

moment estimates, respectively,

• 𝜀 is a small constant to ensure numerical stability.

𝜆𝑡 ∈ ℝ⁺ is a fuzzy scaling factor adaptively determined at

each step through a fuzzy inference system. The fuzzy factor

𝜆𝑡 modulates the update magnitude in a context-aware manner

by evaluating features extracted from training behavior, such

as: Change in loss: 𝛥ℒ𝑡 = ℒ𝑡 − ℒ𝑡−1 and Gradient norm:

‖𝑔𝑡‖.

The full step-by-step procedure of FuzzyAdam is outlined

in Algorithm 1.

Algorithm 1: FuzzyAdam Optimizer

Input:

Initial parameters 𝜃0, learning rate 𝜂,

exponential decay rates 𝛽1, 𝛽2 ∈ [0, 1),

 small constant 𝜀 > 0,

 fuzzy momentum coefficient 𝛾 ∈ [0, 1]
Initialize:

𝑚0 ← 0 (first moment vector)

𝑣0 ← 0 (second moment vector)

 fuzzy_score ← 1.0

 prev_loss ← None

for 𝑡 = 1 to T do:

1. Compute gradient 𝑔𝑡 ← 𝛻𝜃ℒ(𝜃𝑡)
2. Update biased moments using Eq. (1) and Eq. (2)

3. Compute bias-corrected estimates using Eq. (3)

4. Compute standard Adam denominator: denom ←

√𝑣̂𝑡 + 𝜀

5. if prev_loss is defined:

𝛥ℒ𝑡 ← ℒ𝑡 − ℒ𝑡−1, g_norm ← ‖𝑔ₜ‖,

v_std ← √(mean(𝑣𝑡))
 Apply fuzzy rules:

 if Δℒ > 0:

 𝜆 ← 0.5 if g_norm > 1 else 0.8

 else if Δℒ < 0:

 𝜆 ← 1.05 if v_std < 0.1 else 1.01

 Smooth fuzzy factor:

fuzzyscore ← 𝛾 · fuzzyscore + (1 − 𝛾) ⋅ 𝜆
else:

 fuzzy_score ← 1.0

6. Compute update step:

𝜃𝑡+1 ← 𝜃𝑡 − 𝜂 · fuzzy_score · 𝑚̂𝑡 / denom
7. Set prev_loss ← ℒ

return 𝜃𝑇

FuzzyAdam extends the standard Adam algorithm by

embedding fuzzy reasoning to improve adaptivity and

robustness. Unlike traditional optimizers that rely on fixed or

heuristically scheduled learning rates, FuzzyAdam

dynamically adjusts the effective step size in each iteration.

This adjustment is guided by fuzzy inference over signals such

as gradient magnitude, loss trajectory, and momentum

variance—enabling smoother updates and improved

convergence.

By integrating fuzzy logic, FuzzyAdam captures vague and

nonlinear dependencies in training dynamics that are

otherwise difficult to encode using classical heuristics. As a

result, it offers several desirable properties:

• Adaptivity: it responds in real-time to changes in

training dynamics;

• Interpretability: its decisions are governed by human-

readable fuzzy rules;

• Stability: it maintains smoother convergence under

noisy or chaotic training conditions.

In summary, FuzzyAdam can be viewed as a cognitively

augmented optimizer that combines the statistical strength of

Adam with the flexible reasoning capabilities of fuzzy logic.

This synergy makes it particularly effective for scenarios

where manual learning rate tuning is impractical, and training

stability is critical.

3.2 Convergence analysis

Theorem: Let ℒ(𝜃) be a continuously differentiable loss

function that is bounded below and has Lipschitz continuous

gradients with constant ℒ𝑔 > 0, i.e.,

‖∇ℒ(𝜃) − ∇ℒ(𝜃′)‖ ≤ ℒ𝑔‖𝜃 − 𝜃′‖forall𝜃, 𝜃′.

Assume:

• The gradients are bounded: ‖𝑔𝑡‖ ≤ 𝐺 < ∞.

• The gradient norms are square-

summable: ∑ ‖𝑔𝑡‖2 < ∞∞
𝑡=1 .

• The fuzzy scaling factor 𝜆𝑡 ∈ [𝜆min , 𝜆max], where

0 < 𝜆min ≤ 𝜆max < ∞.

Then, the sequence {𝜃𝑡} generated by the FuzzyAdam

update rule:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 · 𝜆𝑡 ·
𝑚̂𝑡

(√𝑣̂𝑡 + 𝜀)

Converges to a stationary point 𝜃∗, i.e., lim
𝑡→∞

 ‖∇ℒ(𝜃𝑡)‖ = 0

and ∑ ‖𝜃𝑡+1 − 𝜃𝑡‖²∞
𝑡=1 < ∞.

Proof: Define the update step as:

𝛥𝑡 = 𝜂 · 𝜆𝑡 ·
𝑚̂𝑡

√𝑣̂𝑡 + 𝜀
,

So the update rule becomes:

𝜃𝑡+1 = 𝜃𝑡 − 𝛥𝑡 .

By the standard descent lemma for functions with Lipschitz

continuous gradients [29], we have:

2565

ℒ(𝜃𝑡+1) ≤ ℒ(𝜃𝑡) + ∇ℒ(𝜃𝑡)⊤(𝜃𝑡+1 − 𝜃𝑡)

+ (
ℒ𝑔

2
) ‖𝜃𝑡+1 − 𝜃𝑡‖2.

Substituting 𝜃𝑡+1 − 𝜃𝑡 = −𝛥𝑡 gives:

ℒ(𝜃𝑡+1) ≤ ℒ(𝜃𝑡) − ∇ℒ(𝜃𝑡)⊤𝛥𝑡 + (
𝐿𝑔

2
) ‖𝛥𝑡‖2

Note that: Δ𝑡 = 𝜂 · 𝜆𝑡 ·
𝑚̂𝑡

√𝑣̂𝑡+ 𝜀
, and since 𝜆𝑡 ∈ [𝜆𝑚𝑖𝑛 , 𝜆𝑚𝑎𝑥],

we can bound the update norm: ‖Δ𝑡‖ ≤ 𝜂 · 𝜆max · ‖
𝑚̂𝑡

√𝑣̂𝑡+ 𝜀
‖ ≤

𝐶, for some constant 𝐶 > 0.

Assuming 𝑚̂𝑡 aligns with 𝑔𝑡 (as is standard under bias

correction), then:

∇ℒ(𝜃𝑡)⊤Δ𝑡 ≥ 𝜂 · 𝜆𝑚𝑖𝑛 · 𝛾 · ‖∇ℒ(𝜃𝑡)‖2,

for some 𝛾 > 0 due to moment alignment.

Thus:

ℒ(𝜃𝑡+1) ≤ ℒ(𝜃𝑡) − 𝜂 ⋅ 𝜆𝑚𝑖𝑛 · 𝛾 · ‖∇ℒ(𝜃𝑡)‖2 + (
ℒ𝑔

2
) · 𝐶²

Summing from 𝑡 = 1 to T:

ℒ(𝜃1) − ℒ(𝜃𝑇+1) ≥ 𝜂 ⋅ 𝜆𝑚𝑖𝑛

⋅ 𝛾 ∑ ‖∇ℒ(𝜃_𝑡)‖² − 𝑇 · (
ℒ𝑔

2
) · 𝐶²

𝑇

𝑡=1

.

Because ℒ is bounded below, the left-hand side is finite.

Hence:

∑‖∇ℒ(𝜃𝑡)‖2

∞

𝑡=1

< ∞

which implies:

lim
𝑡→∞

‖∇ℒ(𝜃𝑡)‖ = 0.

Furthermore, since: ‖𝜃𝑡+1 − 𝜃𝑡‖2 = ‖𝛥𝑡‖2 ≤ (𝜂 · 𝜆𝑚𝑎𝑥 ·
𝐶)2 and ∑ ‖𝑔𝑡‖2∞

𝑡=1 < ∞, we have:

∑‖𝜃𝑡+1 − 𝜃𝑡‖2

∞

𝑡=1

< ∞.

The convergence of the FuzzyAdam optimizer is

guaranteed under the same conditions that ensure the

convergence of traditional Adam. The introduction of the

fuzzy scaling factor does not interfere with convergence but

instead provides a dynamic adjustment to the learning rate that

can enhance optimization stability. The fuzzy scaling factor

𝜆𝑡, driven by loss differences and gradient norms, adapts the

learning process based on the changing optimization

landscape, potentially leading to faster convergence in

scenarios where traditional methods struggle with noisy

gradients or fluctuating loss landscapes.

Thus, FuzzyAdam maintains the theoretical guarantees of

Adam while introducing a flexible mechanism to handle

uncertainty in the optimization process, making it particularly

well-suited for complex, non-stationary environments, such as

those encountered in deep neural networks.

3.3 Protein sequence retrieval from UniProt

To construct an image-based representation of protein

sequences suitable for CNN input, we developed a systematic

pipeline that retrieves curated RBP and non-RBP sequences

from UniProt, computes 2-mer (dipeptide) frequency

distributions, and renders them into 2D heatmaps. This

approach leverages the physicochemical and contextual

information embedded in short amino acid motifs, while

maintaining compatibility with image-based deep learning

architectures.

Protein identifiers were programmatically retrieved from

the UniProt Knowledgebase (UniProtKB) [30] using a

RESTful API. We utilized the controlled vocabulary keyword

KW-0694 to isolate RBPs, while non-RBP sequences were

obtained using the negation NOT keyword:KW-0694. The

API was queried in batches (batch size = 500), and all primary

accession numbers were stored locally to ensure experimental

reproducibility. query_rbp = "keyword:KW-0694" and

query_nonrbp = "NOT keyword:KW-0694".

For each accession ID, the corresponding FASTA sequence

was downloaded via:

https://rest.uniprot.org/uniprotkb/{accession}.fasta.

We excluded sequences shorter than 50 amino acids to

prevent sparse or degenerate feature encodings.

To convert sequences into a biologically informed

numerical representation, we employed dipeptide frequency

encoding, where each sequence is mapped to a 20×20 matrix

based on the normalized frequency of overlapping 2-mers

(subsequences of length 2) constructed from the 20 canonical

amino acids:

Let:

• 𝐴 = {𝐴, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐾, 𝐿, 𝑀, 𝑁, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉, 𝑊, 𝑌}

be the amino acid alphabet,

• 𝐾 = 2 the k-mer length,

• 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 be a protein sequence of length 𝑛,

• 𝐾 be the set of all possible 2-mers, i.e., |𝐾| = 400.

We slide a window of size 2 across 𝑆 to extract all

overlapping 2-mers 𝑤𝑖 = 𝑠𝑖𝑠𝑖+1 , for 𝑖 = 1, … , 𝑛 − 1 , then

compute the frequency of each k-mer as:

𝑓𝑘 =
∑ 𝛿(𝑤𝑖 = 𝑘)|𝑛−𝐾+1|

𝑖=1

∑ ∑ 𝛿(𝑤𝑖 = 𝑗)|𝑛−𝐾+1|
𝑖=1

|𝐾|
𝑗=𝑖

=
𝑐𝑘

∑ 𝑐𝑗
|𝐾|
𝑗=𝑖

where:

• 𝑓𝑘 is the normalized frequency of k-mer 𝑘 ∈ 𝐾,

• 𝑐𝑘 is the raw count of k-mer kkk in sequence SSS,

• 𝛿(𝑤𝑖 = 𝑘) is the indicator function that returns 1 if

the 𝑖-th window equals 𝑘, 0 otherwise.

The final 400-dimensional vector 𝑓 = [𝑓1, 𝑓2, … , 𝑓400] is

reshaped into a 2D matrix of shape 20×20, forming a

structured feature map that preserves residue co-occurrence

patterns.

To transform the frequency matrices into image-like

representations for CNN processing, we employed

seaborn.heatmap() using the perceptually uniform viridis

colormap. Each heatmap was saved in .png format with fixed

resolution (3×3 inches, 300 dpi), no axis ticks, and no colorbar

to ensure that the model focuses solely on data-intrinsic

patterns. Each protein sequence thus yields a single heatmap

2566

representing its 2-mer structural signature. All output images

were organized into class-specific directories: images/RBP/

and images/nonRBP/. This representation enables effective

convolutional pattern extraction while grounding model input

in domain-specific priors.

3.4 Feature extraction using EfficientNet

To extract high-dimensional semantic representations of

protein images, we utilized a pre-trained EfficientNet-B3

model as the backbone feature extractor. The original

classification head was removed, and an adaptive average

pooling layer was employed to produce fixed-length feature

vectors of size 1536. The feature extraction was performed in

evaluation mode to ensure deterministic behaviour during

inference. All feature vectors were computed in batches using

a GPU-enabled environment to accelerate processing.

3.5 Graph construction

A similarity-based graph was constructed to model pairwise

relations among protein representations. We computed the

cosine similarity matrix 𝑆 ∈ 𝑅𝑁×𝑁 from the extracted feature

matrix 𝐹 ∈ 𝑅𝑁×1536, where 𝑁 denotes the number of samples.

Self-similarity entries along the diagonal of 𝑆 were set to zero

to eliminate self-loops.

To build the graph structure dynamically and avoid over-

connectivity, we adopted an adaptive top- 𝑘 thresholding

strategy. For each node, only the top-10 most similar

neighbors were retained to form directed edges, resulting in a

sparse adjacency matrix 𝐴. The edge list 𝐸 was then derived

by collecting non-zero indices from 𝐴, and converted into a

PyTorch Geometric format edge index.

3.6 Graph representation dataset

The final graph dataset was formulated as a

torch_geometric.data.Data object, where each node represents

a protein sample, its features are the extracted embeddings

from EfficientNet-B3, and its label corresponds to either

RNA-binding or non-binding class. Formally, the graph 𝐺 =
(𝑉, 𝐸) is defined as follows:

• 𝑉: set of nodes with 𝑥𝑖 ∈ 𝑅1536,

• 𝐸: set of directed edges based on cosine similarity,

• 𝑦𝑖 ∈ {0,1}: label indicating class membership.

3.7 Graph convolutional network architecture

To perform classification over the constructed protein

image graph, we designed a deep GCN composed of multiple

convolutional blocks with skip connections and a gating

mechanism. The architecture is optimized for learning rich,

spatially-aware representations from graph-structured data.

The model accepts node-level features of size 1536, which

originate from the EfficientNet-B3 feature extractor described

in Section 3.4. The GCN consists of three stacked GCNConv

layers with hidden dimensionality of 128. Each layer is

followed by batch normalization and Parametric ReLU

(PReLU) activation to improve convergence stability and

address vanishing gradients.

To maintain information from the initial representation, a

residual connection is implemented via a linear transformation

of the input features. These residual features are combined

with the output of the final GCN layer using a gated fusion

mechanism, which adaptively weights both pathways. This

gating is implemented as a sigmoid-activated feedforward

layer over the concatenation of the learned and residual

embeddings.

Formally, given an input feature matrix 𝑿 ∈ ℝ𝑁×𝑑 and edge

index ℰ, the intermediate representations through the network

are computed as:

𝐇(𝟏) = PReLU1 (BN1(GCNConv1(𝐗, ℰ)))

𝐇(𝟐) = PReLU2 (BN2 (GCNConv2(𝐇(𝟏), ℰ)))

𝐇(𝟑) = PReLU3 (BN3 (GCNConv1(𝐇(𝟐), ℰ)))

The residual projection 𝐑 = 𝐗𝐖𝑟 is combined with the

output 𝐇(𝟑) using a learned gating vector 𝑔 ∈ [0,1]𝑁×ℎ ,

computed as:

𝒈 = 𝜎 (Linear([𝐇(𝟑) ∥ 𝐑]))

The final node representation is given by the gated

combination:

𝐙 = 𝒈 ⊙ 𝐇(𝟑) + (1 − 𝒈) ⊙ 𝐑

If a graph-level prediction is required, the node-level

features 𝐙 are aggregated using global mean pooling. The

resulting pooled embedding is passed through a multi-layer

perceptron (MLP) classifier consisting of a hidden ReLU-

activated dense layer with dropout and a final softmax layer

for binary classification.

3.8 Training strategy

The GCN model was optimized using both the standard

Adam optimizer and the proposed FuzzyAdam optimizer for

comparative evaluation. For both optimizers, the initial

learning rate was set to 0.01 and weight decay of 5 × 10−4

mitigate overfitting. The cross-entropy loss function was

employed, which is appropriate for binary classification tasks

such as RNA binding site prediction.

Training was conducted in a GPU-enabled environment

using Google Colab, with all computations executed on an

NVIDIA Tesla T4 GPU. Both the model and graph data were

deployed on the same device to ensure efficient training. The

experiments were run for 500 epochs to allow for full

convergence, with performance metrics recorded at each

iteration for both optimizers.

4. RESULTS AND DISCUSSION

4.1 Result

To evaluate the effectiveness of the proposed Fuzzy-Adam

optimizer compared to the standard Adam algorithm, we

conducted extensive training over 500 epochs using a hybrid

CNN-GCN model for RNA binding site prediction. The

performance metrics, including training loss and accuracy per

epoch, are visualized in Figure 1.

Figure 1(a) shows the loss trajectories of each optimizer.

FuzzyAdam exhibits a smooth, near-monotonic decay in loss,

characterized by minimal variance and absence of catastrophic

spikes. This contrasts sharply with Adam, which—despite

2567

rapid early convergence—undergoes two notable surges in

loss around epoch 320 and 400, likely caused by sensitivity to

gradient noise or abrupt changes in curvature. These

instabilities suggest that Adam’s first- and second-moment

estimation is insufficient for maintaining learning stability in

dynamic or non-stationary regions of the loss landscape.

RMSProp similarly demonstrates persistent oscillations and

slower convergence, particularly in the first 200 epochs, and

fails to reduce the loss to near-zero levels even after 500

epochs. While RAdam provides better stability than

RMSProp, it still suffers from fluctuations between epoch

250–350, possibly due to delayed variance rectification.

In contrast, AdaBelief maintains a stable and smooth

trajectory across all epochs but tends to plateau at a higher

terminal loss than FuzzyAdam. This suggests that while

AdaBelief's adaptive confidence-based filtering suppresses

high-variance gradients, it may also under-adapt in the

presence of subtle curvature changes, leading to mild

underfitting.

FuzzyAdam’s superior performance can be attributed to its

fuzzy inference-based modulation layer, which acts as an

adaptive controller that tunes update magnitudes based on

evolving gradient behavior. This dynamic responsiveness

allows it to preserve curvature sensitivity while regularizing

overreaction to noisy gradients, thus achieving both

convergence efficiency and long-term stability.

Figure 1(b) presents the training accuracy evolution across

optimizers. FuzzyAdam exhibits consistently strong accuracy

progression, reaching >99% accuracy faster than RAdam and

RMSProp, and maintaining high-level performance

throughout the full 500 epochs. Notably, its accuracy curve is

smooth and stable, indicating robust generalization and

reduced sensitivity to mini-batch noise.

Adam shows fast initial growth but suffers severe

degradation beyond epoch 300, with accuracy plummeting and

failing to recover. This mirrors its loss volatility and indicates

that moment-based adaptivity alone is insufficient for long-

horizon learning.

RMSProp also demonstrates slow accuracy growth and high

variance, likely due to its reliance on exponentially weighted

moving averages without bias correction. RAdam, while more

stable than RMSProp, still lags behind in both speed and final

accuracy.

AdaBelief converges early to a high accuracy baseline and

remains stable. However, its curve appears relatively flat post-

epoch 200, with minimal improvement, suggesting early

saturation. While this reflects strong regularization, it may

limit adaptability in later learning phases.

FuzzyAdam outperforms all baselines in maintaining

accuracy while adapting effectively over time. Its plasticity-

stability balance—aided by fuzzy rule-based control—enables

it to sustain learning momentum without destabilization, a

critical trait for complex tasks with non-uniform difficulty.

(a) (b)
Note: FuzzyAdam consistently achieves superior convergence speed and robustness, combining low loss with stable, high accuracy throughout training,

outperforming all baselines in long-term generalization.

Figure 1. Training performance comparison of the proposed FuzzyAdam optimizer against four baselines: Adam, RAdam,

RMSProp, and AdaBelief: (a) Loss curves over 500 training epochs; (b) Accuracy progression across the same training span

Table 1. Quantitative performance comparison of FuzzyAdam and baseline optimizers across four evaluation metrics: Accuracy,

F1-Score, Matthews Correlation Coefficient (MCC), and balanced accuracy

Optimizer Accuracy F1-Score MCC Balanced Accuracy

FuzzyAdam 0.9980 ± 0.0057 0.9980 ± 0.0057 0.9960 ± 0.0114 0.9980 ± 0.0057

RAdam 0.9877 ± 0.0275 0.9877 ± 0.0275 0.9755 ± 0.0544 0.9877 ± 0.0275

AdaBelief 0.9859 ± 0.0302 0.9859 ± 0.0302 0.9717 ± 0.0604 0.9859 ± 0.0302

RMSProp 0.9738 ± 0.0719 0.9725 ± 0.0758 0.9537 ± 0.1257 0.9738 ± 0.0721

Adam 0.9223 ± 0.1332 0.9175 ± 0.1449 0.8515 ± 0.2504 0.9224 ± 0.1329
Note: Each metric is reported as mean ± standard deviation over 10 independent runs. The proposed FuzzyAdam achieves state-of-the-art performance across all

metrics with the lowest variance, demonstrating both superior predictive accuracy and robust consistency.

To quantitatively assess the effectiveness of the proposed

FuzzyAdam optimizer, we conducted 10 independent training

runs for each optimizer and evaluated the models across four

key metrics: Accuracy, F1-Score, MCC, and Balanced

Accuracy. The results, summarized in Table 1, strongly

support the superiority of FuzzyAdam over conventional

2568

adaptive optimizers.

FuzzyAdam achieves a mean accuracy of 0.9980 ± 0.0057,

significantly outperforming all baseline optimizers. The

identical F1-Score (0.9980 ± 0.0057) indicates excellent

precision-recall balance, suggesting that FuzzyAdam not only

classifies correctly but does so without sacrificing sensitivity

or specificity. The tight standard deviation further

demonstrates training stability and low variance, a critical

property in biomedical contexts where reproducibility is

paramount.

In contrast, RAdam and AdaBelief, though competitive

(accuracy > 0.98), show wider error margins (±0.0275 and

±0.0302, respectively), reflecting greater susceptibility to

initialization or stochastic noise. Adam, despite its widespread

use, performs the worst (accuracy 0.9223 ± 0.1332), with high

standard deviation indicating training instability, consistent

with the earlier observed accuracy collapse in long epochs.

FuzzyAdam yields an MCC of 0.9960 ± 0.0114, the highest

among all optimizers. MCC is a stringent metric especially

valuable in imbalanced classification scenarios, as it accounts

for all elements of the confusion matrix. The near-perfect

MCC of FuzzyAdam implies it maintains excellent predictive

balance across classes, a critical requirement in biomedical

classification tasks such as RNA-binding site prediction or

diagnostic screening. Notably, Adam's MCC drops sharply to

0.8515 ± 0.2504, reinforcing its unreliability in maintaining

balanced predictions under noisy or long-training regimes.

FuzzyAdam again leads with a Balanced Accuracy of

0.9980 ± 0.0057, suggesting that it does not overfit majority

classes and maintains performance across both positive and

negative class distributions. The lower balanced accuracy of

RMSProp (0.9738 ± 0.0721) and Adam (0.9224 ± 0.1329)

reinforces that these methods are more prone to class-specific

overfitting or underfitting, particularly in small-sample or

skewed datasets.

What sets FuzzyAdam apart is its ability to modulate

learning rates using fuzzy rule inference, offering adaptive

control not just globally (as in Adam) but contextually—based

on gradient behavior, uncertainty, and historical curvature

trends. This allows it to combine the fast convergence of Adam

with the stability of second-order-like methods, without the

computational burden.

These quantitative results provide compelling evidence that

FuzzyAdam not only excels in overall performance, but also

offers higher training reliability, better generalization, and

lower run-to-run variance than current state-of-the-art

optimizers. The improvements are particularly relevant in

biomedical and scientific domains where stability and

reproducibility are as important as raw performance.

The confusion matrix in Figure 2 demonstrates that the

proposed FuzzyAdam optimizer achieves excellent

classification accuracy, with only 3 false negatives and zero

false positives, yielding a sensitivity of 99.6% and specificity

of 100%. While these results are impressive in computational

terms, it is critical to interpret them in light of their biological

impact.

In RBP prediction, false negatives (FN) represent functional

binding proteins misclassified as non-binding. From a

biological standpoint, FN errors can lead to underestimation of

the regulatory complexity of post-transcriptional gene

regulation. For instance, omitting RBPs from subsequent

network modeling could result in incomplete RNA

interactomes, potentially missing key modulators of processes

such as mRNA splicing, localization, or decay.

Note: The matrix summarizes model predictions versus true labels across

997 samples, showing high precision and recall in both positive (RBP) and

negative (non-RBP) classes. Diagonal entries represent correct predictions,
while off-diagonal cells denote misclassifications.

Figure 2. Confusion matrix of the FuzzyAdam-based

classifier evaluated on the binary RBP classification task

Conversely, false positives (FP)—which are absent in our

model—may lead to experimental follow-ups on irrelevant

targets, wasting resources. However, in clinical or high-

throughput biological contexts, minimizing FN is often

prioritized, as missing a true functional regulator (e.g., in

disease pathways) may have more detrimental effects than

pursuing a false lead.

The minimal FN rate (0.4%) of our model ensures that

biologically relevant RBPs are preserved in predictions,

supporting downstream wet-lab validations, RNA interactome

reconstruction, and potential therapeutic targeting. This level

of sensitivity is especially favorable when working with rare

or low-expression RBPs, where signal detection is inherently

more challenging.

4.2 Ablation

The ablation study evaluates the impact of fuzzy rule set

selection (default, alternative, randomized), normalization

gain 𝑔𝑛𝑜𝑟𝑚 and exponent variance 𝑒𝑥𝑝𝑣𝑎𝑟 on the performance

of FuzzyAdam. Across 27 configurations, results consistently

favor the default rule set, with several configurations

achieving 100% accuracy and exceptionally low loss values

(e.g., 0.0032 with 𝑔𝑛𝑜𝑟𝑚 =1, 𝑒𝑥𝑝𝑣𝑎𝑟=0.2) (Table 2).

The default rule set yields robust and stable performance

across a wide range of 𝑔𝑛𝑜𝑟𝑚 ∈ {0.5,1,2} and 𝑒𝑥𝑝𝑣𝑎𝑟 ∈
{0.05,0.1,0.2} , indicating high generalizability. Notably,

performance degradation is minimal even at higher variance

values.

In contrast, the alternative rule set exhibits sensitivity to

expvar. Extreme cases such as 𝑒𝑥𝑝𝑣𝑎𝑟 = 0.2 under 𝑔𝑛𝑜𝑟𝑚 =
0.5 or 2 result in substantial loss escalation (0.1543 and

0.4973) and corresponding accuracy drop to 95.59% and

74.42%, respectively. These results suggest overfitting or

instability under higher nonlinear transformations, indicating

poor robustness of the alternative rule configurations.

Interestingly, the randomized rule set surprisingly maintains

competitive performance, with several configurations

achieving optimal accuracy and low loss (e.g., Loss=0.0024,

Accuracy=100% at 𝑔𝑛𝑜𝑟𝑚 = 1, 𝑒𝑥𝑝𝑣𝑎𝑟 = 0.1). However, its

performance is less predictable, and variability increases

as 𝑒𝑥𝑝𝑣𝑎𝑟 grows.

2569

Table 2. Ablation study of FuzzyAdam on RNA-binding

classification using different fuzzy rule sets (default,

alternative, randomized), normalization gain 𝑔𝑛𝑜𝑟𝑚, and

exponent variance 𝑒𝑥𝑝𝑣𝑎𝑟

Rule gnorm expvar Loss Accuracy

default 0.5 0.05 0.058 99.40%

default 0.5 0.1 0.0043 100.00%

default 0.5 0.2 0.0032 100.00%

default 1 0.05 0.0032 100.00%

default 1 0.1 0.0039 100.00%

default 1 0.2 0.0092 99.90%

default 2 0.05 0.0138 99.90%

default 2 0.1 0.0032 100.00%

default 2 0.2 0.003 100.00%

alternative 0.5 0.05 0.0105 100.00%

alternative 0.5 0.1 0.0038 100.00%

alternative 0.5 0.2 0.1543 95.59%

alternative 1 0.05 0.0036 100.00%

alternative 1 0.1 0.0095 100.00%

alternative 1 0.2 0.0345 99.70%

alternative 2 0.05 0.0195 99.80%

alternative 2 0.1 0.0033 100.00%

alternative 2 0.2 0.4973 74.42%

randomized 0.5 0.05 0.0035 100.00%

randomized 0.5 0.1 0.0157 99.90%

randomized 0.5 0.2 0.0201 100.00%

randomized 1 0.05 0.0024 100.00%

randomized 1 0.1 0.0024 100.00%

randomized 1 0.2 0.0513 99.60%

randomized 2 0.05 0.0027 100.00%

randomized 2 0.1 0.0317 99.60%

randomized 2 0.2 0.006 100.00%

Overall, these findings underscore the importance of

systematic rule design in fuzzy optimizers. The default rule,

proposed in this study, not only delivers state-of-the-art

performance but also demonstrates greater stability across

parameter spaces, making it the most suitable configuration for

RNA-binding classification tasks.

4.3 Discussion

The results of our extensive evaluations consistently

demonstrate that the proposed FuzzyAdam optimizer exhibits

superior performance across multiple metrics, particularly in

minimizing FN, a critical factor in biological classification

tasks such as RBP site prediction. As shown in the ablation

study, FuzzyAdam achieves the highest accuracy, MCC, and

balanced accuracy, even under varying fuzzy rule

configurations. These improvements are robust across

different k-mer sizes and rule granularities.

Importantly, reducing the false negative rate is not merely a

statistical improvement—it has substantial biological

relevance. In biomedical applications, false negatives can

result in the failure to identify key binding motifs, which may

lead to missed therapeutic targets or overlooked regulatory

elements. By minimizing FN, FuzzyAdam supports more

reliable biological discovery and downstream validation.

While FuzzyAdam, like other optimizers, ultimately aims to

minimize the loss function during training, its incorporation of

fuzzy logic principles enhances the model's sensitivity to

ambiguous or borderline input features. Unlike conventional

optimizers, FuzzyAdam dynamically adjusts learning based

on rule-based reasoning, enabling the optimizer to converge

not just faster, but more meaningfully in biological contexts

where noise and uncertainty are prevalent.

Compared to standard Adam, SGD, and RMSProp,

FuzzyAdam offers consistent improvements even on well-

balanced datasets, suggesting that its benefits are not limited

to class imbalance mitigation, but extend to fine-grained

pattern recognition in the input space. The optimizer’s ability

to work well with compact models (e.g., CNN-GCN hybrids)

further highlights its versatility in resource-constrained

environments typical in high-throughput omics pipelines.

Nevertheless, there are some limitations. The current fuzzy

rule configurations are manually defined, which may restrict

generalizability across tasks. Future work will focus on

integrating neuro-fuzzy systems or meta-learning strategies to

automate rule generation and adaptively tune parameters

across datasets and biological domains.

5. CONCLUSION

In this study, we introduced FuzzyAdam, a fuzzy logic-

enhanced variant of the Adam optimizer, tailored to improve

the performance of deep learning models in RNA-binding site

prediction. By integrating fuzzy rules into the adaptive

learning rate mechanism, FuzzyAdam enables more nuanced

weight updates, particularly in regions with uncertain or

borderline patterns. Experimental results on balanced RBP and

non-RBP datasets demonstrate that FuzzyAdam consistently

achieves lower false negative rates and competitive

performance across key metrics such as accuracy, F1-score,

MCC, and balanced accuracy.

Ablation studies further reveal that the fuzzy rule

configuration plays a significant role in optimizing sensitivity

without sacrificing overall performance. This suggests that

FuzzyAdam may offer an advantage in biological

classification tasks where minimizing false negatives is

crucial. While FuzzyAdam is not explicitly informed by

biological principles, its ability to handle ambiguous features

and imprecise patterns may be particularly suitable for noisy

biological data.

Overall, FuzzyAdam offers a computationally efficient and

generalizable optimization strategy that improves sensitivity

and robustness without increasing model complexity. Its

potential applicability to other bioinformatics tasks warrants

further investigation, especially in settings involving multi-

omics data or limited supervision.

ACKNOWLEDGMENT

This work was supported by the International Publication

Research Grant (Riset Publikasi Internasional) from the

Institute for Research and Community Service (LPPM),

Universitas Diponegoro, Indonesia. This research was funded

by Selain APBN Universitas Diponegoro in 2025, SPK

Number 222-518/UN7.D2/PP/IV/2025.

REFERENCES

[1] Jia, Y.L., Jia, R.Y., Chen, Y.X., Lin, X.Y., Aishan, N.,

Li, H., Wang, L.B., Zhang, X.C., Ruan, J. (2025). The

role of RNA binding proteins in cancer biology: A focus

on FMRP. Genes & Diseases, 12(4): 101493.

https://doi.org/10.1016/j.gendis.2024.101493

[2] Pan, X.Y., Fang, Y., Liu, X.J., Guo, X.Y., Shen, H.B.

2570

(2025). RBPsuite 2.0: An updated RNA-protein binding

site prediction suite with high coverage on species and

proteins based on deep learning. BMC Biology, 23: 74.

https://doi.org/10.1186/s12915-025-02182-2

[3] Briata, P., Gherzi, R. (2020). Long non-coding RNA-

ribonucleoprotein networks in the post-transcriptional

control of gene expression. Non-Coding RNA, 6(3): 40.

https://doi.org/10.3390/ncrna6030040

[4] Li, W., Deng, X.L., Chen, J.J. (2022). RNA-binding

proteins in regulating mRNA stability and translation:

Roles and mechanisms in cancer. Seminars in Cancer

Biology, 86: 664-677.

https://doi.org/10.1016/j.semcancer.2022.03.025

[5] Varesi, A., Campagnoli, L.I.M., Barbieri, A., Rossi, L.,

Ricevuti, G., Esposito, C., Chirumbolo, S., Marchesi, N.,

Pascale, A. (2023). RNA binding proteins in senescence:

A potential common linker for age-related diseases?

Ageing Research Reviews, 88: 101958.

https://doi.org/10.1016/j.arr.2023.101958

[6] Kelaini, S., Chan, C., Cornelius, V.A., Margariti, A.

(2021). RNA-binding proteins hold key roles in function,

dysfunction, and disease. Biology, 10(5): 366.

https://doi.org/10.3390/biology10050366

[7] Hafner, M., Katsantoni, M., Köster, T., Marks, J.,

Mukherjee, J., Staiger, D., Ule, J., Zavolan, M. (2021).

CLIP and complementary methods. Nature Reviews

Methods Primers, 1: 20. https://doi.org/10.1038/s43586-

021-00018-1

[8] Mugisha, C.S., Tenneti, K., Kutluay, S.B. (2020). Clip

for studying protein-RNA interactions that regulate virus

replication. Methods, 183: 84-92.

https://doi.org/10.1016/j.ymeth.2019.11.011

[9] Mukherjee, P., Kurup, R.R., Hundley, H.A. (2021). RNA

immunoprecipitation to identify in vivo targets of RNA

editing and modifying enzymes. Methods in

Enzymology, 658: 137-160.

https://doi.org/10.1016/bs.mie.2021.06.005

[10] Daras, G., Alatzas, A., Tsitsekian, D., Templalexis, D.,

Rigas, S., Hatzopoulos, P. (2019). Detection of RNA‐

protein interactions using a highly sensitive non‐

radioactive electrophoretic mobility shift assay.

Electrophoresis, 40(9): 1365-1371.

https://doi.org/10.1002/elps.201800475

[11] Yousef, M., Allmer, J. (2023). Deep learning in

bioinformatics. Turkish Journal of Biology, 47(6): 366-

382. https://doi.org/10.55730/1300-0152.2671

[12] Mumuni, A., Mumuni, F. (2025). Automated data

processing and feature engineering for deep learning and

big data applications: A survey. Journal of Information

and Intelligence, 3(2): 113-153.

https://doi.org/10.1016/j.jiixd.2024.01.002

[13] Li, M.F., Jiang, Y.Y., Zhang, Y.Z., Zhu, H.S. (2023).

Medical image analysis using deep learning algorithms.

Frontiers in Public Health, 11: 1273253.

https://doi.org/10.3389/fpubh.2023.1273253

[14] Grønning, A.G.B., Doktor, T.K., Larsen, S.J., Petersen,

U.S.S., et al. (2020). DeepCLIP: Predicting the effect of

mutations on protein-RNA binding with deep learning.

Nucleic Acids Research, 48(13): 7099-7118.

https://doi.org/10.1093/nar/gkaa530

[15] Zhang, J.D., Liu, B., Wang, Z.H., Lehnert, K., Gahegan,

M. (2022). DeepPN: A deep parallel neural network

based on convolutional neural network and graph

convolutional network for predicting RNA-protein

binding sites. BMC Bioinformatics, 23: 257.

https://doi.org/10.1186/s12859-022-04798-5

[16] Jin, W.H., Brannan, K.W., Kapeli, K., Park, S.S., et al.

(2023). HydRA: Deep-learning models for predicting

RNA-binding capacity from protein interaction

association context and protein sequence. Molecular

Cell, 83(14): 2595-2611.e11.

https://doi.org/10.1016/j.molcel.2023.06.019

[17] Qiao, Y.X., Yang, R., Liu, Y., Chen, J.X., et al. (2024).

DeepFusion: A deep bimodal information fusion network

for unraveling protein-RNA interactions using in vivo

RNA structures. Computational and Structural

Biotechnology Journal, 23: 617-625.

https://doi.org/10.1016/j.csbj.2023.12.040

[18] Li, M. (2019). Deep learning deciphers protein - RNA

interaction. Genomics, Proteomics & Bioinformatics,

17(5): 475-477.

https://doi.org/10.1016/j.gpb.2019.11.002

[19] Aji, B.W., Adillah, A.N., Septiarti, D., Irawanto, B.,

Surarso, B., Farikhin, Dasril, Y. (2024). Modified fuzzy

k-nearest centroid neighbor method with Chebyshev

distance. AIP Conference Proceedings, 3046(1): 020053.

https://doi.org/10.1063/5.0194549

[20] Cheung, M., Moura, J.M.F. (2020). Graph neural

networks for COVID-19 drug discovery. In 2020 IEEE

International Conference on Big Data (Big Data),

Atlanta, GA, USA, pp. 5646-5648.

https://doi.org/10.1109/BigData50022.2020.9378164

[21] Aji, B.W., Chasanah, S.N., Irawanto, B., Surarso, B.,

Farikhin, Dasril, Y. (2024). Fuzzy clustering by local

approximation of memberships in different distance

metrics. AIP Conference Proceedings, 3046(1): 020003.

https://doi.org/10.1063/5.0194548

[22] Yeganejou, M., Honari, K., Kluzinski, R., Dick, S.,

Lipsett, M., Miller, J. (2023). DCNFIS: Deep

convolutional neuro-fuzzy inference system. arXiv

preprint, arXiv:2308.06378.

https://doi.org/10.48550/ARXIV.2308.06378

[23] Sajid, M., Malik, A.K., Tanveer, M. (2024). Intuitionistic

fuzzy broad learning system: Enhancing robustness

against noise and outliers. IEEE Transactions on Fuzzy

Systems, 32(8): 4460-4469.

https://doi.org/10.1109/TFUZZ.2024.3400898

[24] Tyralis, H., Papacharalampous, G. (2024). A review of

predictive uncertainty estimation with machine learning.

Artificial Intelligence Review, 57: 94.

https://doi.org/10.1007/s10462-023-10698-8

[25] Das, U.C., Le, N.T., Vitoonpong, T., Prapinpairoj, C., et

al. (2025). An innovative model based on machine

learning and fuzzy logic for tracking lower limb

exercises in stroke patients. Scientific Reports, 15:

11220. https://doi.org/10.1038/s41598-025-90031-1

[26] Zheng, Y.H., Xu, Z.S., Wu, T., Yi, Z. (2024). A

systematic survey of fuzzy deep learning for uncertain

medical data. Artificial Intelligence Review, 57: 230.

https://doi.org/10.1007/s10462-024-10871-7

[27] Belhadi, A., Djenouri, Y., Belbachir, A.N. (2025).

Ensemble fuzzy deep learning for brain tumor detection.

Scientific Reports, 15: 6124.

https://doi.org/10.1038/s41598-025-90572-5

[28] Reyad, M., Sarhan, A.M., Arafa, M. (2023). A modified

Adam algorithm for deep neural network optimization.

Neural Computing and Applications, 35: 17095-17112.

https://doi.org/10.1007/s00521-023-08568-z

2571

[29] Reddi, S.J., Kale, S., Kumar, S. (2019). On the

convergence of Adam and beyond. arXiv preprint,

arXiv:1904.09237.

https://doi.org/10.48550/arXiv.1904.09237

[30] The UniProt Consortium. (2023). UniProt: The universal

protein knowledgebase in 2023. Nucleic Acids Research,

51(D1): D523-D531.

https://doi.org/10.1093/nar/gkac1052

2572

