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Accurate prediction of ribonucleic acid (RNA) binding sites is essential for deciphering 

RNA–protein interactions and understanding post-transcriptional gene regulation. 

While Graph Convolutional Networks (GCNs) effectively capture complex topological 

features in biological data, their performance heavily relies on the choice of 

optimization algorithm. This study proposes FuzzyAdam, a novel gradient-based 

optimizer that integrates fuzzy logic into the adaptive learning framework of standard 

Adam to improve convergence behavior in CNN-GCN hybrid models. Unlike Adam, 

FuzzyAdam dynamically adjusts learning rates based on fuzzy inference over gradient 

trends, aiming to reduce oscillations and misclassification. To assess its effectiveness, 

we trained a CNN-GCN architecture on a balanced dataset of 997 image-encoded RNA 

binding and non-binding sequences. Compared to standard Adam, FuzzyAdam 

achieved higher performance across all metrics: 98.39% accuracy, 98.39% F1-score, 

98.42% precision, and 98.39% recall, with more stable convergence and reduced false 

negatives as indicated by confusion matrix analysis. Although the model does not 

explicitly model regulatory mechanisms, improved classification of binding sites can 

facilitate downstream analyses related to post-transcriptional control. FuzzyAdam 

offers a robust and interpretable optimization strategy, with potential utility for broader 

bioinformatics tasks involving graph-based or structurally encoded inputs.  
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1. INTRODUCTION

Ribonucleic acid (RNA)-binding proteins (RBPs) are 

integral to post-transcriptional regulation in eukaryotic cells, 

orchestrating a wide array of biological processes including 

RNA splicing, transport, stability, localization, and translation 

control [1, 2]. By forming ribonucleoprotein complexes 

(RNPs) through interactions with coding and non-coding 

RNAs, RBPs establish dynamic regulatory networks that fine-

tune gene expression in a context-dependent manner [3, 4]. 

Disruption in RBP-RNA interactions has been implicated in a 

variety of pathophysiological conditions, ranging from 

neurodegenerative disorders like amyotrophic lateral sclerosis 

(ALS) and frontotemporal dementia to tumorigenesis in 

various cancers [5, 6]. 

Conventional experimental methods for RBP identification, 

such as cross-linking immunoprecipitation followed by 

sequencing (CLIP-seq) [7, 8], RNA immunoprecipitation 

sequencing (RIP-seq) [9], and electrophoretic mobility shift 

assays (EMSAs) [10], have provided foundational insights 

into RNA–protein interactions. However, these techniques are 

inherently labor-intensive, low-throughput, and require 

significant experimental optimization, which limits their 

scalability in large-scale or dynamic cellular contexts. 

In response to these limitations, computational 

approaches—especially those based on machine learning—

have emerged as viable alternatives for predicting RBP 

binding sites directly from nucleotide sequences. Among 

these, deep learning methods have shown remarkable promise 

due to their ability to automatically learn complex patterns 

from raw biological data without the need for manual feature 

engineering [11-13]. Specifically, convolutional neural 

networks (CNNs) have been widely adopted to capture local 

sequence motifs relevant to RBP binding, as demonstrated by 

DeepCLIP [14], which combines CNN and long short-term 

memory (LSTM) layers to model both spatial and contextual 

dependencies in sequence data. 

Building upon the success of CNN-based models, recent 

studies have explored the incorporation of graph-based 

architectures such as graph convolutional networks (GCNs), 

which allow the integration of structural relationships between 

RNA nucleotides into the prediction framework. For instance, 

DeepPN [15] combines CNNs and GCNs to simultaneously 

leverage both local sequence context and the underlying RNA 

secondary structure, achieving improved predictive 

performance without explicit structural input. 

In addition to these neural models, ensemble learning 

methods like HydRA [16] and DeepFusion [17] have further 

extended the scope of RBP prediction by integrating diverse 

data modalities, including protein sequence features and 

evolutionary information, to enhance classification accuracy 

and generalizability. NucleicNet [18], for example, frames 
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RBP prediction as a residue-level classification task, offering 

fine-grained insights into protein-RNA recognition 

mechanisms at atomic resolution.  

Despite remarkable progress in the development of deep 

learning models for RNA–protein binding site prediction, 

these methods often fall short in capturing the full complexity 

of RNA–protein interactions. Such interactions are governed 

by a wide array of biochemical, topological, and 

thermodynamic factors that are difficult to model using 

standard neural architectures. Moreover, many state-of-the-art 

models lack interpretability, functioning as “black boxes” that 

hinder biological validation and limit translational 

applicability. This poses a significant barrier, especially in 

biomedical contexts where model explainability is crucial for 

generating actionable insights. 

To address these limitations, recent studies have 

increasingly explored the integration of fuzzy logic into 

machine learning and deep learning pipelines. Fuzzy logic has 

been applied across various machine learning domains [19-21] 

and has consistently improved model performance by 

enhancing robustness, convergence, and generalization. Fuzzy 

logic offers a mathematically grounded framework for 

handling uncertainty, ambiguity, and data imprecision—

characteristics that are highly prevalent in biological datasets. 

For instance, hybrid neuro-fuzzy systems have demonstrated 

improved transparency and interpretability in complex models 

through rule-based reasoning mechanisms without sacrificing 

predictive performance [22]. Likewise, the intuitionistic fuzzy 

broad learning system (IF-BLS) has shown superior diagnostic 

accuracy in noisy datasets such as Alzheimer’s disease 

classification [23]. Among recent contributions, reference [24] 

provided a systematic review of predictive uncertainty 

estimation techniques in machine learning, highlighting the 

value of probabilistic frameworks such as fuzzy logic for 

improving both the reliability and robustness of model 

outcomes under uncertain or imbalanced conditions.  

The practical utility of fuzzy logic is further exemplified in 

clinical applications, where real-time interpretability and 

robustness are paramount. In stroke rehabilitation systems, 

fuzzy logic has been instrumental in enabling responsive 

feedback control, thereby enhancing therapy outcomes in 

environments characterized by patient variability and 

uncertainty. For instance, Das et al. [25] introduced a hybrid 

model combining fuzzy logic with machine learning to 

monitor lower limb exercises in stroke patients, facilitating 

real-time feedback and progress tracking without human 

intervention [25]. 

In the realm of medical imaging, fuzzy-augmented deep 

learning frameworks have demonstrated superior performance 

over traditional architectures by effectively managing 

ambiguous pixel-level data and improving diagnostic 

reliability. A comprehensive survey by Zheng et al. [26] 

highlighted the efficacy of fuzzy deep learning models in 

handling uncertain medical data, emphasizing their 

advantages in enhancing model interpretability and 

generalization across various clinical scenarios. Additionally, 

a novel ensemble fuzzy deep learning approach was proposed 

for brain MRI analysis, integrating volumetric fuzzy pooling 

and attention mechanisms to improve the segmentation of 

brain tissues and abnormalities, thereby advancing diagnostic 

accuracy [27].  

Motivated by these challenges and limitations, we focus our 

methodological innovation on the development of a novel 

fuzzy logic-augmented optimizer, named FuzzyAdam, 

specifically tailored for RNA–protein binding site prediction 

in noisy, imbalanced, and temporally dynamic biological 

datasets. Unlike conventional optimizers such as Adam, 

FuzzyAdam introduces an adaptive learning mechanism 

driven by fuzzy inference rules that respond to fluctuations in 

loss dynamics and gradient behaviour. This approach 

enhances training stability, improves generalization, and 

promotes interpretability, without requiring architectural 

changes or manual reweighting. 

Our contribution is centered on the design and 

implementation of FuzzyAdam, which enhances convergence 

stability without requiring any modification to the underlying 

model architecture or data representation. This approach offers 

a principled mechanism for handling uncertainty during 

training—a characteristic often presents in biological 

datasets—even when explicit noise or imbalance is not 

modeled. 

To the best of our knowledge, this is the first application of 

fuzzy-enhanced optimization within the context of RBP 

interaction modeling, offering a new dimension of control and 

interpretability in biological deep learning frameworks. 

2. ADAM OPTIMIZER

The Adam (Adaptive Moment Estimation) optimizer is a 

first-order gradient-based method widely used in deep learning 

due to its empirical effectiveness, particularly in training large-

scale and noisy models. It combines the advantages of two 

other popular optimization techniques: AdaGrad and 

RMSProp, by computing adaptive learning rates for each 

parameter. 

Formally in reference [28], let 𝜃𝑡 ∈ ℝ𝑑  denote the

parameter vector at iteration 𝑡 , and 𝑔𝑡 = ∇𝜃ℒ(𝜃𝑡)  be the

stochastic gradient of a loss function ℒ  at step 𝑡 . Adam 

maintains exponential moving averages of both the gradients 

and their squares: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (1) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (2) 

To correct initialization bias, Adam computes bias-

corrected moment estimates: 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 , 𝑣̂𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡 (3) 

The parameter update rule is then given by: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣̂𝑡 + 𝜀
𝑚̂𝑡 (4) 

where, 𝜂 is the learning rate, 𝛽1, 𝛽2 ∈ [0,1) are decay rates for

the moment estimates, 𝜀 ≪ 1  is a small constant to avoid 

division by zero (typically 𝜀 = 10−8).

This formulation allows Adam to adaptively scale learning 

rates for each parameter based on its gradient history, thereby 

improving optimization stability and convergence speed—

especially in problems with sparse gradients or non-stationary 

objectives. 
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3. METHODOLOGY

3.1 Conceptual overview 

The FuzzyAdam optimizer is a novel extension of the 

standard Adam optimizer, incorporating fuzzy logic-based 

adaptation into the learning rate dynamics. While Adam 

utilizes first and second moment estimates of gradients to 

perform parameter updates with adaptive learning rates, 

FuzzyAdam introduces a fuzzy inference mechanism that 

dynamically adjusts the effective learning rate scaling at each 

iteration based on recent training dynamics. 

Let 𝜃𝑡  denote the model parameters at iteration 𝑡, and let

ℒ(𝜃𝑡)  be the corresponding loss. The update rule for

FuzzyAdam is defined as: 

𝜃𝑡+1  =  𝜃𝑡  −  𝜂 · 𝜆𝑡 ·
𝑚̂𝑡

√𝑣̂𝑡 + 𝜀
(5) 

where: 

• 𝜂 >  0 is the base learning rate,

• 𝑚̂𝑡 and 𝑣̂𝑡 are the bias-corrected first and second

moment estimates, respectively,

• 𝜀 is a small constant to ensure numerical stability.

𝜆𝑡  ∈  ℝ⁺ is a fuzzy scaling factor adaptively determined at

each step through a fuzzy inference system. The fuzzy factor 

𝜆𝑡 modulates the update magnitude in a context-aware manner

by evaluating features extracted from training behavior, such 

as: Change in loss: 𝛥ℒ𝑡  =  ℒ𝑡  −  ℒ𝑡−1  and Gradient norm:

‖𝑔𝑡‖.

The full step-by-step procedure of FuzzyAdam is outlined 

in Algorithm 1. 

Algorithm 1: FuzzyAdam Optimizer 

Input: 

Initial parameters 𝜃0, learning rate 𝜂,

exponential decay rates 𝛽1, 𝛽2 ∈  [0, 1),

    small constant 𝜀 >  0,  

    fuzzy momentum coefficient 𝛾 ∈ [0, 1] 
Initialize: 

𝑚0 ←  0 (first moment vector)

𝑣0  ←  0 (second moment vector)

    fuzzy_score ← 1.0 

 prev_loss ← None 

for 𝑡 =  1 to T do: 

1. Compute gradient 𝑔𝑡 ←  𝛻𝜃ℒ(𝜃𝑡)
2. Update biased moments using Eq. (1) and Eq. (2)

3. Compute bias-corrected estimates using Eq. (3)

4. Compute standard Adam denominator: denom ←

√𝑣̂𝑡 + 𝜀

5. if prev_loss is defined:

𝛥ℒ𝑡  ←  ℒ𝑡  −  ℒ𝑡−1, g_norm ←  ‖𝑔ₜ‖,

v_std ←  √(mean(𝑣𝑡))
    Apply fuzzy rules: 

        if Δℒ > 0: 

  𝜆 ←  0.5 if g_norm > 1 else 0.8 

        else if Δℒ < 0: 

    𝜆 ←  1.05 if v_std < 0.1 else 1.01 

     Smooth fuzzy factor: 

fuzzyscore ← 𝛾 · fuzzyscore + (1 − 𝛾) ⋅ 𝜆
else: 

     fuzzy_score ← 1.0 

6. Compute update step:

𝜃𝑡+1  ←  𝜃𝑡  −  𝜂 · fuzzy_score · 𝑚̂𝑡 / denom
7. Set prev_loss ← ℒ

return 𝜃𝑇

FuzzyAdam extends the standard Adam algorithm by 

embedding fuzzy reasoning to improve adaptivity and 

robustness. Unlike traditional optimizers that rely on fixed or 

heuristically scheduled learning rates, FuzzyAdam 

dynamically adjusts the effective step size in each iteration. 

This adjustment is guided by fuzzy inference over signals such 

as gradient magnitude, loss trajectory, and momentum 

variance—enabling smoother updates and improved 

convergence. 

By integrating fuzzy logic, FuzzyAdam captures vague and 

nonlinear dependencies in training dynamics that are 

otherwise difficult to encode using classical heuristics. As a 

result, it offers several desirable properties: 

• Adaptivity: it responds in real-time to changes in

training dynamics;

• Interpretability: its decisions are governed by human-

readable fuzzy rules;

• Stability: it maintains smoother convergence under

noisy or chaotic training conditions.

In summary, FuzzyAdam can be viewed as a cognitively 

augmented optimizer that combines the statistical strength of 

Adam with the flexible reasoning capabilities of fuzzy logic. 

This synergy makes it particularly effective for scenarios 

where manual learning rate tuning is impractical, and training 

stability is critical. 

3.2 Convergence analysis 

Theorem: Let ℒ(𝜃) be a continuously differentiable loss 

function that is bounded below and has Lipschitz continuous 

gradients with constant ℒ𝑔 > 0, i.e.,

‖∇ℒ(𝜃) − ∇ℒ(𝜃′)‖ ≤ ℒ𝑔‖𝜃 − 𝜃′‖forall𝜃, 𝜃′.

Assume: 

• The gradients are bounded: ‖𝑔𝑡‖ ≤ 𝐺 < ∞.

• The gradient norms are square-

summable: ∑ ‖𝑔𝑡‖2 < ∞∞
𝑡=1 .

• The fuzzy scaling factor 𝜆𝑡 ∈ [𝜆min  , 𝜆max  ], where

0 < 𝜆min  ≤ 𝜆max  < ∞.

Then, the sequence {𝜃𝑡}  generated by the FuzzyAdam

update rule: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 · 𝜆𝑡 ·
𝑚̂𝑡

(√𝑣̂𝑡 + 𝜀)

Converges to a stationary point 𝜃∗, i.e., lim
𝑡→∞

 ‖∇ℒ(𝜃𝑡)‖ = 0

and ∑ ‖𝜃𝑡+1 − 𝜃𝑡‖²∞
𝑡=1 < ∞. 

Proof: Define the update step as: 

𝛥𝑡 = 𝜂 · 𝜆𝑡 ·
𝑚̂𝑡

√𝑣̂𝑡 + 𝜀
, 

So the update rule becomes:  

𝜃𝑡+1 = 𝜃𝑡 − 𝛥𝑡 .

By the standard descent lemma for functions with Lipschitz 

continuous gradients [29], we have: 
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ℒ(𝜃𝑡+1) ≤ ℒ(𝜃𝑡) + ∇ℒ(𝜃𝑡)⊤(𝜃𝑡+1 − 𝜃𝑡)

+ (
ℒ𝑔

2
) ‖𝜃𝑡+1 − 𝜃𝑡‖2.

Substituting 𝜃𝑡+1 − 𝜃𝑡 = −𝛥𝑡 gives:

ℒ(𝜃𝑡+1) ≤ ℒ(𝜃𝑡) − ∇ℒ(𝜃𝑡)⊤𝛥𝑡 + (
𝐿𝑔

2
) ‖𝛥𝑡‖2

Note that: Δ𝑡 = 𝜂 · 𝜆𝑡 ·
𝑚̂𝑡

√𝑣̂𝑡+ 𝜀
, and since 𝜆𝑡 ∈ [𝜆𝑚𝑖𝑛 , 𝜆𝑚𝑎𝑥],

we can bound the update norm: ‖Δ𝑡‖ ≤  𝜂 · 𝜆max  · ‖
𝑚̂𝑡

√𝑣̂𝑡+ 𝜀
‖ ≤

𝐶, for some constant 𝐶 > 0. 

Assuming 𝑚̂𝑡  aligns with 𝑔𝑡  (as is standard under bias

correction), then: 

∇ℒ(𝜃𝑡)⊤Δ𝑡 ≥ 𝜂 · 𝜆𝑚𝑖𝑛 · 𝛾 · ‖∇ℒ(𝜃𝑡)‖2,

for some 𝛾 >  0 due to moment alignment. 

Thus: 

ℒ(𝜃𝑡+1) ≤ ℒ(𝜃𝑡) − 𝜂 ⋅ 𝜆𝑚𝑖𝑛 · 𝛾 · ‖∇ℒ(𝜃𝑡)‖2 + (
ℒ𝑔

2
) · 𝐶² 

Summing from 𝑡 = 1 to T: 

ℒ(𝜃1) − ℒ(𝜃𝑇+1) ≥ 𝜂 ⋅ 𝜆𝑚𝑖𝑛

⋅ 𝛾 ∑ ‖∇ℒ(𝜃_𝑡)‖² − 𝑇 · (
ℒ𝑔

2
) · 𝐶²

𝑇

𝑡=1

. 

Because ℒ  is bounded below, the left-hand side is finite. 

Hence: 

∑‖∇ℒ(𝜃𝑡)‖2

∞

𝑡=1

< ∞ 

which implies: 

lim
𝑡→∞

‖∇ℒ(𝜃𝑡)‖ = 0.

Furthermore, since: ‖𝜃𝑡+1 − 𝜃𝑡‖2 = ‖𝛥𝑡‖2 ≤ (𝜂 · 𝜆𝑚𝑎𝑥 ·
𝐶)2 and ∑ ‖𝑔𝑡‖2∞

𝑡=1 < ∞, we have:

∑‖𝜃𝑡+1 − 𝜃𝑡‖2

∞

𝑡=1

< ∞. 

The convergence of the FuzzyAdam optimizer is 

guaranteed under the same conditions that ensure the 

convergence of traditional Adam. The introduction of the 

fuzzy scaling factor does not interfere with convergence but 

instead provides a dynamic adjustment to the learning rate that 

can enhance optimization stability. The fuzzy scaling factor 

𝜆𝑡, driven by loss differences and gradient norms, adapts the

learning process based on the changing optimization 

landscape, potentially leading to faster convergence in 

scenarios where traditional methods struggle with noisy 

gradients or fluctuating loss landscapes. 

Thus, FuzzyAdam maintains the theoretical guarantees of 

Adam while introducing a flexible mechanism to handle 

uncertainty in the optimization process, making it particularly 

well-suited for complex, non-stationary environments, such as 

those encountered in deep neural networks. 

3.3 Protein sequence retrieval from UniProt 

To construct an image-based representation of protein 

sequences suitable for CNN input, we developed a systematic 

pipeline that retrieves curated RBP and non-RBP sequences 

from UniProt, computes 2-mer (dipeptide) frequency 

distributions, and renders them into 2D heatmaps. This 

approach leverages the physicochemical and contextual 

information embedded in short amino acid motifs, while 

maintaining compatibility with image-based deep learning 

architectures. 

Protein identifiers were programmatically retrieved from 

the UniProt Knowledgebase (UniProtKB) [30] using a 

RESTful API. We utilized the controlled vocabulary keyword 

KW-0694 to isolate RBPs, while non-RBP sequences were 

obtained using the negation NOT keyword:KW-0694. The 

API was queried in batches (batch size = 500), and all primary 

accession numbers were stored locally to ensure experimental 

reproducibility. query_rbp = "keyword:KW-0694" and 

query_nonrbp = "NOT keyword:KW-0694". 

For each accession ID, the corresponding FASTA sequence 

was downloaded via:  

https://rest.uniprot.org/uniprotkb/{accession}.fasta. 

We excluded sequences shorter than 50 amino acids to 

prevent sparse or degenerate feature encodings. 

To convert sequences into a biologically informed 

numerical representation, we employed dipeptide frequency 

encoding, where each sequence is mapped to a 20×20 matrix 

based on the normalized frequency of overlapping 2-mers 

(subsequences of length 2) constructed from the 20 canonical 

amino acids: 

Let: 

• 𝐴 = {𝐴, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐾, 𝐿, 𝑀, 𝑁, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑉, 𝑊, 𝑌}

be the amino acid alphabet,

• 𝐾 = 2 the k-mer length,

• 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 be a protein sequence of length 𝑛,

• 𝐾 be the set of all possible 2-mers, i.e., |𝐾| = 400.

We slide a window of size 2 across 𝑆  to extract all 

overlapping 2-mers 𝑤𝑖 = 𝑠𝑖𝑠𝑖+1 , for 𝑖 = 1, … , 𝑛 − 1 , then

compute the frequency of each k-mer as: 

𝑓𝑘 =
∑ 𝛿(𝑤𝑖 = 𝑘)|𝑛−𝐾+1|

𝑖=1

∑ ∑ 𝛿(𝑤𝑖 = 𝑗)|𝑛−𝐾+1|
𝑖=1

|𝐾|
𝑗=𝑖

=
𝑐𝑘

∑ 𝑐𝑗
|𝐾|
𝑗=𝑖

where: 

• 𝑓𝑘 is the normalized frequency of k-mer 𝑘 ∈ 𝐾,

• 𝑐𝑘 is the raw count of k-mer kkk in sequence SSS,

• 𝛿(𝑤𝑖 = 𝑘) is the indicator function that returns 1 if

the 𝑖-th window equals 𝑘, 0 otherwise. 

The final 400-dimensional vector 𝑓 = [𝑓1, 𝑓2, … , 𝑓400]  is

reshaped into a 2D matrix of shape 20×20, forming a 

structured feature map that preserves residue co-occurrence 

patterns. 

To transform the frequency matrices into image-like 

representations for CNN processing, we employed 

seaborn.heatmap() using the perceptually uniform viridis 

colormap. Each heatmap was saved in .png format with fixed 

resolution (3×3 inches, 300 dpi), no axis ticks, and no colorbar 

to ensure that the model focuses solely on data-intrinsic 

patterns. Each protein sequence thus yields a single heatmap 
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representing its 2-mer structural signature. All output images 

were organized into class-specific directories: images/RBP/ 

and images/nonRBP/. This representation enables effective 

convolutional pattern extraction while grounding model input 

in domain-specific priors. 

3.4 Feature extraction using EfficientNet 

To extract high-dimensional semantic representations of 

protein images, we utilized a pre-trained EfficientNet-B3 

model as the backbone feature extractor. The original 

classification head was removed, and an adaptive average 

pooling layer was employed to produce fixed-length feature 

vectors of size 1536. The feature extraction was performed in 

evaluation mode to ensure deterministic behaviour during 

inference. All feature vectors were computed in batches using 

a GPU-enabled environment to accelerate processing. 

3.5 Graph construction 

A similarity-based graph was constructed to model pairwise 

relations among protein representations. We computed the 

cosine similarity matrix 𝑆 ∈ 𝑅𝑁×𝑁 from the extracted feature

matrix 𝐹 ∈ 𝑅𝑁×1536, where 𝑁 denotes the number of samples.

Self-similarity entries along the diagonal of 𝑆 were set to zero 

to eliminate self-loops. 

To build the graph structure dynamically and avoid over-

connectivity, we adopted an adaptive top- 𝑘  thresholding 

strategy. For each node, only the top-10 most similar 

neighbors were retained to form directed edges, resulting in a 

sparse adjacency matrix 𝐴. The edge list 𝐸 was then derived 

by collecting non-zero indices from 𝐴, and converted into a 

PyTorch Geometric format edge index. 

3.6 Graph representation dataset 

The final graph dataset was formulated as a 

torch_geometric.data.Data object, where each node represents 

a protein sample, its features are the extracted embeddings 

from EfficientNet-B3, and its label corresponds to either 

RNA-binding or non-binding class. Formally, the graph 𝐺 =
(𝑉, 𝐸) is defined as follows: 

• 𝑉: set of nodes with 𝑥𝑖 ∈ 𝑅1536,

• 𝐸: set of directed edges based on cosine similarity,

• 𝑦𝑖 ∈ {0,1}: label indicating class membership.

3.7 Graph convolutional network architecture 

To perform classification over the constructed protein 

image graph, we designed a deep GCN composed of multiple 

convolutional blocks with skip connections and a gating 

mechanism. The architecture is optimized for learning rich, 

spatially-aware representations from graph-structured data. 

The model accepts node-level features of size 1536, which 

originate from the EfficientNet-B3 feature extractor described 

in Section 3.4. The GCN consists of three stacked GCNConv 

layers with hidden dimensionality of 128. Each layer is 

followed by batch normalization and Parametric ReLU 

(PReLU) activation to improve convergence stability and 

address vanishing gradients. 

To maintain information from the initial representation, a 

residual connection is implemented via a linear transformation 

of the input features. These residual features are combined 

with the output of the final GCN layer using a gated fusion 

mechanism, which adaptively weights both pathways. This 

gating is implemented as a sigmoid-activated feedforward 

layer over the concatenation of the learned and residual 

embeddings. 

Formally, given an input feature matrix 𝑿 ∈ ℝ𝑁×𝑑 and edge

index ℰ, the intermediate representations through the network 

are computed as: 

𝐇(𝟏) = PReLU1 (BN1(GCNConv1(𝐗, ℰ)))

𝐇(𝟐) = PReLU2 (BN2 (GCNConv2(𝐇(𝟏), ℰ)))

𝐇(𝟑) = PReLU3 (BN3 (GCNConv1(𝐇(𝟐), ℰ)))

The residual projection 𝐑 = 𝐗𝐖𝑟  is combined with the

output 𝐇(𝟑)  using a learned gating vector 𝑔 ∈ [0,1]𝑁×ℎ ,

computed as: 

𝒈 = 𝜎 (Linear([𝐇(𝟑) ∥ 𝐑]))

The final node representation is given by the gated 

combination: 

𝐙 = 𝒈 ⊙ 𝐇(𝟑) + (1 − 𝒈) ⊙ 𝐑

If a graph-level prediction is required, the node-level 

features 𝐙  are aggregated using global mean pooling. The 

resulting pooled embedding is passed through a multi-layer 

perceptron (MLP) classifier consisting of a hidden ReLU-

activated dense layer with dropout and a final softmax layer 

for binary classification. 

3.8 Training strategy 

The GCN model was optimized using both the standard 

Adam optimizer and the proposed FuzzyAdam optimizer for 

comparative evaluation. For both optimizers, the initial 

learning rate was set to 0.01 and weight decay of 5 × 10−4

mitigate overfitting. The cross-entropy loss function was 

employed, which is appropriate for binary classification tasks 

such as RNA binding site prediction. 

Training was conducted in a GPU-enabled environment 

using Google Colab, with all computations executed on an 

NVIDIA Tesla T4 GPU. Both the model and graph data were 

deployed on the same device to ensure efficient training. The 

experiments were run for 500 epochs to allow for full 

convergence, with performance metrics recorded at each 

iteration for both optimizers. 

4. RESULTS AND DISCUSSION

4.1 Result 

To evaluate the effectiveness of the proposed Fuzzy-Adam 

optimizer compared to the standard Adam algorithm, we 

conducted extensive training over 500 epochs using a hybrid 

CNN-GCN model for RNA binding site prediction. The 

performance metrics, including training loss and accuracy per 

epoch, are visualized in Figure 1.  

Figure 1(a) shows the loss trajectories of each optimizer. 

FuzzyAdam exhibits a smooth, near-monotonic decay in loss, 

characterized by minimal variance and absence of catastrophic 

spikes. This contrasts sharply with Adam, which—despite 

2567



rapid early convergence—undergoes two notable surges in 

loss around epoch 320 and 400, likely caused by sensitivity to 

gradient noise or abrupt changes in curvature. These 

instabilities suggest that Adam’s first- and second-moment 

estimation is insufficient for maintaining learning stability in 

dynamic or non-stationary regions of the loss landscape. 

RMSProp similarly demonstrates persistent oscillations and 

slower convergence, particularly in the first 200 epochs, and 

fails to reduce the loss to near-zero levels even after 500 

epochs. While RAdam provides better stability than 

RMSProp, it still suffers from fluctuations between epoch 

250–350, possibly due to delayed variance rectification. 

In contrast, AdaBelief maintains a stable and smooth 

trajectory across all epochs but tends to plateau at a higher 

terminal loss than FuzzyAdam. This suggests that while 

AdaBelief's adaptive confidence-based filtering suppresses 

high-variance gradients, it may also under-adapt in the 

presence of subtle curvature changes, leading to mild 

underfitting. 

FuzzyAdam’s superior performance can be attributed to its 

fuzzy inference-based modulation layer, which acts as an 

adaptive controller that tunes update magnitudes based on 

evolving gradient behavior. This dynamic responsiveness 

allows it to preserve curvature sensitivity while regularizing 

overreaction to noisy gradients, thus achieving both 

convergence efficiency and long-term stability. 

Figure 1(b) presents the training accuracy evolution across 

optimizers. FuzzyAdam exhibits consistently strong accuracy 

progression, reaching >99% accuracy faster than RAdam and 

RMSProp, and maintaining high-level performance 

throughout the full 500 epochs. Notably, its accuracy curve is 

smooth and stable, indicating robust generalization and 

reduced sensitivity to mini-batch noise. 

Adam shows fast initial growth but suffers severe 

degradation beyond epoch 300, with accuracy plummeting and 

failing to recover. This mirrors its loss volatility and indicates 

that moment-based adaptivity alone is insufficient for long-

horizon learning. 

RMSProp also demonstrates slow accuracy growth and high 

variance, likely due to its reliance on exponentially weighted 

moving averages without bias correction. RAdam, while more 

stable than RMSProp, still lags behind in both speed and final 

accuracy. 

AdaBelief converges early to a high accuracy baseline and 

remains stable. However, its curve appears relatively flat post-

epoch 200, with minimal improvement, suggesting early 

saturation. While this reflects strong regularization, it may 

limit adaptability in later learning phases. 

FuzzyAdam outperforms all baselines in maintaining 

accuracy while adapting effectively over time. Its plasticity-

stability balance—aided by fuzzy rule-based control—enables 

it to sustain learning momentum without destabilization, a 

critical trait for complex tasks with non-uniform difficulty. 

(a)  (b) 
Note: FuzzyAdam consistently achieves superior convergence speed and robustness, combining low loss with stable, high accuracy throughout training, 

outperforming all baselines in long-term generalization. 

Figure 1. Training performance comparison of the proposed FuzzyAdam optimizer against four baselines: Adam, RAdam, 

RMSProp, and AdaBelief: (a) Loss curves over 500 training epochs; (b) Accuracy progression across the same training span 

Table 1. Quantitative performance comparison of FuzzyAdam and baseline optimizers across four evaluation metrics: Accuracy, 

F1-Score, Matthews Correlation Coefficient (MCC), and balanced accuracy  

Optimizer Accuracy F1-Score MCC Balanced Accuracy 

FuzzyAdam 0.9980 ± 0.0057 0.9980 ± 0.0057 0.9960 ± 0.0114 0.9980 ± 0.0057 

RAdam 0.9877 ± 0.0275 0.9877 ± 0.0275 0.9755 ± 0.0544 0.9877 ± 0.0275 

AdaBelief 0.9859 ± 0.0302 0.9859 ± 0.0302 0.9717 ± 0.0604 0.9859 ± 0.0302 

RMSProp 0.9738 ± 0.0719 0.9725 ± 0.0758 0.9537 ± 0.1257 0.9738 ± 0.0721 

Adam 0.9223 ± 0.1332 0.9175 ± 0.1449 0.8515 ± 0.2504 0.9224 ± 0.1329 
Note: Each metric is reported as mean ± standard deviation over 10 independent runs. The proposed FuzzyAdam achieves state-of-the-art performance across all 

metrics with the lowest variance, demonstrating both superior predictive accuracy and robust consistency. 

To quantitatively assess the effectiveness of the proposed 

FuzzyAdam optimizer, we conducted 10 independent training 

runs for each optimizer and evaluated the models across four 

key metrics: Accuracy, F1-Score, MCC, and Balanced 

Accuracy. The results, summarized in Table 1, strongly 

support the superiority of FuzzyAdam over conventional 
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adaptive optimizers. 

FuzzyAdam achieves a mean accuracy of 0.9980 ± 0.0057, 

significantly outperforming all baseline optimizers. The 

identical F1-Score (0.9980 ± 0.0057) indicates excellent 

precision-recall balance, suggesting that FuzzyAdam not only 

classifies correctly but does so without sacrificing sensitivity 

or specificity. The tight standard deviation further 

demonstrates training stability and low variance, a critical 

property in biomedical contexts where reproducibility is 

paramount. 

In contrast, RAdam and AdaBelief, though competitive 

(accuracy > 0.98), show wider error margins (±0.0275 and 

±0.0302, respectively), reflecting greater susceptibility to 

initialization or stochastic noise. Adam, despite its widespread 

use, performs the worst (accuracy 0.9223 ± 0.1332), with high 

standard deviation indicating training instability, consistent 

with the earlier observed accuracy collapse in long epochs. 

FuzzyAdam yields an MCC of 0.9960 ± 0.0114, the highest 

among all optimizers. MCC is a stringent metric especially 

valuable in imbalanced classification scenarios, as it accounts 

for all elements of the confusion matrix. The near-perfect 

MCC of FuzzyAdam implies it maintains excellent predictive 

balance across classes, a critical requirement in biomedical 

classification tasks such as RNA-binding site prediction or 

diagnostic screening. Notably, Adam's MCC drops sharply to 

0.8515 ± 0.2504, reinforcing its unreliability in maintaining 

balanced predictions under noisy or long-training regimes. 

FuzzyAdam again leads with a Balanced Accuracy of 

0.9980 ± 0.0057, suggesting that it does not overfit majority 

classes and maintains performance across both positive and 

negative class distributions. The lower balanced accuracy of 

RMSProp (0.9738 ± 0.0721) and Adam (0.9224 ± 0.1329) 

reinforces that these methods are more prone to class-specific 

overfitting or underfitting, particularly in small-sample or 

skewed datasets. 

What sets FuzzyAdam apart is its ability to modulate 

learning rates using fuzzy rule inference, offering adaptive 

control not just globally (as in Adam) but contextually—based 

on gradient behavior, uncertainty, and historical curvature 

trends. This allows it to combine the fast convergence of Adam 

with the stability of second-order-like methods, without the 

computational burden. 

These quantitative results provide compelling evidence that 

FuzzyAdam not only excels in overall performance, but also 

offers higher training reliability, better generalization, and 

lower run-to-run variance than current state-of-the-art 

optimizers. The improvements are particularly relevant in 

biomedical and scientific domains where stability and 

reproducibility are as important as raw performance. 

The confusion matrix in Figure 2 demonstrates that the 

proposed FuzzyAdam optimizer achieves excellent 

classification accuracy, with only 3 false negatives and zero 

false positives, yielding a sensitivity of 99.6% and specificity 

of 100%. While these results are impressive in computational 

terms, it is critical to interpret them in light of their biological 

impact. 

In RBP prediction, false negatives (FN) represent functional 

binding proteins misclassified as non-binding. From a 

biological standpoint, FN errors can lead to underestimation of 

the regulatory complexity of post-transcriptional gene 

regulation. For instance, omitting RBPs from subsequent 

network modeling could result in incomplete RNA 

interactomes, potentially missing key modulators of processes 

such as mRNA splicing, localization, or decay. 

Note: The matrix summarizes model predictions versus true labels across 

997 samples, showing high precision and recall in both positive (RBP) and 

negative (non-RBP) classes. Diagonal entries represent correct predictions, 
while off-diagonal cells denote misclassifications. 

Figure 2. Confusion matrix of the FuzzyAdam-based 

classifier evaluated on the binary RBP classification task 

Conversely, false positives (FP)—which are absent in our 

model—may lead to experimental follow-ups on irrelevant 

targets, wasting resources. However, in clinical or high-

throughput biological contexts, minimizing FN is often 

prioritized, as missing a true functional regulator (e.g., in 

disease pathways) may have more detrimental effects than 

pursuing a false lead. 

The minimal FN rate (0.4%) of our model ensures that 

biologically relevant RBPs are preserved in predictions, 

supporting downstream wet-lab validations, RNA interactome 

reconstruction, and potential therapeutic targeting. This level 

of sensitivity is especially favorable when working with rare 

or low-expression RBPs, where signal detection is inherently 

more challenging. 

4.2 Ablation 

The ablation study evaluates the impact of fuzzy rule set 

selection (default, alternative, randomized), normalization 

gain 𝑔𝑛𝑜𝑟𝑚 and exponent variance 𝑒𝑥𝑝𝑣𝑎𝑟  on the performance

of FuzzyAdam. Across 27 configurations, results consistently 

favor the default rule set, with several configurations 

achieving 100% accuracy and exceptionally low loss values 

(e.g., 0.0032 with 𝑔𝑛𝑜𝑟𝑚 =1, 𝑒𝑥𝑝𝑣𝑎𝑟=0.2) (Table 2).

The default rule set yields robust and stable performance 

across a wide range of 𝑔𝑛𝑜𝑟𝑚 ∈ {0.5,1,2}  and 𝑒𝑥𝑝𝑣𝑎𝑟 ∈
{0.05,0.1,0.2} , indicating high generalizability. Notably, 

performance degradation is minimal even at higher variance 

values. 

In contrast, the alternative rule set exhibits sensitivity to 

expvar. Extreme cases such as 𝑒𝑥𝑝𝑣𝑎𝑟 = 0.2  under 𝑔𝑛𝑜𝑟𝑚 =
0.5  or 2 result in substantial loss escalation (0.1543 and 

0.4973) and corresponding accuracy drop to 95.59% and 

74.42%, respectively. These results suggest overfitting or 

instability under higher nonlinear transformations, indicating 

poor robustness of the alternative rule configurations. 

Interestingly, the randomized rule set surprisingly maintains 

competitive performance, with several configurations 

achieving optimal accuracy and low loss (e.g., Loss=0.0024, 

Accuracy=100% at 𝑔𝑛𝑜𝑟𝑚 = 1, 𝑒𝑥𝑝𝑣𝑎𝑟 = 0.1). However, its

performance is less predictable, and variability increases 

as 𝑒𝑥𝑝𝑣𝑎𝑟 grows.
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Table 2. Ablation study of FuzzyAdam on RNA-binding 

classification using different fuzzy rule sets (default, 

alternative, randomized), normalization gain 𝑔𝑛𝑜𝑟𝑚, and

exponent variance 𝑒𝑥𝑝𝑣𝑎𝑟

Rule gnorm expvar Loss Accuracy 

default 0.5 0.05 0.058 99.40% 

default 0.5 0.1 0.0043 100.00% 

default 0.5 0.2 0.0032 100.00% 

default 1 0.05 0.0032 100.00% 

default 1 0.1 0.0039 100.00% 

default 1 0.2 0.0092 99.90% 

default 2 0.05 0.0138 99.90% 

default 2 0.1 0.0032 100.00% 

default 2 0.2 0.003 100.00% 

alternative 0.5 0.05 0.0105 100.00% 

alternative 0.5 0.1 0.0038 100.00% 

alternative 0.5 0.2 0.1543 95.59% 

alternative 1 0.05 0.0036 100.00% 

alternative 1 0.1 0.0095 100.00% 

alternative 1 0.2 0.0345 99.70% 

alternative 2 0.05 0.0195 99.80% 

alternative 2 0.1 0.0033 100.00% 

alternative 2 0.2 0.4973 74.42% 

randomized 0.5 0.05 0.0035 100.00% 

randomized 0.5 0.1 0.0157 99.90% 

randomized 0.5 0.2 0.0201 100.00% 

randomized 1 0.05 0.0024 100.00% 

randomized 1 0.1 0.0024 100.00% 

randomized 1 0.2 0.0513 99.60% 

randomized 2 0.05 0.0027 100.00% 

randomized 2 0.1 0.0317 99.60% 

randomized 2 0.2 0.006 100.00% 

Overall, these findings underscore the importance of 

systematic rule design in fuzzy optimizers. The default rule, 

proposed in this study, not only delivers state-of-the-art 

performance but also demonstrates greater stability across 

parameter spaces, making it the most suitable configuration for 

RNA-binding classification tasks. 

4.3 Discussion 

The results of our extensive evaluations consistently 

demonstrate that the proposed FuzzyAdam optimizer exhibits 

superior performance across multiple metrics, particularly in 

minimizing FN, a critical factor in biological classification 

tasks such as RBP site prediction. As shown in the ablation 

study, FuzzyAdam achieves the highest accuracy, MCC, and 

balanced accuracy, even under varying fuzzy rule 

configurations. These improvements are robust across 

different k-mer sizes and rule granularities. 

Importantly, reducing the false negative rate is not merely a 

statistical improvement—it has substantial biological 

relevance. In biomedical applications, false negatives can 

result in the failure to identify key binding motifs, which may 

lead to missed therapeutic targets or overlooked regulatory 

elements. By minimizing FN, FuzzyAdam supports more 

reliable biological discovery and downstream validation. 

While FuzzyAdam, like other optimizers, ultimately aims to 

minimize the loss function during training, its incorporation of 

fuzzy logic principles enhances the model's sensitivity to 

ambiguous or borderline input features. Unlike conventional 

optimizers, FuzzyAdam dynamically adjusts learning based 

on rule-based reasoning, enabling the optimizer to converge 

not just faster, but more meaningfully in biological contexts 

where noise and uncertainty are prevalent. 

Compared to standard Adam, SGD, and RMSProp, 

FuzzyAdam offers consistent improvements even on well-

balanced datasets, suggesting that its benefits are not limited 

to class imbalance mitigation, but extend to fine-grained 

pattern recognition in the input space. The optimizer’s ability 

to work well with compact models (e.g., CNN-GCN hybrids) 

further highlights its versatility in resource-constrained 

environments typical in high-throughput omics pipelines. 

Nevertheless, there are some limitations. The current fuzzy 

rule configurations are manually defined, which may restrict 

generalizability across tasks. Future work will focus on 

integrating neuro-fuzzy systems or meta-learning strategies to 

automate rule generation and adaptively tune parameters 

across datasets and biological domains. 

5. CONCLUSION

In this study, we introduced FuzzyAdam, a fuzzy logic-

enhanced variant of the Adam optimizer, tailored to improve 

the performance of deep learning models in RNA-binding site 

prediction. By integrating fuzzy rules into the adaptive 

learning rate mechanism, FuzzyAdam enables more nuanced 

weight updates, particularly in regions with uncertain or 

borderline patterns. Experimental results on balanced RBP and 

non-RBP datasets demonstrate that FuzzyAdam consistently 

achieves lower false negative rates and competitive 

performance across key metrics such as accuracy, F1-score, 

MCC, and balanced accuracy. 

Ablation studies further reveal that the fuzzy rule 

configuration plays a significant role in optimizing sensitivity 

without sacrificing overall performance. This suggests that 

FuzzyAdam may offer an advantage in biological 

classification tasks where minimizing false negatives is 

crucial. While FuzzyAdam is not explicitly informed by 

biological principles, its ability to handle ambiguous features 

and imprecise patterns may be particularly suitable for noisy 

biological data. 

Overall, FuzzyAdam offers a computationally efficient and 

generalizable optimization strategy that improves sensitivity 

and robustness without increasing model complexity. Its 

potential applicability to other bioinformatics tasks warrants 

further investigation, especially in settings involving multi-

omics data or limited supervision. 
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