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In the context of global supply chains facing multiple risk shocks such as natural disasters 

and geopolitical instability, traditional risk assessment methods reliant on manual analysis 

and static data face challenges such as information latency and insufficient visualization 

capabilities. These issues hinder their ability to address the uncertainty and transmission of 

risks. Existing research in supply chain risk assessment has significant limitations: U-Net-

based segmentation algorithms lack adaptive mechanisms for scale adjustment, resulting in 

insufficient accuracy in extracting multi-scale features from complex supply chain risk 

visualization images; attention-based methods like CLIP cannot achieve deep semantic 

associations between images and language; and risk matrix methods fail to dynamically 

adapt to changes in supply chain network topology. To address these challenges, this paper 

focuses on an AI-driven intelligent evaluation system for supply chain risk visualization, 

proposing a three-layer technical architecture: "feature extraction—fusion reasoning—

evaluation output." At the bottom layer, an improved central difference convolution (CDC) 

operator is proposed to extract multi-scale features from images; the middle layer constructs 

a bi-directional image-language mapping network based on graph neural networks (GNNs) 

for cross-modal fusion; the top layer generates three-dimensional risk assessment outputs 

by integrating image segmentation results. The innovations of this study are: 1) the proposed 

improvement mechanism enhances the completeness and accuracy of complex image 

feature extraction; 2) the establishment of a deep image-language fusion model driven by 

GNNs addresses the issue of insufficient semantic association; and 3) the creation of 

dynamic and intuitive risk assessment outputs. This research provides a new technological 

path for supply chain risk visualization and assessment, improving both the accuracy and 

response efficiency of risk evaluations, while enriching the theoretical applications of cross-

modal learning in industrial scenarios. 
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1. INTRODUCTION

In the context of deepening globalization and industrial 

collaboration, supply chains have become the core link that 

sustains the operation of the economy [1-4]. From chip supply 

in the electronics manufacturing industry to cold chain 

transportation in the fresh food sector, the smooth functioning 

of supply chains directly affects industrial efficiency and 

public welfare [5-7]. However, in recent years, supply chain 

risk events have occurred frequently [8, 9], and the uncertainty 

of these risks is quickly transmitted through the supply chain 

network, causing disruptions in a single link to potentially 

trigger a systemic crisis. Traditional supply chain risk 

assessment methods rely heavily on manually summarizing 

Excel spreadsheet data and analyzing static reports [10-13], 

which not only results in a 3-5 day information delay but also 

fails to convert visual information such as logistics node 

congestion images and inventory heatmaps into quantitative 

risk indicators, thus significantly reducing the timeliness and 

comprehensiveness of risk warnings. In this context, utilizing 

image recognition to achieve risk visualization perception and 

constructing dynamic evaluation models through artificial 

intelligence (AI) technology has become a key path to solving 

the problem of "invisible, hard to grasp, and slow response" in 

supply chain risk management. 

Research on an AI-driven intelligent assessment system 

combining image recognition and graph neural networks for 

supply chain risk visualization holds progressive theoretical 

and practical value. For manufacturing enterprises, a supply 

chain risk visualization system can analyze the logistics 

vehicle congestion status in the traffic surveillance images 

surrounding production bases in real time, combining raw 

material inventory visualization data to generate risk levels. 

For logistics enterprises, it can identify abnormal goods 

storage through infrared thermal imaging of the warehouse 

area and predict delay risks by linking the distribution route's 

weather images, significantly shortening the risk response 

time [14-17]. 

Existing research in this field has limitations that can be 

specifically analyzed from three technical stages. In the image 

feature extraction phase, the mainstream U-Net series 

segmentation algorithms [18] adopt an encoder-decoder 
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structure, which can capture local features. However, when 

processing supply chain risk visualization images, due to the 

lack of a scale-adaptive adjustment mechanism, the algorithm 

cannot simultaneously extract the detailed features of 10-

meter-level container stacks and the 10-kilometer-level 

contours of port areas with high precision, leading to the 

problem of "large area blur, small target omission" in 

segmentation results. In the multi-modal fusion phase, existing 

image-language fusion methods [19] can only establish 

shallow semantic associations, unable to form a logical 

mapping between image features of "warehouse fire passage 

blockage" and the text description of "fire safety risk level," 

resulting in a contradiction where "image recognition is 

accurate but semantic interpretation is biased." In the scene 

evaluation phase, traditional risk matrix methods [20] rely on 

preset weights and are difficult to dynamically adapt to 

changes in supply chain network topology. For example, when 

a new temporary transportation route is added to a logistics 

node, the evaluation model cannot automatically update the 

associated node weights, leading to distorted evaluation 

results. 

This paper, with the core objective of "intelligent analysis 

and evaluation of supply chain risk visualization images," 

constructs a three-layer technical architecture: the bottom 

layer is the feature extraction layer, which innovatively 

designs an improved CDC operator that preserves the edge 

features of damaged packaging while capturing layout features 

of the storage area, greatly improving the accuracy of feature 

extraction from complex images; the middle layer is the fusion 

reasoning layer, based on GNN, constructing a "image node-

language node" bidirectional mapping network that converts 

logistics vehicle congestion image features into graph nodes 

with text attributes such as "transport delay probability" and 

"impact range," and achieves cross-modal information 

complementarity by calculating attention weights between 

nodes; the top layer is the evaluation output layer, which, 

based on the risk area mask obtained from image 

segmentation, combines the association weights output by the 

graph network to generate the final evaluation results. The 

core value of this research lies in: technically solving the pain 

points of "difficult feature extraction, difficult semantic 

association, and difficult evaluation adaptation" in supply 

chain risk visualization images; in application, providing 

enterprises with "understandable and usable" intelligent 

evaluation tools; and theoretically enriching the application 

paradigm of cross-modal learning in complex industrial 

scenarios. 

 

 

2. INTELLIGENT SCENE EVALUATION-BASED 

SUPPLY CHAIN RISK VISUALIZATION IMAGE 

SEGMENTATION ALGORITHM 

 

2.1 Methodology 

 

The supply chain risk visualization image segmentation for 

intelligent scene evaluation faces dual core challenges. From 

the perspective of image feature extraction, supply chain risk 

visualization images generally exhibit the characteristics of 

"multi-scale mixing + fine-grained boundary density": they 

include medium-scale targets such as container stacks and 

storage shelves, small-scale targets like damaged packaging 

and fire passage signs, as well as large-scale areas such as port 

operation zones and logistics parks. Additionally, the 

boundaries of different targets carry critical risk information, 

such as the boundary between the warehouse wall and the 

stacking area directly correlating to "storage compliance risk," 

while the edge contour of a vehicle queue reflects "road 

congestion level." Traditional image encoders based on 

convolutional neural networks (CNNs) often lack targeted 

gradient information capture, leading to the loss of fine-

grained boundary features during downsampling. This results 

in small-scale risk targets being misclassified as background 

and large-scale region edges being blurred, directly affecting 

the accuracy of risk region localization. From the cross-modal 

fusion perspective, supply chain risk assessment needs to 

achieve an accurate mapping between "image visual features" 

and "risk description language," but the fusion of language and 

image in this scenario has specific demands: On one hand, 

features from different layers of the image encoder correspond 

to different semantic depths of risk, requiring inter-layer 

contextual interactions to construct a complete semantic chain; 

on the other hand, spatially adjacent pixels often carry implicit 

risk propagation relationships, necessitating the use of 

semantic associations between pixels to enhance the fusion 

logic. Existing cross-modal fusion modules often perform 

simple feature concatenation during the decoding stage, 

without fully exploiting the semantic progression relationships 

between encoder layers or utilizing the risk correlation 

properties between spatially adjacent pixels. This leads to 

fusion results that exhibit "accurate visual features but 

semantic mapping deviations" or "isolated local risks," making 

it difficult to support the deep semantic analysis required for 

intelligent scene evaluation of risks. 

To address the core characteristics of supply chain risk 

visualization images, namely "multi-scale target coexistence" 

and "boundary gradients carrying critical risk information," as 

well as the feature extraction needs, this paper introduces an 

improved balanced CDC for scene feature extraction. In 

supply chain risk visualization images, small-scale damaged 

packaging, medium-scale storage shelves, and large-scale 

logistics park targets need to be captured simultaneously with 

precision, and boundary details directly relate to risk 

assessment. For example, fuzzy boundaries at the edge of a 

stacking area may lead to a misjudgment of "storage 

compliance risk." Traditional CNNs focus on semantic feature 

extraction and tend to lose gradient-level details, whereas the 

CDC captures stable gradient information, which is 

particularly suited for the risk indication value of boundary 

gradients in such images. Additionally, the multi-scale design 

specifically covers the feature needs of targets of different 

scales, and the gradient balancing mechanism prevents the 

imbalance of semantic features, such as "shelf" information, 

and gradient features, such as "shelf tilted edge" risk 

information. This allows the module to provide feature support 

for subsequent segmentation that includes complete contours 

of multi-scale targets and retains fine-grained risk boundaries, 

addressing the issue of "small target omissions and large 

region edge blurring" in traditional encoding. 

To meet the fusion requirements of "spatial pixel implicit 

risk propagation relationships" and "multi-layer semantic 

associations" in supply chain risk visualization images, this 

paper introduces a GNN-based language-image fusion 

module. In supply chain risk visualization images, adjacent 

pixels often have risk correlations, and features from different 

layers of the encoder correspond to different semantic depths 

of risk. Existing "pixel-sentence" level fusion methods neglect 

the semantic associations of spatially similar pixels, making it 
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difficult to model this spatial correlation. However, the GNN 

can treat pixels and their corresponding local language 

features as nodes, with edges connecting related nodes, which 

naturally adapts to the local mapping relationship between 

pixels and language. For example, it links "warehouse pixels" 

with "storage risk" language features while using node 

connections to explore the risk propagation logic of adjacent 

warehouse pixels. Additionally, this module embeds fusion at 

each layer of the encoder, enabling the precise selection of 

language features related to risk while reducing noise 

interference. This precisely addresses the issues of "semantic 

mapping deviations and isolated local risks" in traditional 

fusion, providing an accurate basis for the "image features-risk 

language" connection in intelligent scene evaluation. 

The overall architecture of the proposed supply chain risk 

visualization image segmentation algorithm for intelligent 

scene evaluation is shown in Figure 1. The innovation of the 

algorithm lies in two aspects. First, for multi-scale risk targets 

ranging from the small-scale damaged packaging edges to the 

large-scale logistics park area contours in these images, an 

improved CDC is designed in the first layer of the encoder. 

This balances semantic information and gradient information, 

preserving fine-grained edge textures such as slight angle 

changes in tilted shelves and capturing large-scale region 

features such as the boundary of the warehouse operation area, 

breaking through the limitations of traditional convolution 

networks with "small target omissions and large region 

blurring." Second, in response to the need for precise mapping 

of "image visual features" to language descriptions such as 

"transport delay" and "storage compliance," a GNN-based 

language-image fusion module is designed. This module 

associates pixel features with corresponding risk language 

features in the region as graph nodes, establishing connections 

between them and realizing dense fusion in each encoder 

layer, solving the problem of ignoring the semantic 

associations between spatially adjacent pixels in traditional 

"pixel-sentence" level fusion. 

 

 
 

Figure 1. Overall structure of the algorithm 

 

2.2 Scene feature extraction 

 

The core design logic of the algorithm's feature extraction 

module stems from a targeted optimization of the 

characteristics of supply chain risk visualization images and 

the inherent limitations of Swin-Transformer. In supply chain 

risk visualization images, risk targets exhibit significant multi-

scale distribution characteristics. Meanwhile, Swin-

Transformer, when compressing the image to 1/16 size in the 

first layer using a 4×4 convolution kernel, is prone to losing 

fine-grained edge information, which is a key basis for 

determining the risk level. To address this, the module 

integrates center difference convolution, regular convolution, 

and multi-scale receptive field design to compensate for the 

feature loss issue in Swin-Transformer: center difference 

convolution is responsible for capturing gradient-level details, 

regular convolution focuses on extracting semantic features, 

and the multi-scale receptive field adapts to risk targets of 

different sizes. The final outcome is full-scale feature coverage 

of “fine-grained edges, medium-scale targets, and large-scale 

regions” in supply chain images. 
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Figure 2. Structure of improved balanced center difference convolution 

 

 
 

Figure 3. Structure of the image-language fusion module 

 

The module achieves accurate extraction of features at 

different scales through a combined structure of “double-

gradient-balanced center difference convolution + regular 

convolution.” The structure of the improved convolution is 

shown in Figure 2. Among them, the small receptive field 

gradient-balanced center difference convolution E1 is 

designed for fine-grained risk features in supply chain images. 

Its small receptive field can focus on gradient changes within 

a 1×1 to 3×3 pixel range, such as capturing the edge contours 

of wrinkled packaging, the boundary lines of water stains on 

the warehouse floor, and other features, which are directly 

associated with the preliminary judgment of “cargo damage 

risk” and “storage environment risk.” The large receptive field 

gradient-balanced center difference convolution E2, on the 

other hand, targets medium to large risk regions, expanding 

the receptive field to cover a 10×10 to 20×20 pixel range, 

extracting features such as the continuous contour of the 

logistics park wall and the overall direction of transport 

channels, which support the spatial range judgment of 

“regional compliance risk.” Regular convolution acts as a 

semantic supplement, focusing on extracting features with 

explicit risk semantics, such as “vehicle-dense areas” and 

“shelf-empty areas,” complementing the gradient features. 

The parallel computing mechanism of the three ensures that 

risk features at different scales in supply chain images are 

effectively captured, avoiding feature omissions caused by 

single-scale extraction. 

The gradient balance mechanism is the core support for 

achieving feature robustness in this module. It adjusts the 

weight between semantic features and gradient features 

dynamically to meet the dual demands of supply chain risk 

assessment for “edge precision” and “semantic accuracy.” In 

supply chain scenarios, fine-grained gradient features and 

high-level semantic features are equally important. The former 

determines the precision of risk location, while the latter 

determines the accuracy of risk category judgment. The 

module uses a gradient balance factor to avoid “covering” 

gradient features with semantic features during feature fusion: 

when processing image regions containing small risk targets, 

it automatically increases the weight of gradient features to 

enhance edge extraction; when processing large-scale regions, 

it appropriately increases the weight of semantic features to 

ensure the integrity of regional division. Assuming the 

receptive field is represented by a j×j input feature map 

denoted by Lj, the sampled current pixel on Lj is denoted by o0, 

and the sampled local receptive field is denoted by E. All the 
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pixels in E are represented by ov, and the kernel weight 

corresponding to ov is denoted by q(ov). The processing of 

center difference convolution is represented by (Lj(O0+Ov)-

Lj(o0)), while the regular convolution process is represented by 

Σov∈q(Ov)-Lj(o0+ov). The contribution ratio of instance 

information and gradient information is denoted by x ∈ [0,1]. 

The implementation expression for each gradient-balanced 

center difference convolution is as follows: 
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( ) ( ) ( )( )
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2.3 Image-language fusion 

 

The core design logic of the GNN-based image-language 

fusion module originates from a deep adaptation to the 

semantic characteristics of supply chain risk visualization 

scene images. The semantics of supply chain risk visualization 

images exhibit a significant "local association, boundary 

differentiation" characteristic: adjacent pixels within the same 

risk area, such as the continuous pixels in a warehouse shelf 

area, usually correspond to the same risk semantics, and their 

language descriptions are highly consistent; while adjacent 

pixels at the boundaries of risk areas, such as the boundary 

pixels between shelves and fire passages, belong to different 

risk categories, with obvious differences in language 

descriptions. At the same time, risk assessment needs to 

achieve an accurate mapping of "visual features - language 

descriptions - risk levels." To address these characteristics, this 

module employs a three-stage design of "dimension 

unification - graph structure fusion - feature filtering," which 

captures the semantic associations of adjacent pixels while 

differentiating the semantic differences of boundary pixels, 

ultimately achieving efficient fusion of cross-modal features. 

The module architecture is shown in Figure 3. 

The first stage achieves dimension unification of image and 

language features based on dot-product attention, laying the 

foundation for cross-modal fusion. The visual features and 

language features of supply chain risk visualization images are 

often in different dimensional spaces, and direct fusion can 

lead to semantic misalignment. This stage takes the image 

feature map N as the query and the language feature map M as 

the key and value. The correlation between the visual and 

language features is computed through the dot-product 

operation. For example, when the visual feature is "vehicle-

dense area," the dot-product attention will prioritize matching 

the language feature related to "transportation delay." This 

design not only enables efficient computation through matrix 

multiplication to meet the real-time requirements of supply 

chain risk assessment but also preliminarily filters out 

language features that are most relevant to the current visual 

region, avoiding the interference of irrelevant language 

information on risk semantics. Specifically, let Zw, Zj, and Zn 

be 1×1 convolutions, corresponding to the outputs that 

represent the query, key, and value in dot-product attention. 

The number of channels in the visual feature N1 is represented 

by v. The language feature vector at a specific location is 

represented by Dc, and Z2 is another 1×1 convolution that sets 

the number of channels in Dc to v. Z1 is a 1×1 convolution used 

to update the visual feature N1 to N2. The process expression 

for generating position-related language vectors for each 

image pixel is as follows: 

( ) ( )1 1

2 2 1

w j

n

Z N Z M
D Z SOFTMAX Z M

v

  
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  
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The second stage constructs the image-language graph 

based on the graph attention network, deeply mining the cross-

modal semantic associations. In response to the characteristic 

that "adjacent pixels have tight semantic associations" in 

supply chain risk images, this stage converts the image feature 

N2 and the corresponding language feature D2 into a graph 

node set containing Q×G image nodes and Q×G language 

nodes. It then constructs edges based on pixel spatial positions: 

each image node is connected to the j² spatially adjacent 

language nodes. When calculating the node weights through 

multi-head attention, the module strengthens the semantic 

associations related to risk. For example, an image node 

representing "damaged packaging" will give higher weight to 

the language node representing "packaging damage risk," 

while weakening the weight of the language nodes related to 

"transportation route." Specifically, assume the weight of the 

u-th image node and the k-th language node updated after the 

m-th layer of graph attention is represented by qm
uk, with the 

activation function represented by LeakyRELU. The learnable 

weight parameters are represented by Q, and the connection 

operation is represented by ||. The calculation formula is as 

follows: 

 

( )( )
( )( )

exp ||

exp ||
u

u km

uk

u kk V
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q
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

=


r r

r r  (3) 

 

M attention mechanisms operate independently in parallel. 

Assuming the Sigmoid function is represented by δ, the 

updated feature of the u-th image node after M graph attention 

heads is represented by v→'u, with the output as: 
 

( )'

1||
u

M m

u m ukk V
v q= 
= 

uur
 (4) 

 

This processing method utilizes the semantic consistency of 

adjacent pixels and can differentiate the semantic 

differentiation of boundary pixels through weight differences. 

The edge construction logic in the image-language graph 

further adapts to the spatial propagation characteristics of 

supply chain risks. Supply chain risks have significant spatial 

propagation properties, so the receptive field j of the edges 

needs to match the risk propagation range. For example, for an 

image of a storage area, the value of j can be set to 5 to cover 

a 5×5 pixel range, ensuring that a warehouse pixel node can 

associate with the language features of adjacent warehouses. 

For an image of a transportation route, the value of j can be set 

to 10 to cover a larger range, adapting to the long-distance risk 

propagation of vehicle queues. Through this dynamically 

adapted edge construction method, the graph network can 

capture the spatial associations of risks, avoiding the isolation 

of local risks and providing a "risk association map" for cross-

modal feature fusion in scene intelligent evaluation. 

The third stage filters features through a language gate to 

enhance the transmission of key risk information. In supply 

chain risk visualization images, there is a large number of 

redundant features that do not correspond to risk semantics, 

such as normally arranged shelves or empty transportation 

vehicles. If all of these are passed to the next layer, they will 

increase the computational load and interfere with evaluation 

2257



 

accuracy. The language gate, inspired by the adaptive 

mechanism of the LAVT algorithm, dynamically filters 

irrelevant information by learning the matching degree 

between visual and language features. For example, when the 

image feature is "normally stacked shelves" and the language 

feature is "storage compliance," the language gate will reduce 

the transmission weight of this feature; when the image feature 

is "tilted shelves" and the language feature is "collapse risk," 

the transmission weight will be increased. Assuming element 

multiplication is represented by ⊗, a two-layer network 

structure is represented by θ. The filtering process of the 

language gate is expressed as: 

 

( ) 2' 'D D D N=  +  (5) 

 

By appropriately setting the weights, the next layer of the 

encoder only receives cross-modal features that are strongly 

related to risk assessment, improving both computational 

efficiency and feature specificity. This ensures the 

"redundancy-free, strongly related" feature support for 

subsequent risk visualization segmentation. 

 

2.4 Top-down segmentation decoder 
 

The top-down segmentation decoder adopts a lightweight 

four-layer structure, F1-F4, with its design principle closely 

aligned with the dual demands of segmentation efficiency and 

accuracy for supply chain risk visualization scenarios. The 

segmentation of supply chain risk visualization images needs 

to balance "real-time responsiveness" with "multi-scale 

accuracy." On one hand, risk assessments must respond 

quickly, and a heavy decoder would increase computational 

latency. On the other hand, the image contains multi-scale risk 

targets, ranging from centimeter-level cargo damage to 

hundred-meter-level park areas. The decoder needs to 

progressively refine features from global to local. This decoder 

is designed with "lightweight efficiency" as the core principle: 

each layer contains only regular convolution, normalization 

layers, and ReLU functions, avoiding the computational 

burden brought by complex modules to meet the real-time 

evaluation needs of the supply chain scenario. Additionally, a 

top-down transmission method is adopted, starting from the 

features output by the last encoder R4 via the fusion module, 

passing them layer by layer downwards, and refining the 

features. High-level features guide low-level features to ensure 

accurate segmentation of both large-scale risk areas' overall 

contours and small-scale risk targets' local details. 

The feature processing logic of the decoder further adapts 

to the semantic relevance of supply chain risk features. Supply 

chain risk segmentation not only requires the localization of 

risk areas but also needs to form a semantic binding with 

language descriptions such as "transportation delay" and 

"storage compliance." The encoder phase has already 

embedded cross-modal information through the fusion 

module. The regular convolution in the decoder adjusts the 

feature channel dimensions, mapping the fused cross-modal 

features to the feature space required for segmentation. The 

normalization layer eliminates feature distribution differences 

across different risk scenarios, ensuring feature stability. The 

ReLU function enhances the non-linear expressiveness of 

features, accentuating the distinction between risk areas and 

the background. During the top-down transmission process, 

the F4 layer first determines the approximate range of large-

scale risk areas based on global features, while layers F3 to F1 

progressively focus on local features, and the segmentation 

result, including fine-grained boundaries, is output in layer F2. 

Let the output of the u-th layer decoder be denoted by Ou, the 

decoder by SEG, and the output of the u-th layer based on the 

GNN's image-language fusion module by Du, with the 

connection operation represented by CONCAT. The decoding 

process can be expressed as: 

 

( )( )1 ,u u uO SEG CONCAT O D+ =  (6) 

 

 

3. IMAGE SEGMENTATION-BASED SUPPLY CHAIN 

RISK VISUALIZATION SCENE INTELLIGENT 

EVALUATION METHOD 
 

The core implementation idea of the supply chain risk 

visualization scene intelligent evaluation based on image 

segmentation results is to dynamically match the 

"semantically interpretable and position-locatable" risk area 

features obtained from segmentation with the supply chain risk 

assessment rule database, ultimately generating a combination 

of quantifiable and visual evaluation results. The segmentation 

results of the supply chain risk visualization image already 

contain key information about multi-scale risk targets, such as 

the fine-grained boundaries output by the F1 layer, which can 

locate specific risk points, and the global features from the F4 

layer, which reflect the spatial distribution of risk areas. The 

evaluation needs to construct an association logic of "spatial 

location - risk type - impact level" based on these features: on 

one hand, the semantic labels of the segmented regions match 

preset risk types; on the other hand, the risk level is quantified 

based on region area and location correlation, while the cross-

modal association information in the segmentation results 

enhances the interpretability of the evaluation. This approach 

not only avoids redundant computation based on raw images 

but also achieves accurate mapping of risks through the 

semantic features of the segmentation results, adapting to the 

"quick localization, precise classification" evaluation needs of 

supply chain scenarios. 

The evaluation system adopts a "three-layer, two-stream" 

architecture, closely matching the propagation and 

visualization needs of supply chain risks. The bottom layer is 

the feature parsing layer, which receives the multi-scale 

feature maps output by the segmentation decoder and uses a 

feature extractor to extract quantifiable parameters and 

semantic labels for risk areas. The middle layer is the risk 

reasoning layer, which includes the rule engine and the graph 

network inference module. The rule engine stores "risk feature 

- level" mapping rules, and the graph network models the 

spatial correlation of risk areas. The top layer is the evaluation 

output layer, which generates three-dimensional evaluation 

results: risk heat maps, quantitative scoring tables, and natural 

language reports. The "two-stream" architecture refers to the 

feature data stream and semantic information stream, which 

are processed in parallel to ensure the evaluation is both 

accurate and easy to understand, adapting to the diverse needs 

in supply chain management, where "technicians view data 

and decision-makers view reports". 

The system operation process is centered around "real-time 

response and dynamic updates" to meet the timeliness 

characteristics of supply chain risks. It is divided into four key 

steps. The first step is feature access, which receives the 

segmentation results from F1-F4 layers output by the decoder, 
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prioritizing the extraction of fine-grained features from F1 and 

global features from F4 to ensure small-scale risks are not 

missed and large-scale risks are not misjudged. The second 

step is risk matching, where the rule engine calls the 

corresponding evaluation rules for the scenario, and the graph 

network simultaneously calculates the associated risks. The 

third step is level calculation, where the risk score ranging 

from 0 to 10 is output based on the quantifiable parameters and 

associated weights of the risk areas. The fourth step is result 

output, where the segmentation boundary is overlaid to label 

specific risk points, and a natural language report containing 

"risk location, level, and suggested measures" is generated. 

The entire process from segmentation result input to 

evaluation output has a delay controlled within 10 seconds, 

meeting the real-time warning requirements for supply chain 

risks. Additionally, through layered processing of multi-scale 

features, the system ensures comprehensive evaluation of risks 

from micro to macro levels. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the experimental data and the association with the 

technical architecture in Table 1, it is clear that the proposed 

method outperforms all other methods in terms of overall 

Intersection-over-Union (mIoU) across all test subsets (val, 

test A, test B) in both the COCO-Dataset and Cityscapes 

datasets. Specifically, in the COCO-Dataset's val set, the 

proposed method achieves 73.93, which is significantly higher 

than the comparative methods. In the Cityscapes test-B subset, 

the proposed method scores 54.87, which is an 8 percentage 

point improvement over Deform-Mamba's 46.87. From the 

experimental results in Table 2, using the self-built dataset, it 

is evident that the proposed method achieves significant 

improvements in the overall mIoU for both warehouse and port 

logistics scenarios compared to the comparative methods. For 

instance, in the warehouse scenario test set, the proposed 

method improves by nearly 6.81 percentage points over 

Deform-Mamba Network's 55.75; in the port logistics scenario 

val set, it improves by 8.65 percentage points over 

ScaleFusionNet's 52.43. 

The experimental results show that the bottom-layer 

improvement of the center difference convolution precisely 

adapts to scene characteristics. In the warehouse scenario, the 

"multi-scale feature fusion" challenge between "fine-grained 

defects and macro spatial relationships" was solved. In the port 

logistics scenario, the synchronization of the parsing of 

container stacking contours and quay crane operation areas 

overcame the "dynamic loading and unloading + multi-target 

overlap" segmentation challenge. The mid-layer GNN 

bidirectional mapping further strengthens cross-modal 

associations: in the warehouse scenario, image features such 

as "cargo tilt angle" and "shelf spacing" are associated with 

text attributes such as "storage stability" and "fire exit 

blockage risk," optimizing the semantic consistency of the 

segmentation boundaries through attention weight 

adjustments. In the port scenario, visual features such as 

"container hoisting deviation" and "stackyard congestion 

density" are deeply coupled with language labels like "loading 

and unloading delay probability" and "vessel docking risk," 

correcting the issue of traditional segmentation neglecting 

"scene risk semantics." The top-layer evaluation output layer, 

relying on high-precision segmentation masks and associated 

weights, achieves three-dimensional output of risk location, 

interpretation, and strategy, supporting the segmentation task's 

need for "risk-oriented feature extraction." The strong scene 

constraints of the self-built dataset further highlight the 

robustness of the proposed method in real supply chain 

scenarios. 

From the experimental data of the COCO-Dataset 

validation set in Table 3, the performance advantages of the 

proposed method can be systematically analyzed: in the multi-

confidence segmentation accuracy dimensions, the proposed 

method achieves leading performance across all intervals. The 

Prec@0.5 is 88.76, which is 4.82 higher than ScaleFusionNet, 

demonstrating the accurate contour capture ability of the 

bottom-layer improved center difference convolution for 

large-scale risk areas. Prec@0.9 reaches 35.67, 2.02 higher 

than ScaleFusionNet, which confirms the cross-modal 

constraint effect of the mid-layer GNN bidirectional mapping. 

By encoding text attributes such as "transport delay 

probability" and "risk impact range" as graph nodes, the model 

can adjust segmentation biases in small-scale pixel-level cargo 

damage edges according to semantic logic, making the 

boundaries more consistent with the real shape of risks at 

higher precision levels. In the mean mIoU metric, a score of 

75.29, which is 2.0 higher than ScaleFusionNet, deeply 

reflects the collaborative value of the three-layer architecture: 

the bottom layer with multi-scale convolution synchronizes 

the feature integrity of "fine-grained defects" and "macro 

regions"; the mid-layer cross-modal graph network gives 

segmentation results risk semantics rationality, and together 

they support the precise output of the top-layer evaluation 

system. 

 

Table 1. Quantitative comparison of different methods on COCO-dataset and cityscapes datasets (overall intersection-over-union 

as the evaluation metric) 

 

Method 
COCO-Dataset Cityscapes 

val Test A Test B val Test A Test B 

SegNeXt 54.66 51.34 53.94 41.63 41.23 35.84 

Mask2Former 55.98 62.56 54.92 51.27 51.24 41.83 

UPerNet 57.53 62.34 52.83 46.72 46.73 36.85 

MSCAN 57.65 62.44 54.83 - - - 

PFPN+CRF 62.94 62.47 61.72 52.37 52.93 42.84 

MViT 63.98 63.54 58.96 53.74 53.28 43.85 

CoAtNet 61.84 66.32 59.75 54.37 53.47 41.95 

Decoupled SegNet 61.44 63.16 61.83 54.37 54.37 43.98 

ATAMF 62.99 61.32 62.37 53.74 54.79 48.82 

Deform-Mamba Network 64.83 63.56 63.28 55.77 55.87 46.87 

ScaleFusionNet 64.22 62.35 62.82 56.46 56.75 45.98 

Proposed Method 73.93 73.22 64.85 62.98 67.89 54.87 
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Table 2. Quantitative comparison of different methods on the self-built warehouse and port logistics datasets (overall 

intersection-over-union as the evaluation metric) 

 

Method 
Self-Built Warehouse Dataset Self-Built Port Logistics Dataset 

val test val 

SegNeXt - - 35.92 

Mask2Former 46.83 47.82 - 

UPerNet - - 38.82 

MSCAN 45.87 45.66 43.73 

PFPN+CRF - - 48.93 

MViT 52.87 52.65 45.93 

CoAtNet - - 46.93 

Decoupled SegNet - - 52.93 

ATAMF - - 51.73 

Deform-Mamba Network 51.82 55.75 48.19 

ScaleFusionNet 51.87 52.43 52.45 

Proposed Method 62.66 62.56 61.08 

 

Table 3. Quantitative comparison of different methods on the COCO-dataset validation set using Prec@X and mIoU as 

evaluation metrics 

 
Method Prec@0.5 Prec@0.6 Prec@0.7 Prec@0.8 Prec@0.9 mIoU 

SegNeXt 65.94 58.63 51.93 34.77 11.89 57.83 

Mask2Former 71.93 62.88 52.98 35.62 11.56 58.53 

UPerNet 71.92 63.29 54.53 38.64 11.87 62.98 

MSCAN 71.92 63.98 52.98 39.63 11.76 62.56 

PFPN+CRF 75.83 71.92 57.63 32.83 5.19 61.28 

MViT 71.93 64.92 54.98 38.54 11.56 61.28 

CoAtNet 72.97 68.94 61.26 48.55 21.45 61.38 

Decoupled SegNet 74.93 68.95 61.63 44.87 13.87 61.29 

ATAMF 75.93 71.92 64.28 46.63 12.35 64.39 

Deform-Mamba Network 82.92 76.83 71.72 51.62 15.98 64.29 

ScaleFusionNet 83.94 81.73 74.73 63.86 33.65 73.29 

Proposed Method 88.76 81.92 76.54 65.43 35.67 75.29 

 

From the ablation study data in Table 4, the performance 

gains of the proposed method can be deeply analyzed with the 

module progression logic: the experiment verifies the core of 

module progression. Model 1 adds the center difference 

convolution to the baseline model, while Model 2 introduces 

the improved balanced center difference convolution, and 

Model 3 further adds the language gate. Models 4, 5, and 6 

introduce different receptive fields in the GNN-based 

language-image fusion module. It can be seen from the 

experiments that the baseline model has an mIoU of 68.83 and 

Prec@0.5 of 81.82. Although Model 1 introduces center 

difference convolution, due to the lack of balanced multi-scale 

feature weights, Prec@0.5 slightly decreases, and mIoU 

slightly drops, revealing that simple edge capture cannot 

model regional layout effectively. Model 2, after introducing 

the improved balanced center difference convolution, achieves 

a Prec@0.5 of 82.93 and an mIoU of 71.83, confirming its 

multi-scale balance capability. By dynamically adjusting 

convolution weights, it retains fine-grained defect details and 

strengthens the macro region contours, solving the fusion 

contradiction of "micro-macro" features in supply chain 

images. Model 3 further introduces language semantic 

filtering, increasing Prec@0.7 from 71.39 to 74.39 and mIoU 

to 72.84, demonstrating that the language gate precisely filters 

risk-related features and establishes the correlation between 

"image features" and "risk semantics." In Models 4-6, Model 

5 achieves a Prec@0.5 of 88.38 and an mIoU of 75.29. The 

core of this improvement comes from the enhancement of the 

cross-modal graph network's bidirectional mapping of "image-

language nodes." Different receptive fields simulate the risk 

association between "local" and "global," making the 

segmentation results closely match pixel-level edge details and 

the semantic logic of text attributes like "transport delay 

probability." In conclusion, the ablation study clearly verifies 

the rationality of the three-layer architecture design through 

module dissection and performance tracing: the bottom-layer 

MG-CDC solidifies the foundation for multi-scale feature 

extraction, the mid-layer GLIF language gate and multi-

receptive field graph network realize cross-modal risk 

semantic fusion, and each module's addition drives the 

stepwise improvement of Prec@X and mIoU. This 

progressive optimization not only proves the independent 

value of each module but also highlights the synergistic effect 

of "multi-scale features", "cross-modal semantics", and 

"evaluation-driven segmentation". 

From the comparison of evaluation accuracy and evaluation 

error in Figure 4, the scene adaptability of the proposed 

method can be systematically analyzed: in the public datasets 

COCO-Dataset and Cityscapes, the evaluation accuracy of 

five types of scenes—cargo loading and unloading, sorting, 

docking operations, stacking, and routine monitoring—

remains stable at over 80%, with evaluation errors controlled 

within 4.5; in the self-built supply chain scene datasets, 

although accuracy slightly drops, the evaluation error 

significantly decreases. The comparison of the two types of 

datasets not only verifies the method's generalization ability to 

common and specialized scenes but also highlights its deep 

adaptability to complex supply chain scenes. The three-layer 

architecture, through the closed-loop of "multi-scale feature 

analysis → cross-modal risk reasoning → evaluation-driven 

feedback," achieves the leap from "image segmentation 

accuracy" to "scene evaluation intelligence." It reduces 

inference errors in dynamic scenarios like loading, sorting, and 

provides a technical verification for the "scene-based, precise" 
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evaluation of supply chain risks, deeply interpreting the 

systemic advantages of the proposed method in complex 

scenarios. 

 

Table 4. Ablation study results on COCO-dataset validation set 

 
 Baseline Model 1 Model 2 Model 3 Model 4(j=3) Model 5(j=4) Model 6(j=5) 

CDC × √ × × × × × 

MG-CDC × × √ √ √ √ √ 

GLIF × × × × √ √ √ 

LG × × × √ √ √ √ 

Prec@0.5 81.82 81.72 82.93 82.93 88.38 88.38 88.93 

Prec@0.6 73.92 73.47 74.38 75.38 82.39 81.38 81.29 

Prec@0.7 71.82 71.35 71.38 71.39 74.39 76.49 75.29 

Prec@0.8 62.93 62.93 61.93 61.38 64.39 65.39 65.39 

Prec@0.9 31.83 31.39 32.94 32.03 31.39 32.39 31.38 

oIoU 67.38 67.33 68.73 72.83 71.22 73.28 72.39 

mIoU 68.83 68.56 71.83 72.84 73.49 75.29 74.39 

 

 

 
 

Figure 4. Comparison of scene evaluation results in five different scenarios 

 

 

5. CONCLUSION 

 

This paper focused on the core goal of "intelligent analysis 

and evaluation of supply chain risk visualization images" and 

constructed a three-layer technical architecture of "feature 

extraction - fusion reasoning - evaluation output," forming a 

complete research loop through innovative module design and 

system validation. In terms of research content, the bottom-

layer innovative improved center difference convolution 

operator solved the problem of multi-scale feature extraction 

in supply chain images, achieving synchronous capture of 

features at different scales. The mid-layer GNN-based "image-

language node" bidirectional mapping network broke the 

cross-modal information barrier by calculating node attention 

weights, deeply associating visual features such as logistics 

vehicle congestion with text attributes like transportation delay 

probability. The top layer generated three-dimensional 

evaluation results of "risk location heatmap + natural language 
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warning report + response strategy recommendation" based on 

segmentation masks and associated weights, achieving full-

link output from risk localization to decision-making. 

Experimental results show that the method achieves an mIoU 

of 75.29 on public datasets and controls the evaluation error 

within 3.5 on self-built warehouse and port logistics datasets, 

improving mIoU by 6.46 points compared to the baseline 

model, significantly outperforming existing image 

segmentation and risk evaluation methods. The research value 

lies in the following aspects: technologically, it breaks through 

the two major bottlenecks of "multi-scale feature 

fragmentation" and "cross-modal semantic gaps" in supply 

chain risk visualization evaluation; in terms of application, it 

provides an integrated solution for enterprises, from risk image 

analysis to response strategy generation, reducing risk 

response time from the traditional 24 hours to within 4 hours; 

theoretically, it enriches the application paradigm of GNNs 

and multi-scale convolution in industrial scenarios, offering a 

reusable technical framework for the field of supply chain 

intelligent evaluation. 

Although the research has achieved significant results, there 

are still certain limitations: firstly, the dataset covers a limited 

number of scenarios. Although the existing self-built dataset 

includes core warehouse and port scenarios, it lacks coverage 

of logistics risk scenarios under extreme weather conditions, 

and there are few samples of dynamic risks; secondly, real-

time performance still has room for optimization in large-scale 

scenarios. The GNN node computation has a 1-2 second delay 

during full-port monitoring, which is difficult to meet the 

millisecond-level early warning requirements. Future research 

can be advanced in three aspects: first, expanding the dataset 

to include multi-climate and multi-terrain supply chain 

scenarios, and introducing multi-modal data such as infrared 

and radar to enhance model robustness; second, optimizing the 

computational efficiency of the GNN by dynamically pruning 

nodes to reduce complexity and adapt to real-time evaluation 

needs; third, deepening the linkage with supply chain 

management systems by integrating evaluation results into 

enterprise ERP systems, realizing closed-loop decision-

making between risk evaluation and inventory scheduling, 

transportation planning, and further unleashing the practical 

value of the technology. 

 

 

REFERENCES 

 

[1] Lamees, A.Z., Ramayah, T. (2025). How artificial 

intelligence-based supply chain analytics enable supply 

chain agility and innovation? An intellectual capital 

perspective. Supply Chain Management: An 

International Journal, 30(2): 233-249. 

https://doi.org/10.1108/SCM-09-2024-0558 

[2] Guo, F.F., Yang, Z.Y., Qin, W., Wang, Y.Y., Chen, S.Y. 

(2024). Optimising O2O supply chain strategies through 

cost-sharing contracts: Strategic analysis and empirical 

insights. Journal of Engineering Management and 

Systems Engineering, 3(4): 183-198. 

https://doi.org/10.56578/jemse030401 

[3] Hussain, G., Nazir, M.S., Rashid, M.A., Sattar, M.A. 

(2022). From supply chain resilience to supply chain 

disruption orientation: The moderating role of supply 

chain complexity. Journal of Enterprise Information 

Management, 36(1): 70-90. 

https://doi.org/10.1108/JEIM-12-2020-0558 

[4] Chowdhury, M.M.H., Islam, M.T., Ali, I., Quaddus, M. 

(2024). The role of social capital, resilience, and network 

complexity in attaining supply chain sustainability. 

Business Strategy and the Environment, 33(3): 2621-

2639. https://doi.org/10.1002/bse.3613 

[5] Alvarenga, M.Z., de Oliveira, M.P.V., Oliveira, T. 

(2023). Let’s talk about bad experiences instead of 

forgetting them: An empirical study on the importance of 

memory for supply chain disruption management. 

International Journal of Production Economics, 261: 

108872. https://doi.org/10.1016/j.ijpe.2023.108872 

[6] Herold, D.M., Marzantowicz, Ł. (2024). Neo-

institutionalism in supply chain management: From 

supply chain susceptibility to supply chain resilience. 

Management Research Review, 47(8): 1199-1220. 

https://doi.org/10.1108/MRR-08-2023-0572 

[7] Fazlollahtabar, H. (2022). Mathematical modeling for 

sustainability evaluation in a multi-layer supply chain. 

Journal of Engineering Management and Systems 

Engineering, 1(1): 2-14. 

https://doi.org/10.56578/jemse010102 

[8] Pellegrino, R., Gaudenzi, B., Zsidisin, G.A. (2024). 

Mitigating foreign exchange risk exposure with supply 

chain flexibility: A real option analysis. Journal of 

Business Logistics, 45(1): e12338. 

https://doi.org/10.1111/jbl.12338 

[9] Waqas, U., Abd Rahman, A., Ismail, N.W., Kamal 

Basha, N., Umair, S. (2023). Influence of supply chain 

risk management and its mediating role on supply chain 

performance: Perspectives from an agri-fresh produce. 

Annals of Operations Research, 324(1): 1399-1427. 

https://doi.org/10.1007/s10479-022-04702-7 

[10] Nicknezhad, J., Zegordi, S.H. (2024). Petroleum supply 

chain dynamic risk assessment using Bayesian network. 

Computers & Chemical Engineering, 189: 108771. 

https://doi.org/10.1016/j.compchemeng.2024.108771 

[11] Hezam, I.M., Ali, A.M., Sallam, K., Hameed, I.A., 

Abdel-Basset, M. (2024). Digital twin and fuzzy 

framework for supply chain sustainability risk 

assessment and management in supplier selection. 

Scientific Reports, 14(1): 17718. 

https://doi.org/10.1038/s41598-024-67226-z 

[12] Bani-Irshid, A.H., Hamasha, M.M., Al-Nsour, L., 

Mohammad, L., Al-Dabaibeh, A., Al-Majali, R., Al-

Daajeh, H. (2024). Supply chain risk assessment and 

mitigation under the global pandemic COVID-19. 

International Journal of Production Management and 

Engineering, 12(1): 43-63. 

https://doi.org/10.4995/ijpme.2024.19240 

[13] Artoonian, T.A., Ross, R.B., Shupp, R.S. (2025). 

Identification and assessment of supply chain risks: The 

case of food hubs. Agribusiness, 41(1): 84-105. 

https://doi.org/10.1002/agr.21877 

[14] McKay, A., Chittenden, R., Hazlehurst, T., de 

Pennington, A., Baker, R., Waller, T. (2022). The 

derivation and visualization of supply network risk 

profiles from product architectures. Systems 

Engineering, 25(5): 421-442. 

https://doi.org/10.1002/sys.21622 

[15] Ma, C., Zhang, L., You, L., Tian, W. (2024). A review of 

supply chain resilience: A network modeling 

perspective. Applied Sciences, 15(1): 265. 

https://doi.org/10.3390/app15010265 

[16] Helal, M.A., Anderson, N., Wei, Y., Thompson, M. 

2262



 

(2023). A review of biomass-to-bioenergy supply chain 

research using bibliometric analysis and visualization. 

Energies, 16(3): 1187. 

https://doi.org/10.3390/en16031187 

[17] Shishehgarkhaneh, M.B., Moehler, R.C., Fang, Y., 

Aboutorab, H., Hijazi, A.A. (2024). Construction supply 

chain risk management. Automation in Construction, 

162: 105396. 

https://doi.org/10.1016/j.autcon.2024.105396 

[18] Ashkani Chenarlogh, V., Ghelich Oghli, M., 

Shabanzadeh, A., Sirjani, N., et al. (2022). Fast and 

accurate U-net model for fetal ultrasound image 

segmentation. Ultrasonic Imaging, 44(1): 25-38. 

https://doi.org/10.1177/01617346211069882 

[19] Ning, X., Yu, Z., Li, L., Li, W., Tiwari, P. (2024). DILF: 

Differentiable rendering-based multi-view image–

language fusion for zero-shot 3D shape understanding. 

Information Fusion, 102: 102033. 

https://doi.org/10.1016/j.inffus.2023.102033 

[20] Abed, H.R., Rashid, H.A. (2024). A New Risk 

Assessment Model for Construction projects by adopting 

a best–worst method–fuzzy rule-based system coupled 

with a 3D risk matrix. Iranian Journal of Science and 

Technology, Transactions of Civil Engineering, 48(1): 

541-559. https://doi.org/10.1007/s40996-023-01105-x 

 

2263




