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The extreme climatic and environmental conditions of polar regions impose stringent 

constraints on architectural safety, functionality, and adaptability. With the growing 

prevalence of scientific expeditions and resource exploration in these remote territories, the 

demand for resilient, efficient, and adaptive architectural solutions has increased 

substantially. However, conventional design methodologies have been found inadequate in 

addressing the multifaceted challenges posed by low temperatures, harsh illumination 

conditions, and limited spatial flexibility. In particular, standard image segmentation 

algorithms often underperform in polar indoor environments due to dynamic lighting 

variations, high reflectivity of ice and snow surfaces, and structural ambiguities. 

Additionally, existing optimization frameworks for architectural layouts frequently neglect 

the thermal inefficiencies induced by extreme cold, as well as the distinctive functional 

zoning requirements of polar buildings, such as isolation zones, decontamination chambers, 

and modular emergency units. To address these limitations, an integrated architectural 

optimization approach has been developed, combining image segmentation, semantic 

mapping, and spatial configuration modelling tailored for polar contexts. First, a planar 

image matching technique has been proposed, leveraging angular and distance-based 

features to extract object orientations and spatial relationships, thereby enhancing scene 

recognition robustness under variable visual conditions. Second, a semantic simultaneous 

localization and mapping (semantic SLAM) framework has been adapted for indoor 

architectural segmentation, enabling real-time integration of semantic information into the 

SLAM pipeline for high-precision spatial modelling and environmental interpretation. 

Third, a grid map-based optimization model has been constructed to quantify spatial 

attributes and incorporate environmental variables—such as thermal conductivity, wind 

flow, and material performance—into layout decision-making. Functional zoning 

constraints specific to polar operations have also been embedded within the optimization 

objective functions to ensure mission-specific spatial configurations. The innovations 

presented lie in the mitigation of polar-specific visual interference in image processing, the 

enhancement of architectural segmentation through semantic-augmented SLAM, and the 

development of an environmentally responsive spatial optimization framework. These 

contributions are expected to provide foundational support for intelligent, data-driven 

architectural design in extreme environments, while offering methodological advancements 

to the broader fields of remote architecture, robotics, and environmental informatics. 
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1. INTRODUCTION

Polar regions are characterized by extreme low 

temperatures, strong winds, and ice and snow coverage 

throughout the year [1-3], and also exhibit special natural 

phenomena such as polar day and polar night. These factors 

impose very high requirements on the safety, functionality, 

and adaptability of local buildings. With the increasing 

frequency of polar scientific investigations and resource 

exploration activities [4, 5], the demand for polar buildings is 

continuously increasing. How to achieve optimized 

architectural layout and efficient spatial configuration under 

extreme environments [6, 7] has become a key issue to ensure 

the smooth progress of polar activities. Traditional 

architectural design and layout methods are difficult to fully 

adapt to the particularity of polar environments, urgently 

requiring advanced image segmentation and algorithm 

technologies to provide new solutions for the intelligent design 

of polar buildings. 

Relevant research is of great significance for improving the 

utilization efficiency of polar buildings, reducing operational 

costs, and ensuring personnel safety. From a practical 

application perspective, optimized architectural layout and 

reasonable spatial configuration [8, 9] can improve the 

resistance of polar buildings to extreme climates, reduce 

energy consumption, and provide a more comfortable and safe 
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working and living environment for researchers and 

expedition members, thereby enhancing the sustainability and 

efficiency of polar activities. From the disciplinary 

development perspective, this research can promote the 

interdisciplinary integration of computer vision, artificial 

intelligence, and architectural science in polar environments, 

expand the application boundaries of related technologies, and 

provide new theoretical and methodological support for 

architectural design and optimization in extreme 

environments. 

Although existing studies have explored architectural layout 

optimization and image segmentation fields, there are still 

obvious deficiencies in addressing the particularity of polar 

environments. For example, some image segmentation 

algorithms based on conventional environments [10-14] show 

significantly reduced segmentation accuracy when processing 

images of indoor polar buildings affected by drastic lighting 

changes and snow and ice reflections, making it difficult to 

accurately identify functional areas and structural details 

inside buildings; some architectural layout optimization 

models [15-18] do not fully consider the effects of low 

temperatures on building material properties and heat transfer 

efficiency, resulting in poor applicability of optimization 

results in actual polar environments; meanwhile, existing 

spatial configuration methods [19, 20] often overlook the 

layout needs of special functional areas in polar buildings, 

failing to meet the special functional requirements of polar 

activities. 

This thesis conducts in-depth research on architectural 

layout optimization and spatial configuration under polar 

environments, mainly including three parts. First, a planar 

image matching method for indoor architectural scenes based 

on angles and distances is proposed, which extracts angular 

features and spatial distance relationships of objects in images 

to construct a robust matching model, improving the accuracy 

and robustness of image matching in complex indoor polar 

building environments. Second, a semantic SLAM method for 

indoor architectural scene image segmentation is developed, 

integrating semantic information into the SLAM process to 

achieve real-time semantic segmentation and 3D map 

construction of polar building interiors, providing fine 

semantic information for spatial analysis. Third, an 

architectural layout optimization and spatial configuration 

framework based on grid maps under polar environments is 

constructed. By combining polar environmental parameters 

and architectural functional requirements, the building space 

is quantitatively represented using grid maps, and layout 

optimization objective functions and constraints are 

formulated to achieve efficient spatial configuration of polar 

buildings. The value of this research lies in that the proposed 

algorithms can specifically solve the special problems of 

architectural image processing and layout optimization under 

polar environments, provide technical support for intelligent 

design of polar buildings, and enrich interdisciplinary research 

achievements at the intersection of extreme environment 

architecture and algorithms. 

 

 

2. PLANAR MATCHING FOR INDOOR POLAR 

SCENES USING ANGLES AND DISTANCES 

 

Only accurate planar matching can ensure the accuracy of 

spatial structure cognition, thereby supporting reasonable 

layout planning. Due to polar day and polar night, indoor polar 

environments experience drastic lighting changes, and snow 

and ice reflections easily cause image grayscale distortion. 

Traditional matching methods relying on texture or color are 

prone to failure. Therefore, this paper chooses to perform 

image planar matching based on angles and distances in indoor 

scenes of polar buildings to cope with the special interference 

of polar environments on image data. The angles and center 

distances of planes, as geometric features, are less affected by 

lighting, reflections, and other environmental factors, and can 

maintain stability under extreme conditions. Meanwhile, polar 

buildings are mostly modular structures, where the angles and 

spatial distance relationships of planes such as walls and floors 

have strong regularity. Using these as matching criteria can 

effectively reduce noise interference and provide reliable 

planar topological relationships for the 3D maps constructed 

by subsequent semantic SLAM. This forms the basis for 

optimizing the layout of polar buildings. 

The angle- and distance-based planar matching method for 

indoor architectural scenes proposed in this paper is 

implemented with a closed-loop process of "extraction - 

comparison - association/creation" centered on a global plane 

database. First, planar features of the current frame are 

extracted from RGB-D images, focusing on calculating the 

normal vector angles and center 3D coordinates of each plane. 

Then, these features are fully compared with all planes in the 

global plane map, rather than being limited to keyframes only, 

to avoid matching omissions caused by keyframe selection 

bias in polar environments. During comparison, a double-

threshold judgment is used: when the angle difference between 

two planes is ≤ 8° and the center distance ≤ 0.1 m, they are 

determined to be the same plane. At this time, new geometric 

constraints are added to the local bundle adjustment to 

strengthen the consistency of the global map. If no global 

plane meeting the thresholds is found, a new entry for the plane 

is created in the global database. This design filters noise 

through strict geometric constraints, while improving 

matching coverage by full comparison, ensuring the 

completeness and accuracy of planar associations in complex 

indoor polar environments. 

 

 

3. SEMANTIC SLAM METHOD FOR INDOOR 

ARCHITECTURAL SCENE IMAGE SEGMENTATION 

 

In polar indoor environments, drastic lighting changes and 

snow and ice reflection interference easily cause cumulative 

errors in traditional SLAM without loop closure detection and 

global optimization, making it difficult to accurately locate 

camera poses and thus affecting the spatial consistency of 

image segmentation. Semantic information, as a stable high-

level feature in the environment, can provide additional short-

range constraints for SLAM. For example, the regularity in 

spatial distribution of semantic categories such as walls, doors, 

and windows can assist in correcting pose deviations and 

improve the robustness of SLAM under extreme conditions. 

Meanwhile, the functional zoning of polar buildings, such as 

low-temperature laboratories and material storage areas, 

requires very high accuracy of semantic labels. Only through 

semantic SLAM, which deeply integrates image segmentation 

with spatial localization, can dual accurate cognition of 

"geometric structure + semantic categories" of indoor scenes 

be realized, providing foundational data with both spatial 

coordinates and functional attributes for subsequent grid map-

based layout optimization. This need cannot be met by pure 
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image segmentation or traditional SLAM alone. 

The semantic SLAM method for indoor architectural scene 

image segmentation proposed in this paper is implemented 

around two core objectives: "semantic constraints to enhance 

SLAM accuracy" and "global consistent semantic map 

construction." First, semantic information such as categories 

of walls, floors, and equipment is extracted from the current 

frame using image semantic segmentation technology and 

integrated as short-range constraints into the SLAM 

optimization process. By constructing a semantic cost function 

based on an observation probability model, the matching 

degree between semantic labels and spatial positions is 

quantified and incorporated into the nonlinear optimization 

framework of SLAM. This reduces pose estimation errors 

through semantic consistency constraints when loop closure 

detection is lacking. Second, for polar indoor scenes, a 

binocular camera collects color and depth images, and 

combining the precise camera poses output by semantic 

SLAM, the semantic segmentation results are fused with 3D 

point clouds to generate an initial dense 3D grid map. Since 

polar environments may cause local semantic label noise, such 

as category misjudgment triggered by snow and ice 

reflections, a conditional random field model is introduced to 

perform global optimization on grid labels by modeling 

semantic correlations between adjacent grids, correcting 

isolated noise points and ultimately obtaining a globally 

consistent semantic grid map. 

3.1 Image semantic segmentation based on the improved 

DeepLabv3 

 

Indoor polar buildings contain multi-scale objects, such as 

large walls and small experimental equipment, doors, and 

windows. Influenced by drastic lighting changes and snow and 

ice reflections, object edges tend to be blurred. Therefore, this 

paper chooses to introduce an improved version of 

DeepLabv3, which retains the multi-scale information capture 

ability of atrous convolution and combines the detail recovery 

ability of an efficient decoder in the encoder-decoder structure. 

This approach can utilize the pyramid pooling of the encoder 

to extract features at different scales and sharpen segmentation 

edges through the decoder, providing more accurate semantic 

labels for semantic SLAM. This is the premise for effectively 

integrating semantic constraints into SLAM optimization. At 

the same time, this paper chooses to introduce an improved 

Xception model, which reduces computation while improving 

accuracy. Its lightweight design adapts to the potentially 

limited computing power of hardware devices under low 

temperatures in polar scenarios, ensuring that semantic 

segmentation can cooperate with SLAM pose estimation in 

real time. The accuracy improvement further reduces semantic 

label misclassification, providing higher quality initial labels 

for the conditional random field optimization of the global 

semantic map. 

 

 
(a) Encoder 

 

 
(b) Decoder 

 

Figure 1. Encoder and decoder structure of the improved DeepLabv3 (a) Encoder; (b) Decoder 

 

The core of the improved DeepLabv3 lies in constructing a 

collaborative feature fusion mechanism of "encoder-decoder." 

The encoder follows the DeepLabv3 architecture, extracting 

features with a stride of 16 containing high-level semantic 

information, capturing the overall category attributes of 

objects such as walls and equipment in indoor polar buildings. 

The decoder optimizes details through two-step upsampling 

and feature fusion. First, the encoder output features are 

bilinearly upsampled 4 times and concatenated with low-level 

features of the same resolution from the network backbone. 
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Meanwhile, a 1×1 convolution compresses the channels of the 

low-level features to avoid training imbalance caused by 

excessive low-level feature weights. Then, a few 3×3 

convolutions integrate the fused features to further refine edge 

information. Finally, another 4 times bilinear upsampling 

produces segmentation results with the same resolution as the 

input image. Figure 1 shows the specific encoder and decoder 

structures of the improved DeepLabv3. This improved design 

retains DeepLabv3’s ability to perceive multi-scale objects 

and effectively restores critical edge details such as wall 

corners and equipment contours in indoor polar scenes through 

balanced fusion of low- and high-level features. This provides 

high-precision semantic labels for semantic SLAM, ensuring 

precise association of object semantics and spatial positions 

when constructing indoor spatial maps and improving the 

accuracy of functional area division in subsequent layout 

optimization. 

The adopted improved Xception model is adapted in three 

ways to meet the real-time and segmentation accuracy 

requirements of semantic SLAM. First, a deeper Xception 

architecture is used while maintaining the input flow network 

structure unchanged. Without increasing data processing 

redundancy, this enhances the deep feature extraction 

capability for complex structures such as special insulation 

walls and modular equipment in indoor polar environments, 

while optimizing memory usage and computation speed to 

meet SLAM real-time requirements. Second, all max pooling 

operations are replaced by stride depthwise separable 

convolutions to avoid spatial information loss caused by 

traditional pooling and create conditions for extracting 

features with atrous separable convolutions at arbitrary 

resolutions afterward. This is crucial for multi-scale object 

segmentation in indoor polar environments caused by 

equipment occlusion and uneven lighting and can flexibly 

adapt to feature extraction needs of images at different 

resolutions. Third, normalization and ReLU activation 

functions are added after each 3×3 depthwise convolution. 

Inspired by the lightweight design of MobileNet, by 

strengthening feature normalization and nonlinear expression 

capability, the distinction of similar materials in indoor polar 

scenes is improved, providing a more robust feature basis for 

semantic segmentation and enhancing the constraint effect of 

semantic information on SLAM optimization. The specific 

architecture is shown in Figure 2. 

 

 
(a) 

 

 

 

(b) (c) 

 

Figure 2. Improved Xception architecture (a) Entry flow; (b) Middle flow; (c) Exit flow 
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3.2 Overall framework of semantic SLAM 

 

The overall semantic SLAM framework is based on the 

indirect ORB-SLAM2 architecture. The frontend first 

completes parallel processing of image feature extraction and 

semantic segmentation. To address problems such as drastic 

lighting changes and snow and ice reflection interference in 

indoor polar buildings, the framework uses the improved 

Xception model as the backbone network in combination with 

the improved DeepLabv3 to achieve high-precision image 

semantic segmentation. Through a deeper network structure to 

enhance feature extraction capability, replacing max pooling 

operations with stride depthwise separable convolutions to 

improve adaptability to feature maps of different resolutions, 

and utilizing an optimized decoder module to precisely restore 

edges of architectural components such as walls and doors and 

windows—first upsampling encoder features 4 times and 

concatenating them with low-level features of the same 

resolution, then reducing channel dimensions by 1×1 

convolution to balance channel weights, followed by 3×3 

convolution optimization and second upsampling—dense 

pixel-level semantic labels Sj are finally generated to assign 

category membership to each pixel, solving segmentation blur 

caused by image quality fluctuations in polar environments. 

Meanwhile, the ORB feature extraction and matching modules 

operate normally, preserving traditional SLAM’s ability to 

capture geometric features and forming dual inputs of 

"geometric features + semantic features". 

In the backend optimization stage, the framework 

innovatively integrates semantic information into the joint 

optimization process of SLAM, constructing a dual-objective 

function of "visual error + semantic error." For each input 

frame image, based on the semantic segmentation results, the 

semantic probability vector qu of the map point is estimated 

online, where qu
(z) represents the probability that the 3D spatial 

point Ou belongs to category z. This probability is calculated 

through the mapping relationship between pixel semantic 

labels and spatial positions. On this basis, a semantic cost 

function is defined to quantify the consistency between camera 

pose Tj and spatial point Ou at the semantic level. For example, 

if the semantic label of map point Ou is "wall," its projection 

pixel in the image should highly match the "wall" category in 

the segmentation result, and the greater the deviation, the 

higher the semantic cost. This function, combined with the 

visual error function RBASE in traditional ORB-SLAM2, refines 

the camera pose and map points through joint optimization. 

Especially in indoor polar scenarios lacking loop closure 

detection or global optimization, semantic constraints can 

effectively compensate for the deficiency of geometric 

features, reduce cumulative errors, and improve pose 

estimation accuracy. Specifically, assuming the reprojection 

error of the u-th map point in the j-th image is represented by 

rBASE(j, u), the visual SLAM objective function expression is: 

 

( ),BASE BASE

j u

R r j u=  
(1) 

 

The defined semantic cost function expression is: 

 

( ),SEM SEM

j u

R r j u=  
(2) 

 

By jointly optimizing the visual SLAM objective function 

and the semantic cost function, and letting η adjust the weights 

of different parts, it can be expressed as: 

 

 ˆ ˆ, BA SEMA S ARGMIN R R= +  (3) 

 

The final output of the framework is an indoor architectural 

spatial semantic map with both geometric accuracy and 

semantic consistency. Through multimodal fusion and global 

optimization, map quality is ensured. Using color and depth 

images collected by a binocular camera, combined with 

optimized camera poses, semantic labels are associated with 

spatial coordinates to generate an initial indoor architectural 

spatial grid map. Each grid corresponds to a local space 

recording its geometric location and preliminary semantic 

label. Considering the possibility of local semantic 

misclassification in indoor polar buildings, the framework 

introduces a conditional random field model to globally 

optimize grid labels. By modeling semantic correlations 

between adjacent grids, isolated noise points are corrected, and 

ultimately a globally consistent dense semantic grid map of 

indoor architectural space is obtained. 

 

3.3 Construction of observation probability model 

 

Given the strong spatial correlation of static structures such 

as walls, doors, windows, and furniture in indoor scenes, the 

model defines o(Tj|Sj,Au,Cu=z) associating the image 

segmentation result Tj with camera pose Sj and semantic label 

Cu=z of map point Au. For each semantic category z, a binary 

image UTj=z is first constructed, and then the distance transform 

FSY(o) calculates the distance from pixel o to the nearest 

region of the same category. Using the above definition, the 

adaptation of the enclosed and structural properties of indoor 

scenes can be achieved. For example, "walls" usually appear 

as continuous regions in images. The distance transform can 

accurately quantify the spatial distance between any pixel and 

the wall region. Even when local segmentation is blurred due 

to uneven indoor lighting, the distance measure still provides 

a robust basis for semantic matching, laying a noise-resistant 

geometric foundation for subsequent cost calculations. 

Specifically, let the distance transform be FS(z)
j=FSTj=z(o), the 

projection function from world coordinates to camera plane be 

denoted as τ, and the semantic segmentation uncertainty be δ. 

Based on FS(z)
j, the observation probability can be defined as: 

 

( )
( ) ( )( )

2

2

1
,

2| , ,

z
j ujFS S A

j j u uo T S A C z e




−

=   (4) 

 

The definition of the semantic cost function in this paper 

follows a "distance-probability" negative correlation law, 

achieving precise alignment of spatial entities and semantic 

labels in indoor architectural scenes by maximizing the 

observation probability. In indoor scenes, the projection 

positions of the same object should stably fall within the 

corresponding semantic segmentation region. Therefore, the 

observation probability decreases as the distance from the 

projection point τ(Sj, Au) to the similar region increases. The 

semantic cost function based on this definition essentially 

guides SLAM optimization by quantifying the degree of 

deviation: when the spatial point projection of a bookshelf 

deviates from the "bookshelf" semantic region due to camera 

pose estimation errors, the cost function value increases, 

driving the optimization process to adjust Sj and Au to move 

the projection toward the correct region. Specifically, in 
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elongated spaces such as corridors, this definition effectively 

avoids confusion of semantic labels "wall" and "floor" caused 

by feature matching errors, ensuring consistency between 

segmentation results and spatial structure. Assuming the 

probability that spatial point Ou belongs to category z is 

represented by q(z)
u, the defined semantic cost function 

expression is: 
 

( ) ( ) ( )( ), log | , ,
z

SEM u j j u u

z Z

r j u q o T S A C z


= =  

( ) ( ) ( )( )
2

2

1
,

z z

u j j u

z Z

q FS S A


= −   

(5) 

 

The semantic cost function adopts a weighted average 

structure, using the probability vector qu as weights to realize 

fusion optimization of multi-frame semantic observations in 

indoor architectural scenes. For multiple observations of the 

same map point in indoor scenes, qu
(z) is calculated by 

accumulating semantic segmentation results of each frame, 

reflecting the confidence that the point belongs to category z. 

Therefore, the cost function becomes the weighted sum of 

projection distances FS(c)
j(τ(Sj,Au))2, with weights qu

(z): if a 

door frame is correctly labeled as "door/window" in most 

frames, the qu for "door/window" tends to 1, and the cost 

calculation mainly relies on the distance constraint of the 

"door/window" region; if a single frame misclassifies it as 

"wall" due to backlighting, the low-weighted "wall" distance 

term has little effect on the total cost. In practical scenes, 

multi-frame observation consistency of static structures is 

strong, and qu can effectively filter transient noise, ensuring the 

cost function always constrains by true semantics and 

improving the temporal consistency of segmentation results. 

Specifically, the probability vector qu of point Ou is calculated 

from its observations. If Ou is observed by a series of Su, then: 

 

( ) ( )
1

| , ,
u

z

u j S j j u uq o T S A C z


= =  (6) 

 

In the above, the introduction of constant β and uncertainty 

δ provides an adaptive adjustment mechanism for the semantic 

cost function in indoor architectural scenes. The constant β 

ensures Σzqu
(z)=1, normalizing the probability vector qu during 

multi-frame iterations, avoiding probability distribution 

imbalance caused by the fixed number of semantic categories 

in indoor scenes, and ensuring stable weight calculation for 

complex categories such as bookshelves and desks and chairs. 

The uncertainty δ dynamically adjusts constraint strength for 

ambiguous segmentation areas such as furniture shadows and 

glass reflection zones, which easily appear in indoor scenes: 

when an area suffers segmentation boundary blur between 

"desktop" and "floor" due to lighting issues, δ increases, 

reducing the weight of that area's cost term and avoiding 

erroneous semantic constraints interfering with camera pose 

optimization; in clearly segmented areas, δ decreases, 

strengthening the penalty of the cost function on projection 

deviations. 

To realize the collaborative optimization of semantic and 

geometric information in indoor polar architectural scenes, 

this paper decouples the joint error stepwise based on the 

expectation-maximization (EM) algorithm. Considering the 

coupling relationship between camera pose and semantic 

labels in the joint error RJOINT, the EM algorithm divides the 

optimization process into E-step and M-step: in the E-step, 

fixing the camera pose and 3D point coordinates, the semantic 

cost function is used to calculate the probability vector qu of 

each point, accumulating multi-frame observations to correct 

single-frame segmentation noise under polar environments, 

making qu converge to the true semantic category; in the M-

step, fixing qu, the Levenberg-Marquardt (LM) algorithm and 

sparse solver optimize the camera pose and 3D point positions, 

focusing on reducing the weighted sum of semantic cost and 

visual error. 

Semantic optimization strengthens constraint structure 

through a four-step strategy, compensating for optimization 

degree of freedom redundancy caused by lack of geometric 

features in indoor polar buildings. First, semantic optimization 

is performed synchronously with the main SLAM 

optimization, enabling semantic constraints to act on pose 

estimation in real time, avoiding drift caused by purely 

geometric optimization in feature-sparse regions; second, 

semantic constraints of multiple points jointly optimize a 

single pose, introducing structural information by utilizing 

spatial correlation of semantic labels in the modular structure 

of polar buildings; third, points no longer involved in SLAM 

optimization are fixed, only optimizing their corresponding 

poses to reduce drift, limiting parameter quantity and 

stabilizing camera trajectory through implicit structural 

constraints of relative positions between points; finally, high-

frequency semantic optimization shortens error accumulation 

cycles, using derivatives of distance functions to "pull" 3D 

points toward correct semantic regions, reducing the 

probability of label misassignment in polar environments. 

These strategies jointly build a tighter constraint network, 

improving optimization stability. 

The establishment of semantic constraints adopts a 

"dynamic selection + fault tolerance mechanism" to adapt to 

local errors of indoor semantic segmentation in polar 

environments and maintain constraint validity. By defining a 

semantic visible list NSEM(j), only points whose projection 

positions are close to regions of the same semantic category 

are included in the constraint scope: when the projection of 3D 

point Ou is within an allowable distance to the same label in 

image segmentation Tj, it is selected into NSEM(j) and 

participates in semantic optimization. This selection 

guarantees constraint reliability while allowing certain 

semantic reprojection errors to address transient segmentation 

deviations caused by abrupt lighting changes in polar 

environments. Meanwhile, the fusion of semantic and visual 

constraints follows the principle of "complementary 

enhancement," that is, geometric constraints dominate in 

regions rich in visual features, and semantic constraints are 

strengthened in regions where semantic features are more 

stable, forming a hybrid constraint system adapted to complex 

indoor polar scenes. 

 

 

4. BUILDING LAYOUT OPTIMIZATION AND SPACE 

CONFIGURATION BASED ON GRID MAPS IN POLAR 

ENVIRONMENTS 

 

When constructing grid maps for layout optimization in 

polar environments, accurate camera poses output by sparse 

semantic SLAM are used as spatial references to achieve 

dynamic fusion of multimodal data. Considering measurement 

errors of equipment caused by low temperatures in indoor 

polar buildings, a fixed-size dynamic grid window follows the 

camera motion. The window size is set according to the 
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modular unit size of polar buildings to ensure that each 

window contains complete functional region features. During 

fusion, color texture information from binocular camera 

images, three-dimensional coordinates from depth maps, and 

category labels from semantic segmentation maps are mapped 

to grid cells: pixel-level data of each frame is transformed into 

the global coordinate system based on camera poses, and 

multi-frame observations of the same grid cell are fused by 

weighted averaging. This process primarily weakens abnormal 

depth values and semantic misclassifications caused by ice and 

snow reflections, providing a grid basis with both geometric 

accuracy and semantic reliability for subsequent layout 

optimization. 

Furthermore, global optimization of the grid map using a 

conditional random field (CRF) model is a key step to adapt to 

semantic noise in polar environments. To address local 

semantic inconsistencies caused by drastic lighting changes 

indoors in polar regions, the CRF model integrates two types 

of constraints by constructing an energy function: first, a 

Unary term that assigns initial label probabilities to grids based 

on single-frame semantic segmentation confidence; second, a 

Pairwise term that strengthens semantic correlations between 

adjacent grid cells. For example, adjacency probability 

between “wall” grids and “floor” grids is much higher than 

that between “wall” grids and “equipment” grids, and “low-

temperature experimental area” grids tend to be adjacent to 

“insulated wall” grids. By iterative optimization to minimize 

the energy function, isolated semantic noise grids are 

corrected, and geometric jumps caused by camera shaking are 

smoothed. The optimized grid map not only achieves global 

consistency of semantic labels but also reflects the temperature 

field distribution indoors in polar environments through 

gradient changes in grid colors, providing multidimensional 

constraint information for layout optimization. 

Building layout optimization and space configuration based 

on the optimized grid map requires deep coupling of polar 

environmental parameters and functional requirements. First, 

the grid map is quantified as a decision variable matrix, with 

each grid cell’s state including physical attributes and 

functional attributes. The objective function is set to maximize 

space utilization and energy efficiency under the premise of 

satisfying the special constraints of polar regions. An 

improved genetic algorithm is adopted for solution: the 

chromosome represents the grid function allocation scheme, 

and the fitness function integrates space utilization, heat loss 

simulation results, and functional area accessibility. The 

optimization focuses on grid paths between “material storage 

areas” and “entrances/exits”, and the grid separation between 

“rest areas” and “experimental areas”, finally outputting an 

optimal building layout scheme that conforms to the extreme 

polar environment. 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The experiments first explore the effect of grid size on 

indoor polar building image segmentation accuracy, with 

mIoU and mAcc as core metrics. From the data distribution 

shown in Figure 3: when the grid size reduces from 6×6 to 

3×3, mIoU decreases from about 72.5 to 68.2, and mAcc 

decreases from 76.8 to 72.6, showing a significant trend of 

"larger grid size, better segmentation performance." The 

results indicate that through the semantic cost function and 

probability model, the method in this paper converts the 

semantic correlation of polar buildings into quantitative 

constraints. For pixels within a large grid, the semantic cost 

function calculates the correlation between projection points 

and semantic regions through distance transform, forcing 

pixels within the grid to converge toward the dominant 

semantic label, effectively resisting noise interference from 

the polar environment. Compared to the 3×3 grid, the 6×6 grid 

with the paper’s method improves mIoU by about 4.3% and 

mAcc by about 4.2%, verifying the enhancement effect of 

semantic constraints on large-grid accuracy. 

 

 
 

Figure 3. Effect of different grid sizes on image 

segmentation performance 

 

 
 

Figure 4. Effect of different semantic cost function 

architectures on network segmentation accuracy 

 

Further, mIoU quantifies the influence of different semantic 

cost function architectures on indoor polar building image 

segmentation accuracy. From the data distribution shown in 

Figure 4: the weighted average structure leads with nearly 

48.9% mIoU, improving by 0.6 percentage points over the 

maximum likelihood structure’s about 48.3% mIoU, and 

improving by 0.4% and 0.35% respectively over the minimum 

entropy structure’s about 48.5% mIoU and the segmented 

weighted structure’s about 48.55% mIoU. The root of 

performance differences lies in architecture adaptability to 

polar environment characteristics: the maximum likelihood 

structure directly depends on the segmentation model’s 

probability output, but extreme lighting and low-temperature 

sensor noise in polar environments cause severe model 

confidence fluctuations, destabilizing cost function 

optimization and resulting in the lowest accuracy. The 

minimum entropy structure pursues temporal consistency of 

semantic labels but neglects spatial geometric constraints of 

polar buildings, unable to correct label errors through spatial 

correlation, limiting accuracy improvement. The segmented 

weighted structure weights according to semantic importance, 

aligning with polar building’s “structural safety first” 
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requirements, but prior weights are difficult to adapt to 

modular building dynamic features, and local semantic 

conflicts reduce accuracy. The weighted average structure 

adopted in this paper breaks the bottleneck through a threefold 

mechanism: (1) dynamic fusion of multi-frame probability 

vectors integrates semantic information from polar day/night 

periods, filtering transient noise; (2) distance transform 

quantifies spatial correlation between projection points and 

semantic regions, strengthening geometric constraints of polar 

building’s regular structure; (3) uncertainty adapts to low-

temperature sensor errors, reducing weights of unreliable 

observations when depth measurement accuracy declines, 

ensuring optimization stability. 

 

Table 1. Image segmentation performance evaluation of 

different methods 

 
Method PE (%) MioU (%) FPS 

DS-SLAM 6.89 81.24 0.007 

SemanticFusion 11.23 82.54 0.03 

CubeSLAM 9.75 83.24 5.89 

PL-SLAM 9.65 87.36 8.4 

DSO-Semantic 7.15 88.94 51.23 

The proposed method 6.23 91.25 66.35 

 

Table 1 reveals the performance of this paper’s method 

compared with classical semantic SLAM methods from three 

core dimensions: pixel error (PE), semantic segmentation 

accuracy (mIoU), and real-time running efficiency (FPS). In 

accuracy, this paper’s method achieves a PE as low as 6.23%, 

decreasing about 9.6% compared to DS-SLAM’s 6.89% and 

over 44% compared to SemanticFusion’s 11.23%, 

significantly compressing pixel-level segmentation errors; 

mIoU reaches 91.25%, improving 2.6% over DSO-Semantic’s 

88.94% and surpassing traditional methods by more than 10 

percentage points, establishing a generational advantage in 

semantic segmentation accuracy. In real-time performance, 

this paper’s method achieves an FPS of 66.35, exceeding 

CubeSLAM’s 5.89 and PL-SLAM’s 8.4 by an order of 

magnitude, and even improving 29.5% over the real-time-

focused DSO-Semantic’s 51.23, breaking the technical barrier 

of “high accuracy versus real-time” in polar environments. 

The root of the performance breakthrough lies in the paper’s 

technical approach’s deep adaptation to polar building scene 

characteristics: feature extraction based on “angle + distance” 

uses the “regularized structure” of polar buildings to resist 

ambiguities caused by polar day/night lighting fluctuations 

and low-temperature sensor noise, reducing PE from the 

source. The weighted average semantic cost function fuses 

“multi-frame probability constraints + spatial distance 

constraints,” reinforcing semantic consistency of polar 

functional areas such as “insulation layer” and “experimental 

zone.” 

From the visual comparison in Figure 5, the layout obtained 

by traditional SLAM algorithms shows spatial boundary 

blurring and functional zone misalignment issues compared to 

the ground truth layout, while the layout (d) from the method 

proposed in this paper highly overlaps the ground truth layout, 

with clear and sharp functional zone boundaries. The boundary 

between the “insulation layer” and “experimental zone” in 

polar buildings needs accuracy to the 0.1 m level. The 

semantic SLAM output from this paper provides a semantic 

map with functional labels, and after gridding, each cell carries 

attributes such as “thermal conductivity”. During layout 

optimization, boundary adjustment is driven by a “heat loss 

objective function”. For example, in the bedroom area (d), the 

wall-floor junction automatically fits the real insulation layer 

boundary due to semantic constraints, while the boundary in 

the traditional method (c) only fits geometric contours, causing 

virtual expansion of the insulation layer region and indirectly 

increasing energy consumption. 

 

 
 

Figure 5. Experimental results of different methods (a) 

Original image; (b) Ground truth layout; (c) Layout obtained 

by traditional SLAM algorithms; (d) Layout obtained by the 

proposed method 

 

Table 2. Ablation experiment results 

 

Method PE (%) MioU (%) 

Using traditional 

DeepLabv3 
9.23 83.26 

Using traditional 

Xception 

7.46 86.54 

Without semantic 

optimization 

6.48 88.23 

The proposed method 6.23 91.25 

 

Table 2 quantifies the performance differences of different 

technical paths via pixel error (PE) and semantic segmentation 

accuracy (mIoU). The core pattern can be decomposed into the 

absence or construction of the "geometry-semantic" synergy. 

Two categories of models focus only on image-level semantic 

segmentation and do not combine SLAM’s spatial constraints. 

In polar environments, drastic illumination changes and sensor 

low-temperature drift cause multi-frame image features of the 

same object to break. For example, DeepLabv3’s 

segmentation of the “insulation layer” misclassifies it as 

“storage area” in polar night shadow zones due to inability to 

use the spatial prior of “must be adjacent to structural wall,” 

resulting in PE as high as 9.23% and mIoU only 83.26%. 

Although Xception improves local feature extraction via 

network structure optimization, it still does not break the 

bottleneck of “no spatial association”, with PE 7.46% and 

mIoU 86.54%, both far below this paper’s method. This group 

constructs geometric maps based on SLAM but lacks semantic 

constraints, showing features of “geometrically accurate but 

semantically confusing”: PE 6.48% slightly better than 

traditional models, but mIoU 88.23% still significantly lower 

than this paper. For example, in polar night low temperature, 

sensor depth errors cause projection offsets of “experimental 

equipment” by 10~15 cm; without semantic constraints, the 

segmentation model cannot correct this spatial misalignment, 

causing breaks in semantic region continuity. 

From the layout result comparison in Figure 6, this paper’s 

method shows significant advantages in typical polar scenes: 

the “operation area-dining area” boundary in the kitchen is 

sharp and fitted; the contours of “wall-floor-equipment area” 

in the bathroom are regular. By contrast, comparison methods, 

though building geometric maps via SLAM, lack semantic 
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constraints, resulting in “geometrically correct but 

functionally misaligned.” The essence is fitting only geometric 

contours without associating polar functional logics such as 

“operation area must adjoin water source” or “equipment area 

needs connection to power area.” 

 

 
 

Figure 6. Ablation experiment results (a) Original image; (b) 

Layout obtained by the proposed method; (c) Without 

semantic optimization; (d) Using traditional Xception; (e) 

Using traditional DeepLabv3 

 

Focusing only on image-level semantic segmentation 

without combining SLAM’s spatial constraints causes 

semantic region breaks and distortions under polar 

environmental interference. In summary, the ablation 

experiments in Figure 6 not only intuitively demonstrate the 

overwhelming advantage of this paper’s method in layout 

restoration accuracy but also reveal the “precise 

quantification, logical self-consistency, dynamic 

responsiveness” technical system constructed for polar 

building layout optimization through deep coupling of 

“geometry-semantic-function”. From spatial prior constraints 

of image matching, to loop closure optimization in semantic 

SLAM, then to functional constraints implementation in grid 

layout, every technical breakthrough tightly links to polar 

environment extremity and functional requirements, achieving 

the leap from “passive geometric fitting” to “active functional 

adaptation”, providing core algorithm support for intelligent 

design and operation of polar scientific research buildings. 

In an actual case of low-temperature laboratory layout 

optimization in a polar research station, based on angle and 

distance planar matching method, 90° vertical angle features 

of walls and fixed 0.8 m spacing relationships between 

experimental equipment were extracted, maintaining planar 

matching accuracy of 92% despite drastic lighting changes; 

then, using semantic SLAM oriented to image segmentation, 

semantic regions such as “low-temperature workstation” and 

“insulated storage cabinet” were segmented in real time with 

mIoU reaching 91.25%, combined with camera poses to build 

a 3D semantic map; finally, based on grid map quantification 

of space, with the objective function “heat loss minimization” 

and constraints including minimum 1.5 m distance between 

workstation and heat source area, emergency passage width ≥ 

1.2 m, the grid location of storage cabinets was moved 0.3 m 

toward insulation walls via optimization, reducing overall 

laboratory heat loss by 18%, while shortening equipment 

access paths by 20%, achieving dual optimization of function 

and polar environment adaptability. 

 

 

6. CONCLUSION 

 

This paper conducted systematic research on polar building 

layout optimization and spatial configuration, achieving 

precise cognition and efficient configuration of building 

spaces under extreme environments through a three-layer 

technical architecture. At the image planar matching level, a 

robust model based on angle and distance geometric features 

effectively resisted interference such as drastic indoor 

illumination changes and ice-snow reflections in polar 

environments, improving planar matching accuracy by 

15%~20%, laying a reliable foundation for subsequent spatial 

modeling; at the semantic SLAM level, an innovative 

weighted average semantic cost function was designed, 

integrating multi-frame observations and spatial constraints, 

improving semantic segmentation mIoU to 91.25% compared 

to traditional methods, while realizing 3D semantic 

information quantification representation via dynamic grid 

maps; at the layout optimization level, combining polar 

environment parameters to construct objective functions 

improved spatial configuration efficiency by over 25%, 

validating the effectiveness of the “geometry-semantic-

function” collaborative framework. This research breaks the 

robustness bottleneck of traditional methods under extreme 

environments and provides a complete technical solution for 

intelligent design of special buildings such as polar research 

stations and ice sheet observation stations. Its core value lies 

in deeply integrating semantic information into the full process 

of SLAM and layout optimization, achieving a closed loop 

from “spatial perception” to “functional configuration”, filling 

the interdisciplinary research gap in the field of polar 

buildings. 

However, the research still has certain limitations: first, the 

weighting strategy of the semantic cost function relies on prior 

functional rules of polar buildings, showing weak adaptability 

to new modular buildings; second, grid map optimization in 

large-scale scenes (such as multi-story polar building 

complexes) significantly increases computational complexity, 

reducing real-time performance by about 30%; third, long-

term dynamic factors such as polar ice shelf deformation are 

not fully considered for cumulative layout impact. Future 

research may breakthrough in three aspects: first, introducing 

dynamic weight adaptive mechanisms, combining 

reinforcement learning to optimize semantic cost functions, 

improving adaptability to unknown building structures; 

second, adopting sparse grids and multi-scale optimization 

strategies to reduce computational overhead in large-scale 

scenes; third, integrating ice condition monitoring data and 

building structural mechanics models to construct a long-term 

dynamic layout optimization framework, realizing polar 

buildings’ self-adjustment and sustainable operation under 

environmental evolution. These directions will further expand 

the theoretical depth and engineering application scope of the 

research, providing more comprehensive technical support for 

intelligent architecture in extreme environments. 
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