

Visual Object Tracking Using Siam and TensorFlow as Hybrid Model in AI

Utkarsh Dubey* , Raju Barskar

Department of CSE, University Institute of Technology, RGPV Bhopal 462033, India

Corresponding Author Email: utkarshdubey7@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420447

ABSTRACT

Received: 30 December 2024

Revised: 28 May 2025

Accepted: 15 June 2025

Available online: 14 August 2025

 Tracking object from various challenges is a key motivation in computer vision and machine

learning. It is bit rigorous to fulfill all the challenge with higher level of precision in

considering all frames. An immaculate approach is required to build a model for better visual

object tracking. It is required to obtain the patterns in each frame for ideal model. Here the

research uses Siamese Network and TensorFlow to train and build the model. Siamese

Network may contain two or more identical sub-networks that can compare the input and

make decision more precise. It is required to pipelining the anchors with positive and

negative sources to process the model towards hybrid one for processing the corresponding

image. TensorFlow helps to gather the patterns of the objects and recognize it to pertain the

same till last frame. Hypothesis is tested with various benchmarks including OTB50,

OTB100 and TempleColor128 that pertained better level of precision.

Keywords:
visual object tracking, Siamese Network,

TensorFlow, machine learning, OTB50,

OTB100, TempleColor128

1. INTRODUCTION

Visual object tracking is a bit complicated task in computer

vision because it involves tracking objects as per the interest

with pattern recognition. The motive of object tracking is to

project the trajectory of the object along with the position by

facing various challenges such as variations in lighting

condition, fast motions, getting obstacles over the objects, etc.

Tracking algorithm usually works in that manner where it

initializes the target object in the very first frame along with

its location by using coordinates and other pertinent properties

continually in the following frames. It also includes feature

extraction, object visualization, pattern following and model

prediction. Numerous fields, such as robotics, autonomous

navigation, augmented reality, video analysis, surveillance,

and human-computer interaction, use visual object tracking

extensively [1-3].

It may be used, for example, to guide unmanned aerial

vehicles, monitor people and objects in congested areas,

analyze sporting events, improve immersive gaming, and

provide assistive devices for the blind. Visual object tracking

has come a long way in recent years, but it is still a difficult

challenge since real-world scenarios are inherently complex

and need balancing accuracy, efficiency, and resilience. In

order to push the limits of object tracking, researchers are still

creating and improving edge tracking algorithms by utilizing

developments in deep learning, probabilistic modeling,

optimization strategies, and sensor technologies [4].

Several methods are used in visual object tracking to

precisely track and identify things throughout a series of

frames in a video. Feature extraction techniques, appearance

descriptors or keypoints, are commonly employed in these

procedures to extract unique attributes from the target object.

Motion estimation techniques compute the movement of an

item in between frames, enabling placement that is predicted.

To capture the item's spatial extent, object representation

methods like bounding boxes or pixel-wise masks are used.

Similarity metrics assess how an object appears or is

composed differently in different frames. To ensure stable and

dependable tracking performance, tracking algorithms

frequently include techniques for managing occlusions, scale

changes, and other difficulties that are frequently encountered

in real-world circumstances [5]. The compact visibility can

observe several difficulties that work faces during tracking an

object using pattern recognition or the features present in the

image. It is also required to find out the background of the

image to properly segment the foreground for better precision

and accuracy.

Figure 1 shows a desk with gadgets, where a yellow box

highlights one object to demonstrate object tracking.

TensorFlow makes it possible to use deep learning-based

algorithms, which makes visual tracking easier. First, target

objects for tracking are defined by tagged datasets of pictures

or videos. TensorFlow provides a range of pre-trained models,

such as SSD and Faster R-CNN, or uses its high-level APIs,

such as TensorFlow Keras to enable the development of

bespoke models. The prepared datasets are used to train these

models, improving their capacity to forecast bounding boxes

around tracked objects with precision. The trained models

analyze fresh frames and produce predictions for object

positions during inference. These predictions can be improved

by post-processing methods like smoothing trajectories or

removing false positives. Ultimately, the bounding boxes or

monitored item coordinates are included into more expansive

systems for further examination or utilization.

Traitement du Signal
Vol. 42, No. 4, August, 2025, pp. 2401-2416

Journal homepage: http://iieta.org/journals/ts

2401

https://orcid.org/0000-0001-9177-464X
https://orcid.org/0000-0001-8203-0550
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420447&domain=pdf

Figure 1. Visual object tracking [6]

2. RELATED WORKS

Li et al. [7] presented a network that uses the MA-Dual

technique for object tracking and analyzes patterns across

frames by using a spatial transient approach. Throughout the

whole dataset, the approach extracts structural information

using 3D convolutional processing. However, in certain

datasets, issues like motion blur and low resolutions make

reliable object identification difficult. varied data highlighting

under varied brightness circumstances may cause variations in

system performance. Comprehensive experiments using

UAV123, OTB benchmarks, VOT, and TC128 datasets show

the resilience of the approach. Findings show that tracking

performance is promising, particularly when managing

difficult circumstances including deformation, size variation,

and lighting variations.

Zheng et al. [8] presented the Gaussian Process Regression

Based Tracker (GPRT), a conventional tracking strategy that

uses part tricks and removes boundary effects. The authors

improved the performance of GPRT by introducing two

effective updating strategies. Analyses performed on the OTB-

2013 and OTB-2015 datasets demonstrate that GPRT

outperforms trackers using hand-crafted features, with mean

overlap accuracy of 84.1% and 79.2%, respectively. By

utilizing Gaussian Regression Processes in visual tracking,

GPRT presents a unique tracking solution that doesn't require

complex add-ons. GPRT not only fully removes boundary

effects but also efficiently utilizes the part trick compared to

all other CF trackers. The authors also present two unique and

effective GPRT updating methods. Two benchmark datasets,

OTB-2013 and OTB-2015, with more than 100 films featuring

a variety of challenges—birds, bolts, boxes, automobiles,

bikers, blurred bodies, football, human, dudek, david, crowds,

and more—are used for extensive testing.

Danelljan et al. [9] presented a probabilistic regression

framework for tracking in which, given an input picture, the

network predicts the restricted probability density of the

destination state. The system's architecture is particularly

capable of handling noise that results from vague annotations

and unclear assignments. The Kullback-Leibler divergence is

minimized in order to train the regression network. The

framework not only enables a probabilistic representation of

the output when used for tracking, but it also greatly enhances

performance. On six datasets, the system's tracker achieves a

new benchmark with an AUC of 59.8% on LaSOT and a

Success rate of 75.8% on TrackingNet.

Chen and Tao [10] suggested a convolutional network-

based regression technique for monitoring moving objects.

Edge regression is used by the system to extract textures and

object patterns for tracking. Furthermore, it combines layered

convolutional methods with a backpropagation model. To

capture the object's integration features, each layer in the DCF

model is customized or trained using a variety of viewpoints.

The object tracking system addresses a range of difficulties

and sizes by means of repeated iterations and

backpropagations. With just one convolutional layer, our

technique offers a unique way to comfortably simulate

regression in visual tracking.

Millan et al. [11] presented a system for multi-target

tracking based on recurrent neural networks (RNNs),

providing a novel solution to a number of issues this job

presents. Deducing a changing number of targets over time,

keeping a continuous state evaluation for every target that is

present, and resolving a discrete combinatorial issue are all

necessary for tracking many objects in actual scenarios. Earlier

techniques frequently use intricate models that need time-

consuming parameter adjustment. The authors provide an end-

to-end learning architecture for online multi-target tracking,

which differs from conventional methods. They point out that

current deep learning techniques are not naturally equipped to

address these issues and are not easily transferable to the

current job.

Yun et al. [12] presented a system built on a deep

reinforcement learning algorithm and suggested a novel

activity-driven method for visual tracking using deep

convolutional networks. The suggested tracker follows the

target item iteratively through successive activities while

being restricted by an ADNet. The computational complexity

of tracking is greatly decreased by using this activity-driven

tracking strategy. Furthermore, partly labeled data may be

used with reinforcement learning, which might significantly

improve training data generation with little work. The

evaluation findings show that the proposed tracker

outperforms existing deep network-based trackers using a

tracking-by-location method by three times, achieving state-

of-the-art performance at 3 frames per second.

Like the methods of other writers, he put out a Deep

Reinforcement Learning based architecture. They provide a

completely end-to-end technique for visual tracking in films

that figures out where a target object's bounding box will be at

every frame. Considering tracking as a sequential, dynamic

process in which past semantics contain very important

information for the future is a crucial realization. They create

a model that functions as a recurrent convolutional neural

network that interacts with video over time by utilizing this

intuition. Long-term tracking performance can be improved by

teaching the model tracking rules that concentrate on

continuous frame boxes through the use of Reinforcement

Learning (RL) methods. Operating at increased frame rates,

the suggested tracking algorithm achieves state-of-the-art

performance on an existing tracking benchmark.

Henriques et al. [13] presented a method based on

Kernelized Correlation Filters that showed how normal picture

interpretations may be represented in a methodical manner.

They demonstrated that under some circumstances, bit

frameworks and subsequent information become circulant,

making it possible for the Discrete Fourier Transform (DFT)

to diagonalize them and to quickly develop algorithms for

handling interpretations. The authors developed cutting-edge

trackers that operate at high frame rates and need less code

implementation by using this approach to linear and patch-

2402

based regression. Expansions of their fundamental

methodology are probably advantageous in a number of

additional issues. Circulant data has proven useful for a

number of methods in detection and video event retrieval since

this work's original iteration.

Zheng et al. [14] presented an innovative tracking structure

dubbed GPRT, which makes use of Gaussian Regression

Processes for visual tracking, and he proposed a system based

on the Robust Gaussian algorithm. In contrast to existing CF

trackers, GPRT concurrently uses part techniques and removes

boundary effects. The authors demonstrated the efficacy of

two unique, effective GPRT strategies they proposed.

Extensive analyses were carried out on the OTB-2013 and

OTB-2015 benchmark datasets, where GPRT surpassed all

current trackers.

Li et al. [15] presented a Dual Regression model-based

system. The authors presented a dual-regression tracking

architecture that consists of a CF module and a discriminative

convolutional neural network in their study. By learning to

distinguish between the target and background, this tracker

becomes more discriminative and uses a fully convolutional

network to reduce processing overhead. A CF module works

on shallower layers with better spatial resolution to fine-tune

the target position since deeper layers of the fully

convolutional network preserve less spatial detail. This two-

stream approach, which uses a single forward CNN pass to

estimate the target location, makes deep trackers more

effective. The efficacy and efficiency of the suggested

approach are demonstrated by evaluation on three publicly

available datasets.

Zhang et al. [16] presented a Support Vector Regression

(SVR)-based approach. In order to regulate uncalibrated visual

servoing for 3D motion tracking, their article suggests a

unique approach. In the picture plane, motion based on PI

control is initially used. The visual mapping model is then built

using SVR. Finally, the continuous mapping approach is used

to provide both planar and three-dimensional motion tracking.

When compared to conventional BP neural network

techniques for 3D motion visual tracking, SVR proved to have

good approximation skills, especially when learning from tiny

samples.

Zhang et al. [17] suggested a visual tracking method that

takes rank loss, shrinkage loss, and optimum feature training

into account. They matched target features using the template

technique and adjusted their tracking accordingly. But

depending just on template-based techniques could result in

less than ideal results because these trackers are frequently

restricted to particular objectives and have difficulty handling

a variety of datasets. In addition to highlighting the necessity

of improving the model by optimizing filters to increase

processing time, frame rate, and accuracy, the authors propose

upgrading the template using preprocessing techniques. To

assess the correctness of the system, Templecolor128 will be

used for testing. Compared to traditional approaches, object

tracking may be greatly aided by object detection since

characteristics or patterns can be tracked more successfully.

New developments in Kernelized Correlation Filter (KCF)-

based tracking have attempted to address issues such as limited

feature representation occlusion and scale variation. Danelljan

et al. [18] suggested a better KCF algorithm that uses the

MCMRV criterion to incorporate a multi-scale pyramid and an

adaptive template update mechanism. This greatly improves

the algorithms robustness against occlusion and scale changes

while maintaining a high processing speed appropriate for

embedded platforms. Zheng et al. [19] improved tracking

performance in dynamic scenes with frequent occlusions by

introducing an occlusion-aware KCF tracker that incorporates

RGB-D information in 2021. Also, Yadav [20] KCF was

improved in 2023 by combining deep features from VGG16

which improved the tracker's performance in visually complex

and cluttered environments. Maharani et al. [21] additionally,

in 2021 long-term tracking problems were addressed by

implementing multi-scale detection and Lab color features

which decreased model drift and increased stability over long

periods of time.

Improvements in methodology have also been made to

Multiple Instance Learning (MIL)-based trackers in an effort

to make them more resilient and flexible. Cheong and

associates showed how different pooling strategies affect

classification and tracking performance by comparing

different MIL pooling filters such as max mean, attention and

distribution-based approaches [22]. Oner et al. [23] used

features like compressive tracking and histogram of oriented

gradients (HOG) combined MIL, with a parallel tracking and

detection framework, improving the tracker's dependability in

challenging scenes. Besides, Xiong et al. [24] assessed MIL in

a real-time tracking framework on a Raspberry Pi 3 Model B+

platform, demonstrating that although MIL occasionally

provided good accuracy, it had trouble maintaining high frame

rates on constrained hardware.

3. PROPOSED WORK AND IMPLEMENTATION

This research proposes a hybrid network based on Siamese

and TensorFlow, designed for offline processing with large

datasets. The network comprises multiple sub-networks for

feature extraction, regression, and classification. By

integrating the Siamese Network with TensorFlow, an object

detection approach, the feature extraction model is enhanced

for improved visual tracking analysis. Unlike previous

recognition frameworks that repurpose classifiers or localizers

for feature extraction, this model applies features across

multiple areas of an image, even when objects are scaled. The

system will undergo testing with various datasets and

benchmarks, including OTB50, OTB100, and

TempleColor128, aiming to achieve higher levels of accuracy.

3.1 Problem definition

Even though visual object tracking has advanced

significantly consideration to methods like deep learning

regression models and reinforcement learning a number of

significant obstacles still exist. Among these are the challenges

of preserving robustness in the face of unfavorable

circumstances like motion blur, low resolution, fluctuating

lighting and object deformation. The real-world applicability

of many current methods is limited by their struggles with

boundary effects occlusion and generalization across diverse

datasets. Furthermore, intricate designs are frequently

unsuitable for real-time applications and necessitate extensive

tuning. Effective mechanisms to manage long-term

dependencies and update models effectively during tracking

are also lacking. Tracking accuracy and speed balance is still

a big concern which emphasizes the need for more flexible

lightweight and dependable tracking systems that can function

well in a variety of situations.

2403

3.1.1 Method design

To precisely localize the target object in every frame the

suggested method design for visual object tracking combines

a lightweight regression framework with a feature extraction

module based on Convolutional Neural Networks (CNNs).

First input frames undergo preprocessing, which includes

normalization and resizing and a region of interest is chosen

for effective calculation. Selected CNN layers that strike a

balance between semantic richness and spatial detail are used

to extract deep features. After that the target bounding box is

predicted by a regression-based tracking module. To account

for variations in appearance scale and occlusion, an adaptive

update strategy uses confidence-based online learning to

improve the model. A re-detection mechanism is incorporated

for tracking failure recovery and frame-wise predictions are

smoothed to improve temporal consistency. Stochastic

gradient descent is used to optimize the model after it has been

trained using a combination of regression and similarity-based

loss functions. Metrics like precision AUC, and success rate

are used to assess the model's robustness and real-time

capability on benchmark datasets like OTB VOT, and LaSOT.

3.1.2 Experimental validation

To ensure a thorough performance evaluation under a

variety of real-world scenarios the proposed visual object

tracking system was experimentally validated on well-known

benchmark datasets such as OTB-2013 OTB-2015 VOT

LaSOT and UAV123. Standard metrics like accuracy success

rate intersection over union (IoU) and area under the curve

(AUC) were used to gauge the systems performance. To

demonstrate gains in robustness, adaptability and tracking

accuracy especially in the face of difficult circumstances like

motion blur occlusion scale variation and illumination changes

a comparative analysis was conducted against a number of

cutting-edge trackers. Across sequences with different object

classes motion patterns and scene complexities the suggested

method continuously outperformed baseline approaches

exhibiting superior tracking stability and efficiency while

preserving real-time performance with little computational

overhead.

3.2 Siamese network

Common applications of the Siamese neural network

include object tracking and similarity learning. The

fundamental design consists of two similar neural networks

with the same topology and weights, often referred to as

Siamese twins or twin networks. The Siamese neural network

may be represented mathematically in the following way:

Let 𝑓(𝑥; 𝜃) stands for the function that the neural network

learnt, where x is the input and θ is the network's parameters

(weights and biases). MThe modelhas two identical networks

sharing the same parameters for a Siamese Network. Let's say

that the inputs to the first and second networks are represented

by the symbols x1 and x2, respectively. The output of each

network is a feature vector, denoted as 𝑓(𝑥1; 𝜃) and

𝑓(𝑥2; 𝜃) respectively. In other words, the following

mathematical representation captures the fundamental

structure of a Siamese Neural network:

𝑓(𝑥1; 𝜃) = Net(𝑥1; 𝜃) (1)

𝑓(𝑥2; 𝜃)=Net(𝑥2; 𝜃) (2)

𝑆(𝑥1, 𝑥2)=Similarity 𝑓(𝑥1; 𝜃), 𝑓(𝑥2; 𝜃) (3)

where, 𝑓(𝑥1; 𝜃) is the feature vector of first input with the

network parameter 𝜃, similarly for the 𝑓(𝑥2; 𝜃). 𝑆(𝑥1, 𝑥2) is

the similarity between the first input vector and the second one.

In actuality, depending on the particular job and application,

the network design, loss function, and optimization technique

may change. Additionally, Siamese Networks are frequently

trained for similarity learning tasks using methods like

contrastive loss and triplet loss. In order to extract image

characteristics, the Siamese Network uses the categorization

network, which biases the retrieved features toward semantic

information. SiameseRPN++ uses ResNet as its feature

extraction backbone network. The findings of the experiment

confirm that various channels respond differently to distinct

object categories, suggesting that deep features can capture

semantic information associated with object prejudice. The

Siamese Network's dual-branch structure allows it to interpret

input picture data in a different way, producing characteristics

that take various dimensions, such as channel and space, into

account. By using the attention mechanism to filter visual data,

the network is able to determine the object's significance

during feature extraction, highlighting target features that are

pertinent to the tracking job and ignoring background

information. The most adorable feature of Siamese Network is

offline learning approach. It trains the model in offline mode

and test in the same manner. The template branch and the

detection branch are the two branches that make up the

Siamese tracker. While the detection branch examines the

target image patch from the current frame, the template branch

receives the target image patch from the previous frame as

input. To track an object, first of all, it is required to preprocess

the image using smart filters and localize the image by

inputting the target object in the very first frame. Figure 2

illustrates the box marks target object initialization in object

tracking selecting the ball as the focus to follow in the video.

Figure 2. Target object initialization

Figure 3. Color mapping of target feature object

2404

The process of extracting features began when the target

object was established. Using a set of pixels with comparable

spectral, spatial, and/or textural qualities, an object (or

segment) is used in feature extraction, an object-based method

for classifying images. Figure 3 shows the color mapping

highlights the ball’s features to initialize it as the tracking

target.

On the other hand, conventional classification techniques

are pixel-based, categorizing images based on the spectral

information of individual pixels.

Figure 4. Task specific model training

Once the feature extraction has been done, then feature

training will be started, and with the help of Siamese Network;

task-specific training will be accomplished and generate the

output model. Figure 4 illustrates task-specific model training

in object tracking.

3.3 TensorFlow

For object identification tasks, TensorFlow is a powerful

tool with an extensive ecosystem of models and tools.

Choosing an appropriate model architecture, such as Faster R-

CNN, SSD, or YOLO, which each have their trade-offs

between speed and accuracy, is usually the first step in the

process.

Convolutional neural networks (CNNs) are used by these

designs to forecast bounding boxes and class labels for objects

that are recognized, as well as to extract characteristics from

input photos. Using hierarchical features that capture semantic

information about the objects in the image, CNNs process the

input image. Convolutional and pooling layers, which

gradually decrease the spatial dimensions while increasing the

depth of feature maps, are commonly used to achieve this. The

model predicts bounding boxes, or coordinates, that closely

surround items of interest inside the picture once features are

retrieved. Figure 5 shows the main steps in TensorFlow object

detection: extracting features, finding and classifying objects,

then filtering results. Regressing the coordinates of a group of

predetermined anchor boxes to better suit the position of the

item is a common method for doing this. At the same time, the

model classifies objects by giving each bounding box a class

probability that indicates how likely it is to include a certain

item category. In order to compute class probabilities, this is

often accomplished using extra convolutional layers and a

softmax activation function. Non-Maximum Suppression is

used to filter out overlapping bounding boxes with lower

confidence ratings in order to get rid of redundant detections.

This guarantees the retention of just the most certain detections.

Three phases are usually included in the object detection

operation:

(a) The way that the input is divided into manageable

chunks. Figure 6 demonstrates image segmentation: the grid

divides the cat photo into distinct regions, helping separate and

analyze parts of the image for tasks like object recognition.

The whole image is covered by the extensive collection of

bounding boxes, as shown.

(b) For each segmented rectangular area, feature extraction

is conducted to determine whether the rectangle contains a

valid object. Each box shows a region where features are

extracted for later recognition or tracking is presented in

Figure 7. Figure 8 depicts Non-Maximum Suppression merges

overlapping detection boxes into one, creating a single

rectangle around the cat.

Non-Maximum Suppression creates a single boundary

rectangle by joining overlapping boxes.

Figure 5. Visual object detection in TensorFlow

Figure 6. Segmentation of an image

Figure 7. Feature Extraction of all boxes

Figure 8. Object detection using non-max suppression

2405

3.4 Architecture of Siamese Network

Siamese Networks are a subclass of networks defined by the

use of two sub-networks that are exactly the same for one-shot

classification tasks. Even though these sub-networks analyze

distinct inputs, they retain the same designs, parameters, and

weights. Siamese Networks learn a similarity function, in

contrast to typical CNNs that are trained on large datasets to

predict various classes. They can distinguish between classes

with less data thanks to this feature, which makes them quite

effective for one-shot classification tasks. These networks are

frequently able to categorize pictures effectively with only one

sample thanks to their amazing feature. Instead of using a lot

of labeled data for training as in the standard technique, few-

shot learning trains models to make predictions using only a

limited number of instances. When it becomes difficult or

expensive to gather large amounts of labeled data, the value of

few-shot learning becomes clear. Few-shot models may

produce predictions with little input sometimes even from a

single example because of its design, which captures the

intricacies seen in a tiny sample size. This feature is made

possible by several design processes including Siamese

Networks, Meta-learning, and related techniques. With the

help of these frameworks, the model is able to derive insightful

data representations and apply them successfully to new,

untested samples.

Figure 9. Object detection Siamese Network architecture

The goal of the differencing layer is to draw attention to the

differences between dissimilar pairs while highlighting the

commonalities between inputs. The Euclidean Distance

function is employed to do:

Distance (x₁, x₂) = ∥f(x₁) – f(x₂)∥₂ (4)

Here, x1 and x2 represent the two inputs, Encoding (x₁) and

Encoding(x2) denote the output of the encoding function, and

Distance represents the distance function. The entropy loss can

be encountered as:

−(ylog(p)+(1−y)log(1−p)) (5)

where,

y represents the true label,

p represents the predicted probability

𝐾(𝑖, 𝑗) =
∑ ∑ (𝑥, 𝑦) × 𝑇(𝑥, 𝑦)𝑁

𝑦=1
𝑁
𝑥=1

√∑ ∑ [𝑆 (𝑥, 𝑦)]2𝑁
𝑦=1

𝑁
𝑥=1 √∑ ∑ [𝑇 (𝑥, 𝑦)]2𝑁

𝑦=1
𝑁
𝑥=1

(6)

where,

T(x,y) denotes the template image,

S(x,y) represents the search region of the target, and

K indicates the height and width of the data.

The response map is obtained by using a fully-convolutional

Siamese Network, as shown in the flow chart of the Siamese

framework. The re-detection network is initiated if the

secondary peak in this map is more than 0.75 times the size of

the main peak.

3.5 Process model

To maximize input quality, the system first gathers frames

for preprocessing. The networks are obtained and loaded to

recognize objects based just on their appearance once all

preprocessing activities have been completed. Figure 9 shows

a Siamese network architecture for object detection, where

parallel networks compare a template and a detection frame to

localize and track the target object.

After that, an additional network is utilized for effective

object tracking. The system makes use of two distinct

strategies that are well-known for their effectiveness in

tracking and object identification, which helps to improve the

regression model. This minimizes overlap counts and

increases frame rate per second while maintaining excellent

system efficiency. Figure 10 represented the proposed flow

chart.

2406

Figure 10. Proposed flow chart

Algorithm 1: Siamese & TensorFlow Algorithm

Initialization

Input: Frames

Output: (X, Y) Coordinates

Step 1. Initialize:

 - Input the first frame of the dataset.

Step 2. Convert:

 - Convert the RGB image to grayscale.

Step 3. Setup:

 - Define the target area or object according to the dataset.

Step 4. Frame Sequences:

 - Establish frame sequences {Xt}T, where X1 represents

the initial frame.

Step 5. Model Loading:

 - Load the Siamese and TensorFlow models.

Step 6. Iterate:

 - For each iteration (I) from 1 to N:

 - Search for the target object in the frames.

 - If the detection confidence exceeds the threshold value:

 - Increment the count for overlapping detections.

 - Else:

 - Increment the count for accurately regressed objects.

Step 7. Extraction:

 - Extract coordinates: Cx (width), Cy (height), X, and Y

(coordinates of the target object).

Step 8. Comparison:

 - Compare extracted coordinates with ground truth.

Step 9. Accuracy Calculation:

 - Compute system accuracy using counts of loss and true

regression.

Step 10. End:

 - Terminate the algorithm

First, frames from a dataset are entered and converted from

RGB to grayscale using the Siamese Network and TensorFlow

technique. After that, it creates frame sequences and specifies

the target region or object in accordance with the dataset

criteria. In order to start the detection procedure, the algorithm

loads the TensorFlow and Siamese Network models. It looks

for the target item inside the frames throughout each cycle. It

counts successfully regressed items and increases the count for

overlapping detections if the detection confidence is greater

than a predetermined threshold. The target object's width,

height, and (x, y) coordinates are extracted by the method. It

then evaluates accuracy by contrasting these extracted

coordinates with the ground truth. Lastly, it uses counts of loss

and true regression to calculate the accuracy of the system

before terminating the algorithm. To guarantee efficient object

tracking the Siamese Network and TensorFlow hybrid

tracking model was put into practice with particular training

setups and parameters. To filter and improve detection results

Non-Maximum Suppression (NMS) was applied with a

confidence threshold of 0. 5 and an IoU threshold of 0. 4. The

Adam optimizer was used to optimize the Contrastive Loss

function over 50 epochs with a batch size of 32. The learning

rate was set at 1e-4. It used a modified AlexNet as the feature

embedding backbone and standardized the input images to

127×127 for the exemplar (template) and 255×255 for the

2407

search region. The algorithmic flow was made more

understandable by adding a pseudocode representation that

detailed the steps involved from feature extraction and

similarity calculation to score thresholding and final bounding

box selection. All of these specifics improve the suggested

methods transparency and reproducibility.

4. RESULTS

TensorFlow version 2.12 and Python 3.10 were used for the

implementation, which was run on a hardware configuration

that included an Intel Core i7 processor 10GB VRAM, 16 GB

system’s RAM, and an NVIDIA RTX 3060 GPU. Effective

model evaluation and training were guaranteed by this setup.

The model was trained with a learning rate of 1e-4 a batch size

of 32 and for a total of 50 epochs in order to support

reproducibility. The training parameters and other hardware

and software specifics are documented for clarity and to enable

others to precisely reproduce the experimental conditions. The

suggested tracker is assessed using both qualitative and

quantitative methods. Several tests are performed on a

collection of twenty-three chosen movies from three well-

known datasets: OTB-50, OTB-100, and Temple Colour-128.

A variety of visual difficulties may be seen in these films, such

as cluttering, out-of-plane rotation, occlusion, scale

fluctuations, deformation, rapid motion, and motion blur. For

experimental validation the OTB-50 OTB-100 and TC128

datasets were chosen based on their usage in the base paper,

guaranteeing consistency and comparability of findings. These

datasets are well-known within the visual tracking community

and offer a variety of tracking scenarios that are crucial for

assessing the robustness and performance of tracking

algorithms.

OTB-50 and OTB-100 are perfect for evaluating short-term

tracking abilities under a variety of difficult circumstances

because they provide sequences with annotated attributes like

occlusion illumination variation scale changes and fast motion.

By adding increasingly intricate and cluttered environments,

TC128 expands on this assessment and puts the algorithms

flexibility and accuracy to the test. We guarantee a fair and

straightforward performance comparison by utilizing the same

datasets as the base study, confirming the efficacy of the

suggested approach in comparable experimental conditions.

The coordinates from the suggested system are used to

calculate the results, which are then compared to the ground

truth values. Two benchmarks, OTB50, OTB100, and

TempleColor128, each including several films with thousands

of frames, are used to assess the suggested method. Specific

problems that align with the benchmark qualities are presented

in each video. Eleven characteristics are commonly employed

to evaluate the correctness of the system, such as overflow and

accurate object detection at every frame. If the bounding boxes

fall beyond the window or surpass a threshold value, an error

occurs that reduces accuracy. Frame per Second (FPS) has

been measured to obtain the execution time. Success and

precision are two parameters through which results have been

computed accordingly.

Figure 11. Selected videos from OTB-50, OTB-100, and Temple Colour-128 datasets

2408

Table 1. Recorded accuracy of OTB-50

Datasets Accuracy FPS Datasets Accuracy FPS

Basketball 100.00 285.0 Human3 100.00 127.1

Biker 100.00 280.5 Human4 54.52 295.5

Bird1 46.43 271.1 Human6 93.15 243.6

BlurBody 99.40 206.9 Human9 100.00 300.4

BlurCar2 85.62 248.9 Ironman 80.77 286.0

BlurFace 64.42 233.0 Jump 96.69 275.5

BlurOwl 98.57 293.0 Jumping 100.00 301.7

Bolt 100.00 299.3 Liqour 59.95 184.1

Box 99.05 172.3 Matrix 89.80 262.1

Car1 100.00 235.8 MotorRollig 95.00 272.3

Car4 100.00 290.4 Panda 100.00 239.9

CarDark 100.00 304.7 RedTeam 100.00 193.4

CarScale 96.80 269.4 Shaking 100.00 294.9

ClifBar 96.40 297.8 Singer2 81.06 298.7

Couple 100.00 278.8 Skating1 89.13 290.6

Crowds 100.00 291.1 Skating2 72.13 269.3

David 81.09 263.0 Skiing 100.00 263.0

Deer 100.00 237.9 Soccer 92.59 260.0

Diving 98.60 284.2 Surfur 100.00 300.8

DragonBaby 89.19 270.3 Sylvester 100.00 206.7

Dudek 99.56 169.8 Tiger2 87.33 262.3

Football 55.15 248.7 Trellis 100.00 294.7

Freeman4 94.31 301.8 Walking 100.00 289.7

Girl 100.00 302.3 Walking2 100.00 302.9

 Woman 97.65 301.7

Mean 91.72

Table 2. Recorded loss count of OTB-50

Datasets Overlap Datasets Overlap

Basketball 0.00 Human3 0.00

Biker 0.00 Human4 45.48

Bird1 53.57 Human6 6.85

BlurBody 0.60 Human9 0.00

BlurCar2 14.38 Ironman 19.23

BlurFace 35.58 Jump 3.31

BlurOwl 1.42 Jumping 0.00

Bolt 0.00 Liqour 40.05

Box 0.95 Matrix 10.20

Car1 0.00 MotorRolling 5.00

Car4 0.00 Panda 0.00

CarDark 0.00 RedTeam 0.00

CarScale 3.20 Shaking 0.00

ClifBar 3.61 Singer2 18.94

Couple 0.00 Skating1 10.87

Crowds 0.00 Skating2 27.87

David 18.91 Skiing 0.00

Deer 0.00 Soccer 7.41

Diving 1.40 Surfur 0.00

DragonBaby 10.81 Sylvester 0.00

Dudek 0.44 Tiger2 12.67

Football 44.85 Trellis 0.00

Freeman4 5.69 Walking 0.00

Girl 0.00 Walking2 0.00

 Woman 2.35

Mean 8.28

Table 3. Recorded accuracy of OTB-100

Datasets Accuracy FPS Datasets Accuracy FPS

Bird2 100.00 267.1 Freeman1 100.00 294.9

BlurCar1 99.05 270.0 Freeman3 100.00 296.5

BlurCar3 100.00 294.0 Girl2 46.30 194.2

BlurCar4 93.62 239.3 Gym 100.00 256.1

Board 60.17 223.2 Human2 94.67 125.5

Bolt2 69.10 302.6 Human5 100.00 280.2

Boy 100.00 303.3 Human7 100.00 293.7

2409

Car2 100.00 253.2 Human8 100.00 264.7

Car24 100.00 174.5 Jogging 100.00 283.0

Coke 93.75 285.2 KiteSurf 100.00 271.3

Coupon 41.25 291.0 Lemming 93.54 149.4

Crossing 100.00 286.0 Man 100.00 291.4

Dancer 100.00 265.0 Mhyang 100.00 196.9

Dancer2 100.00 273.5 MountainBike 100.00 290.5

David2 100.00 303.8 Rubik 97.59 117.8

David3 98.79 287.1 Singer1 100.00 252.1

Dog 87.50 275.3 Skater 100.00 264.0

Dog1 41.02 162.0 Skater2 96.06 270.6

Doll 97.60 164.8 Subway 100.00 296.9

FaceOcc1 41.83 239.8 Suv 100.00 289.7

FaceOcc2 76.72 260.8 Tiger1 99.43 255.6

Fish 100.00 284.6 Toy 98.51 285.2

Fleetface 66.10 217.7 Trans 50.00 191.9

Football1 100.00 267.6 Twinnings 99.79 295.1

 Vase 88.76 270.4

Mean 90.43

Table 4. Recorded loss count of OTB-100

Datasets Overlap Datasets Overlap

Bird2 0.00 Freeman1 0.00

BlurCar1 0.948 Freeman3 0.00

BlurCar3 0.00 Girl2 53.69

BlurCar4 6.38 Gym 0.00

Board 39.82 Human2 5.33

Bolt2 30.90 Human5 0.00

Boy 0.00 Human7 0.00

Car2 0.00 Human8 0.00

Car24 0.00 Jogging 0.00

Coke 6.25 KiteSurf 0.00

Coupon 58.75 Lemming 6.45

Crossing 0.00 Man 0.00

Dancer 0.00 Mhyang 0.00

Dancer2 0.00 MountainBike 0.00

David2 0.00 Rubik 2.41

David3 1.21 Singer1 0.00

Dog 12.50 Skater 0.00

Dog1 58.98 Skater2 3.94

Doll 2.40 Subway 0.00

FaceOcc1 58.17 Suv 0.00

FaceOcc2 23.28 Tiger1 0.57

Fish 0.00 Toy 1.49

Fleetface 33.90 Trans 50.00

Football1 0.00 Twinnings 0.21

 Vase 11.24

Mean 9.57

Table 5. Recorded accuracy of TC-128

Datasets Accuracy FPS Datasets Accuracy FPS

Airport_ce 62.16216 121.7 Kite_ce3 100 302.8

Baby_ce_gt 100 294.4 Kobe_ce 100 258.4

Badminton_ce1 100 304.3 Lemming 100 141.1

Badminton_ce2 100 251.8 Liquor 100 180.9

Ball_ce1 71.86701 261.2 Logo_ce 100 270.6

Ball_ce2 100 304.0 Matrix 74.19355 274.7

Ball_ce3 99.6337 252.8 Messi_ce 58.00 298.5

Ball_ce4 81.07527 304.6 Michaeljackson_ce 100 127.5

Basketball 100 268.4 Microphone_ce1 72.51908 284.9

Basketball_ce1 100 300.9 Microphone_ce2 100 288.8

Basketball_ce2 98.24561 299.2 Motorbike_ce 100 283.8

Basketball_ce3 89.14027 290.5 MotorRolling 100 269.6

Bee_ce 73.68421 270.4 MountainBike 71.95122 298.2

Bicycle 100 296.2 Panda 100 298.4

Bike_ce1 100 271.6 Plane_ce2 84.6473 301.8

Bike_ce2 100 268.0 Plate_ce1 87.09677 279.5

Biker 66.85083 259.4 Plate_ce2 100 286.1

2410

Bikeshow_ce 94.5544 286.0 Pool_ce1 100 300.9

Bird 91.43646 258.1 Pool_ce2 100 294.5

Board 88.00 242.9 Pool_ce3 100 290.9

Boat_ce1 78.70968 290.2 Railwaystation_ce 14.51613 232.4

Boat_ce2 94.44444 297.6 Ring_ce 71.91283 298.8

Bolt 100 301.2 Sailor_ce 100 301.6

Boy 69.51567 305.0 Shaking 81.8408 295.4

Busstation_ce1 100 288.1 Singer_ce1 100 287.6

Busstation_ce2 95.6044 294.2 Singer_ce2 83.64486 171.1

CarDark 100 309.9 Singer1 90.32258 276.9

CarScale 100 287.7 Singer2 85.75499 300.3

Carchasing_ce1 100 236.4 Skating_ce1 73.49727 203.2

Carchasing_ce3 100 313.5 Skating_ce2 70.66015 95.70

Carchasing_ce4 100 301.8 Skating1 74.19355 292.7

Charger_ce 100 91.3 Skating2 90.75 273.5

Coke 69.46309 292.6 Skiing 93.11828 274.1

Couple 100 286.4 Skiing_ce 100 168.3

Crossing 98.57143 278.1 Skyjumping_ce 80.43011 250.7

Cup 100 295.6 Soccer 100 284.3

Cup_ce 100 290.1 Spiderman_ce 83.92857 227.0

David 71.30178 272.8 Subway 74.43182 284.3

David3 74.19355 293.9 Suitcase_ce 61.71429 247.9

Deer 100 227.4 Sunshade 81.52174 303.7

Diving 84.50704 279.3 SuperMario_ce 98.83721 253.3

Doll 93.93939 151.5 Surf_ce1 92.44186 204.6

Eagle_ce 100 290.7 Surf_ce2 94.05941 119.6

Electricalbike_ce 50.00 232.3 Surf_ce3 78.26087 246.9

Face_ce 100 139 Surf_ce4 69.17563 215.1

Face_ce 75.48387 224.1 TableTennis_ce 74.81481 308.5

Fish_ce1 35.13514 225.2 Tennis_ce1 89.39394 252.3

Fish_ce2 95.05376 286.7 Tennis_ce2 76.65198 238.8

FaceOcc1 100 276.5 Tennis_ce3 97.70492 243.8

Football1 98.27957 270.1 TennisBall_ce 83.82353 291.0

Girl 91.35802 299.3 Thunder_ce 95.13889 296.2

Girlmov 100 108 Tiger1 100 242.3

Guitar_ce1 93.97849 284.2 Tiger2 97.45763 280.8

Guitar_ce2 100 230.1 Torus 98.63014 297.3

Gym 79.8722 275.8 Toyplane_ce 100 252.7

Hand 100 275.4 Trellis 78.2716 305.2

Hand_ce1 69.67213 203.9 Walking 97.2043 295.6

Hand_ce2 99.25187 286.6 Walking2 100 293.0

Hurdle_ce1 100 237.7 Woman 96.12903 310.7

Hurdle_ce2 60.00 293.8 Yo-yos_ce1 100 293.4

Iceskater 100 261.5 Yo-yos_ce2 88.93617 286.1

Ironman 100 284.3 Yo-yos_ce3 82.15859 285.7

Jogging [1] 96.38554 292.5

Jogging [2] 75.57003 286.6

Juice 74.59283 301.9

Kite_ce1 100 307.2

Kite_ce2 100 309.7

Mean 89.07961

Table 6. Recorded loss count of TC-128

Datasets Overlap Datasets Overlap

Airport_ce 37.83784 Kite_ce3 0

Baby_ce_gt 0 Kobe_ce 0

Badminton_ce1 0 Lemming 0

Badminton_ce2 0 Liquor 0

Ball_ce1 28.13299 Logo_ce 25.80645

Ball_ce2 0 Matrix 42

Ball_ce3 0.3663 Messi_ce 0

Ball_ce4 18.92473 Michaeljackson_ce 27.48092

Basketball 0 Microphone_ce1 0

Basketball_ce1 0 Microphone_ce2 0

Basketball_ce2 1.75439 Motorbike_ce 0

Basketball_ce3 10.85973 MotorRolling 28.04878

Bee_ce 26.31579 MountainBike 0

Bicycle 0 Panda 15.3527

Bike_ce1 0 Plane_ce2 12.90323

Bike_ce2 0 Plate_ce1 0

2411

Biker 33.14917 Plate_ce2 0

Board 12 Pool_ce1 0

Boat_ce1 21.29032 Pool_ce2 85.48387

Boat_ce2 5.55556 Pool_ce3 28.08717

Bolt 0 Railwaystation_ce 0

Boy 30.48433 Ring_ce 18.1592

Busstation_ce1 0 Sailor_ce 0

Busstation_ce2 4.3956 Shaking 16.35514

CarDark 0 Singer_ce1 9.67742

CarScale 0 Singer_ce2 14.24501

Carchasing_ce1 0 Singer1 26.50273

Carchasing_ce3 0 Singer2 29.33985

Carchasing_ce4 0 Skating_ce1 25.80645

Charger_ce 0 Skating_ce2 9.25

Coke 30.53691 Skating1 6.88172

Couple 0 Skating2 0

Crossing 1.42857 Skiing 19.56989

Cup 0 Skiing_ce 0

Cup_ce 0 Skyjumping_ce 16.07143

David 28.69822 Soccer 25.56818

David3 25.80645 Spiderman_ce 38.28571

Deer 0 Subway 18.47826

Diving 15.49296 Suitcase_ce 1.16279

Doll 6.06061 Sunshade 7.55814

Eagle_ce 0 SuperMario_ce 5.94059

Electricalbike_ce 50 Surf_ce1 21.73913

Face_ce 0 Surf_ce2 30.82437

Face_ce2 24.51613 Surf_ce3 25.18519

FaceOcc1 64.86486 Surf_ce4 10.60606

Fish_ce1 4.94624 TableTennis_ce 23.34802

Fish_ce2 0 Tennis_ce1 2.29508

Football1 1.72043 Tennis_ce2 16.17647

Girl 8.64198 Tennis_ce3 0

Girlmov 6.02151 TennisBall_ce 4.86111

Guitar_ce1 0 Thunder_ce 0

Guitar_ce2 20.1278 Tiger1 2.54237

Gym 0 Tiger2 1.36986

Hand 30.32787 Torus 0

Hand_ce1 0.74813 Toyplane_ce 21.7284

Hand_ce2 0 Trellis 2.7957

Hurdle_ce1 40 Walking 0

Hurdle_ce2 0 Walking2 3.87097

Iceskater 0 Woman 0

Ironman 3.61446 Yo-yos_ce1 11.06383

Jogging [1] 24.42997 Yo-yos_ce2 17.84141

Jogging [2] 25.40717 Yo-yos_ce3 5.44554

Juice 0

Kite_ce1 0

Kite_ce2 0

Mean 10.92039

Table 7. Result comparison of mean accuracy (OTB-50)

OTB50- Mean Success and Precision in %

Tracker Success Precision

SRDCF [25] 0.539 0.731

CFNet [26] 0.535 0.724

LMCF [27] 0.533 0.729

SiameseFC [28] 0.519 0.693

Staple [29] 0.506 0.683

LCT [30] 0.488 0.689

SAMF [31] 0.464 0.649

fDSST [32] 0.406 0.616

KCF [33] 0.403 0.610

SL [17] 0.543 0.757

Ours 0.631 0.917

Table 8. Result comparison of mean accuracy (OTB-100)

OTB100- Mean Success and Precision in %

Tracker Success Precision

SRDCF [25] 0.598 0.789

CFNet [26] 0.587 0.778

LMCF [27] 0.587 0.772

SiamFC [28] 0.578 0.784

Staple [29] 0.578 0.783

LCT [30] 0.558 0.761

SAMF [31] 0.548 0.750

fDSST [32] 0.517 0.686

KCF [33] 0.477 0.695

SL [17] 0.597 0.816

Ours 0.608 0.904

2412

Figure 12. Success Plot of OTB-50

Figure 13. Precision Plot of OTB-50

Figure 14. Success plot of OTB-100

Figure 15. Precision Plot of OTB-100

Figure 16. Success plot of TC-128

Figure 17. Precision plot of TC-128

2413

Table 9. Result comparison of mean accuracy (TC-128)

TC128- Mean Success and Precision in %

Tracker Success Precision

KCF [33] 0.418 0.588

Frag [34] 0.408 0.538

VTD [35] 0.407 0.527

MIL [36] 0.393 0.539

OAB [37] 0.389 0.526

SL [17] 0.437 0.606

Ours 0.795 0.890

Success is evaluated on the basis of how current bounding

box overlaps with the ground truth bounding box. There is a

parameter Intersection over Union (IoU) that lies between the

predicted outcome and the ground truth.

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

IoU is encountered when it exceeds the threshold value i.e.

20 pixels. Whereas precision is calculated on the basis of the

center location of the bounding box as well as the ground truth.

There is only a difference is the threshold where 50 pixels are

considered for precision.

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠

If IoU ≥ 0.5, then 0.5 is considered as the ground truth

threshold. Each video contains a total number of frames, and if

the bounding box fails to track the target object, the frames in

which the target is lost are counted as loss frames.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠 − 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑜𝑠𝑠 𝐹𝑟𝑎𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠
× 100 %

𝐿𝑜𝑠𝑠 𝐶𝑜𝑢𝑛𝑡 = 100 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 %

Figure 11 shows sample frames from tracking datasets

(OTB-50, OTB-100, Temple Colour-128), with colored boxes

marking tracked objects in each scene.

Tables 1-6 present the recorded performance metrics across

three datasets. Tables 1 and 2 show the accuracy and loss count

for OTB-50, respectively. Tables 3 and 4 provide the

corresponding metrics for OTB-100, while Tables 5 and 6

detail the accuracy and loss count for TC-128.

Tables 7-9 present the comparative results of mean accuracy

across datasets. Table 7 shows the mean accuracy comparison

for OTB-50, Table 8 for OTB-100, and Table 9 for TC-128.

Figures 12 to 17 illustrate the performance evaluation plots

for the three benchmark datasets. Specifically, Figures 12, 14,

and 16 present the success plots for OTB-50, OTB-100, and

TC-128 respectively, while Figures 13, 15, and 17 show the

corresponding precision plots, providing a clear visual

comparison of tracking accuracy and precision across these

datasets.

Comparison of Evaluations Under 11 Attributes for OTB50,

OTB100 and TempleColor128-Deformations (DEF),

Illumination Variations (IV), Background Clutter (BC), In-

Plane Rotations (IPR), Fast Motions (FM), Occlusions (OCC),

Out of Plane Rotations (OPR), Motion Blurs (MB), Scale

Variations (SV), Out of Views (OV) and Low Resolutions

(LR).

5. CONCLUSIONS AND FUTURE SCOPE

In difficult scenarios with deformations, lighting variations,

background clutter, in-plane rotations, fast motions,

occlusions, out-of-plane rotations, motion blurs, scale

variations, out-of-view instances, and low resolutions, the

paper focuses on improving the tracking performance of

Siamese Network and TensorFlow. When there are several

peaks in the Siamese Network and TensorFlow response map,

a more accurate detection network is used to pinpoint the

object's position. Furthermore, the model retains accuracy in

response to changes in the object's appearance. In addition, a

high confidence template update technique is applied to avoid

template contamination. The suggested system outperforms

Siamese Network and TensorFlow in terms of tracking

accuracy and success rates, according to an objective

assessment using OTB and TempleColor sequences.

Experiments on sample video sequences demonstrate better

accuracy and resilience, especially in situations with varying

lighting, fast motion, occlusion, and background clutter.

Upcoming efforts will concentrate on improving the re-

detection network and streamlining real-time performance to

enable the engineering situations where Siamese Network

based trackers may be used practically. Although it performs

competitively on common tracking benchmarks, the suggested

hybrid model that combines Siamese Networks and

TensorFlow has some drawbacks. Specifically, the models

performance may deteriorate in harsh settings like extended

occlusion extreme target deformation or low light levels.

Because of the limited information about appearance, these

situations frequently result in tracking drift or loss of target

identity. The use of multi-modal data adaptive appearance

models or the integration of temporal attention mechanisms

could all be investigated in future research. Adding

transformer-based tracking modules or reinforcement learning

could also help with occlusion recovery and adaptability to

changing scenes.

REFERENCES

[1] Ondrašovič, M., Tarábek, P. (2021). Siamese visual

object tracking: A survey. IEEE Access, 9: 110149-

110172.

https://doi.org/10.1109/ACCESS.2021.3101988

[2] Lee, D.H. (2019). One-shot scale and angle estimation

for fast visual object tracking. IEEE Access, 7: 55477-

55484. https://doi.org/10.1109/ACCESS.2019.2913390

[3] Yan, B., Peng, H., Fu, J., Wang, D., Lu, H. (2021).

Learning spatio-temporal transformer for visual tracking.

In 2021 IEEE/CVF International Conference on

Computer Vision (ICCV), Montreal, Canada, pp. 10448-

10457. https://doi.org/10.1109/ICCV48922.2021.01028

[4] Husman, M.A., Albattah, W., Abidin, Z.Z., Mustafah,

Y.M., Kadir, K., Habib, S., Islam, M., Khan, S. (2021).

Unmanned aerial vehicles for crowd monitoring and

analysis. Electronics, 10(23): 2974.

https://doi.org/10.3390/electronics10232974

[5] Uke, N.J., Thool, R.C. (2014). Motion tracking system in

video based on extensive feature set. The Imaging

Science Journal, 62(2): 63-72.

https://doi.org/10.1179/1743131X13Y.0000000052

[6] Zhong, W., Lu, H., Yang, M.H. (2012). Robust object

tracking via sparsity-based collaborative model. In 2012

2414

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Providence, USA, pp. 1838-1845.

https://doi.org/10.1109/CVPR.2012.6247882

[7] Li, H., Wu, S., Huang, S., Lam, K.M., Xing, X. (2019).

Deep motion-appearance convolutions for robust visual

tracking. IEEE Access, 7: 180451-180466.

https://doi.org/10.1109/ACCESS.2019.2958405

[8] Zheng, L., Tang, M., Wang, J. (2018). Learning robust

gaussian process regression for visual tracking. In 2018

Twenty-Seventh International Joint Conference on

Artificial Intelligence (IJCAI-18), Stockholm, Sweden,

pp. 1219-1225. https://doi.org/10.24963/ijcai.2018/170

[9] Danelljan, M., Gool, L.V., Timofte, R. (2020).

Probabilistic regression for visual tracking. In 2020 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Seattle, USA, pp. 7183-7192.

https://doi.org/10.48550/arXiv.2003.12565

[10] Chen, K., Tao, W. (2018). Convolutional regression for

visual tracking. IEEE TIP, 27(7): 3611-3620.

https://doi.org/10.1109/TIP.2018.2819362

[11] Milan, A., Rezatofighi, S.H., Dick, A., Reid, I., Schindler,

K. (2017). Online multi-target tracking using recurrent

neural networks. In Proceedings of the AAAI Conference

on Artificial Intelligence, 31(1): 4225-4232.

https://doi.org/10.1609/aaai.v31i1.11194

[12] Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y. (2018).

Action-driven visual object tracking with deep

reinforcement learning. IEEE Transactions on Neural

Networks and Learning Systems, 29(6): 2239-2252.

https://doi.org/10.1109/TNNLS.2018.2801826

[13] Henriques, J.F., Caseiro, R., Martins, P., Batista, J.

(2014). High-speed tracking with kernelized correlation

filters. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(3): 583-596.

https://doi.org/10.1109/TPAMI.2014.2345390

[14] Zheng, L., Tang, M., Wang, J. (2018). Learning robust

gaussian process regression for visual tracking. In 2018

Twenty-Seventh International Joint Conference on

Artificial Intelligence (IJCAI-18), Stockholm, Sweden,

pp. 1219-1225. https://doi.org/10.24963/ijcai.2018/170

[15] Li, X., Liu, Q., Fan, N., Zhou, Z., He, Z., Jing, X.Y.

(2020). Dual-regression model for visual tracking.

Neural Networks, 132: 364-374.

https://doi.org/10.1016/j.neunet.2020.09.011

[16] Zhang, B., Zhang, X., Qi, J. (2015). Support vector

regression learning based uncalibrated visual servoing

control for 3D motion tracking. In 2015 34th Chinese

Control Conference (CCC), Hangzhou, China, pp. 8208-

8213. https://doi.org/10.1109/ChiCC.2015.7260942

[17] Zhang, J.W., Wang, H., Zhang, H.L., Wang, J.C., Miao,

M.E., Wang, J.D. (2022). Tracking method of online

target-aware via shrinkage loss. International Journal of

Innovative Computing, Information and Control, 18(5):

1395-1411. https://doi.org/10.24507/ijicic.18.05.1395

[18] Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.

(2015). Learning spatially regularized correlation filters

for visual tracking. In 2015 IEEE International

Conference on Computer Vision (ICCV), Santiago,

Chile, pp. 4310-4318.

https://doi.org/10.1109/ICCV.2015.490

[19] Zheng, K., Zhang, Z., Qiu, C. (2022). A fast adaptive

multi-scale kernel correlation filter tracker for rigid

object. Sensors, 22(20): 7812.

https://doi.org/10.3390/s22207812

[20] Yadav, S. (2021). Occlusion aware kernel correlation

filter tracker using RGB-D. arXiv preprint

arXiv:2105.12161.

https://doi.org/10.48550/arXiv.2105.12161

[21] Maharani, D.A., Machbub, C., Yulianti, L., Rusmin, P.H.

(2023). Deep features fusion for KCF-based moving

object tracking. Journal of Big Data, 10(1): 136.

https://doi.org/10.1186/s40537-023-00813-5

[22] Yang, J., Tang, W., Ding, Z. (2021). Long-term target

tracking of UAVs based on kernelized correlation filter.

Mathematics, 9(23): 3006.

https://doi.org/10.3390/math9233006

[23] Oner, M.U., Kye-Jet, J.M.S., Lee, H.K., Sung, W.K.

(2020). Studying the effect of mil pooling filters on mil

tasks. arXiv preprint arXiv:2006.01561.

https://arxiv.org/abs/2006.01561

[24] Xiong, D., Lu, H., Yu, Q., Xiao, J., Han, W., Zheng, Z.

(2020). Parallel tracking and detection for long-term

object tracking. International Journal of Advanced

Robotic Systems, 17(2): 1729881420902577.

https://doi.org/10.1177/1729881420902577

[25] Patil, R.R., Vaidya, O.S., Phade, G.M., Gandhe, S.T.

(2020). Qualified scrutiny for real-time object tracking

framework. International Journal on Emerging

Technologies, 11(3): 313-319.

[26] Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A.,

Torr, P.H. (2017). End-to-end representation learning for

correlation filter based tracking. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, USA, pp. 2805-2813.

https://doi.org/10.1109/CVPR.2017.298

[27] Wang, M., Liu, Y., Huang, Z. (2017). Large margin

object tracking with circulant feature maps. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, USA, pp.

4021-4029. https://doi.org/10.1109/CVPR.2017.428

[28] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A.,

Torr, P.H. (2016). Fully-convolutional siamese networks

for object tracking. In 2016 European Conference on

Computer Vision Workshops (ECCV 2016 Workshops),

Amsterdam, Netherlands, pp. 850-865.

https://doi.org/10.1007/978-3-319-48881-3_56

[29] Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O.,

Torr, P.H. (2016). Staple: Complementary learners for

real-time tracking. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las

Vegas, USA, pp. 1401-1409.

https://doi.org/10.1109/CVPR.2016.156

[30] Ma, C., Yang, X., Zhang, C., Yang, M.H. (2015). Long-

term correlation tracking. In 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

Boston, USA, pp. 5388-5396.

https://doi.org/10.1109/CVPR.2015.7299177

[31] Li, Y., Zhu, J. (2015). A scale adaptive kernel correlation

filter tracker with feature integration. In 2016 European

Conference on Computer Vision Workshops (ECCV

2016 Workshops), Amsterdam, the Netherlands, pp. 254-

265. https://doi.org/10.1007/978-3-319-16181-5_18

[32] Danelljan, M., Häger, G., Khan, F., Felsberg, M. (2014).

Accurate scale estimation for robust visual tracking. In

2014 British Machine Vision Conference (BMVC 2014),

Nottingham, UK, pp. 1-12.

https://doi.org/10.5244/C.28.65

[33] Henriques, J.F., Caseiro, R., Martins, P., Batista, J.

2415

https://doi.org/10.1109/CVPR.2016.156

(2014). High-speed tracking with kernelized correlation

filters. TPAMI, 37(3): 583-596.

https://doi.org/10.1109/TPAMI.2014.2345390

[34] Adam, A., Rivlin, E., Shimshoni, I. (2006). Robust

fragments-based tracking using the integral histogram. In

2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), New York,

USA, pp. 798-805.

https://doi.org/10.1109/CVPR.2006.256

[35] Kwon, J., Lee, K.M. (2010). Visual tracking

decomposition. In 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition

(CVPR), San Francisco, USA, pp. 1269-1276.

https://doi.org/10.1109/CVPR.2010.5539821

[36] Babenko, B., Yang, M.H., Belongie, S. (2010). Robust

object tracking with online multiple instance learning.

TPAMI, 33(8): 1619-1632.

https://doi.org/10.1109/TPAMI.2010.226

[37] Grabner, H., Grabner, M., Bischof, H. (2006). Real-time

tracking via on-line boosting. BMVC Proceedings, 1(5):

6. https://doi.org/10.5244/C.20.6

2416

http://dx.doi.org/10.5244/C.20.6

