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 Tracking object from various challenges is a key motivation in computer vision and machine 

learning. It is bit rigorous to fulfill all the challenge with higher level of precision in 

considering all frames. An immaculate approach is required to build a model for better visual 

object tracking. It is required to obtain the patterns in each frame for ideal model. Here the 

research uses Siamese Network and TensorFlow to train and build the model. Siamese 

Network may contain two or more identical sub-networks that can compare the input and 

make decision more precise. It is required to pipelining the anchors with positive and 

negative sources to process the model towards hybrid one for processing the corresponding 

image. TensorFlow helps to gather the patterns of the objects and recognize it to pertain the 

same till last frame. Hypothesis is tested with various benchmarks including OTB50, 

OTB100 and TempleColor128 that pertained better level of precision. 
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1. INTRODUCTION 

 

Visual object tracking is a bit complicated task in computer 

vision because it involves tracking objects as per the interest 

with pattern recognition. The motive of object tracking is to 

project the trajectory of the object along with the position by 

facing various challenges such as variations in lighting 

condition, fast motions, getting obstacles over the objects, etc. 

Tracking algorithm usually works in that manner where it 

initializes the target object in the very first frame along with 

its location by using coordinates and other pertinent properties 

continually in the following frames. It also includes feature 

extraction, object visualization, pattern following and model 

prediction. Numerous fields, such as robotics, autonomous 

navigation, augmented reality, video analysis, surveillance, 

and human-computer interaction, use visual object tracking 

extensively [1-3].  

It may be used, for example, to guide unmanned aerial 

vehicles, monitor people and objects in congested areas, 

analyze sporting events, improve immersive gaming, and 

provide assistive devices for the blind. Visual object tracking 

has come a long way in recent years, but it is still a difficult 

challenge since real-world scenarios are inherently complex 

and need balancing accuracy, efficiency, and resilience. In 

order to push the limits of object tracking, researchers are still 

creating and improving edge tracking algorithms by utilizing 

developments in deep learning, probabilistic modeling, 

optimization strategies, and sensor technologies [4].  

Several methods are used in visual object tracking to 

precisely track and identify things throughout a series of 

frames in a video. Feature extraction techniques, appearance 

descriptors or keypoints, are commonly employed in these 

procedures to extract unique attributes from the target object. 

Motion estimation techniques compute the movement of an 

item in between frames, enabling placement that is predicted. 

To capture the item's spatial extent, object representation 

methods like bounding boxes or pixel-wise masks are used. 

Similarity metrics assess how an object appears or is 

composed differently in different frames. To ensure stable and 

dependable tracking performance, tracking algorithms 

frequently include techniques for managing occlusions, scale 

changes, and other difficulties that are frequently encountered 

in real-world circumstances [5]. The compact visibility can 

observe several difficulties that work faces during tracking an 

object using pattern recognition or the features present in the 

image. It is also required to find out the background of the 

image to properly segment the foreground for better precision 

and accuracy. 

Figure 1 shows a desk with gadgets, where a yellow box 

highlights one object to demonstrate object tracking. 

TensorFlow makes it possible to use deep learning-based 

algorithms, which makes visual tracking easier. First, target 

objects for tracking are defined by tagged datasets of pictures 

or videos. TensorFlow provides a range of pre-trained models, 

such as SSD and Faster R-CNN, or uses its high-level APIs, 

such as TensorFlow Keras to enable the development of 

bespoke models. The prepared datasets are used to train these 

models, improving their capacity to forecast bounding boxes 

around tracked objects with precision. The trained models 

analyze fresh frames and produce predictions for object 

positions during inference. These predictions can be improved 

by post-processing methods like smoothing trajectories or 

removing false positives. Ultimately, the bounding boxes or 

monitored item coordinates are included into more expansive 

systems for further examination or utilization.
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Figure 1. Visual object tracking [6] 

 

 

2. RELATED WORKS 

 

Li et al. [7] presented a network that uses the MA-Dual 

technique for object tracking and analyzes patterns across 

frames by using a spatial transient approach. Throughout the 

whole dataset, the approach extracts structural information 

using 3D convolutional processing. However, in certain 

datasets, issues like motion blur and low resolutions make 

reliable object identification difficult. varied data highlighting 

under varied brightness circumstances may cause variations in 

system performance. Comprehensive experiments using 

UAV123, OTB benchmarks, VOT, and TC128 datasets show 

the resilience of the approach. Findings show that tracking 

performance is promising, particularly when managing 

difficult circumstances including deformation, size variation, 

and lighting variations. 

Zheng et al. [8] presented the Gaussian Process Regression 

Based Tracker (GPRT), a conventional tracking strategy that 

uses part tricks and removes boundary effects. The authors 

improved the performance of GPRT by introducing two 

effective updating strategies. Analyses performed on the OTB-

2013 and OTB-2015 datasets demonstrate that GPRT 

outperforms trackers using hand-crafted features, with mean 

overlap accuracy of 84.1% and 79.2%, respectively. By 

utilizing Gaussian Regression Processes in visual tracking, 

GPRT presents a unique tracking solution that doesn't require 

complex add-ons. GPRT not only fully removes boundary 

effects but also efficiently utilizes the part trick compared to 

all other CF trackers. The authors also present two unique and 

effective GPRT updating methods. Two benchmark datasets, 

OTB-2013 and OTB-2015, with more than 100 films featuring 

a variety of challenges—birds, bolts, boxes, automobiles, 

bikers, blurred bodies, football, human, dudek, david, crowds, 

and more—are used for extensive testing. 

Danelljan et al. [9] presented a probabilistic regression 

framework for tracking in which, given an input picture, the 

network predicts the restricted probability density of the 

destination state. The system's architecture is particularly 

capable of handling noise that results from vague annotations 

and unclear assignments. The Kullback-Leibler divergence is 

minimized in order to train the regression network. The 

framework not only enables a probabilistic representation of 

the output when used for tracking, but it also greatly enhances 

performance. On six datasets, the system's tracker achieves a 

new benchmark with an AUC of 59.8% on LaSOT and a 

Success rate of 75.8% on TrackingNet. 

Chen and Tao [10] suggested a convolutional network-

based regression technique for monitoring moving objects. 

Edge regression is used by the system to extract textures and 

object patterns for tracking. Furthermore, it combines layered 

convolutional methods with a backpropagation model. To 

capture the object's integration features, each layer in the DCF 

model is customized or trained using a variety of viewpoints. 

The object tracking system addresses a range of difficulties 

and sizes by means of repeated iterations and 

backpropagations. With just one convolutional layer, our 

technique offers a unique way to comfortably simulate 

regression in visual tracking. 

Millan et al. [11] presented a system for multi-target 

tracking based on recurrent neural networks (RNNs), 

providing a novel solution to a number of issues this job 

presents. Deducing a changing number of targets over time, 

keeping a continuous state evaluation for every target that is 

present, and resolving a discrete combinatorial issue are all 

necessary for tracking many objects in actual scenarios. Earlier 

techniques frequently use intricate models that need time-

consuming parameter adjustment. The authors provide an end-

to-end learning architecture for online multi-target tracking, 

which differs from conventional methods. They point out that 

current deep learning techniques are not naturally equipped to 

address these issues and are not easily transferable to the 

current job. 

Yun et al. [12] presented a system built on a deep 

reinforcement learning algorithm and suggested a novel 

activity-driven method for visual tracking using deep 

convolutional networks. The suggested tracker follows the 

target item iteratively through successive activities while 

being restricted by an ADNet. The computational complexity 

of tracking is greatly decreased by using this activity-driven 

tracking strategy. Furthermore, partly labeled data may be 

used with reinforcement learning, which might significantly 

improve training data generation with little work. The 

evaluation findings show that the proposed tracker 

outperforms existing deep network-based trackers using a 

tracking-by-location method by three times, achieving state-

of-the-art performance at 3 frames per second. 

Like the methods of other writers, he put out a Deep 

Reinforcement Learning based architecture. They provide a 

completely end-to-end technique for visual tracking in films 

that figures out where a target object's bounding box will be at 

every frame. Considering tracking as a sequential, dynamic 

process in which past semantics contain very important 

information for the future is a crucial realization. They create 

a model that functions as a recurrent convolutional neural 

network that interacts with video over time by utilizing this 

intuition. Long-term tracking performance can be improved by 

teaching the model tracking rules that concentrate on 

continuous frame boxes through the use of Reinforcement 

Learning (RL) methods. Operating at increased frame rates, 

the suggested tracking algorithm achieves state-of-the-art 

performance on an existing tracking benchmark. 

Henriques et al. [13] presented a method based on 

Kernelized Correlation Filters that showed how normal picture 

interpretations may be represented in a methodical manner. 

They demonstrated that under some circumstances, bit 

frameworks and subsequent information become circulant, 

making it possible for the Discrete Fourier Transform (DFT) 

to diagonalize them and to quickly develop algorithms for 

handling interpretations. The authors developed cutting-edge 

trackers that operate at high frame rates and need less code 

implementation by using this approach to linear and patch-
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based regression. Expansions of their fundamental 

methodology are probably advantageous in a number of 

additional issues. Circulant data has proven useful for a 

number of methods in detection and video event retrieval since 

this work's original iteration. 

Zheng et al. [14] presented an innovative tracking structure 

dubbed GPRT, which makes use of Gaussian Regression 

Processes for visual tracking, and he proposed a system based 

on the Robust Gaussian algorithm. In contrast to existing CF 

trackers, GPRT concurrently uses part techniques and removes 

boundary effects. The authors demonstrated the efficacy of 

two unique, effective GPRT strategies they proposed. 

Extensive analyses were carried out on the OTB-2013 and 

OTB-2015 benchmark datasets, where GPRT surpassed all 

current trackers. 

Li et al. [15] presented a Dual Regression model-based 

system. The authors presented a dual-regression tracking 

architecture that consists of a CF module and a discriminative 

convolutional neural network in their study. By learning to 

distinguish between the target and background, this tracker 

becomes more discriminative and uses a fully convolutional 

network to reduce processing overhead. A CF module works 

on shallower layers with better spatial resolution to fine-tune 

the target position since deeper layers of the fully 

convolutional network preserve less spatial detail. This two-

stream approach, which uses a single forward CNN pass to 

estimate the target location, makes deep trackers more 

effective. The efficacy and efficiency of the suggested 

approach are demonstrated by evaluation on three publicly 

available datasets. 

Zhang et al. [16] presented a Support Vector Regression 

(SVR)-based approach. In order to regulate uncalibrated visual 

servoing for 3D motion tracking, their article suggests a 

unique approach. In the picture plane, motion based on PI 

control is initially used. The visual mapping model is then built 

using SVR. Finally, the continuous mapping approach is used 

to provide both planar and three-dimensional motion tracking. 

When compared to conventional BP neural network 

techniques for 3D motion visual tracking, SVR proved to have 

good approximation skills, especially when learning from tiny 

samples. 

Zhang et al. [17] suggested a visual tracking method that 

takes rank loss, shrinkage loss, and optimum feature training 

into account. They matched target features using the template 

technique and adjusted their tracking accordingly. But 

depending just on template-based techniques could result in 

less than ideal results because these trackers are frequently 

restricted to particular objectives and have difficulty handling 

a variety of datasets. In addition to highlighting the necessity 

of improving the model by optimizing filters to increase 

processing time, frame rate, and accuracy, the authors propose 

upgrading the template using preprocessing techniques. To 

assess the correctness of the system, Templecolor128 will be 

used for testing. Compared to traditional approaches, object 

tracking may be greatly aided by object detection since 

characteristics or patterns can be tracked more successfully. 

New developments in Kernelized Correlation Filter (KCF)-

based tracking have attempted to address issues such as limited 

feature representation occlusion and scale variation. Danelljan 

et al. [18] suggested a better KCF algorithm that uses the 

MCMRV criterion to incorporate a multi-scale pyramid and an 

adaptive template update mechanism. This greatly improves 

the algorithms robustness against occlusion and scale changes 

while maintaining a high processing speed appropriate for 

embedded platforms. Zheng et al. [19] improved tracking 

performance in dynamic scenes with frequent occlusions by 

introducing an occlusion-aware KCF tracker that incorporates 

RGB-D information in 2021. Also, Yadav [20] KCF was 

improved in 2023 by combining deep features from VGG16 

which improved the tracker's performance in visually complex 

and cluttered environments. Maharani et al. [21] additionally, 

in 2021 long-term tracking problems were addressed by 

implementing multi-scale detection and Lab color features 

which decreased model drift and increased stability over long 

periods of time.  

Improvements in methodology have also been made to 

Multiple Instance Learning (MIL)-based trackers in an effort 

to make them more resilient and flexible. Cheong and 

associates showed how different pooling strategies affect 

classification and tracking performance by comparing 

different MIL pooling filters such as max mean, attention and 

distribution-based approaches [22]. Oner et al. [23] used 

features like compressive tracking and histogram of oriented 

gradients (HOG) combined MIL, with a parallel tracking and 

detection framework, improving the tracker's dependability in 

challenging scenes. Besides, Xiong et al. [24] assessed MIL in 

a real-time tracking framework on a Raspberry Pi 3 Model B+ 

platform, demonstrating that although MIL occasionally 

provided good accuracy, it had trouble maintaining high frame 

rates on constrained hardware. 

 

 

3. PROPOSED WORK AND IMPLEMENTATION 

 

This research proposes a hybrid network based on Siamese 

and TensorFlow, designed for offline processing with large 

datasets. The network comprises multiple sub-networks for 

feature extraction, regression, and classification. By 

integrating the Siamese Network with TensorFlow, an object 

detection approach, the feature extraction model is enhanced 

for improved visual tracking analysis. Unlike previous 

recognition frameworks that repurpose classifiers or localizers 

for feature extraction, this model applies features across 

multiple areas of an image, even when objects are scaled. The 

system will undergo testing with various datasets and 

benchmarks, including OTB50, OTB100, and 

TempleColor128, aiming to achieve higher levels of accuracy. 

 

3.1 Problem definition 

 

Even though visual object tracking has advanced 

significantly consideration to methods like deep learning 

regression models and reinforcement learning a number of 

significant obstacles still exist. Among these are the challenges 

of preserving robustness in the face of unfavorable 

circumstances like motion blur, low resolution, fluctuating 

lighting and object deformation. The real-world applicability 

of many current methods is limited by their struggles with 

boundary effects occlusion and generalization across diverse 

datasets. Furthermore, intricate designs are frequently 

unsuitable for real-time applications and necessitate extensive 

tuning. Effective mechanisms to manage long-term 

dependencies and update models effectively during tracking 

are also lacking. Tracking accuracy and speed balance is still 

a big concern which emphasizes the need for more flexible 

lightweight and dependable tracking systems that can function 

well in a variety of situations.   
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3.1.1 Method design 

To precisely localize the target object in every frame the 

suggested method design for visual object tracking combines 

a lightweight regression framework with a feature extraction 

module based on Convolutional Neural Networks (CNNs). 

First input frames undergo preprocessing, which includes 

normalization and resizing and a region of interest is chosen 

for effective calculation. Selected CNN layers that strike a 

balance between semantic richness and spatial detail are used 

to extract deep features. After that the target bounding box is 

predicted by a regression-based tracking module. To account 

for variations in appearance scale and occlusion, an adaptive 

update strategy uses confidence-based online learning to 

improve the model. A re-detection mechanism is incorporated 

for tracking failure recovery and frame-wise predictions are 

smoothed to improve temporal consistency. Stochastic 

gradient descent is used to optimize the model after it has been 

trained using a combination of regression and similarity-based 

loss functions. Metrics like precision AUC, and success rate 

are used to assess the model's robustness and real-time 

capability on benchmark datasets like OTB VOT, and LaSOT.  

 

3.1.2 Experimental validation 

To ensure a thorough performance evaluation under a 

variety of real-world scenarios the proposed visual object 

tracking system was experimentally validated on well-known 

benchmark datasets such as OTB-2013 OTB-2015 VOT 

LaSOT and UAV123. Standard metrics like accuracy success 

rate intersection over union (IoU) and area under the curve 

(AUC) were used to gauge the systems performance. To 

demonstrate gains in robustness, adaptability and tracking 

accuracy especially in the face of difficult circumstances like 

motion blur occlusion scale variation and illumination changes 

a comparative analysis was conducted against a number of 

cutting-edge trackers. Across sequences with different object 

classes motion patterns and scene complexities the suggested 

method continuously outperformed baseline approaches 

exhibiting superior tracking stability and efficiency while 

preserving real-time performance with little computational 

overhead.  

 

3.2 Siamese network 

 

Common applications of the Siamese neural network 

include object tracking and similarity learning. The 

fundamental design consists of two similar neural networks 

with the same topology and weights, often referred to as 

Siamese twins or twin networks. The Siamese neural network 

may be represented mathematically in the following way: 

Let 𝑓(𝑥;  𝜃) stands for the function that the neural network 

learnt, where x is the input and θ is the network's parameters 

(weights and biases). MThe modelhas two identical networks 

sharing the same parameters for a Siamese Network. Let's say 

that the inputs to the first and second networks are represented 

by the symbols x1 and x2, respectively. The output of each 

network is a feature vector, denoted as 𝑓(𝑥1;  𝜃)  and 

𝑓(𝑥2;  𝜃) respectively. In other words, the following 

mathematical representation captures the fundamental 

structure of a Siamese Neural network: 

 

𝑓(𝑥1;  𝜃) = Net(𝑥1;  𝜃) (1) 

 

𝑓(𝑥2;  𝜃)=Net(𝑥2;  𝜃) (2) 

 

𝑆(𝑥1, 𝑥2)=Similarity 𝑓(𝑥1;  𝜃), 𝑓(𝑥2;  𝜃) (3) 

 

where, 𝑓(𝑥1;  𝜃) is the feature vector of first input with the 

network parameter 𝜃, similarly for the 𝑓(𝑥2;  𝜃). 𝑆(𝑥1, 𝑥2) is 

the similarity between the first input vector and the second one.  

In actuality, depending on the particular job and application, 

the network design, loss function, and optimization technique 

may change. Additionally, Siamese Networks are frequently 

trained for similarity learning tasks using methods like 

contrastive loss and triplet loss. In order to extract image 

characteristics, the Siamese Network uses the categorization 

network, which biases the retrieved features toward semantic 

information. SiameseRPN++ uses ResNet as its feature 

extraction backbone network. The findings of the experiment 

confirm that various channels respond differently to distinct 

object categories, suggesting that deep features can capture 

semantic information associated with object prejudice. The 

Siamese Network's dual-branch structure allows it to interpret 

input picture data in a different way, producing characteristics 

that take various dimensions, such as channel and space, into 

account. By using the attention mechanism to filter visual data, 

the network is able to determine the object's significance 

during feature extraction, highlighting target features that are 

pertinent to the tracking job and ignoring background 

information. The most adorable feature of Siamese Network is 

offline learning approach. It trains the model in offline mode 

and test in the same manner. The template branch and the 

detection branch are the two branches that make up the 

Siamese tracker. While the detection branch examines the 

target image patch from the current frame, the template branch 

receives the target image patch from the previous frame as 

input. To track an object, first of all, it is required to preprocess 

the image using smart filters and localize the image by 

inputting the target object in the very first frame. Figure 2 

illustrates the box marks target object initialization in object 

tracking selecting the ball as the focus to follow in the video. 

 

 
 

Figure 2. Target object initialization 

 

 
 

Figure 3. Color mapping of target feature object 
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The process of extracting features began when the target 

object was established. Using a set of pixels with comparable 

spectral, spatial, and/or textural qualities, an object (or 

segment) is used in feature extraction, an object-based method 

for classifying images. Figure 3 shows the color mapping 

highlights the ball’s features to initialize it as the tracking 

target. 

On the other hand, conventional classification techniques 

are pixel-based, categorizing images based on the spectral 

information of individual pixels. 

 

 
 

Figure 4. Task specific model training 

 

Once the feature extraction has been done, then feature 

training will be started, and with the help of Siamese Network; 

task-specific training will be accomplished and generate the 

output model. Figure 4 illustrates task-specific model training 

in object tracking. 

 

3.3 TensorFlow 

 

For object identification tasks, TensorFlow is a powerful 

tool with an extensive ecosystem of models and tools. 

Choosing an appropriate model architecture, such as Faster R-

CNN, SSD, or YOLO, which each have their trade-offs 

between speed and accuracy, is usually the first step in the 

process.  

Convolutional neural networks (CNNs) are used by these 

designs to forecast bounding boxes and class labels for objects 

that are recognized, as well as to extract characteristics from 

input photos. Using hierarchical features that capture semantic 

information about the objects in the image, CNNs process the 

input image. Convolutional and pooling layers, which 

gradually decrease the spatial dimensions while increasing the 

depth of feature maps, are commonly used to achieve this. The 

model predicts bounding boxes, or coordinates, that closely 

surround items of interest inside the picture once features are 

retrieved. Figure 5 shows the main steps in TensorFlow object 

detection: extracting features, finding and classifying objects, 

then filtering results. Regressing the coordinates of a group of 

predetermined anchor boxes to better suit the position of the 

item is a common method for doing this. At the same time, the 

model classifies objects by giving each bounding box a class 

probability that indicates how likely it is to include a certain 

item category. In order to compute class probabilities, this is 

often accomplished using extra convolutional layers and a 

softmax activation function. Non-Maximum Suppression is 

used to filter out overlapping bounding boxes with lower 

confidence ratings in order to get rid of redundant detections. 

This guarantees the retention of just the most certain detections. 

Three phases are usually included in the object detection 

operation: 

(a) The way that the input is divided into manageable 

chunks. Figure 6 demonstrates image segmentation: the grid 

divides the cat photo into distinct regions, helping separate and 

analyze parts of the image for tasks like object recognition. 

The whole image is covered by the extensive collection of 

bounding boxes, as shown. 

(b) For each segmented rectangular area, feature extraction 

is conducted to determine whether the rectangle contains a 

valid object. Each box shows a region where features are 

extracted for later recognition or tracking is presented in 

Figure 7. Figure 8 depicts Non-Maximum Suppression merges 

overlapping detection boxes into one, creating a single 

rectangle around the cat. 

Non-Maximum Suppression creates a single boundary 

rectangle by joining overlapping boxes. 

 
Figure 5. Visual object detection in TensorFlow 

 

 
 

Figure 6. Segmentation of an image 

 

 
 

Figure 7. Feature Extraction of all boxes 

 

 
 

Figure 8. Object detection using non-max suppression 
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3.4 Architecture of Siamese Network 

 

Siamese Networks are a subclass of networks defined by the 

use of two sub-networks that are exactly the same for one-shot 

classification tasks. Even though these sub-networks analyze 

distinct inputs, they retain the same designs, parameters, and 

weights. Siamese Networks learn a similarity function, in 

contrast to typical CNNs that are trained on large datasets to 

predict various classes. They can distinguish between classes 

with less data thanks to this feature, which makes them quite 

effective for one-shot classification tasks. These networks are 

frequently able to categorize pictures effectively with only one 

sample thanks to their amazing feature. Instead of using a lot 

of labeled data for training as in the standard technique, few-

shot learning trains models to make predictions using only a 

limited number of instances. When it becomes difficult or 

expensive to gather large amounts of labeled data, the value of 

few-shot learning becomes clear. Few-shot models may 

produce predictions with little input sometimes even from a 

single example because of its design, which captures the 

intricacies seen in a tiny sample size. This feature is made 

possible by several design processes including Siamese 

Networks, Meta-learning, and related techniques. With the 

help of these frameworks, the model is able to derive insightful 

data representations and apply them successfully to new, 

untested samples. 

 
Figure 9. Object detection Siamese Network architecture 

 

The goal of the differencing layer is to draw attention to the 

differences between dissimilar pairs while highlighting the 

commonalities between inputs. The Euclidean Distance 

function is employed to do: 

 

Distance (x₁, x₂) = ∥f(x₁) – f(x₂)∥₂ (4) 

 

Here, x1 and x2 represent the two inputs, Encoding (x₁) and 

Encoding(x2) denote the output of the encoding function, and 

Distance represents the distance function. The entropy loss can 

be encountered as: 

 

−(ylog(p)+(1−y)log(1−p)) (5) 
 

where, 

y represents the true label, 

p represents the predicted probability 

 

𝐾(𝑖, 𝑗) =
∑ ∑ (𝑥, 𝑦)  × 𝑇(𝑥, 𝑦)𝑁

𝑦=1
𝑁
𝑥=1

√∑ ∑ [𝑆 (𝑥, 𝑦)]2𝑁
𝑦=1

𝑁
𝑥=1 √∑ ∑ [𝑇 (𝑥, 𝑦)]2𝑁

𝑦=1
𝑁
𝑥=1

 
(6) 

 

where, 

T(x,y) denotes the template image, 

S(x,y) represents the search region of the target, and 

K indicates the height and width of the data. 

The response map is obtained by using a fully-convolutional 

Siamese Network, as shown in the flow chart of the Siamese 

framework. The re-detection network is initiated if the 

secondary peak in this map is more than 0.75 times the size of 

the main peak. 
 

3.5 Process model 
 

To maximize input quality, the system first gathers frames 

for preprocessing. The networks are obtained and loaded to 

recognize objects based just on their appearance once all 

preprocessing activities have been completed. Figure 9 shows 

a Siamese network architecture for object detection, where 

parallel networks compare a template and a detection frame to 

localize and track the target object. 

After that, an additional network is utilized for effective 

object tracking. The system makes use of two distinct 

strategies that are well-known for their effectiveness in 

tracking and object identification, which helps to improve the 

regression model. This minimizes overlap counts and 

increases frame rate per second while maintaining excellent 

system efficiency. Figure 10 represented the proposed flow 

chart. 
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Figure 10. Proposed flow chart 

 

Algorithm 1: Siamese & TensorFlow Algorithm 

Initialization 

Input: Frames 

Output: (X, Y) Coordinates 

Step 1. Initialize: 

   - Input the first frame of the dataset. 

Step 2. Convert: 

   - Convert the RGB image to grayscale. 

Step 3. Setup: 

   - Define the target area or object according to the dataset. 

Step 4. Frame Sequences: 

   - Establish frame sequences {Xt}T, where X1 represents 

the initial frame. 

Step 5. Model Loading: 

   - Load the Siamese and TensorFlow models. 

Step 6. Iterate: 

   - For each iteration (I) from 1 to N: 

     - Search for the target object in the frames. 

     - If the detection confidence exceeds the threshold value: 

       - Increment the count for overlapping detections. 

     - Else: 

       - Increment the count for accurately regressed objects. 

Step 7. Extraction: 

   - Extract coordinates: Cx (width), Cy (height), X, and Y 

(coordinates of the target object). 

Step 8. Comparison: 

   - Compare extracted coordinates with ground truth. 

Step 9. Accuracy Calculation: 

   - Compute system accuracy using counts of loss and true 

regression. 

Step 10. End: 

    - Terminate the algorithm 

 

First, frames from a dataset are entered and converted from 

RGB to grayscale using the Siamese Network and TensorFlow 

technique. After that, it creates frame sequences and specifies 

the target region or object in accordance with the dataset 

criteria. In order to start the detection procedure, the algorithm 

loads the TensorFlow and Siamese Network models. It looks 

for the target item inside the frames throughout each cycle. It 

counts successfully regressed items and increases the count for 

overlapping detections if the detection confidence is greater 

than a predetermined threshold. The target object's width, 

height, and (x, y) coordinates are extracted by the method. It 

then evaluates accuracy by contrasting these extracted 

coordinates with the ground truth. Lastly, it uses counts of loss 

and true regression to calculate the accuracy of the system 

before terminating the algorithm. To guarantee efficient object 

tracking the Siamese Network and TensorFlow hybrid 

tracking model was put into practice with particular training 

setups and parameters. To filter and improve detection results 

Non-Maximum Suppression (NMS) was applied with a 

confidence threshold of 0. 5 and an IoU threshold of 0. 4. The 

Adam optimizer was used to optimize the Contrastive Loss 

function over 50 epochs with a batch size of 32. The learning 

rate was set at 1e-4. It used a modified AlexNet as the feature 

embedding backbone and standardized the input images to 

127×127 for the exemplar (template) and 255×255 for the 
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search region. The algorithmic flow was made more 

understandable by adding a pseudocode representation that 

detailed the steps involved from feature extraction and 

similarity calculation to score thresholding and final bounding 

box selection. All of these specifics improve the suggested 

methods transparency and reproducibility. 

 

 

4. RESULTS 

 

TensorFlow version 2.12 and Python 3.10 were used for the 

implementation, which was run on a hardware configuration 

that included an Intel Core i7 processor 10GB VRAM, 16 GB 

system’s RAM, and an NVIDIA RTX 3060 GPU. Effective 

model evaluation and training were guaranteed by this setup. 

The model was trained with a learning rate of 1e-4 a batch size 

of 32 and for a total of 50 epochs in order to support 

reproducibility. The training parameters and other hardware 

and software specifics are documented for clarity and to enable 

others to precisely reproduce the experimental conditions. The 

suggested tracker is assessed using both qualitative and 

quantitative methods. Several tests are performed on a 

collection of twenty-three chosen movies from three well-

known datasets: OTB-50, OTB-100, and Temple Colour-128. 

A variety of visual difficulties may be seen in these films, such 

as cluttering, out-of-plane rotation, occlusion, scale 

fluctuations, deformation, rapid motion, and motion blur. For 

experimental validation the OTB-50 OTB-100 and TC128 

datasets were chosen based on their usage in the base paper, 

guaranteeing consistency and comparability of findings. These 

datasets are well-known within the visual tracking community 

and offer a variety of tracking scenarios that are crucial for 

assessing the robustness and performance of tracking 

algorithms.  

OTB-50 and OTB-100 are perfect for evaluating short-term 

tracking abilities under a variety of difficult circumstances 

because they provide sequences with annotated attributes like 

occlusion illumination variation scale changes and fast motion. 

By adding increasingly intricate and cluttered environments, 

TC128 expands on this assessment and puts the algorithms 

flexibility and accuracy to the test. We guarantee a fair and 

straightforward performance comparison by utilizing the same 

datasets as the base study, confirming the efficacy of the 

suggested approach in comparable experimental conditions. 

The coordinates from the suggested system are used to 

calculate the results, which are then compared to the ground 

truth values. Two benchmarks, OTB50, OTB100, and 

TempleColor128, each including several films with thousands 

of frames, are used to assess the suggested method. Specific 

problems that align with the benchmark qualities are presented 

in each video. Eleven characteristics are commonly employed 

to evaluate the correctness of the system, such as overflow and 

accurate object detection at every frame. If the bounding boxes 

fall beyond the window or surpass a threshold value, an error 

occurs that reduces accuracy. Frame per Second (FPS) has 

been measured to obtain the execution time. Success and 

precision are two parameters through which results have been 

computed accordingly. 

 

 
 

Figure 11. Selected videos from OTB-50, OTB-100, and Temple Colour-128 datasets 
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Table 1. Recorded accuracy of OTB-50 

 
Datasets Accuracy FPS Datasets Accuracy FPS 

Basketball 100.00 285.0 Human3 100.00 127.1 

Biker 100.00 280.5 Human4 54.52 295.5 

Bird1 46.43 271.1 Human6 93.15 243.6 

BlurBody 99.40 206.9 Human9 100.00 300.4 

BlurCar2 85.62 248.9 Ironman 80.77 286.0 

BlurFace 64.42 233.0 Jump 96.69 275.5 

BlurOwl 98.57 293.0 Jumping 100.00 301.7 

Bolt 100.00 299.3 Liqour 59.95 184.1 

Box 99.05 172.3 Matrix 89.80 262.1 

Car1 100.00 235.8 MotorRollig 95.00 272.3 

Car4 100.00 290.4 Panda 100.00 239.9 

CarDark 100.00 304.7 RedTeam 100.00 193.4 

CarScale 96.80 269.4 Shaking 100.00 294.9 

ClifBar 96.40 297.8 Singer2 81.06 298.7 

Couple 100.00 278.8 Skating1 89.13 290.6 

Crowds 100.00 291.1 Skating2 72.13 269.3 

David 81.09 263.0 Skiing 100.00 263.0 

Deer 100.00 237.9 Soccer 92.59 260.0 

Diving 98.60 284.2 Surfur 100.00 300.8 

DragonBaby 89.19 270.3 Sylvester 100.00 206.7 

Dudek 99.56 169.8 Tiger2 87.33 262.3 

Football 55.15 248.7 Trellis 100.00 294.7 

Freeman4 94.31 301.8 Walking 100.00 289.7 

Girl 100.00 302.3 Walking2 100.00 302.9 

   Woman 97.65 301.7 

Mean  91.72  

 

Table 2. Recorded loss count of OTB-50 

 
Datasets Overlap Datasets Overlap 

Basketball 0.00 Human3 0.00 

Biker 0.00 Human4 45.48 

Bird1 53.57 Human6 6.85 

BlurBody 0.60 Human9 0.00 

BlurCar2 14.38 Ironman 19.23 

BlurFace 35.58 Jump 3.31 

BlurOwl 1.42 Jumping 0.00 

Bolt 0.00 Liqour 40.05 

Box 0.95 Matrix 10.20 

Car1 0.00 MotorRolling 5.00 

Car4 0.00 Panda 0.00 

CarDark 0.00 RedTeam 0.00 

CarScale 3.20 Shaking 0.00 

ClifBar 3.61 Singer2 18.94 

Couple 0.00 Skating1 10.87 

Crowds 0.00 Skating2 27.87 

David 18.91 Skiing 0.00 

Deer 0.00 Soccer 7.41 

Diving 1.40 Surfur 0.00 

DragonBaby 10.81 Sylvester 0.00 

Dudek 0.44 Tiger2 12.67 

Football 44.85 Trellis 0.00 

Freeman4 5.69 Walking 0.00 

Girl 0.00 Walking2 0.00 

  Woman 2.35 

Mean 8.28 

 

Table 3. Recorded accuracy of OTB-100 

 
Datasets Accuracy FPS Datasets Accuracy FPS 

Bird2 100.00 267.1 Freeman1 100.00 294.9 

BlurCar1 99.05 270.0 Freeman3 100.00 296.5 

BlurCar3 100.00 294.0 Girl2 46.30 194.2 

BlurCar4 93.62 239.3 Gym 100.00 256.1 

Board 60.17 223.2 Human2 94.67 125.5 

Bolt2 69.10 302.6 Human5 100.00 280.2 

Boy 100.00 303.3 Human7 100.00 293.7 
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Car2 100.00 253.2 Human8 100.00 264.7 

Car24 100.00 174.5 Jogging 100.00 283.0 

Coke 93.75 285.2 KiteSurf 100.00 271.3 

Coupon 41.25 291.0 Lemming 93.54 149.4 

Crossing 100.00 286.0 Man 100.00 291.4 

Dancer 100.00 265.0 Mhyang 100.00 196.9 

Dancer2 100.00 273.5 MountainBike 100.00 290.5 

David2 100.00 303.8 Rubik 97.59 117.8 

David3 98.79 287.1 Singer1 100.00 252.1 

Dog 87.50 275.3 Skater 100.00 264.0 

Dog1 41.02 162.0 Skater2 96.06 270.6 

Doll 97.60 164.8 Subway 100.00 296.9 

FaceOcc1 41.83 239.8 Suv 100.00 289.7 

FaceOcc2 76.72 260.8 Tiger1 99.43 255.6 

Fish 100.00 284.6 Toy 98.51 285.2 

Fleetface 66.10 217.7 Trans 50.00 191.9 

Football1 100.00 267.6 Twinnings 99.79 295.1 

   Vase 88.76 270.4 

Mean  90.43  

 

Table 4. Recorded loss count of OTB-100 

 
Datasets Overlap Datasets Overlap 

Bird2 0.00 Freeman1 0.00 

BlurCar1 0.948 Freeman3 0.00 

BlurCar3 0.00 Girl2 53.69 

BlurCar4 6.38 Gym 0.00 

Board 39.82 Human2 5.33 

Bolt2 30.90 Human5 0.00 

Boy 0.00 Human7 0.00 

Car2 0.00 Human8 0.00 

Car24 0.00 Jogging 0.00 

Coke 6.25 KiteSurf 0.00 

Coupon 58.75 Lemming 6.45 

Crossing 0.00 Man 0.00 

Dancer 0.00 Mhyang 0.00 

Dancer2 0.00 MountainBike 0.00 

David2 0.00 Rubik 2.41 

David3 1.21 Singer1 0.00 

Dog 12.50 Skater 0.00 

Dog1 58.98 Skater2 3.94 

Doll 2.40 Subway 0.00 

FaceOcc1 58.17 Suv 0.00 

FaceOcc2 23.28 Tiger1 0.57 

Fish 0.00 Toy 1.49 

Fleetface 33.90 Trans 50.00 

Football1 0.00 Twinnings 0.21 

  Vase 11.24 

Mean 9.57 

 

Table 5. Recorded accuracy of TC-128 

 
Datasets Accuracy FPS Datasets Accuracy FPS 

Airport_ce 62.16216 121.7 Kite_ce3 100 302.8 

Baby_ce_gt 100 294.4 Kobe_ce 100 258.4 

Badminton_ce1 100 304.3 Lemming 100 141.1 

Badminton_ce2 100 251.8 Liquor 100 180.9 

Ball_ce1 71.86701 261.2 Logo_ce 100 270.6 

Ball_ce2 100 304.0 Matrix 74.19355 274.7 

Ball_ce3 99.6337 252.8 Messi_ce 58.00 298.5 

Ball_ce4 81.07527 304.6 Michaeljackson_ce 100 127.5 

Basketball 100 268.4 Microphone_ce1 72.51908 284.9 

Basketball_ce1 100 300.9 Microphone_ce2 100 288.8 

Basketball_ce2 98.24561 299.2 Motorbike_ce 100 283.8 

Basketball_ce3 89.14027 290.5 MotorRolling 100 269.6 

Bee_ce 73.68421 270.4 MountainBike 71.95122 298.2 

Bicycle 100 296.2 Panda 100 298.4 

Bike_ce1 100 271.6 Plane_ce2 84.6473 301.8 

Bike_ce2 100 268.0 Plate_ce1 87.09677 279.5 

Biker 66.85083 259.4 Plate_ce2 100 286.1 
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Bikeshow_ce 94.5544 286.0 Pool_ce1 100 300.9 

Bird 91.43646 258.1 Pool_ce2 100 294.5 

Board 88.00 242.9 Pool_ce3 100 290.9 

Boat_ce1 78.70968 290.2 Railwaystation_ce 14.51613 232.4 

Boat_ce2 94.44444 297.6 Ring_ce 71.91283 298.8 

Bolt 100 301.2 Sailor_ce 100 301.6 

Boy 69.51567 305.0 Shaking 81.8408 295.4 

Busstation_ce1 100 288.1 Singer_ce1 100 287.6 

Busstation_ce2 95.6044 294.2 Singer_ce2 83.64486 171.1 

CarDark 100 309.9 Singer1 90.32258 276.9 

CarScale 100 287.7 Singer2 85.75499 300.3 

Carchasing_ce1 100 236.4 Skating_ce1 73.49727 203.2 

Carchasing_ce3 100 313.5 Skating_ce2 70.66015 95.70 

Carchasing_ce4 100 301.8 Skating1 74.19355 292.7 

Charger_ce 100 91.3 Skating2 90.75 273.5 

Coke 69.46309 292.6 Skiing 93.11828 274.1 

Couple 100 286.4 Skiing_ce 100 168.3 

Crossing 98.57143 278.1 Skyjumping_ce 80.43011 250.7 

Cup 100 295.6 Soccer 100 284.3 

Cup_ce 100 290.1 Spiderman_ce 83.92857 227.0 

David 71.30178 272.8 Subway 74.43182 284.3 

David3 74.19355 293.9 Suitcase_ce 61.71429 247.9 

Deer 100 227.4 Sunshade 81.52174 303.7 

Diving 84.50704 279.3 SuperMario_ce 98.83721 253.3 

Doll 93.93939 151.5 Surf_ce1 92.44186 204.6 

Eagle_ce 100 290.7 Surf_ce2 94.05941 119.6 

Electricalbike_ce 50.00 232.3 Surf_ce3 78.26087 246.9 

Face_ce 100 139 Surf_ce4 69.17563 215.1 

Face_ce 75.48387 224.1 TableTennis_ce 74.81481 308.5 

Fish_ce1 35.13514 225.2 Tennis_ce1 89.39394 252.3 

Fish_ce2 95.05376 286.7 Tennis_ce2 76.65198 238.8 

FaceOcc1 100 276.5 Tennis_ce3 97.70492 243.8 

Football1 98.27957 270.1 TennisBall_ce 83.82353 291.0 

Girl 91.35802 299.3 Thunder_ce 95.13889 296.2 

Girlmov 100 108 Tiger1 100 242.3 

Guitar_ce1 93.97849 284.2 Tiger2 97.45763 280.8 

Guitar_ce2 100 230.1 Torus 98.63014 297.3 

Gym 79.8722 275.8 Toyplane_ce 100 252.7 

Hand 100 275.4 Trellis 78.2716 305.2 

Hand_ce1 69.67213 203.9 Walking 97.2043 295.6 

Hand_ce2 99.25187 286.6 Walking2 100 293.0 

Hurdle_ce1 100 237.7 Woman 96.12903 310.7 

Hurdle_ce2 60.00 293.8 Yo-yos_ce1 100 293.4 

Iceskater 100 261.5 Yo-yos_ce2 88.93617 286.1 

Ironman 100 284.3 Yo-yos_ce3 82.15859 285.7 

Jogging [1] 96.38554 292.5    

Jogging [2] 75.57003 286.6    

Juice 74.59283 301.9    

Kite_ce1 100 307.2    

Kite_ce2 100 309.7    

Mean  89.07961  

 

Table 6. Recorded loss count of TC-128 

 
Datasets Overlap Datasets Overlap 

Airport_ce 37.83784 Kite_ce3 0 

Baby_ce_gt 0 Kobe_ce 0 

Badminton_ce1 0 Lemming 0 

Badminton_ce2 0 Liquor 0 

Ball_ce1 28.13299 Logo_ce 25.80645 

Ball_ce2 0 Matrix 42 

Ball_ce3 0.3663 Messi_ce 0 

Ball_ce4 18.92473 Michaeljackson_ce 27.48092 

Basketball 0 Microphone_ce1 0 

Basketball_ce1 0 Microphone_ce2 0 

Basketball_ce2 1.75439 Motorbike_ce 0 

Basketball_ce3 10.85973 MotorRolling 28.04878 

Bee_ce 26.31579 MountainBike 0 

Bicycle 0 Panda 15.3527 

Bike_ce1 0 Plane_ce2 12.90323 

Bike_ce2 0 Plate_ce1 0 
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Biker 33.14917 Plate_ce2 0 

Board 12 Pool_ce1 0 

Boat_ce1 21.29032 Pool_ce2 85.48387 

Boat_ce2 5.55556 Pool_ce3 28.08717 

Bolt 0 Railwaystation_ce 0 

Boy 30.48433 Ring_ce 18.1592 

Busstation_ce1 0 Sailor_ce 0 

Busstation_ce2 4.3956 Shaking 16.35514 

CarDark 0 Singer_ce1 9.67742 

CarScale 0 Singer_ce2 14.24501 

Carchasing_ce1 0 Singer1 26.50273 

Carchasing_ce3 0 Singer2 29.33985 

Carchasing_ce4 0 Skating_ce1 25.80645 

Charger_ce 0 Skating_ce2 9.25 

Coke 30.53691 Skating1 6.88172 

Couple 0 Skating2 0 

Crossing 1.42857 Skiing 19.56989 

Cup 0 Skiing_ce 0 

Cup_ce 0 Skyjumping_ce 16.07143 

David 28.69822 Soccer 25.56818 

David3 25.80645 Spiderman_ce 38.28571 

Deer 0 Subway 18.47826 

Diving 15.49296 Suitcase_ce 1.16279 

Doll 6.06061 Sunshade 7.55814 

Eagle_ce 0 SuperMario_ce 5.94059 

Electricalbike_ce 50 Surf_ce1 21.73913 

Face_ce 0 Surf_ce2 30.82437 

Face_ce2 24.51613 Surf_ce3 25.18519 

FaceOcc1 64.86486 Surf_ce4 10.60606 

Fish_ce1 4.94624 TableTennis_ce 23.34802 

Fish_ce2 0 Tennis_ce1 2.29508 

Football1 1.72043 Tennis_ce2 16.17647 

Girl 8.64198 Tennis_ce3 0 

Girlmov 6.02151 TennisBall_ce 4.86111 

Guitar_ce1 0 Thunder_ce 0 

Guitar_ce2 20.1278 Tiger1 2.54237 

Gym 0 Tiger2 1.36986 

Hand 30.32787 Torus 0 

Hand_ce1 0.74813 Toyplane_ce 21.7284 

Hand_ce2 0 Trellis 2.7957 

Hurdle_ce1 40 Walking 0 

Hurdle_ce2 0 Walking2 3.87097 

Iceskater 0 Woman 0 

Ironman 3.61446 Yo-yos_ce1 11.06383 

Jogging [1] 24.42997 Yo-yos_ce2 17.84141 

Jogging [2] 25.40717 Yo-yos_ce3 5.44554 

Juice 0   

Kite_ce1 0   

Kite_ce2 0   

Mean 10.92039 

 

Table 7. Result comparison of mean accuracy (OTB-50) 

 

OTB50- Mean Success and Precision in % 

Tracker Success Precision 

SRDCF [25] 0.539 0.731 

CFNet [26] 0.535 0.724 

LMCF [27] 0.533 0.729 

SiameseFC [28] 0.519 0.693 

Staple [29] 0.506 0.683 

LCT [30] 0.488 0.689 

SAMF [31] 0.464 0.649 

fDSST [32] 0.406 0.616 

KCF [33] 0.403 0.610 

SL [17] 0.543 0.757 

Ours 0.631 0.917 

 

 

 

 

Table 8. Result comparison of mean accuracy (OTB-100) 

 
OTB100- Mean Success and Precision in % 

Tracker Success Precision 

SRDCF [25] 0.598 0.789 

CFNet [26] 0.587 0.778 

LMCF [27] 0.587 0.772 

SiamFC [28] 0.578 0.784 

Staple [29] 0.578 0.783 

LCT [30] 0.558 0.761 

SAMF [31] 0.548 0.750 

fDSST [32] 0.517 0.686 

KCF [33] 0.477 0.695 

SL [17] 0.597 0.816 

Ours 0.608 0.904 
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Figure 12. Success Plot of OTB-50 

 

 
 

Figure 13. Precision Plot of OTB-50 

 

 
 

Figure 14. Success plot of OTB-100 

 

 
 

Figure 15. Precision Plot of OTB-100 

 

 
 

Figure 16. Success plot of TC-128 

 

 
 

Figure 17. Precision plot of TC-128 
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Table 9. Result comparison of mean accuracy (TC-128) 

 

TC128- Mean Success and Precision in % 

Tracker Success Precision 

KCF [33] 0.418 0.588 

Frag [34] 0.408 0.538 

VTD [35] 0.407 0.527 

MIL [36] 0.393 0.539 

OAB [37] 0.389 0.526 

SL [17] 0.437 0.606 

Ours 0.795 0.890 

 

Success is evaluated on the basis of how current bounding 

box overlaps with the ground truth bounding box. There is a 

parameter Intersection over Union (IoU) that lies between the 

predicted outcome and the ground truth.  

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

 

IoU is encountered when it exceeds the threshold value i.e. 

20 pixels. Whereas precision is calculated on the basis of the 

center location of the bounding box as well as the ground truth. 

There is only a difference is the threshold where 50 pixels are 

considered for precision.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
 

 

If IoU ≥ 0.5, then 0.5 is considered as the ground truth 

threshold. Each video contains a total number of frames, and if 

the bounding box fails to track the target object, the frames in 

which the target is lost are counted as loss frames. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠 −  𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑜𝑠𝑠 𝐹𝑟𝑎𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠
× 100 % 

𝐿𝑜𝑠𝑠 𝐶𝑜𝑢𝑛𝑡 = 100 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % 
 

Figure 11 shows sample frames from tracking datasets 

(OTB-50, OTB-100, Temple Colour-128), with colored boxes 

marking tracked objects in each scene. 

Tables 1-6 present the recorded performance metrics across 

three datasets. Tables 1 and 2 show the accuracy and loss count 

for OTB-50, respectively. Tables 3 and 4 provide the 

corresponding metrics for OTB-100, while Tables 5 and 6 

detail the accuracy and loss count for TC-128. 

Tables 7-9 present the comparative results of mean accuracy 

across datasets. Table 7 shows the mean accuracy comparison 

for OTB-50, Table 8 for OTB-100, and Table 9 for TC-128. 

Figures 12 to 17 illustrate the performance evaluation plots 

for the three benchmark datasets. Specifically, Figures 12, 14, 

and 16 present the success plots for OTB-50, OTB-100, and 

TC-128 respectively, while Figures 13, 15, and 17 show the 

corresponding precision plots, providing a clear visual 

comparison of tracking accuracy and precision across these 

datasets. 

Comparison of Evaluations Under 11 Attributes for OTB50, 

OTB100 and TempleColor128-Deformations (DEF), 

Illumination Variations (IV), Background Clutter (BC), In-

Plane Rotations (IPR), Fast Motions (FM), Occlusions (OCC), 

Out of Plane Rotations (OPR), Motion Blurs (MB), Scale 

Variations (SV), Out of Views (OV) and Low Resolutions 

(LR). 

5. CONCLUSIONS AND FUTURE SCOPE 

 

In difficult scenarios with deformations, lighting variations, 

background clutter, in-plane rotations, fast motions, 

occlusions, out-of-plane rotations, motion blurs, scale 

variations, out-of-view instances, and low resolutions, the 

paper focuses on improving the tracking performance of 

Siamese Network and TensorFlow. When there are several 

peaks in the Siamese Network and TensorFlow response map, 

a more accurate detection network is used to pinpoint the 

object's position. Furthermore, the model retains accuracy in 

response to changes in the object's appearance. In addition, a 

high confidence template update technique is applied to avoid 

template contamination. The suggested system outperforms 

Siamese Network and TensorFlow in terms of tracking 

accuracy and success rates, according to an objective 

assessment using OTB and TempleColor sequences. 

Experiments on sample video sequences demonstrate better 

accuracy and resilience, especially in situations with varying 

lighting, fast motion, occlusion, and background clutter. 

Upcoming efforts will concentrate on improving the re-

detection network and streamlining real-time performance to 

enable the engineering situations where Siamese Network 

based trackers may be used practically. Although it performs 

competitively on common tracking benchmarks, the suggested 

hybrid model that combines Siamese Networks and 

TensorFlow has some drawbacks. Specifically, the models 

performance may deteriorate in harsh settings like extended 

occlusion extreme target deformation or low light levels. 

Because of the limited information about appearance, these 

situations frequently result in tracking drift or loss of target 

identity. The use of multi-modal data adaptive appearance 

models or the integration of temporal attention mechanisms 

could all be investigated in future research. Adding 

transformer-based tracking modules or reinforcement learning 

could also help with occlusion recovery and adaptability to 

changing scenes. 
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