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Utilizing deep learning methods for retinal vessel segmentation is crucial for aiding 

ophthalmologists in diagnosing fundus diseases clinically. However, existing deep learning 

models often fail to achieve ideal performance when facing complex scenarios such as multi-

directional vascular endings and overlapping intersections in the retina. In order to improve 

the detection rate of retinal blood vessels and ensure high connectivity, this paper proposes 

a new method EDCE-Net, which combines the directional information and scale differences 

of retinal blood vessels for the first time. Specifically, by designing an edge detection 

module (EDM) to assist the model in extracting vascular details and directional information 

at different scales, and integrating them into the depth feature map, it ensures the restoration 

of lost edge information while maintaining the correctness of the global topology. 

Additionally, this paper designs a connectivity enhancement module (CEM) based on multi-

scale coordinate attention to effectively assist the model in establishing long-range spatial 

dependencies in spatial directions, accurately capturing and locating crossing and 

overlapping vessel structures, so as to improve the connectivity of vessel segmentation. 

Finally, we employ multiple auxiliary loss functions to provide hierarchical supervision for 

the model, fully considering the impact of various levels of feature maps on the segmentation 

outcomes, thereby enhancing the robustness of the model. EDCE-Net was validated on four 

public datasets: DRIVE, CHASE_DB1, STARE, and DCA1, achieving AUC values of 

98.79%, 98.76%, 98.06%, and 99.08%, respectively, which are the highest compared to 

several existing advanced methods. JI reached 70.15%, 68.84%, 70.52%, and 68.37% on 

these datasets, respectively, representing improvements of 2.51%, 3.58%, 2.06%, and 5.3% 

compared to the baseline, highlighting the potential of the proposed method in aiding retinal 

disease diagnosis.  
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1. INTRODUCTION

In recent years, significant advancements have occurred in 

retinal vessel segmentation through deep learning [12].  

Deep neural networks, with their excellent feature extraction 

capabilities, can not only accurately capture contextual 

associations in retinal images, but also construct multi-level 

feature expressions, effectively improving the accuracy of 

vascular segmentation. Nevertheless, there are still certain 

constraints associated with current methods. Firstly, the 

continuous convolution and down-sampling operations of the 

traditional model inevitably compress the image resolution, 

leading to the loss of edge information containing vascular 

spatial features [3]. Secondly, considering the complex 

structure of retinal vessel crossovers and overlaps, existing 

models often struggle to grasp the long-distance dependence 

between vascular pixels, which may lead to disconnected 

segmentation results [4]. 

The above problems lead to suboptimal extraction results, 

manifested as blurred vessel edges and poor connectivity. To 

tackle this, we propose an Edge Detection and Connectivity 

Enhancement Network (EDCE-Net). Firstly, regarding the loss 

of vascular end details in continuous convolution and down-

sampling, we propose an Edge Detection Module (EDM) that 

effectively captures the edge information from the encoded 

feature map of the vessel. Secondly, to enhance vessel 

connectivity, we propose a Connectivity Enhancement Module 

(CEM) that accurately locates the position information of 

overlapping vessels, thereby enhancing the connectivity of 

segmentation results. Finally, we design amultiple auxiliary 

loss functions (ML) to achieve hierarchical supervision of the 

model. We implement our idea in the proposed EDCE-Net, and 

conduct a large number of experiments on four popular 

datasets. The contributions of this paper are as follows:  

(1) Combining vascular morphology and scale differences,

EDM based on Sobel operator and multi-directional feature 
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pyramid is designed to effectively help the model extract 

vascular details and directional information at different scales, 

addressing the issue of vascular edge loss. 

(2) CEM is proposed to effectively assist the model in 

establishing remote dependencies in the spatial direction, 

improving the network's ability to handle complex situations 

such as vessel crossings and overlaps, thereby enhancing the 

connectivity of segmentation results. 

(3) A branch-weighted loss mechanism, implemented within 

a deep supervision network, enhances the network model by 

integrating ML into the decoder layer during training, resulting 

in improved segmentation outcomes. 

 

 

2. RELATED WORK 

 

Recently, the latest trends in retinal vessel segmentation 

research indicate that deep learning is playing an important role 

as a key technology. As a popular deep learning framework, 

the advantage of UNet [5] in medical image segmentation lies 

in its flexible full convolution network structure. UNet can 

avoid the loss of information and help extract high-level feature 

representation and map it back to the input image space. 

However, facing the complex and ever-changing morphology 

of retinal blood vessels, traditional UNet networks are unable 

to meet segmentation requirements, prompting researchers to 

continuously explore improvement solutions. 

Alom et al. [6] proposed R2-Unet, which achieves 

progressive feature accumulation by embedding cyclic 

convolutional layers, aiming to provide more efficient feature 

representation for retinal vessel segmentation tasks. Zhou et al. 

[7] proposed an improved architecture called Unet++ to 

address the issue of feature fusion efficiency in the Unet model. 

By designing dense skip connections and more refined feature 

fusion paths, the original encoder-decoder structure was 

optimized; Huang et al. [8] developed the Unet3+ based on 

Unet, which enhances the integration ability of multi-scale 

contextual information by constructing a multi-level and cross-

stage feature interaction mechanism, thereby improving the 

performance of image segmentation tasks. Gu et al. [3] 

proposed the CE-Net and effectively optimized the 

segmentation performance of medical images by introducing 

multi-scale Arous convolution to capture richer semantic 

features. Yang et al. [9] proposed NAUNet, as a lightweight 

encoder-decoder network, constructs an efficient attention 

module that captures richer global information through a 

channel interaction mechanism and introduces a dropout 

regularization strategy to randomly discard local semantic 

information, promoting the network to learn more robust 

feature representations. Guo et al. [10] proposed SA-Unet, 

which focuses on key region features by introducing embedded 

spatial attention mechanisms while suppressing irrelevant 

information interference and enhancing the extraction of 

effective spatial features. This significantly improves the 

network's modeling ability for spatial contextual information, 

thereby more accurately capturing the spatial structural 

features of retinal blood vessels. Wang et al. [11] designed a 

dual decoding framework to retain spatial information and 

semantic information respectively. Dong et al. [12] proposed 

CRAUNet, which replaces the skip connections in the original 

model with attention mechanisms to explore useful 

information while greatly reducing the risk of overfitting; Liu 

et al. [13] proposed FR-Unet, which achieves complete 

preservation of image resolution and expansion of horizontal 

and vertical dimensions through the use of a multi-resolution 

convolution interaction mechanism. It also uses a feature 

aggregation module to fuse adjacent stage feature maps across 

layers, ultimately achieving high-precision detail segmentation 

in pixel-level retinal vessel segmentation tasks. Li et al. [14] 

studied a dynamic channel graph convolutional network 

model, which is one of the models that applies graph neural 

networks to retinal vessel segmentation. By constructing a 

topological space mapping mechanism with channel 

dimensions, the utilization efficiency of multi-channel feature 

information has been significantly improved; Qu et al. [15] 

proposed TP-Net, which adopts a dual path architecture to 

construct a parallel structure of main and sub-branches, 

focusing on feature extraction of main blood vessels and low 

contrast fine blood vessels, respectively. This model achieves 

targeted processing of blood vessels of different scales through 

differentiated path design, demonstrating excellent 

segmentation performance while maintaining a lightweight 

parameter scale. Transformers [16] have also been applied to 

image segmentation, giving rise to classic models such as 

TransUnet [17] and SwinUnet [18], which integrate 

Transformer mechanisms to enhance global context 

dependency modeling. Recently, Hu et al. [19] proposed a 

hybrid Transformer for fundus image analysis, combining a 

feature refinement module and a feature fusion module to 

capture local details and enable long-range information 

exchange, thereby improving vessel segmentation accuracy. 

Meanwhile, Rahman and Marculescu [20] introduced a 

cascaded graph attention decoder that refines multi-level 

feature maps (output by a hierarchical Transformer encoder) 

through efficient graph convolution blocks. 

However, in pixel-level image segmentation tasks, graph 

neural networks (GNNs) and Transformer architectures often 

generate massive parameters, significantly increasing 

computational complexity and conflicting with the goal of 

lightweight, efficient models. Additionally, some unsupervised 

methods have been proposed to reduce manual annotation 

efforts [21, 22]. 

However, existing segmentation models still have certain 

limitations in capturing complex pixels such as retinal vessel 

end structures and cross overlaps. To overcome these 

limitations, this paper proposes a retinal vascular structure 

perception method that accurately detects the ends of blood 

vessels in all directions while ensuring high connectivity. 

 

3. METHODS 

 

The framework of EDCE-Net is shown in Figure 1, 

including encoder, decoder, EDM, CEM, ML. Because the 

different levels of feature map of the encoder focus on different 

types of vascular information, we embed the designed EDM 

into the lower-level extraction stage of the encoder containing 

more detailed features, so as to detect the edge information of 

retinal vessels. The encoder and decoder are connected through 

CEM to enrich the high-level semantic information in the 

image and enhance the spatial correlation between different 

regions. In addition, the dynamic optimization model of 

multiple auxiliary loss branches is used to improve the 

segmentation performance. 
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Figure 1. EDCE-Net network framework 

 

 
 

Figure 2. Edge Detection Module (EDM) 

 

3.1 EDM 

 

Retinal blood vessels often have complex branches and 

curves, especially in small vascular structures. To address this 

issue, we designed EDM based on the Sobel operator to 

preserve these details, thereby more comprehensively 

representing the shape and structure of blood vessels. 

The improved Sobel operator can effectively extract the 

vessel edge information in the 0°, 45°, 90°, and 135° directions 

in the original image. In Figure 2, S represents the operation 

shown in Eq. (1). The process is as follows: 
 

2 2 2 2

0 45 90 135
P P P P P   

 = + + +  (1) 

 

where, P represents the input image, P' is the edge output 

obtained through the Sobel operator. 

The P' containing edge information is input into the multi-

directional feature pyramid pool for feature excitation to 

enhance the edges in different directions of the retinal image. 

The key to multi-directional characteristic pyramid excitation 

is two convolutions, which include convolutions in four 

different directions: 0°, 45°, 90°, and 135° [23, 24]. This 

convolution kernel corresponds one-to-one to the improved 

Sobel edge detection operator, and can fully adapt to the striped 

and directional characteristics of retinal blood vessels.  

In Figure 3, 𝑒1 ∈ ℝ𝐻×𝑊×𝐶  is the input of the strip 

convolution, which is sent to four parallel paths to obtain four 

output feature maps 𝑆𝑖 ∈ ℝ𝐻×𝑊×𝐶/4  (i=1,2,3,4). The four 

feature maps are concatenated by channel dimension to obtain 

𝑒1
′ ∈ ℝ𝐻×𝑊×𝐶. The output process is as follows: 
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where, 𝑒1 ∗ 𝜔 is a convolution operation, 𝜔 ∈ ℝ2𝑘+1 is a strip 

convolution filter with size 2k+1, and D=(DH,DW) is the 

direction vector of the strip convolution. 

 

 
 

Figure 3. Strip convolution 
 

The multi-directional feature pyramid pooling module we 

designed is inspired by spatial pyramid pooling modules such 

as ASPP [25]. In Figure 2, the multi-directional feature 

pyramid pooling module introduces three different 

convolutions, including a 3×3 convolution, two different sizes 

of dilated convolutions, and two different sizes of strip 

convolutions. We connect these five feature maps by channel 

dimension to form a richer and more comprehensive feature 

representation 𝑟 ∈ ℝ𝐻×𝑊×5𝐶 , which improves the receptive 

field of the network while enhancing the affinity between 

pixels in the retinal vascular neighborhood, thus accurately 

capturing edge information in different directions. 

Finally, we use a 1×1 convolutional kernel to reduce the 

dimensionality of the feature representation, and add dropout 

to prevent overfitting, resulting in the final feature 

representation 𝑃′′ ∈ ℝ𝐻×𝑊×𝐶. 

 

( ) ( )

( ) ( ) ( )

3 3 rate 2

size 5 rate 3 size 7

 Concat ; ;

; ;

r f P d P

s P d P s P

  = 

=  =  = 

=





 (3) 

 

( )1 1conv ( )P D r =  (4) 

  

Concat[·] is the concatenation operation, 𝑓3×3  represents 

convolution with a kernel size of 3, 𝑑rate=2 , 𝑑rate=3 , 

respectively, represent dilated convolution with expansion 

rates of 2 and 3, 𝑠size=5, 𝑠size=7, respectively, represent strip 

convolution with kernel sizes of 5 and 7. D is the dropout 

function to prevent overfitting [26]. 
 

3.2 CEM 

 

To address the problem of low connectivity caused by 

complex vascular structures and noise, we design CEM that 

accurately captures the remote dependencies between pixels by 

introducing a multi-scale coordinate attention with a residual 

mechanism. Multi-scale coordinate attention further 

emphasizes the criticality of different locations in the image, 

while the residual mechanism helps to effectively transfer and 

integrate local and global feature details, making EDCE-Net 

more responsive to complex vascular structures (Figure 4). 

 

 
 

Figure 4. Connectivity Enhancement Module (CEM) 

 

We take the output of the final layer encoder as the input 

𝑋in ∈ ℝ𝐻×𝑊×𝐶 of CEM. By combining convolution kernels of 

different sizes, the rich multi-scale information in the image is 

extracted and integrated into X1234. Then, the dependency 

between adjacent pixels is perceived from the horizontal and 

vertical directions through the embedded coordinate attention 

mechanism, so as to obtain the feature map X'1234 with rich 

long-distance position interaction information. The X'1234 is 

superimposed on the input characteristic map to form a residual 

connection. This process aims to maintain the effective 

transmission of global features while improving vascular 

connectivity. Finally, we get the characteristic graph Xout. 

 

3.3 Multiple auxiliary loss function (ML) 

 

The potential loss of basic feature information that may 

occur when a single loss function adjusts network weights [27], 

we deeply consider the different degrees of impact of feature 
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maps at different levels on the final segmentation results by 

using multiple branch losses. 

In this paper, binary cross entropy losses are calculated for 

the different outputs of the last three levels and assigned 

different loss weights. The output of the top layer with high 

resolution and rich details has the greatest impact on the final 

segmentation result, with a loss weight set at 0.6, The 

intermediate layer containing intermediate level feature 

information assists in fine segmentation of the topmost layer 

while balancing the entire network, with a loss weight set at 

0.3. The lowest level is responsible for capturing global and 

abstract feature information, so the weight is set to 0.1 to avoid 

excessive attention to low-level features. Finally, the weighted 

losses of each layer are added together to better capture the 

feature information of different layers during the training 

process, achieving continuous optimization of model 

performance. The network's total loss is computed as follows: 

 

1

( 1,2,3)
I

i i

i

Loss P L i
=

=  =  (5) 

 

( ) ( )
1

ˆ ˆlog 1 log 1i i i i i

x

L y y y y
N

= − + − −  (6) 

 

where, ∑ 𝑃𝑖
𝐼
𝑖=1 = 1 represents the weights of all loss functions, 

with a sum of 1. 𝑦̂𝑖 represents the true label, yi represents the 

segmentation result obtained through the proposed method, x 

represents the sample, and N represents the total number of 

samples. 

 
 

4. EXPERIMENT RESULTS AND ANALYSIS 

 

4.1 Datasets 

 

Dataset 1: DRIVE dataset is from the diabetes retinopathy 

screening project in the Netherlands, which collects 40 images 

with a resolution of 565 × 584 [28]. We use 20 of them as 

training sets and the other 20 for verification and testing. 

Dataset 2: CHASE_DB1 dataset contains 28 images with a 

resolution of 999 × 960 pixel [29]. We use 20 of them as 

training sets, and the other 8 for verification and testing. 

Dataset 3: STARE contains 20 retinal fundus images. The 

image resolution is 605 × 700 [30]. We use 18 of them as 

training sets and the other 2 for verification and testing. 

Dataset 4: DCA1 dataset is a set of 134 X-ray coronary 

artery imaging data collected by a cardiologist [31], consisting 

of angiography images and their corresponding real label 

images. Each angiography is a grayscale image format of 300 

× 300 pixels in PGM. This article divides the database into two 

subsets: 100 training sets and 34 testing sets. 

 

4.2 Implementation details 

 

We have successfully implemented the EDCE-Net model 

based on the PyTorch framework. These experiments were 

conducted within a high-performance computing environment 

powered by a single GeForce RTX 2080 Ti GPU, ensuring 

optimal computational efficiency and resource allocation. We 

utilized the Adam [32] optimization algorithm, renowned for 

its efficient adaptive learning rate adjustment mechanism. 

Specifically, we set a weight decay term of 1e-5, initialized the 

learning rate at 1e-4, and configured the training to run for 40 

epochs. 

We preprocess the training images as follows: 

1) We first convert the color images to grayscale images, 

while the original images in the DCA1 dataset are grayscale 

images, which means this step is omitted. 

2) Next, use a sliding window with a step size of 6 to crop 

the images from four public datasets into a size of 48×48 

pixels. 

3) Lastly, the cropped images were further processed 

through horizontal and vertical flipping, as well as rotations of 

90, 180, and 270 degrees. These steps were taken to increase 

data diversity and reduce the risk of overfitting. 

After data augmentation, the number of images in the DRI-

VE, CHASE-DB1, STARE, and DCA1 datasets increased to 

160160, 492800, 186120, and 193600, respectively. These 

datasets were input into EDCE-Net for training. In the testing 

phase, the input is a full-size image. 

 

4.3 Evaluation indicators 

 

In this paper, to comprehensively and multidimensionally 

evaluate the performance of the EDCE-Net model, we selected 

several key evaluation metrics, encompassing Accuracy (Acc), 

Sensitivity (Sen), Specificity (Spe), Dice coefficient (DICE), 

Jaccard index (JI), and the area under the receiver operating 

char acteristic curve (ROC). Acc serves as an intuitive standard 

to gauge the overall prediction correctness of the model, 

directly reflecting the overall effectiveness of EDCE-Net on 

the given task. Sen, also known as True Positive Rate (TPR), 

focuses on assessing the model's capability to identify positive 

samples, ensuring that important information is not 

overlooked. Conversely, Spe concerns the model's ability to 

recognize negative samples, aiding in controlling the false 

alarm rate. DICE is a commonly used metric for measuring the 

similarity between two sets of samples. JI, also known as 

Intersection over Union (IOU), is used to assess the overlap 

between the predicted region and the ground truth region. 

Additionally, the ROC curve is independent of specific 

classification threshold settings and effectively reflects the 

EDCE-Net's overall performance across various classification. 

The specific calculation process is as follows: 
 

TP TN
Acc

TP TN FP FN

+
=

+ + +
 (7) 

 

 Sen 
TP

TP FN
=

+
 (8) 

 

TN
Spe

TN FP
=

+
 (9) 

 

2

2

TP
DICE

TP FP FN
=

+ +
 (10) 

 

TP
JI

TP FP FN
=

+ +
 (11) 

 

where, TP, TN, FP, and FN respectively represent true positive, 

true negative, false positive, and false negative pixels in the 

segmentation results.  

In addition, we further evaluate the boundary accuracy of the 

segmentation results using HD95, which calculates the 
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Hausdorff distance between the predicted and true values in 

millimeters at the 95% percentile [33]. The calculation process 

is as follows: 

 
95

95 ( , ) minth

a AS g GTh AS GT K g a = −‖ ‖ (12) 

 

In this formula, 95𝐾𝑎∈𝐴𝑆
𝑡ℎ  refers to setting the Kth minimum 

distance set at the 95th percentile. AS is the set of boundary 

points for model segmentation results, and GT is the set of 

boundary points for real labels. The definition formula for 

HD95 is as follows: 

 

( )95 95 95( , ) max ( , ), ( , )HD AS GT h AS GT h GT AS=  (13) 

 

4.4 Experimental results 

 

To assess the effectiveness of EDCE-Net, we carried out 

experiments on three datasets and compared its performance 

with traditional methods. Our evaluation criteria encompass 

Acc, Sen, Spe, AUC, DICE, JI and HD95. In Figure 5, we 

enhanced the visibility of small blood vessels in the image to 

improve the clarity of the visualization results. It is evident 

from the visualization that EDCE-Net excels in detecting a 

greater number of small blood vessels compared to other 

models. In the second subgraph of CHASE-DB1, it can be 

found that EDCE-Net performs better in connectivity. From 

the visualization results of DCA1, it can be clearly seen that 

EDCE-Net can detect more fine blood vessels and ensure 

higher connectivity.  
 

 
 

Figure 5. Visualization of segmentation results  

 

Table 1. Comparison of different methods on DRIVE 
Heading1 Methods Year Acc Sen Spe AUC DICE JI HD95 

DRIVE 

UNet [5] 2015 96.60 76.82 98.53 97.07 80.41 67.64 9.12 

R2-Unet [6] 2018 95.56 77.92 98.13 97.84 81.12 68.27 7.95 

CE-Net [3] 2019 95.50 79.03 97.69 97.80 80.49 67.21 8.68 

SA-Une t[10] 2020 96.41 81.1 97.67 97.38 80.27 69.65 6.87 

TP-Net [15] 2023 96.39 87.29 97.48 98.52 85.39 - - 

Proposed — 97.00 82.82 98.37 98.79 82.72 70.15 4.60 

 

Table 2. Comparison of different methods on CHASE_DB1 
Heading1 Methods Year Acc Sen Spe AUC DICE JI HD95 

CHASE_DB1 

UNet [5] 2015 96.43 77.64 98.65 93.26 77.98 65.26 10.75 

R2-Unet [6] 2018 96.34 77.56 98.20 98.15 80.05 67.57 8.17 

CE-Net [3] 2019 96.33 80.08 97.23 97.97 78.04 66.19 9.38 

SA-Unet [10] 2020 97.08 81.51 98.09 97.78 77.36 67.25 7.80 

TP-Net [15] 2023 97.30 86.00 98.41 98.74 85.18 - - 

Proposed — 97.32 82.62 98.32 98.76 79.39 68.84 2.45 

 

Table 3. Comparison of different methods on STARE  
Heading1 Methods Year Acc Sen Spe AUC DICE JI HD95 

STARE 

UNet [5] 2015 96.60 77.64 98.65 93.63 78.18 68.46 11.75 

R2-Unet [6] 2018 97.12 82.98 98.62 97.14 77.79 68.39 9.28 

CE-Net [3] 2019 97.32 79.09 97.21 95.97 77.58 68.12 12.45 

SA-Unet [10] 2020 95.21 71.20 98.30 96.26 77.36 69.06 10.56 

TP-Net [15] 2023 97.24 88.52 98.20 98.04 86.75 - - 

Proposed — 97.44 80.22 98.63 98.06 78.67 70.52 6.32 

 

Table 4. Comparison of different methods on DCA1 
Heading1 Methods Year Acc Sen Spe AUC DICE JI HD95 

DCA1 

UNet [5] 2015 96.42 78.16 97.66 97.72 77.35 63.07 9.76 

R2-Unet [6] 2018 96.79 79.54 98.42 98.25 77.86 63.75 9.04 

CE-Net [3] 2019 95.46 80.07 98.67 98.03 78.08 67.08 8.81 

SA-Unet [10] 2020 97.02 81.07 98.79 98.67 78.90 65.54 7.58 

Proposed — 97.82 82.19 98.81 99.08 79.36 68.37 5.10 

 

In addition, we conducted quantitative analysis on the final 

segmentation results, as shown in Tables 1-4. Table 1 shows 

that the evaluation results of EDCE-Net on the DRIVE dataset 

for Acc, Sen, Spe, AUC, DICE, JI and HD95 are 97.0, 82.82, 

98.37, 98.79, 82.72, 70.15 and 4.60, respectively. Among 

them, Acc, Spe, AUC, JI, and HD95 are all superior to other 

models. Table 2 shows that on the CHASE_DB1 datasets, the 

Acc, Sen, Spe, AUC, DICE, JI and HD95 of EDCE-Net are 
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97.32, 82.62, 98.32, 98.76, 79.39, 68.84 and 2.45, 

respectively. It can be seen that the HD95 value obtained by 

EDCE-Net is the smallest, which means that the predicted 

value is closest to the true value. Table 3 shows that on the 

STARE datasets, Acc, Sen, Spe, AUC, DICE, JI and HD95 are 

97.44, 80.22, 98.63, 98.06, 78.67, 70.52 and 6.32, 

respectively, all of which are superior to UNet. Table 4 

presents a comparison of the results of various models on the 

largest dataset, DCA1. As shown in the Table 4, EDCE-Net 

achieved Acc, Sen, Spe, AUC, DICE, JI, and HD95 values of 

97.82, 82.19, 98.81, 99.08, 79.36, 68.37, and 5.10, 

respectively. All these metrics surpass those of the other 

models, indicating that EDCE-Net performs exceptionally 

well on larger datasets. This further demonstrates its 

significant potential and advantages in vessel segmentation. 

 

 
 

Figure 6. Comparison of ROC curves for different models 

 

4.5 Ablation studies 
 

In the ablation experiment, the classical segmentation 

framework UNet was used as the baseline to validate the 

effectiveness of each component of EDCE-Net. 

Effectiveness of EDM: Figure 6 clearly shows that our 

proposed EDM module effectively segments small vessels, 

which may not be adequately captured by baseline networks 

without EDM. From Table 5, it can be seen that adding EDM 

significantly improves the DICE value, indicating that EDM 

can effectively help the model capture vascular information. 

In addition, comparison with the baseline, the baseline + EDM 

model shows an improvement in Sen performance from 

76.82% to 83.45%, indicating the strong capability of our 

proposed EDM in extracting microvascular structures. 

Effectiveness of CEM: Secondly, we investigated the 

effectiveness of the CEM module. Baseline + CEM model 

improved the Acc performance from 96.60% to 96.94%. As 

shown in Figure 7, the model with the CEM module extracted 

blood vessels with higher connectivity compared to the 

baseline. This shows that CEM can effectively enhance the 

remote dependency between vascular pixels while obtaining 

the global topology. 

We integrate EDM and CEM into the baseline model to 

validate their complementary nature. Table 5 indicates a 

notable enhancement in segmentation accuracy, with Acc and 

AUC showing increases of 0.38% and 1.71%, respectively. 

The DICE value increased from 80.41% to 82.70%, indicating 

a significant improvement in the model's ability to correctly 

predict samples, demonstrating the effectiveness of the 

combination of EDM and CEM. 

Effectiveness of ML: To maximize the utilization of 

segmentation outcomes from each decoder layer, we 

incorporated the ML into our network. As illustrated in Figure 

7, our model achieves precise segmentation results through the 

ML. Notably, in terms of AUC, it surpasses the baseline by 

0.81%, validating the robustness of our approach. 
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Table 5. Comparison of ablation experiments on DRIVE 

 
Method EDM CEM ML Acc Sen Spe AUC DICE 

Baseline    96.60 76.82 98.53 97.07 80.41 

Method1 √   96.95 83.45 98.30 98.75 82.27 

Method2  √  96.94 83.02 98.31 98.70 81.58 

Method3   √ 96.67 79.28 98.35 97.88 80.55 

Method4 √ √  96.98 83.46 98.22 98.78 82.70 

EDCE-Net √ √ √ 97.0 82.82 98.37 98.79 82.72 

 

4.5 Complexity analysis 

 

This section compares the complexity of several different 

models on the DRIVE dataset. As shown in Table 6, the 

number of model parameters (Param (M)), Model size (MB), 

computational cost required for image processing (FLOPS 

(M)), and prediction time (Inference(seconds)) for one image 

are listed. Compared with other models, the parameter count 

and model size of the proposed model in this paper are 

relatively small, with only 49.76M parameters and a model 

size of 73.99MB. The time required to infer an image is only 

0.05s longer than UNet, which proves that within an 

acceptable time range gain, the segmentation performance of 

EDCE-Net is greatly improved. This balance between 

enhanced accuracy and efficient computation highlights the 

practical applicability of EDCE-Net in real-world scenarios 

where both performance and speed are critical. 
 

Figure 7. Visualization results of ablation experiment 

 

Table 6. Comparison of complexity of different models on the DRIVE dataset 

 
Model Param (M) Model Size (MB) Inference (Seconds) FLOPS (M) 

UNet [5] 46.50 63.46 0.62 54.01 

R2-Unet [6] 42.59 58.24 0.58 47.51 

CE-Net [3] 53.46 85.76 0.89 101.78 

SA-Unet [10] 82.06 132.64 1.02 149.08 

Proposed 49.76 73.99 0.67 62.64 

 

 

5. CONCLUSION 

 

The EDCE-Net proposed in this paper can effectively 

capture thin edge blood vessel information while ensuring 

high connectivity. It comprises three key modules: EDM, 

CEM, and ML. The designed EDM module is embedded in the 

network and restores edge information lost due to continuous 

down-sampling through edge detection operators and multi-

directional pyramid pooling incentives. At the bottom layer of 

the encoder, we proposed the CEM module. This module 

enhances the interaction of long-distance spatial information 

among various positions by incorporating multi-scale 

coordinate attention alongside a residual mechanism. This 

enhancement equips the network to effectively handle intricate 

vascular structures. Finally, multi outputweighted loss 

optimization model is improved therobustness of the model. 

EDCE-Net retains more detailed information about blood 

vessels, with accuracies of up to 97.00%, 97.32%, 97.44%, 

and 97.82% on four publicly available datasets, and 

outperforms comparative methods in most performance 

evaluation metrics. 

In addition, EDCE-Net still has some limitations. Due to the 

potential presence of varying degrees of eye diseases or 

conditions in patients, such as retinitis pigmentosa and 

hemangioma, which may alter the morphology and density of 

retinal vessels, EDCE-Net's performance may be less 

outstanding on certain metrics. In the future, we will explore 

more retinal vessel segmentation methods, such as 

incorporating more advanced neural network structures or 

using reinforcement learning techniques, to further improve 

segmentation accuracy and stability.  
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