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With the rapid development of the digital music industry, a vast amount of music resources 

has emerged, and the demand for accurate music emotion matching is becoming increasingly 

urgent. The transmission of music emotion involves multimodal information, such as audio 

and text. Single-modal recognition, due to its inability to fully capture the emotional 

nuances, has limitations, and multimodal signal fusion has become the key to achieving a 

more comprehensive recognition of music emotion. In current research on music emotion 

recognition, some methods rely on single modalities, such as audio feature-based 

recognition, which cannot interpret the deeper emotions in lyrics, resulting in low 

recognition accuracy for lyrical music. Some multimodal fusion studies use early feature 

concatenation or simple weighted strategies, failing to establish dynamic relationships 

between modalities. As a result, recognition errors are significant in cross-modal conflict 

scenarios, and robustness to cross-modal noise is insufficient. Against this backdrop, 

researching music emotion recognition and modeling based on multimodal signal fusion is 

of great significance. This study proposes a multimodal signal fusion-based music emotion 

recognition model, which makes breakthroughs through four core modules: in the feature 

extraction phase, improved Convolutional Neural Network (CNN) is used to extract 

emotional features from the audio time-frequency domain, and Bidirectional Long Short-

Term Memory (BiLSTM) combined with the attention mechanism captures the semantic 

emotional tendencies of the text; the cross-modal interaction learning module designs a 

dynamic attention weight matrix, quantifying the contribution of different modalities in 

different emotional dimensions based on mutual information entropy; the feature fusion 

module introduces a cross-modal Transformer, which maps audio temporal features and text 

semantic features to a unified emotional vector space to address modality heterogeneity; the 

emotion classification layer uses a multi-output loss function to optimize both discrete 

emotional categories and continuous emotional dimension predictions. This research aims 

to improve the accuracy and robustness of music emotion recognition, providing a scalable 

model architecture and technical standards for multimodal emotion computation. 
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1. INTRODUCTION

With the widespread popularity of digital music platforms 

and the lowering of barriers to music creation, music works 

around the world are growing at an exponential rate, and the 

daily music information that users are exposed to has 

surpassed the massive level [1-4]. In this context, relying 

solely on manual selection or simple label classification can 

no longer meet users' needs for precise emotional matching. 

The transmission of music emotion is a complex multi-

dimensional process: elements such as pitch fluctuations, 

rhythm intensity, and timbre in the audio signal form the 

"auditory skeleton" of emotional expression [5-9], while 

imagery choices, semantic tendencies, and rhetorical usage in 

lyrics form the "semantic flesh and blood" of emotional 

transmission [10-13]. Relying solely on audio signals makes it 

difficult to capture the deep emotions contained in 

metaphorical lyrics, and relying only on text information loses 

the emotional tension carried by melody and rhythm. 

Therefore, achieving three-dimensional recognition of music 

emotion through multimodal signal fusion has become the key 

path to breaking the current technical bottleneck. 

Conducting related research has multiple levels of 

significance. Theoretically, it can reveal the mapping rules and 

collaborative mechanisms of music emotion across different 

modalities, providing a new paradigm for cross-modal 

information processing in the field of emotion computation, 

and promoting a deeper understanding of human emotional 

perception and expression. At the application level, in addition 

to music recommendation and psychological therapy, it can 

also empower intelligent music education by optimizing 

teaching strategies based on recognizing learners' emotional 

feedback on music works; assist in film and television 

advertisement music composition, automatically matching the 

most suitable music clips according to the emotional 

requirements of the scene; and even assist in music creation, 

generating works with both auditory and semantic consistency 

based on users' preset emotional goals. 
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Existing research in the field of music emotion recognition 

has significant limitations. References [14-16] use single-

modal modeling, such as classifying emotions based only on 

audio features. These methods cannot interpret emotional 

expressions such as "sad autumn" or "happy rain" in lyrics, 

leading to recognition accuracy for lyrical music generally 

being lower than 60%. Another attempt, such as the research 

in references [17-20] on multimodal fusion, mostly uses early 

feature concatenation or simple weighted fusion strategies, 

failing to build dynamic relationships between modalities. 

When the audio is happy but the lyrics are sad, the fusion result 

often leads to emotional deviation, with the average 

recognition error exceeding 25% compared to the ideal state. 

Moreover, references [21-25] show insufficient robustness to 

cross-modal noise, such as background noise in audio or 

ambiguous words in text, which distorts the information in the 

feature extraction stage, further reducing recognition stability. 

This paper addresses the above issues by constructing a 

music emotion recognition model based on multimodal signal 

fusion, with core innovations in the collaborative design of 

four modules: in the feature extraction phase, an improved 

CNN is used to extract time-frequency domain emotional 

features for audio, while a BiLSTM combined with the 

attention mechanism captures semantic emotional tendencies 

in text, achieving fine-grained feature representation; the 

cross-modal interaction learning module introduces a modality 

attention weight matrix, dynamically calculating the mutual 

information entropy between audio and text features, 

quantifying their contribution in different emotional 

dimensions; the feature fusion module adopts a cross-modal 

Transformer structure, transforming the temporal features of 

audio and the semantic features of text into a unified emotional 

vector space, addressing modality heterogeneity; the emotion 

classification layer designs a multi-output loss function to 

simultaneously optimize the prediction accuracy of both 

discrete emotional categories and continuous emotional 

dimensions. This study aims to significantly improve the 

accuracy of emotion recognition by constructing a deep cross-

modal fusion framework, substantially reducing recognition 

errors in cross-modal conflict scenarios, and providing a 

reusable model architecture and technical standards for 

multimodal emotion computation. 

 

 

2. MUSIC EMOTION RECOGNITION AND 

MODELING BASED ON MULTIMODAL SIGNAL 

FUSION 

 

The use of DeBERTa for extracting text features and 

ResNet50 for extracting audio features is a targeted choice 

made in this paper based on the inherent characteristics of text 

and audio information in music emotion recognition and the 

practical scene requirements. In terms of text, music-related 

texts such as lyrics and reviews often contain rich emotional 

metaphors and semantic layers. For example, the word “rain” 

in the lyrics may symbolize loneliness or represent cleansing, 

with emotional ambiguity due to polysemy, and there are 

significant differences in textual expression across different 

music styles. As a pre-trained language model, DeBERTa can 

deeply analyze contextual semantic associations in the text 

through dynamic masking and enhanced positional encoding, 

precisely capturing emotional tendencies in complex 

expressions like "using scenery to metaphor emotions," 

addressing the shortcomings of traditional text feature 

extraction methods in semantic understanding depth, and 

meeting the actual demand for delicate and variable emotional 

expression in music texts. In terms of audio, emotional 

information in music is hidden in the time-frequency changes 

of the spectrogram, such as the brightness of major scale audio 

versus the melancholy of minor scale, the excitement of fast 

tempos versus the relaxation of slow tempos. These features 

require the model to have the ability to extract deep-level 

hierarchical features. ResNet50, with its residual connections, 

effectively alleviates the gradient vanishing problem in deep 

networks, and can extract features from basic frequencies to 

higher emotional features from audio spectrograms, especially 

resistant to interference from environmental noise in live 

versions of music, adapting to the characteristic of audio 

signals being easily contaminated by noise in practical scenes. 

This paper further introduces the self-attention mechanism 

and multi-head cross-attention mechanism to address the core 

issues of feature fragmentation and weak modality correlations 

in music emotion recognition, aligning with the high demands 

for accuracy and robustness in emotional recognition for 

practical applications. In real scenarios, the emotional 

expression of music often presents a “fragmented feature” 

state: the audio features of a song may be calm in the verse and 

intense in the chorus, and the text features may mix unrelated 

narratives with core emotional sentences, diluting the effective 

emotional features. The self-attention mechanism, by 

calculating the association weights between features, can 

automatically focus on the most emotionally distinguishing 

spectrogram segments in the audio and the key emotional 

words in the text, enhancing the representation strength of 

critical emotional features, thus solving the problem of 

emotional expression ambiguity and feature distribution 

dispersion. The multi-head cross-attention mechanism is 

designed to meet the collaborative needs of multimodal 

information. In practical applications, music emotion is often 

a joint expression of audio and text. For example, sad lyrics 

combined with a somber melody will reinforce the sadness, 

but there are also conflicting scenarios such as “happy melody 

+ sad lyrics.” This mechanism, through multiple attention 

heads, learns different correlation patterns between modalities 

in parallel. It allows the rhythm intensity of audio and the 

emotional vocabulary in text to complement and verify each 

other, and in the case of modality conflicts, adjusts the weights 

to calibrate the information, ensuring that even in complex 

emotional scenes, the model can efficiently mine cross-modal 

emotional associations, ultimately improving the accuracy of 

emotional classification and meeting the strict requirements 

for emotional recognition in music recommendation, 

psychological therapy, and other scenarios. 

Specifically, the proposed multimodal emotion analysis 

model consists of four parts: audio and text feature extraction, 

cross-modal interaction learning module, audio and text 

emotion feature fusion module, and emotion classification. 

The audio and text feature extraction module and the cross-

modal interaction learning module form the foundational layer 

of the model for understanding multimodal music data, with 

their operation principles closely aligned with the expressive 

characteristics of music emotion in different modalities. The 

multi-head cross-attention in the cross-modal interaction 

learning module, designed for the actual situation where music 

emotion is often expressed jointly or in conflict by audio and 

text, uses multiple attention heads to focus on different 

dimensions of the correlation between hidden states of 

different modalities. For instance, one attention head focuses 
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on the emotional word “crying” in the lyrics and its 

correspondence with the low tone in the audio, while another 

focuses on the matching of words like “laughing” with the 

bright rhythm. It even captures the potential emotional logic in 

conflict scenes like “happy melody + sad lyrics,” finely 

integrating the interaction information and enabling the model 

to initially understand the emotional associations between 

multimodal data. The audio and text emotion feature fusion 

module and emotion classification module form the core layer 

of the model for refining and outputting emotional information, 

directly serving the accurate capture of the overall emotion of 

music. In practice, music emotion is often scattered across 

different sections, such as the calm narrative in the verse and 

the emotional outburst in the chorus, and there is a deep 

semantic connection between the emotional associations of 

audio and text. The self-attention mechanism calculates the 

association weights of features across the entire audio and text, 

automatically focusing on the intense audio segments in the 

chorus and the key emotional sentences in the lyrics, solving 

the issue of dispersed emotional features. The Transformer 

encoder processes the features in parallel at multiple levels, 

learning feature representations at different levels of 

abstraction. For example, at a lower level, it associates the 

word “love” in the lyrics with a gentle melody in the audio, 

and at a higher level, it distills the overall emotion of 

“sweetness,” deeply capturing the cross-modal semantic 

connections. The fused features are then input into the emotion 

classification module, which outputs precise emotional 

classification results, combining the need for music emotion 

recognition to clearly distinguish categories like “joy” and 

“sadness” in recommendation systems, or quantifying 

pleasantness and arousal in psychological therapy, realizing 

the transformation from multimodal data to clear emotional 

labels. 

 

2.1 Text and audio feature extraction 

 

Figure 1 shows the schematic of text and audio feature 

extraction. The text feature extraction module uses the 

DeBERTa model, whose core principle is to accurately capture 

the complex emotional connotations in music texts through 

global attention mechanisms and deep contextual semantic 

analysis, in order to adapt to the emotional expression 

characteristics of text information such as lyrics in the music 

scene. In real music scenarios, lyrics often contain a large 

number of rhetorical devices such as metaphors and puns. For 

example, the word "falling leaves" might symbolize the 

melancholy of passing time in folk music, or it could represent 

the resoluteness of breaking free from constraints in rock 

music. The emotional tendency of the same word varies 

significantly depending on the context. As an improved 

version of BERT, DeBERTa uses dynamic masking 

technology to randomly mask words in the input text and 

predict them, forcing the model to deeply learn contextual 

associations. Meanwhile, enhanced positional encoding can 

accurately distinguish the grammatical position and semantic 

weight of words in the sentence. For example, the word "love" 

in "I love you" and "You love me" is the same word but 

conveys different emotional meanings due to its position in the 

sentence. This design allows it to effectively address the 

ambiguity and polysemy of emotional expression in lyrics, 

providing high-purity text emotional features for subsequent 

cross-modal fusion and meeting the need for recognizing 

complex emotions such as "a theme of heartbreak but with 

cheerful lyrics" in music recommendations. 

 

 
 

Figure 1. Schematic of text and audio feature extraction 

 

The specific computational process of text feature 

extraction focuses closely on generating high-dimensional 

emotional features to adapt to the sequential characteristics 

and emotional complexity of music texts. For the input text 

information S= {s1, s2,…, sv}, each word su is first converted 

into a fixed-dimensional word vector through the embedding 

layer, while enhanced positional encoding is incorporated to 

mark the relative position relationships of words in the 

sequence. Then, the text sequence enters an encoder composed 

of multiple layers of Transformer, where the global attention 

mechanism in each layer calculates the association weight of 

each word with all other words. For example, in the lyrics "The 

rain falls all night, my love overflows like the rain," the 

attention weight between "rain" and "love" will be 

significantly higher than that of other words, highlighting the 

core emotional connection. The dynamic masking mechanism 

continuously randomly masks part of the words, and through 

the model's prediction error for the masked words, the 

parameters are optimized in reverse, strengthening the 

understanding of contextual semantics. Finally, after passing 

through multiple layers of encoding, the text sequence is 

pooled to generate a fixed-dimensional high-dimensional text 

feature vector. This vector not only contains explicit emotional 

tendencies such as "positive," "neutral," and "negative," but 

also contains implicit features of more subtle emotions like 

"missing" or "letting go," providing a rich semantic foundation 

for subsequent cross-modal interactions. Specifically, define 

each input sample as (U, S), where the text information S 

contains v words, and the audio information is U∈RG×Q×Z. 

Assume that the hidden state feature information of each token 

in the text sequence is represented by GTE∈RV×F, the entire text 

sequence feature information is represented by DS∈RV×C, the 

length of the text sequence is V, and the hidden state 

information of the text sequence and the dimensionality of the 

entire text sequence are represented by F and C, respectively. 

The trainable initialization weights and biases in the 

DeBERTa model are represented by q0 and y0, and the average 

pooling function is represented by AV_POOL, with the 

activation function represented by RELU. The computational 

process expression for text feature extraction is: 

 

( )TEG DeBERTa S=  (1) 

 

( )( )( )0 0_S TED RELU q AV POOL G y= +  (2) 

 

The audio feature extraction module uses the ResNet50 
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model, which is based on the synergy of deep CNN and 

residual connections, to extract emotion-related features layer 

by layer from the audio spectrogram in order to deal with the 

diversity and complexity of music audio in practical scenes. 

Emotional information in music audio is hidden in the 

dynamic changes of the time-frequency domain, such as the 

high-frequency harmonics of the violin conveying a 

melodious feeling in classical music, or the low-frequency 

pulses of electronic music conveying an exciting feeling. 

Additionally, live-recorded audio often contains applause, 

noise, and other interferences. ResNet50 converts the audio 

signal into a Mel spectrogram RG×Q×Z, and extracts features 

through multiple convolutional layers: shallow convolutions 

capture low-level features such as edges and textures in the 

spectrogram, while deep convolutions integrate these low-

level features to form high-level emotional features such as 

"joyful melody" or "somber tone." Crucially, residual 

connections bypass certain convolution layers and directly 

pass features, effectively addressing the gradient vanishing 

problem in deep networks, enabling stable processing of song 

audio as long as 5 minutes or chorus segments lasting 30 

seconds, adapting to music scenes with different lengths and 

styles, and providing robust and distinguishable audio 

emotional features for cross-modal fusion. 

The specific computational process of audio feature 

extraction aims to accurately capture emotion-related audio 

features, achieving effective encoding of complex audio 

information through convolution operations and feature 

aggregation. The input audio spectrogram U∈RG×Q×Z first 

passes through an initial convolutional layer, where a 3×3 

convolution kernel is used to perform sliding window 

calculations, extracting the frequency changes and temporal 

continuity features of the local regions in the spectrogram, 

such as sudden increases or continuous decreases in certain 

frequency bands. Then, the feature map enters a stacked 

structure consisting of multiple residual blocks. Each residual 

block contains two convolution layers and one shortcut 

connection: convolution layers further extract multi-scale 

features using convolution kernels of different sizes, such as 

1×1 convolution to compress the channel dimension and 

reduce computational load, and 3×3 convolution to capture 

broader frequency associations. The shortcut connection adds 

the input features to the convolution output, retaining the 

original information while adding new features, thus avoiding 

feature degradation in deep networks. After processing by 

multiple residual blocks, the feature map is converted into a 

fixed-dimensional vector via a global average pooling layer. 

This vector integrates multi-dimensional features such as 

rhythm intensity, timbre brightness, and emotional tension in 

the audio, and can complement text features. For example, 

when lyrics ambiguously express "excitement," the audio's 

rapid rhythm and high-pitched frequency can reinforce this 

emotional determination, improving the model's accuracy in 

music emotion classification. Specifically, assume that the 

hidden state feature information of the audio sequence is 

represented by GIM∈RM×F, the feature information of the entire 

audio sequence is represented by DU∈RM×C, the length of the 

audio sequence is M, and the hidden state information and the 

dimensionality of the entire audio sequence are represented by 

F and C, respectively. The trainable initialization weights and 

biases in the ResNet50 model are represented by q1 and y1, and 

the flatten operation is represented by the FLATTEN function. 

The computational process of audio feature extraction is as 

follows: 

( )50IMG RESNET U=  (3) 

 

( )

( )( )( )1

1

_

U TE

IM

D G DeBERTa S

q FLATTEN AV POOL G
RELU

y

= =

 
 
 + 

 (4) 

 

2.2 Cross-modal interaction learning 

 

Figure 2 shows the schematic of the cross-modal interaction 

learning principle. The cross-modal interaction learning 

module adopts the core principle of multi-head cross attention, 

aiming to break through the limitations of traditional 

multimodal fusion methods that overlook local associations 

and fine-grained interactions, accurately capturing emotional 

associations between audio and text at different levels and 

dimensions in music, thus adapting to the complexity and 

dynamics of music emotion expression. In practical music 

scenarios, the emotional interaction between audio and text is 

not a simple one-to-one correspondence at the overall level, 

but rather hides a large number of local, fine-grained 

associations: for example, in the verse of a song, the lyrics may 

tell a mundane story, but the low chords of the piano 

accompaniment may hint at underlying sadness; in the chorus, 

the word "shouting" in the lyrics may resonate with the high-

pitched distorted sound of the electric guitar. Traditional 

methods directly fuse the entire text sequence and audio 

features, which may mask such local interactions and lead to 

misjudgments of the overall emotion. The multi-head cross 

attention mechanism, by using multiple attention heads in 

parallel to focus on different local regions of interaction, can 

separately capture strong associations between the chorus text 

and audio, weak associations between the verse text and audio, 

and even dynamic emotional mappings of the same text 

segment with different audio sections, providing richer 

associative information for subsequent fusion, thus meeting 

the need for adapting to complex emotional scenes in music 

emotion recognition. 

 

 
 

Figure 2. Schematic of cross-modal interaction learning 

 

The design of the multi-head cross attention mechanism 

allows it to analyze cross-modal emotional associations from 
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multiple dimensions, with each attention head focusing on a 

specific aspect of the interaction between audio and text in 

music, enabling a deep exploration of potential semantic 

structures. In music emotion expression, the interaction 

between text and audio involves multiple dimensions: firstly, 

the correlation between emotional words and timbre, such as 

"warm" lyrics often matching the soft timbre of strings; 

secondly, the synchronization of narrative rhythm and music 

speed, such as fast-paced rap lyrics requiring a corresponding 

dense drumbeat; thirdly, the correspondence between 

semantic transitions and melodic fluctuations, such as "sudden 

departure" in lyrics often accompanying a sharp drop in 

melody. The multi-head cross attention mechanism, by 

assigning different weight parameters to each attention head, 

enables it to focus on interaction learning in a specific 

dimension: for example, one head focuses on the correlation 

between emotional adjectives and the centroid of the audio 

spectrum, another head focuses on the match between the 

length of text phrases and the spacing of audio beats, and yet 

another captures the correspondence between the semantic 

transitions in text and changes in the audio melody contour. 

This multi-dimensional focus mechanism enables the model to 

understand the emotional dialogue between "words and 

sounds" in music from different perspectives, similar to a 

human listener, thus avoiding information omissions caused 

by a single perspective. 

The module processes feature by reasonably setting query 

and key-value sets, enabling deep reciprocal feedback between 

audio and text emotional information, to adapt to the dynamic 

influence relationships between modalities in music. In actual 

music creation, the emotional influence between audio and 

text is bidirectional: the semantic tendency of text guides the 

listener's interpretation of the emotional tone of the audio, and 

the emotional tone of the audio also influences the 

understanding of the text. The module first processes the text 

and audio features through activation functions and linear 

layers to extract more representative local features. This step 

highlights the semantic weight of emotional words in the text 

and the significance of emotional features in the audio. 

Specifically, after processing GIM and GTE through activation 

functions, linear layers, and other operations, the local text and 

audio feature information is obtained, assuming the trainable 

initialization weights and biases are represented by q2 and y2. 

A multi-layer perceptron consisting of ReLU, Linear, Flatten, 

and Conv2d is represented by GD. The query set of the cross-

modal multi-head cross attention mechanism is represented by 

GS, and its key-value set is represented by GU. The specific 

computational formula is as follows: 

 

( ) ( )2 2 ,S TE U D IMG RELU q G y G G G= + =  (5) 

 

Subsequently, the module performs bidirectional cross-

attention calculations: first, using text features as queries and 

audio features as keys, to capture the guiding role of text in 

interpreting the emotional tone of audio; then using audio 

features as queries and text features as keys, to capture the 

emotional attribution of audio to text semantics. Specifically, 

in the cross-attention mechanism with G heads, each head 

learns different attention weights and focuses on emotional 

feature information in the audio and text data from different 

angles. Let the operations of the cross-attention mechanism 

and the cross-modal multi-head attention mechanism be 

represented by CROSS_ATT and MHCA, respectively, 

assuming the query, key, and value vectors of dimension f are 

represented by WSg∈RV×f, JUg∈RM×f, and NUg∈RM×f, 

respectively. The number of heads in the cross-attention 

mechanism is represented by g, and the g-th attention head is 

represented by HEADg. The dimensions of W and J are 

represented by fj, and the weight parameters for linear 

projection are represented by Qx. The learned projection 

matrices are QWSg, QJUg, and QNUg∈RF×f, and the specific 

computational formulas are as follows: 

 

, ,Sg WSg S Ug JUg U Ug NUg UW Q G J Q G N Q G= = =  (6) 

 

( )_ ,S U

S

Sg Ug

Ug

j

CROSS ATT G G

W J
SOFTMAX N

f

 
 =
 
 

 (7) 

 

( )_ ,g S UHEAD CROSS ATT G G=  (8) 

 

( )

( )1

,

,...,

U S S U

G x

G MHCA G G

CONCAT HEAD HEAD Q

 =

=
 (9) 

 

Let GU∈RM×F be used as the query set in the cross-modal 

multi-head cross attention mechanism, and let GS∈RV×F be its 

key-value set. Assume that the f-dimensional query, key, and 

value vectors are represented by WUg∈RM×f, JSg∈RV×f, and 

NSg∈RV×f respectively. The linear projection weight parameters 

are represented by Qy, and the projection matrices are 

represented by QWUg, QJSg, QNSUg∈RD×f. The emotional feature 

information from audio influencing text is denoted as 

GS←U∈EV×f, with the specific calculation formulas as follows: 

 

, ,Ug WUg S Sg JSg S Sg NSg SW W G J Q G N Q G= = =  (10) 

 

( )

g

_ ,U S

S

U Ug

Sg

j

CROSS ATT G G

W J
SOFTMAX N

f

 
 =
 
 

 (11) 

 

( )  _ , , 1,...,g U SHEAD CROSS ATT G G g G=   (12) 

 

( )

( )1

,

,...,

S U U S

G y

G MHCA G G

CONCAT HEAD HEAD Q

 =

=
 (13) 

 

The module performs optimization on the interacted 

features through an averaging operation, with the principle of 

filtering out non-emotional noise and enhancing core 

associations to ensure the stability and emotional orientation 

of the output features, thereby coping with interference 

information in musical data. In real music data, audio may 

contain noise unrelated to emotion, and text may include 

redundant information unrelated to emotion. These noises can 

interfere with the accuracy of cross-modal interaction, leading 

to misallocation of attention weights. After obtaining GU←S 

and GS←U, the module performs aggregation of all local 

features using an averaging operation. This step is not a simple 

numerical average, but rather calculates the mean of the 

feature vectors to weaken the weights of noise features that 

exist in isolation and are weakly associated with the overall 

emotion, while strengthening the core emotional associations 

2393



 

that appear in multiple local areas. The optimized features can 

more stably reflect the overall emotional tendency of music, 

reducing recognition fluctuations caused by local noise, and 

laying a reliable foundation for subsequent feature fusion and 

emotion classification. This is particularly effective when 

dealing with music data with high noise levels, such as live 

recordings or improvisations, significantly improving the 

robustness of the model. GU←S and GS←U are all local 

emotional feature information, let GUS∈RM×f, GSU∈RV×f, the 

total number of local emotional feature information in GU←S 

and GS←U is denoted by L, and the u-th feature information is 

denoted by u. The specific calculation formula for the 

averaging operation is as follows: 

 

1 1

1 1
,

L L

US U S SU S U

u u

G G G G
L L

 

= =

= =   (14) 

 

2.3 Fusion of image and text emotional features 

 

Figure 3 shows the schematic of the image and text 

emotional feature fusion principle. In the audio and text 

emotional feature fusion module, the application principle of 

the self-attention mechanism lies in dynamically assigning 

attention weights to accurately focus on the key parts of the 

music sequence that carry the core emotion, thus addressing 

the issue of uneven distribution of emotional information in 

long sequences. In practical music scenarios, emotional 

expression in a song often exhibits a "highlighted" feature: the 

lyrics and melody in the chorus are usually the focal point of 

emotional explosion, while some narrative sections of the 

verse may only serve as a foundation; in the audio, the solo of 

an instrument conveys emotional tendencies more than the 

background accompaniment. Traditional feature fusion 

methods assign equal weight to all parts of the sequence, 

which could dilute the core emotional features with redundant 

information, leading to recognition bias. Self-attention 

calculates the association strength of each position within the 

sequence and automatically assigns higher weights to key 

parts, such as the chorus lyrics, emotional keywords, and 

melodic climaxes. For example, when processing a sad love 

song, the attention will focus on lyrics like "breakup" and 

"tears" and the sustained low register of the piano, while 

diminishing irrelevant scene descriptions and transitional 

drum rhythms, ensuring that the extracted features are closer 

to the true emotional core of the music, providing a high-

quality foundation for subsequent fusion. Let the f-

dimensional query, key, and value vectors learned from the 

text sequence be represented by WS∈RV×f, JS∈RV×f, and NS∈RV×f, 

respectively. The f-dimensional query, key, and value vectors 

learned from the audio sequence are represented by WU∈RM×f, 

JU∈RM×f, and NS∈RM×f, respectively. The learned projection 

matrices are represented by QSW, QSJ, QSN, QUW, QUJ, and 

QUN∈RC×f, and the self-attention mechanism's operations are 

represented by SEFT-ATT. After the self-attention mechanism 

processes the text and audio emotional feature information, the 

results are represented by DSS∈RV×f and DUU∈RM×f, with 

specific computational formulas as follows: 

 

, ,S SW S S SJ S S SN SW Q D J Q D N Q G= = =  (15) 
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Figure 3. Schematic of image and text emotional feature fusion 

 

The Transformer encoder plays a core role in the fusion 

module by modeling global associations. Its multi-layer 

structure can deeply mine the complex associations between 

audio and text features in terms of both temporal and semantic 

dimensions, adapting to the dynamic and coherent nature of 

music emotion expression. Figure 4 shows the structure of the 

Transformer encoder. Music emotion transmission is a 

continuous process, with tight sequential logic between the 

semantic progression of the text and the emotional fluctuations 

of the audio. Moreover, features at different positions may 

have cross-segment associations. The Transformer encoder 

consists of multiple sub-layers that include multi-head 
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attention and feedforward neural networks. Multi-head 

attention captures associations at different scales in parallel. 

For example, one head focuses on the local association 

between adjacent text sentences and audio bars, while another 

captures cross-segment emotional responses between the verse 

and chorus. The feedforward neural network performs non-

linear transformations on the attention output, enhancing the 

discriminative power of the features. Through this multi-layer 

processing, the model can "read" the entire emotional arc of a 

song, much like a human listener, for example, identifying a 

"first restraint, then release" emotional shift in a song. The 

suppressed lyrics and low melody of the verse eventually lead 

to hope through the passionate expression of the chorus, 

generating fused features that contain global emotional logic. 
 

 
 

Figure 4. Transformer encoder structure 
 

The fusion module integrates features through 

concatenation and fully connected layers, achieving the 

complementarity of global key features and local hidden state 

features. The principle lies in balancing the overall and 

detailed aspects of emotional expression, thus improving the 

model's ability to adapt to complex emotional scenarios. In 

music emotion recognition, both global and local features are 

equally important: global features determine the overall 

emotional direction, while local features enrich the emotional 

layers. The module concatenates the global key features Dsu 

output by the Transformer encoder with the local features GUS 

and GSS obtained through cross-modal interaction, forming a 

feature vector that contains both "global-local" information. 

For example, when processing a song with "superficially 

happy but actually lonely" emotions, the global features will 

capture the upbeat rhythm of the overall melody, while the 

local features will retain the subtle associations between words 

like "alone" and "wandering" in the lyrics and the single notes 

of the piano. The fully connected layer performs non-linear 

transformations on the concatenated features, merging global 

trends and local details, so that the model can judge the 

dominant emotional polarity of the song and recognize the 

subtle layers within the emotion, effectively handling complex 

scenes such as "mixed emotions" and "contradictory 

emotions," improving recognition accuracy. The specific 

computational formula for the global key features Dsu is as 

follows: 
 

( )_su SS UUD TRANS ENCODER D D=   (19) 

 

Assume that the emotional category probability vectors for 

the text-guided audio and the audio-guided text, obtained 

through the Softmax function, are represented by Ous and Osu, 

respectively. The final emotional classification result for the 

image-text pair is represented by O. The weight matrices for 

the linear transformations are denoted by Qσ, Qψ, Qλ, Qψ, and 

QΩ, and the corresponding biases are denoted by yσ, yψ, yλ, yψ, 

and yΩ. After concatenating Dsu with GUS and GSS, the feature 

information is integrated and transformed using the fully 

connected layer. The specific formulas for this transformation 

are as follows: 
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The application of the cross-entropy loss function provides 

an accurate optimization goal for model training. The principle 

is to quantify the difference between the predicted emotion and 

the true label, guiding the model to focus on the critical 

boundaries for emotional polarity classification, enhancing 

recognition robustness. One of the core goals of music 

emotion recognition is to accurately determine the three 

emotional polarities: "positive," "neutral," and "negative." 

However, in real data, there are many easily confused samples: 

for example, a song with a lively melody but lyrics that subtly 

express helplessness ("neutral to negative") or a song with a 

slow rhythm but containing hope ("neutral to positive"). These 

samples have blurred classification boundaries and are 

difficult for the model to recognize. The cross-entropy loss 

function calculates the cross-entropy value between the 

predicted probability distribution and the true label 

distribution, imposing a higher penalty for misclassified 

samples. For instance, when the model misjudges a "negative" 

song as "neutral," the loss value increases significantly, 

forcing the model to focus on learning the feature differences 

of these boundary samples during training. Additionally, this 

loss function has some tolerance for sample imbalance, 

adapting to the situation in real music databases where there is 

a large difference in the number of "positive" and "negative" 

samples, ensuring balanced recognition performance across all 

emotional polarities. This ultimately achieves stable and 

accurate prediction of music emotional polarity, meeting the 

robustness requirements of applications such as music 

recommendation and emotional interaction. The specific 

computational formula is as follows: 

 

( )_LOSS CE LOSS O=  (23) 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the experimental results in Table 1, it can be seen that 

the proposed method demonstrates a significant advantage on 
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the Emotify Dataset. In the text modality, the MAE of the 

proposed method is 0.659, lower than ViT's 0.785 and CLIP's 

0.774, and the F1 value is 82.36, much higher than MAGNet's 

67.52 and MuSE-Net's 74.23. This indicates that the 

combination of BiLSTM and the attention mechanism in text 

feature extraction can precisely capture semantic emotions, 

reduce prediction errors, and improve classification accuracy. 

In the audio modality, the proposed method has an MAE of 

0.645, lower than AudioTextFusionNet's 0.815, and an F1 of 

73.52, higher than its 65.12, indicating that the improved CNN 

for extracting emotional features in the time-frequency domain 

is more efficient and effectively captures audio emotional 

information. In the fusion modality, the proposed method has 

the lowest MAE of 0.615 and an F1 of 72.36. Although 

slightly lower than MuSE-Net's 76.32, the MAE advantage is 

significant, and the overall performance is superior. This can 

be attributed to the cross-modal interaction module's modal 

attention weight matrix, the cross-modal Transformer in the 

feature fusion module, and the multi-output loss function in 

the emotion classification layer. The coordination of these four 

modules enables the proposed method to achieve 

breakthroughs in both single-modal and cross-modal fusion. 

 

Table 1. Experimental results on the Emotify dataset 

 

 Text Audio Text+Audio 

Model MAE F1 MAE F1 MAE F1 

ViT 0.785 65.23 0.745 41.23 0.784 64.23 

CLIP 0.774 66.5 0.741 41.56 0.735 68.52 

MAGNet 0.812 67.52 0.778 42.58 0.685 71.52 

MuSE-Net 0.816 74.23 0.752 58.62 0.712 76.32 

CoAtt-Music 0.825 63.51 0.812 37.52 0.745 62.35 

MusicGNN 0.814 54.58 0.826 45.62 0.712 62.48 

AudioTextFusionNet 0.836 56.35 0.815 65.12 0.728 57.31 

Proposed Method 0.659 82.36 0.645 73.52 0.615 72.36 

 

Table 2. Experimental results on the MUSIC dataset 

 

 Text Audio Text+Audio 

Model MAE F1 MAE F1 MAE F1 

ViT 0.745 67.52 0.725 42.23 0.765 68.32 

CLIP 0.756 72.36 0.736 42.56 0.715 74.52 

MAGNet 0.778 71.25 0.778 41.58 0.678 73.21 

MuSE-Net 0.812 71.56 0.689 43.23 0.689 73.56 

CoAtt-Music 0.775 66.23 0.774 38.62 0.715 72.56 

MusicGNN 0.823 67.52 0.745 42.56 0.725 72.54 

AudioTextFusionNet 0.812 68.54 0.779 41.58 0.716 72.63 

Proposed Method 0.635 75.23 0.623 66.32 0.668 78.36 

 

From the experimental results in Table 2 on the MUSIC 

Dataset, the proposed method demonstrates excellent 

performance across all modalities and fusion scenarios, 

validating its effectiveness. In the text modality, the MAE of 

the proposed method is 0.635, lower than ViT's 0.745 and 

CLIP's 0.756, and the F1 value is 75.23, higher than MuSE-

Net's 71.56 and AudioTextFusionNet's 68.54. This shows that 

the BiLSTM + attention mechanism in text feature extraction 

can accurately capture the semantic emotions of multi-

language lyrics, especially when handling complex semantics, 

improving classification accuracy through fine-grained 

representation. In the audio modality, the MAE is 0.623 and 

F1 is 66.32, outperforming the comparative models. The 

improved CNN for extracting time-frequency features is more 

efficient and enhances the robustness to multi-style music and 

noisy environments. In the fusion modality, the proposed 

method has the lowest MAE of 0.668 and the highest F1 of 

78.36, far surpassing the comparative models. The 

experimental results show that the proposed method achieves 

significant breakthroughs in both single-modal and cross-

modal fusion, fully validating the effectiveness of the module 

collaborative design. Through fine-grained feature extraction, 

dynamic cross-modal interaction, heterogeneous fusion, and 

multi-dimensional loss optimization, the proposed method 

effectively addresses multi-language, multi-style, and noisy 

music scenes, providing a better solution for multimodal music 

emotion recognition. 

 

 
 

Figure 5. Experimental results with different text loss rate 

settings 

 

 
 

Figure 6. Experimental results with different audio loss rate 

settings 

 

From the experimental results in Figures 5 and 6, it can be 

seen that the proposed method exhibits significant robustness 

advantages in modal information loss scenarios. In the text 

loss scenario, as the DropRatio increases from 0 to 1, the F1 

value of the proposed method decreases the least. For example, 

when DropRatio=0.8, the F1 of the proposed method still 

maintains about 50, while comparative models like 

AudioTextFusionNet drop below 40. This is due to the fine-

grained capture of key semantics in the text feature extraction 

module and the cross-modal interaction module dynamically 

adjusting the audio feature weights through mutual 

information entropy to achieve modal complementarity. In the 

audio loss scenario, the proposed method also performs 

outstandingly: when DropRatio=0.6, the F1 is about 60, far 

exceeding the comparative models. This is due to the efficient 

extraction of time-frequency features by the improved CNN 

and the deep fusion of text semantics and remaining audio 
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features by the cross-modal Transformer. Further analysis of 

module collaboration: the attention weight matrix in the cross-

modal interaction automatically strengthens the features of the 

modal that has not been lost, achieving dynamic 

complementarity; the multi-output loss function optimizes 

both discrete and continuous emotion predictions, enhancing 

the model's adaptability to partial modal loss. The 

experimental data shows that at high loss rates, the F1 value of 

the proposed method is 10-20 percentage points higher than 

the comparative models, fully validating its robustness. This 

performance is due to fine-grained feature representation, 

dynamic weight adjustment in cross-modal interaction, 

complementary enhancement through heterogeneous feature 

fusion, and optimization of multi-dimensional losses, which 

ensure stable emotion recognition even with missing modal 

information. In practical applications, the robustness of the 

proposed method ensures the reliability of music emotion 

recognition and provides an efficient solution for multimodal 

fusion in complex environments. Its effectiveness is fully 

demonstrated in the comparative experiments. 

 

Table 3. Ablation experiment results 

 

Model 
Emotify Dataset MUSIC Dataset 

Accuracy F1 Accuracy F1 

Remove multi-head 

cross attention 
71.23 71.54 68.23 68.21 

Remove self-attention 72.65 72.69 72.64 72.56 

Remove Transformer 

encoder 
72.89 72.34 71.52 71.45 

Proposed Method 74.25 74.58 74.69 75.68 

 

From the ablation experiment results in Table 3, it can be 

observed that the proposed method significantly outperforms 

the models where key modules are removed on both the 

Emotify-Dataset and MUSIC-Dataset, fully validating the 

effectiveness of the collaborative design of the modules. 

Specifically, when the multi-head cross attention is removed, 

the accuracy on the Emotify and MUSIC datasets drops to 

71.23% and 68.23%, and F1 drops to 71.54% and 68.21%, 

respectively. This indicates that the cross-modal interaction 

module is crucial for capturing cross-modal emotional 

correlations, and its absence leads to the model's failure to 

deeply integrate the emotional information of audio and text, 

especially when handling complex associations such as 

"lyrical metaphors - melody atmosphere," causing a 

significant drop in performance, highlighting the key role of 

this module in cross-modal information complementarity. 

When self-attention is removed, performance further declines, 

indicating that self-attention is essential for dynamically 

distributing weights to local key emotional features in text and 

audio sequences. Its absence leads to the model being unable 

to focus on core emotional features, weakening its fine-grained 

representation capability, thereby validating the necessity of 

the attention mechanism in the feature extraction phase. When 

the Transformer encoder is removed, performance continues 

to decrease, proving the irreplaceability of the feature fusion 

module in unifying the audio time sequence and text semantic 

feature space, and resolving modality heterogeneity. The 

multi-layer encoding capability of the Transformer allows the 

model to capture long-distance, cross-modal emotional 

correlations. Its absence results in the failure of effective 

feature fusion, limiting overall performance. In contrast, the 

proposed method achieves the highest accuracy and F1 score 

on both datasets, reflecting the collaborative enhancement of 

each module: in feature extraction, BiLSTM + attention and 

the improved CNN provide fine-grained representations that 

deliver high-quality initial features for cross-modal interaction; 

in modal interaction, multi-head cross attention dynamically 

adjusts the weights, strengthening the complementarity of 

audio and text across different emotional dimensions; in 

feature fusion, the Transformer encoder maps heterogeneous 

features into a unified space for deep fusion; at the 

classification layer, the multi-output loss function 

simultaneously optimizes discrete and continuous emotional 

predictions, improving the classification accuracy for 

boundary emotions. The ablation experiment data show that 

the modules complement each other in capturing multi-modal 

emotional correlations, processing heterogeneity, and 

enhancing robustness. They are indispensable. The proposed 

method, through module collaboration, not only achieves 

more precise single-modal feature extraction but also realizes 

a "1+1>2" effect in cross-modal fusion, ultimately 

demonstrating exceptional emotional recognition performance 

in complex music scenes. 

 

Table 4. Case prediction results 

 

Model 
Label 

Item 

Sample 

1 

Sample 

2 

Sample 

3 

Remove multi-head cross 

attention 

Predicted 

Label 

Positive Negative Negative 

Remove self-attention Positive Neutral Neutral 

Remove Transformer 

encoder 
Positive Negative Neutral 

Proposed Method Positive Negative Neutral 

 
True 

Label 
Positive Negative Neutral 

 

From the case prediction results in Table 4, it can be seen 

that the proposed method performs excellently in actual 

emotion recognition tasks, fully validating the effectiveness of 

the module collaborative design. Specifically, after removing 

multi-head cross attention, Sample 3 is misclassified as 

"Negative," indicating that the absence of cross-modal 

interaction causes the model to be unable to process weak 

correlations between text and audio, highlighting the core role 

of this module in cross-modal emotional complementarity. 

After removing self-attention, there is a prediction deviation 

for Sample 2 and Sample 3 (misclassified as neutral), showing 

that the model is unable to focus on local key emotional 

features, weakening its ability to capture complex emotions. 

After removing Transformer encoder, Sample 3 is predicted as 

"Neutral," but in combination with the performance decline in 

the ablation experiment (Table 3), it can be seen that the 

absence of the feature fusion module leads to insufficient 

processing of modality heterogeneity, causing failure in noisy 

or boundary cases. The case prediction results show that the 

proposed method, through fine-grained feature extraction, 

dynamic weight adjustment in cross-modal interaction, 

heterogeneous unification in feature fusion, and multi-

dimensional optimization in the classification layer, achieves 

accurate recognition of music emotions. The absence of key 

modules leads to prediction errors, while the collaborative 

design enables the model to effectively handle complex 

scenarios such as "strong correlation, weak correlation, simple 

correlation," and demonstrates high reliability in real cases. 

Experimental data strongly prove that the multimodal fusion 

architecture proposed in this study has significant advantages 

in practical music emotion recognition, and its effectiveness is 
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fully reflected in the case validation, providing a practical and 

feasible technical solution for addressing the fine-grained 

correlation and heterogeneity issues in multimodal emotion 

analysis. 

 

 

4. CONCLUSION 

 

This paper focused on multimodal music emotion 

recognition. The model built achieves a breakthrough in key 

technologies through the collaborative design of feature 

extraction, cross-modal interaction, feature fusion, and 

emotion classification modules. In the feature extraction stage, 

the combination of the improved CNN on the audio side and 

BiLSTM + attention mechanism on the text side accurately 

captured fine-grained features of time-frequency domain and 

semantic emotions, providing high-quality input for cross-

modal fusion. The cross-modal interaction module 

dynamically quantified the contribution of audio-text through 

mutual information entropy, enhancing the complementarity 

of "word-tone" emotional associations. The feature fusion 

module's cross-modal Transformer solved the modality 

heterogeneity problem, mapping the audio time sequence and 

text semantics into a unified emotional space for deep 

integration. The multi-output loss function simultaneously 

optimized discrete and continuous emotional predictions, 

improving classification accuracy for boundary emotions. The 

experimental results validate the superiority of the model: in 

single-modal feature extraction, text F1 increases by 14.84%, 

and audio F1 increases by 8.4%; after cross-modal fusion, 

MAE decreases by 12.4%, and F1 increases by 5.04%; in noisy 

scenarios, F1 still maintains above 50, far exceeding 

comparative models. This study provides an efficient 

multimodal fusion framework for music emotion recognition, 

suitable for multi-language, multi-style, and noisy complex 

scenarios, with important applications in music 

recommendation, emotional human-computer interaction, and 

other fields. It overcomes the limitations of traditional 

methods in modality heterogeneity handling and fine-grained 

emotional correlation capture, advancing the development of 

multimodal emotion analysis technologies. 

Although significant achievements have been made, the 

study still has the following limitations: (1) the model lacks 

robustness against extreme noise, and the anti-noise capability 

of the improved CNN needs further optimization; (2) text 

processing depends on the semantic understanding depth of 

pre-trained models, with limited adaptability to niche 

languages; (3) the computational complexity of cross-modal 

interaction is relatively high, and large-scale data inference 

efficiency needs to be improved. Future research can proceed 

in three directions: (1) introduce self-supervised learning to 

enhance the feature extraction module, design anti-noise 

convolution kernels (such as time-frequency domain 

enhancement based on wavelet transform) or adaptive audio 

denoising algorithms to improve performance in strong noise 

scenarios; (2) integrate multi-language pre-trained models to 

expand to multi-language music emotion recognition, 

enhancing understanding of the semantics of niche languages; 

(3) optimize the attention mechanism of cross-modal 

interaction and use lightweight Transformers to reduce 

computational costs, while exploring the application of Graph 

Neural Networks in music structure modeling to capture 

emotional associations at the song level and improve the 

model's understanding of music's temporal logic. In addition, 

research can be extended to emotion generation tasks, building 

end-to-end multimodal music emotion interaction systems to 

further explore the model's application potential and push 

music emotion recognition technology towards intelligent and 

practical development. 
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