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With the advancement of educational informatization, intelligent classrooms increasingly 

rely on image analysis technologies to automate environmental monitoring and learning 

behavior analysis. However, current research faces three key limitations: (1) the disjoint 

handling of object detection and semantic segmentation leads to suboptimal feature 

utilization; (2) existing models perform poorly in detecting dim classroom boundaries due 

to inadequate attention mechanisms; and (3) conventional loss functions struggle to address 

the pixel imbalance between boundary lines and the background. To address these 

challenges, this paper proposes a joint object detection and semantic segmentation model 

tailored for intelligent classroom scenarios. The model employs a shared encoder with dual 

decoder branches to achieve collaborative reasoning for both environmental object detection 

and learning behavior region segmentation. A Bi-directional Feature Pyramid Network 

(BiFPN) is integrated to introduce an attention-like weighted feature fusion mechanism, 

enhancing the capture of subtle boundary features. Additionally, an improved EFL Focal 

Loss is introduced to mitigate pixel imbalance issues. The main contributions of this work 

include: constructing a unified framework to enhance feature synergy between detection and 

segmentation tasks; designing a targeted attention mechanism to optimize boundary 

detection; and improving the loss function to balance pixel-wise training. Experimental 

results demonstrate improved completeness and accuracy in classroom scene analysis. 
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1. INTRODUCTION

With the deepening development of educational 

informatization, intelligent classrooms [1-4], as the core 

carrier integrating information technology with teaching and 

education, are gradually becoming an important support for 

the innovation of modern education models. Against this 

background, how to realize real-time perception of the 

classroom environment and accurate judgment of learning 

behaviors through technical means has become a key issue in 

improving teaching quality and optimizing teaching 

management. The rapid development of artificial intelligence 

and computer vision technologies [5-7] provides a feasible 

technical path for this demand. Image analysis-based 

monitoring and analysis methods [8-10] can break through the 

limitations of traditional manual observation and realize the 

automatic acquisition and interpretation of environmental 

information such as classroom lighting and equipment status, 

as well as learning data such as student concentration and 

interactive behaviors. 

At present, research in related fields still has three 

significant limitations: first, most existing methods treat object 

detection and semantic segmentation tasks separately [11-13], 

resulting in a lack of synergy in the feature extraction process 

of the two tasks. For example, some studies only use a single 

model to complete either environmental object recognition or 

behavior region segmentation, making it difficult to meet the 

dual requirements of “environmental element localization” 

and “behavior region division” in classroom scenes. Second, 

for the commonly seen dim boundary lines in classroom 

scenes, such as the edges of desks and chairs and the borders 

of blackboards, existing detection models often have weak 

feature responses and blurred boundaries due to the limitations 

of attention mechanism design [14-16]. Third, in pixel-level 

analysis [17-19], problems such as low proportion of boundary 

pixels and long-tail distribution between foreground and 

background pixels are common. Traditional loss functions find 

it difficult to balance the training weights of different pixel 

categories, resulting in boundary details being easily obscured 

by background information in the segmentation results. 

This paper focuses on the above problems and proposes an 

intelligent classroom environmental and learning behavior 

detection model based on object detection and semantic 

segmentation. The main research contents include: in terms of 

model structure, a framework composed of a shared encoder 

and two independent decoder branches is designed, realizing 

collaborative reasoning of environmental object detection and 

learning behavior region segmentation through a shared low-
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level feature extraction module; in terms of feature 

enhancement, the BiFPN used introduces a weight allocation 

mechanism similar to the attention mechanism, which 

dynamically adjusts feature channel weights and spatial 

attention to strengthen the feature capture ability for dim 

boundary areas; in terms of loss function optimization, an 

improved version of EFL focal loss is adopted, which 

alleviates the imbalance between boundary pixels and 

background pixels by adaptively adjusting the loss weights of 

hard and easy samples. Through multidimensional model 

optimization, this study effectively improves the completeness 

of environmental monitoring and the accuracy of learning 

behavior analysis in intelligent classroom scenarios, providing 

a technical reference for building a more adaptive intelligent 

teaching support system. 

 

 

2. INTELLIGENT CLASSROOM ENVIRONMENTAL 

MONITORING AND LEARNING BEHAVIOR 

DETECTION MODEL BASED ON OBJECT 

DETECTION AND SEMANTIC SEGMENTATION 

 

2.1 Model design 

 

According to the needs in the intelligent classroom 

environment, this paper needs to detect whether students are 

studying attentively in their seats, and at the same time 

determine whether workers have left the learning area, which 

requires the detection of the boundary lines of the intelligent 

classroom environment. The former belongs to the object 

detection task, while the latter can be regarded as a semantic 

segmentation task. In order to meet real-time requirements, 

this paper designs an intelligent classroom environmental 

monitoring and learning behavior detection model. The model 

adopts a structure with shared encoder and dual decoder 

branches, mainly based on the dual needs of "collaboration 

between object detection and semantic segmentation" and 

"real-time performance assurance" under the intelligent 

classroom scenario. On the one hand, learning behavior 

detection belongs to object detection, which requires locating 

specific objects and judging their states; intelligent classroom 

environmental monitoring belongs to semantic segmentation, 

which requires pixel-level boundary division. If two 

independent models are used for processing respectively, it 

will not only cause repeated computation in the feature 

extraction process and increase resource consumption, but also 

reduce the consistency of the results due to the disconnection 

of the feature correlation between the two tasks. For example, 

spatial matching deviations may occur between student 

position judgment and boundary line segmentation. The 

shared encoder can generate shared low-level features for both 

tasks through one-time feature extraction, while the dual 

decoder branches respectively perform feature refinement 

according to the task characteristics of object detection and 

semantic segmentation. This can reduce redundant 

computation to meet the response speed requirements of real-

time monitoring, and also enhance the spatial correlation 

between “student status” and “region boundary” through 

feature sharing, thus improving the coordination of overall 

detection. 

The BiFPN used in the model introduces a weight allocation 

mechanism similar to the attention mechanism to solve the 

problem of accuracy in detecting dim boundary lines in 

intelligent classrooms. In actual classroom scenarios, 

boundary lines such as the junction between the wall and the 

floor, and the separation line between the learning area and the 

non-learning area often appear dim due to uneven lighting, 

equipment occlusion and other factors. These boundary lines 

are the core basis for judging whether workers have left the 

learning area. If boundary line detection is blurry or broken, it 

may lead to incorrect region division and thus misjudgment. 

Traditional attention mechanisms often assign weights based 

on global feature distribution, which tends to suppress features 

in low-contrast regions such as dim boundary lines. The 

improved attention mechanism dynamically adjusts the weight 

allocation of feature channels and spatial positions to enhance 

feature response to dim regions: strengthening the feature 

channels related to edge detection in the channel dimension, 

and focusing on low-brightness but continuous edge regions in 

the spatial dimension, thereby improving the completeness 

and clarity of boundary lines and providing reliable spatial 

basis for region judgment. 

 

 
 

Figure 1. Structure diagram of intelligent classroom 

environmental monitoring and learning behavior detection 

model 
 

The model also innovatively adopts an improved version of 

EFL focal loss, which directly addresses the core contradiction 

of “pixel imbalance” in intelligent classroom boundary line 

detection. As slender structures, boundary lines usually 

account for less than 5% of pixels in images, while background 

pixels account for an extremely high proportion, forming a 

typical long-tail distribution. If traditional loss functions are 

used, the model will overfit background features due to the 

numerical advantage of background pixels, causing the 

training weight of boundary line pixels to be diluted, and 

resulting in broken or missing boundary lines in the final 

segmentation result. This will directly affect the accurate 

definition of the learning area, thereby interfering with the 

judgment of "whether workers have left the learning area." The 

improved EFL focal loss solves this problem through two key 

optimizations: first, an adaptive hard sample mining 

mechanism is introduced to assign higher loss weights to 

“hard-to-detect pixels” such as boundary lines, ensuring that 

the model focuses on low-proportion but key regions during 

training; second, the loss ratio of positive and negative 

samples is dynamically adjusted to avoid excessive 

suppression of boundary line loss signals by background pixel 

loss values. This design enables the model to balance the 

learning priority of different pixel categories during training, 

ultimately improving the accuracy and stability of boundary 

line segmentation. Figure 1 shows the structure diagram of the 

intelligent classroom environmental monitoring and learning 

behavior detection model.
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2.2 Model structure 

 

The algorithm used in this paper is an improved version 

based on YOLOP. In order to make the network characteristics 

highly compatible with the requirements of object detection 

and semantic segmentation in intelligent classrooms, this 

paper chooses CSPNet as the backbone network. To ensure 

that the model can simultaneously perform object detection 

and semantic segmentation, the backbone network is required 

to extract sufficiently rich features while meeting the 

efficiency requirements of real-time monitoring. CSPNet 

happens to meet both needs: on the one hand, as an efficient 

structure verified by mainstream detection models such as 

YOLOv4 and YOLOv5, it inherits CSPNet's advantage of 

"enhancing feature representation capability", and can extract 

multi-level features from classroom images, including texture, 

shape, and edge. These features can support both object 

detection in judging student positions and states, and semantic 

segmentation in providing edge features for boundary line 

recognition; on the other hand, CSPNet achieves "lightweight 

and efficiency" through gradient flow optimization, with 

significantly lower computation and parameter count than 

traditional networks, enabling improved inference speed while 

ensuring feature richness, which aligns with the scenario 

requirements of real-time monitoring in intelligent 

classrooms. Figure 2 shows the structure diagram of the 

CSPNet used. 

 

 
 

Figure 2. Structure diagram of the CSPNet used 

 

The core principle of CSPNet in supporting object detection 

and semantic segmentation comes from its "gradient flow 

optimization" and "feature fusion design". At the gradient flow 

level, CSPNet divides the basic layer feature map into two 

parts, and realizes separated fusion through cross-stage layers, 

which avoids the optimization bottleneck caused by repeated 

gradient information in traditional networks, allowing 

gradients to propagate along different paths. This not only 

retains the richness of features but also reduces redundant 

computation. At the feature extraction level, CSPNet inherits 

the advantage of “feature reuse” from DenseNet, while 

avoiding feature redundancy through truncated gradient flow. 

The generated feature maps possess both “detail preservation” 

and “global consistency”, which precisely match the feature 

requirements of object detection and semantic segmentation in 

intelligent classrooms: object detection requires accurate local 

features to locate students, while semantic segmentation 

requires continuous global features to recognize boundary 

lines. In addition, CSPDarknet, as a fusion of Darknet53 and 

CSPNet, further enhances the lightweight property and 

robustness. Its multiple CSP modules can progressively 

extract features from low-level to high-level, providing basic 

features adapted to different tasks for the subsequent dual 

decoder branches. Figure 3 shows the backbone network 

structure diagram of the constructed model. 

 

 
 

Figure 3. Backbone network structure diagram of the 

constructed model 

 

 
 

Figure 4. Structure diagram of the BiFPN used 

 

From the task characteristics perspective, object detection 

for “whether students are studying attentively in their seats” 

needs to deal with targets of different scales, such as clear 

postures of front-row students and small-scale silhouettes of 

back-row students, while semantic segmentation for 

“classroom boundary line detection” needs to consider both 

fine-grained edges at the junction of desks and floors, and 

global region division of learning and non-learning areas. Both 

types of tasks rely on the effective fusion of multi-scale 

features. Therefore, this paper chooses BiFPN as the network 

Neck. BiFPN, as an improved version of PANet, happens to 

meet this requirement: its bidirectional cross-scale connection 

design can aggregate features of different levels output from 

the backbone network, including low-level texture features, 

mid-level shape features, and high-level semantic features, 

generating fusion features with both detail and global 

information. This provides multi-scale basis for judging 

student postures in object detection, and supplements 

continuous edge features of boundary lines for semantic 

segmentation. Meanwhile, BiFPN's weighted feature fusion 

mechanism and lightweight structure can control time cost 

while ensuring fusion effect, avoiding the decline of real-time 

performance due to complex feature processing, which fits the 

real-time monitoring scenario of intelligent classrooms, such 

as rapid response to dynamic changes in student behavior and 
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environmental status during class. Figure 4 shows the structure 

diagram of the BiFPN used. 

The basic principle of BiFPN in supporting object detection 

and semantic segmentation originates from the synergy of its 

“bidirectional feature flow” and “weighted fusion 

mechanism”. At the feature flow level, BiFPN realizes 

bidirectional complementarity of cross-scale features through 

repeated top-down connections from high-level semantic 

features to low-level detail features and bottom-up 

connections from low-level detail features to high-level 

semantic features: the top-down path can inject semantic 

information such as “learning area” and “student identity” into 

low-level features, improving the regional correlation of 

boundary line segmentation and better distinguishing between 

“student seat area boundary” and “non-learning area 

boundary”; the bottom-up path can integrate detail features 

such as “edge texture” and “local contour” into high-level 

features, enhancing the detection ability of object detection for 

small-scale students or ambiguous postures, including 

downward head movements of back-row students. At the 

fusion mechanism level, the weight allocation mechanism 

similar to attention mechanism introduced by BiFPN can 

dynamically adjust the contribution of features from different 

sources. For example, in boundary line detection, it enhances 

the weight of low-level edge features, and in student posture 

judgment, it increases the proportion of mid-level shape 

features, making the fused features more adapted to the 

requirements of specific tasks. 

Specifically, from the scenario requirements of the 

intelligent classroom, the detection branch needs to perform 

object localization and classification of "whether students are 

attentively studying in their seats", which belongs to sparse 

object detection and requires attention to the position and 

category of discrete targets. The segmentation branch needs to 

realize pixel-level classification of "boundary line and 

background", which belongs to dense pixel classification and 

requires attention to the pixel attribution of continuous 

regions. If a single branch is used to handle both types of tasks, 

the conflict of optimization objectives will lead to a decline in 

accuracy for both tasks. Based on the essential differences in 

requirements between object detection and semantic 

segmentation tasks, this paper adopts a separated design with 

two independent decoder branches to ensure that each branch 

optimizes the task characteristics in a targeted manner and 

avoids "task interference" during the feature processing. 

The design principle of the detection branch focuses on the 

demand of "sparse object multi-scale localization", realizing 

accurate detection through the PAN structure and anchor 

mechanism. In the intelligent classroom, students may appear 

in different positions such as the front row, back row, or 

corners, with significant differences in object scale. This 

requires the detection branch to have multi-scale adaptation 

capability. The bottom-up feature migration property of the 

PAN structure can transmit low-level precise positional 

features to the high level, compensating for the deficiency of 

traditional feature pyramids that have strong semantics but 

weak localization, and providing accurate spatial reference for 

locating targets at different scales. The multi-scale feature 

maps with 8×, 16×, and 32× downsampling can match small, 

medium, and large-scale objects respectively, and combined 

with the grid allocation strategy of three types of anchor boxes, 

can cover the common scale range of students in classroom 

scenarios. In addition, the design of prediction parameters 

such as position offset, scale transformation, and class 

probability directly corresponds to the core requirements of 

"locating student position" and "judging whether the student is 

studying attentively", making the detection results directly 

usable for the subsequent judgment of "whether the student is 

within the learning area". Specifically, assume that the 

predicted bounding box is represented by (ya, yb, yq, yg), the 

coordinates of the top-left corner of the grid are represented by 

(za, zb), and the width and height of the anchor box assigned 

to the grid are represented by (oq, og). The transformation 

formulas are as follows: 

 

( )( )2* 0.5 aya SIGMOID sa z= − +  (1) 

 

( )( )2* 0.5 byb SIGMOID sb z= − +  (2) 

 

* sq

Qyq O e=  (3) 

 

* sg

gyg O e=  (4) 

 

( )
1

1 a
SIGMOID a

e−
=

+
 (5) 

 

The design principle of the segmentation branch is centered 

on "lightweight and efficient pixel-level classification", 

adapting to boundary line detection needs through a simplified 

process and targeted upsampling strategy. The core of 

boundary line detection in intelligent classrooms is to 

distinguish "boundary line pixels" from "background pixels", 

without requiring complex semantic category classification. 

Therefore, the segmentation branch adopts a lightweight 

design of "3 times upsampling + nearest neighbor 

interpolation": selecting the lowest 8× downsampled 32×32 

feature map from the Neck as input, which retains basic edge 

features of boundary lines, avoids detail loss caused by 

excessively high downsampling rates, and controls the size of 

the initial feature map to reduce computation. Three times of 

upsampling restore the feature map to the size of the input 

image, ensuring that the output can correspond one-to-one 

with the pixels of the original image, meeting the accuracy 

requirements of "pixel-level segmentation". Nearest neighbor 

interpolation is chosen instead of deconvolution, significantly 

reducing computational complexity at the cost of a small 

amount of detail accuracy, avoiding delay in overall model 

real-time performance due to the segmentation process. The 

final output feature map of dimension (W, H, 2) directly 

provides the probability distribution of “boundary 

line/background”, which can provide clear pixel-level basis 

for “learning area division”, forming spatial correlation with 

the student position information from the detection branch. 

 

2.3 Model loss function 

 

The constructed model loss consists of the detection head 

loss and the segmentation head loss. The loss of the detection 

head mainly comes from classification loss (lossCL), 

confidence loss (lossOBJ), and bounding box regression loss 

(lossBOX), while the boundary line segmentation head uses 

weighted cross-entropy loss. The expression of the loss 

function of the detection head is as follows: 

 

1 2 3DET CL OBJ BOXloss loss loss loss  = + +  (6) 
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In intelligent classroom scenarios, samples of students 

"studying attentively" account for a very high proportion in the 

collected data, while samples of "not studying attentively" 

account for a very low proportion, forming a typical long-tail 

distribution. If traditional loss functions are used, the model 

will be dominated by the losses of majority class samples 

during training, leading to weak recognition ability for 

minority class samples. In order to solve the problem of “long-

tail distribution of sample classes” in intelligent classroom 

learning behavior detection and achieve accurate balance of 

class loss, the classification and confidence loss adopt the 

design principle of EFL loss. EFL, as an improved version of 

Focal Loss, dynamically adjusts the loss weights of samples 

from different classes, which can suppress overfitting of 

majority classes and strengthen the loss signals of minority 

classes, making the model pay more attention to rare but 

important abnormal behavior samples during training. At the 

same time, using EFL for confidence loss can improve the 

reliability of judgment on “whether the student is in the seat”: 

for ambiguous samples such as students half-standing or 

occluded, EFL can force the model to focus on hard samples’ 

feature learning by reducing the weight of easy samples, so 

that classification and confidence results better match the core 

requirement of “recognizing learning behavior status”. Let xs 

represent the balance between positive and negative samples, 

os represent the confidence score of the predicted target. The 

Focusing Factor in balanced data scenarios that controls the 

basic behavior of the classifier is represented by parameter εy. 

The cumulative gradient ratio of the positive and negative 

samples of class k is represented by parameter hk, and the 

scaling factor is represented by hyperparameter t. The 

expression of the EFL loss function is as follows: 

 

( ) ( ) ( )
1

1 log
k

y n

kz
y n

s s s s

k y

EFL o o o
  




+

=

 +
= − − 

 
 

  (7) 

 

( )1k k

n t h = −  (8) 

 

The bounding box regression loss chooses Expected 

Intersection over Union (EIOU) and integrates the design 

principle of Focal Loss, aiming to improve the accuracy and 

convergence efficiency of student position localization, 

adapting to the detection needs of dynamic targets in 

intelligent classrooms. The key premise of learning behavior 

detection is accurate localization of students in their seats. The 

predicted bounding box must highly match the actual student 

position, which requires the regression loss to 

comprehensively measure the difference between the 

predicted box and the target box. EIOU is designed with three 

components: “overlap loss, center distance loss, width-height 

loss”. Compared with Complete Intersection over Union 

(CIOU), it more directly optimizes box shape and position. In 

intelligent classrooms, this can quickly reduce the gap between 

the predicted box and the actual position of the student and 

accelerate model convergence. After integrating Focal Loss, 

the loss function can reduce the optimization weight of low-

overlap anchor boxes and focus training on high-overlap 

anchor boxes, further improving localization accuracy, which 

is crucial for “judging whether the student is in the seat”. 

Suppose the width and height of the minimum enclosing box 

covering both the predicted and ground truth boxes are 

denoted as zq and zg, the centers of the predicted and ground 

truth boxes are denoted by y and yhs, ϑ calculates the Euclidean 

distance between the two centers, and the width and height of 

the predicted and ground truth boxes are represented by q, qhs 

and g, ghs respectively. The calculation formula for CIOU is as 

follows: 

 

( )

( ) ( )

( )

( )

( )

( )

2

2 2

2 2

2 2

,
1

, ,

RUPI UPI DIC ASP

hs

q g

hs hs

q g

loss loss loss loss

y y
IoU

z z

q q g g

z z



 

= + +

= − +
+

+ +

 

(9) 

 

By integrating EIOU Loss and Focal Loss, and letting λ be 

the hyperparameter that controls the curvature of the loss 

curve, the final EIOU Loss expression is: 

 

F E RUPInloss IoU loss
− =  (10) 

 

The overall loss function design of the detection head serves 

the core goal of "accurate detection of learning behavior" 

through the synergy of "class balance" and "localization 

optimization." The EFL design of classification and 

confidence loss ensures that the model can effectively 

distinguish between "serious learning" and "non-serious 

learning" in a long-tailed sample distribution, avoiding missed 

detections of abnormal behaviors due to class imbalance. The 

EIOU+FocalLoss design for bounding box regression ensures 

the accuracy and stability of student position localization, 

providing reliable spatial reference for determining whether 

students are seated. The combination of both enables the 

detection head output to accurately reflect the core features of 

learning behavior and to link with the subsequent boundary 

line segmentation results, ultimately achieving the dual-

precision monitoring of “learning behavior status + spatial 

position” in smart classrooms. 

The segmentation head for boundary line detection adopts 

weighted cross-entropy loss, whose core principle is to 

specifically address the extreme imbalance between 

"boundary line pixels and background pixels" in the smart 

classroom scenario by forcing the model to focus on critical 

boundary line pixels through a weighting mechanism. In smart 

classroom images, boundary lines usually appear as thin 

elongated lines, accounting for less than 5% of the total pixels, 

while background pixels occupy an overwhelmingly large 

proportion. If the original cross-entropy loss is used, the model 

will overfit the background features due to the numerical 

advantage of background pixels, causing the classification 

errors of boundary line pixels to be diluted. This manifests as 

broken, blurred, or "swallowed" boundary lines in the 

segmentation results, directly affecting the accurate division 

of learning regions. The weighted cross-entropy loss assigns 

higher loss weights to boundary line pixels, significantly 

increasing their share in the total loss: when the model 

misclassifies boundary line pixels, it incurs higher loss values, 

forcing the model to enhance its learning of low-proportion 

boundary line features during training. This ensures the 

integrity and clarity of boundary line segmentation and 

provides reliable pixel-level support for distinguishing 

between “learning areas and non-learning areas.” Assuming 

the balance factor is represented by qZ, the total number of 

pixels in the image is denoted as V, and the total number of 

pixels in the Z-th category of the foreground is denoted as VZ, 
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the loss function is expressed as: 
 

( )
1

log
L

mm SEG Z z z

z

loss q b o−

=

= −  (11) 

 

Z
z

V V
q

V

−
=  (12) 

 

The design of this loss function further serves the overall 

research goal of "linking environmental monitoring with 

learning behavior analysis" by improving segmentation 

precision as a foundation for spatial relationship judgment. 

One of the core requirements in smart classrooms is to perform 

spatial inference by combining the "boundary line 

segmentation result" with the "object detection result", which 

demands high spatial accuracy in boundary line segmentation. 

If boundary line positions deviate or are missing, it directly 

leads to region segmentation errors, resulting in behavioral 

judgment deviations. Weighted cross-entropy loss, while 

balancing pixel loss, retains the natural suitability of cross-

entropy loss for pixel-level classification: by minimizing the 

error between "network output probabilities of boundary 

line/background" and "ground truth pixel labels", it ensures 

each pixel's classification result closely reflects the actual 

scene. 

Assuming the parameters used to balance the detection head 

and segmentation head losses are represented by δ1 and δ2 

respectively, the overall loss function of the model is 

expressed as: 

 

1 2ALL DET mm SEGloss loss loss  −= +  (13) 

 

Figure 5 shows the flowchart for judging the smart 

classroom environment and student learning status. 

 

 
 

Figure 5. Flowchart for judging smart classroom environment and student learning status 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the experimental results in Table 1, it is clearly 

observed that the proposed "shared Encoder + dual 

independent Decoder branches" collaborative model exhibits 

significant advantages: In terms of the detection task, the 

Recall of the dual-branch model is 91.2%, which is 6 

percentage points higher than the single detection branch's 

85.2%; the mAP50 is 77.2%, 3.8 percentage points higher than 

the 73.4% of the detection-only branch. This indicates that 

under the dual-branch collaboration, the environmental 

boundary constraints from the segmentation branch 

complement the target features of the detection branch, 

significantly reducing missed detections and localization 

errors. In terms of the segmentation task, the Accuracy of the 

dual-branch model is 71.2%, an increase of 5.8 percentage 

points compared to the 65.4% of the segmentation-only 

branch; the IOU is 34.5%, 5.9 percentage points higher than 

the 28.6% of the single segmentation branch. This confirms 

that the target location information from the detection branch 

provides guidance for boundary segmentation, enhancing 

pixel classification accuracy for dim boundary lines through 

prior knowledge of object and background regions. At the 

same time, BiFPN's dynamic weight allocation mechanism 

enhances the fusion of multi-scale features, and the improved 

EFL loss alleviates the sample imbalance between boundary 

pixels and background, further amplifying the synergistic gain 

of the dual-task design. Although the dual-branch model has 

lower speed due to increased computation, its comprehensive 

accuracy improvements fully verify the rationality of the 

“shared feature extraction + dual-task collaborative inference” 

architecture and the effectiveness of feature enhancement and 

loss function optimization strategies. 
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Table 1. Training results of the model under different branch configurations 

 

Training Method Recall (%) mAP50 (%) Accuracy (%) IOU (%) Speed(fps) 

Detection Branch 85.2 73.4 - - 34.8 

Segmentation Branch - - 65.4 28.6 37.2 

Dual-Branch Model 91.2 77.2 71.2 34.5 24.6 

 

Table 2. Ablation experiment comparison 

 

Algorithm Model Parameters Precision Recall mAP Model Size (MB) 

Replace BiFPN with standard FPN Neck 7124536 0.889 0.914 0.935 13.6 

Use standard Focal Loss for classification/confidence loss, EIoU 

for regression loss 
4758265 0.875 0.928 0.948 11.4 

Independent Encoder + dual Decoder 5862452 0.912 0.916 0.952 13.8 

Complete model 4896523 0.915 0.938 0.956 11.2 

 

 

 
 

Figure 6. Comparison of mAP and loss values during 

training for different models 

 

From the results of the ablation experiments in Table 2, it 

can be seen that the proposed complete model using shared 

Encoder + BiFPN + improved EFL loss shows significant 

advantages across multiple dimensions. The “Independent 

Encoder + dual Decoder” variant has 5,862,452 parameters 

and a size of 13.8MB, while the complete model reduces 

parameters by 16.5% and model size by 18.8%, and achieves 

better precision, recall, and mAP. This verifies the design 

value of the shared bottom-level Encoder: by reusing common 

features of environmental boundaries and learning behaviors, 

it avoids redundant parameters in dual-task independent 

encoding, and leverages the synergy of “spatial constraints 

from segmentation assisting detection” and “object prior from 

detection optimizing segmentation” to improve dual-task 

accuracy. When BiFPN is replaced with a standard FPN, 

parameters increase to 7,124,536 and size to 13.6MB, but 

precision, recall, and mAP drop significantly. BiFPN’s 

dynamic weight allocation mechanism enables more efficient 

multi-scale feature fusion. For difficult-to-distinguish features 

such as “dim boundaries” and “small-scale learning 

behaviors” in smart classrooms, it enhances the weights of key 

channels and spatial regions, boosting feature capture while 

reducing model complexity. Replacing classification loss with 

standard Focal Loss alone results in precision dropping from 

0.915 to 0.875, and mAP from 0.956 to 0.948. Although recall 

slightly increases, overall accuracy declines. This indicates 

that the improved EFL focal loss, with its “adaptive difficult-

sample weight adjustment” mechanism, effectively alleviates 

the sample imbalance issue between sparse boundary pixels 

and numerous background pixels. By assigning higher loss 

weights to sparse boundary pixels, it prevents them from being 

overwhelmed by the background, improving classification 

confidence and overall accuracy. 

From the training curve comparison in Figure 6, the 

proposed model exhibits core advantages of fast convergence, 

high accuracy ceiling, and strong training stability, which can 

be deeply interpreted from the model design. In terms of 

convergence speed, the proposed model rapidly exceeds 0.8 

mAP within the first 50 epochs and continues to rise, far 

surpassing VAE and Yolov5. This is due to the dual-task 

collaborative mechanism of the shared Encoder: spatial 

boundaries from segmentation and object features from 

detection share bottom-level encoding, allowing the model to 

quickly learn effective features early on via complementary 

learning of “segmentation constraining detection” and 

“detection guiding segmentation”. Regarding accuracy 

ceiling, the proposed model’s final mAP approaches 1.0, 

significantly better than SlowFast and HRNet. This benefits 

from BiFPN’s dynamic weight enhancement: for difficult 

scenarios such as “dim boundaries” and “small-scale 

behaviors” in smart classrooms, BiFPN dynamically adjusts 

channel and spatial weights via an attention-like mechanism, 

enhancing multi-scale feature fusion accuracy and breaking 

the performance ceiling of single-task models. For the loss 

curve, the proposed model’s loss drops rapidly to near 0 within 

50 epochs. Compared to VAE and HRNet, this reflects the 

synergy of improved EFL loss and shared structure: improved 

EFL adaptively adjusts loss weights for hard and easy samples, 

solving the sample imbalance of “few boundary pixels and 

many background pixels”, preventing gradient 
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explosion/vanishing; the shared Encoder reduces parameter 

redundancy and training complexity, accelerating loss 

convergence. In terms of stability, the proposed model’s loss 

exhibits almost no fluctuation in the later stages, whereas 

Yolov5 and SlowFast show oscillations. This is due to the task 

decoupling design of the dual Decoder branches: 

environmental segmentation and behavior detection have 

independent Decoders after the shared Encoder, each 

optimizing task-specific features, reducing gradient 

interference between the two tasks. Meanwhile, BiFPN’s 

dynamic weights stabilize the feature fusion process, making 

training smoother. In summary, from three dimensions—

dynamic convergence, performance ceiling, and training 

robustness—the training curves verify the scientificity of the 

proposed model design. 

 

Table 3. Experimental results on different datasets 

 

Dataset Precision Recall mAP FPS/s 

Classroom Video Dataset 0.78 0.72 0.77 12.5 

COCO Dataset 0.81 0.91 0.81 13.2 

STU-HCI Dataset 0.81 0.76 0.75 11.4 

SUN RGB-D Dataset 0.93 0.93 0.95 22.8 

 

From the experimental results on different datasets in Table 

3, the performance advantages of the proposed model can be 

deeply analyzed: On the dedicated classroom scene Classroom 

Video Dataset, the model achieved Precision of 0.78, Recall 

of 0.72, and mAP of 0.77. Despite challenges such as uneven 

lighting and dim boundaries, BiFPN’s dynamic weight 

allocation strengthened feature capture in boundary regions. 

Combined with shared Encoder’s dual-task collaborative 

reasoning, effective detection was still achieved. On the multi-

scale object COCO Dataset, Recall reached 0.91 and mAP 

0.81, thanks to BiFPN’s efficient fusion of multi-scale features 

and improved EFL loss’s adaptive weighting of “small objects 

and blurry boundaries”, demonstrating precise detection of 

multi-scale targets in classrooms. For fine-grained behavior 

scenarios on the STU-HCI Dataset, Precision was 0.81 and 

Recall 0.76, reflecting the value of the shared Encoder in 

assisting behavior region localization through environmental 

segmentation. Although fine-grained behavior still has room 

for improvement, it meets the core needs of behavior analysis 

in smart classrooms. On the generalized indoor scene SUN 

RGB-D Dataset, both Precision and Recall reached 0.93, with 

mAP 0.95 and FPS 22.8, verifying the shared Encoder’s 

generalization ability for common indoor features and the 

efficiency gains from model lightweighting. In summary, from 

dedicated classrooms to generalized indoor scenes, from 

complex lighting to fine-grained behaviors, the proposed 

model achieves a balance between accuracy and efficiency 

through threefold design: shared Encoder collaborative 

reasoning, BiFPN feature enhancement, and improved EFL 

loss optimization, fully demonstrating the method’s 

scientificity and effectiveness in smart classrooms and 

extended scenarios. 

 

Table 4. P, R, mAP values of each learning behavior in different smart classroom environments 

 

Smart Classroom 

Environment 
Metric 

Independent 

Learning 

Interactive 

Discussion 

Temporary 

Leaving Seat 

Staying at 

Fixed Position 

Movement Within 

Learning Area 

Natural Light-

Dominated 

Precision 0.84 0.81 0.91 0.91 0.97 

Recall 0.88 0.97 0.82 0.84 0.91 

mAP 0.91 0.95 0.91 0.92 0.94 

High-Density 

Interaction 

Precision 0.82 0.66 0.87 0.87 0.95 

Recall 0.81 0.96 0.71 0.84 0.83 

mAP 0.88 0.91 0.83 0.92 0.92 

Multimedia-Intensive 

Precision 0.82 0.66 0.87 0.88 0.95 

Recall 0.87 0.97 0.74 0.82 0.85 

mAP 0.93 0.95 0.85 0.92 0.93 

Dynamic Work Type 

Precision 0.77 0.63 0.85 0.88 0.95 

Recall 0.78 0.95 0.71 0.77 0.81 

mAP 0.85 0.91 0.81 0.87 0.91 

 

 
 

Figure 7. Comparison results under different thresholds in various smart classroom environments 
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From the detection results of multi-scenario learning 

behaviors in Table 4, the advantages of the proposed model in 

complex environment adaptability, behavioral feature 

distinguishability, and task collaborative robustness can be 

deeply analyzed based on model design logic. In natural light-

dominated classrooms, the interactive discussion behavior 

achieved Recall of 0.97 and mAP of 0.95, far surpassing other 

behaviors. This is due to BiFPN’s dynamic spatial attention 

adjustment: for dim boundaries caused by window glare and 

shadowed corners, BiFPN strengthens feature channel weights 

in low-light areas. Combined with shared Encoder’s 

collaborative reasoning between environmental segmentation 

and behavior detection, it accurately captures posture 

associations during student interaction. Temporary leaving 

seat behavior achieved Precision of 0.91, relying on the seat 

area segmentation output by the shared Encoder, which assists 

the detection module in determining spatial boundaries of 

“leaving the seat”, reducing misjudgments. In high-density 

interaction classrooms with crowded students and overlapping 

postures, independent learning behavior maintained stable 

mAP of 0.88. This benefits from the dual-task decoupling 

design of the shared Encoder: the segmentation Decoder 

outputs “seat regions”, and the detection Decoder identifies 

“human targets”, collaborating spatially to distinguish 

individual learning states among adjacent students. Although 

the Recall of interactive discussion behavior is only 0.66, its 

mAP of 0.91 reflects the improved EFL loss’s ability to 

optimize hard samples: assigning higher loss weights to 

occluded interaction postures ensures overall classification 

accuracy. In multimedia-intensive classrooms facing screen 

glare and device occlusion, interactive discussion behavior 

still achieved Recall of 0.97 and mAP of 0.95, thanks to 

BiFPN’s channel weight dynamic allocation: it automatically 

enhances feature channels highly correlated with interaction, 

such as “gestures” and “face orientation”, while the shared 

Encoder’s segmentation module accurately extracts “device 

contours” to define “non-interference zones” for behavior 

detection. The mAP of 0.92 for staying at a fixed position 

behavior depends on the segmentation module’s accurate 

segmentation of fixed zones like “book corners” and “question 

areas”, combined with the detection module’s position 

tracking, achieving high-stability judgments. In dynamic 

work-type classrooms with intervention by workers or tools, 

movement within learning area behavior achieved excellent 

performance with Precision of 0.95 and mAP of 0.91. This is 

due to the shared Encoder’s dual-task collaboration, quickly 

distinguishing “students” from “workers”, and improved EFL 

loss adaptively increasing weights for fast-moving student 

targets, avoiding missed detections due to motion blur. 

Although the Precision (0.77) and Recall (0.78) of 

independent learning behavior are slightly lower, its mAP of 

0.85 is still well above random guessing, proving that under 

dynamic interference, the model can still maintain core 

behavior detection robustness through the threefold 

collaboration of “spatial segmentation + feature enhancement 

+ loss optimization”. 

In summary, the multi-scenario and multi-behavior data in 

Table 4 fully verify that the proposed model achieves dual 

improvements in precision and robustness for core behaviors 

such as “individual learning” and “interactive discussion” in 

complex smart classroom environments including natural light 

fluctuation, target density, device occlusion, and dynamic 

interference. This is accomplished through the dual-task 

collaboration of the shared Encoder, the dynamic feature 

enhancement of BiFPN, and the hard sample optimization of 

the improved EFL. 

From the multi-environment metric comparison in Figure 7, 

the model’s adaptability can be deeply analyzed in relation to 

its design. In natural light-dominated classrooms, the model 

achieves outstanding results with a Precision of 0.95, Recall of 

0.91, and mAP of 0.94. This is mainly attributed to BiFPN’s 

dynamic spatial attention adjustment, which enhances the 

feature channel weights in low-light boundary regions, such as 

window-side strong light and corner shadows. Combined with 

the collaborative inference of environmental segmentation and 

behavior detection by the shared Encoder, the spatial 

correlation of student postures is accurately captured, reducing 

both missed detections and false positives. In high-density 

interactive classrooms, the balanced performance of Precision 

0.93, Recall 0.92, and mAP 0.94 stems from the decoupled 

dual-task design of the shared Encoder: the segmentation 

Decoder outputs the “seating area” to provide spatial 

constraints for the detection Decoder, effectively 

distinguishing independent behaviors of adjacent students. 

The improved EFL assigns higher weights to partially 

occluded interactive postures, ensuring a balance between 

classification accuracy and recall. In classrooms densely 

equipped with multimedia devices, although Recall decreases 

to 0.88, the Precision of 0.91 and mAP of 0.9 remain high. 

This is primarily due to BiFPN’s dynamic channel weight 

allocation, which automatically enhances behavior-related 

channels such as “gesture actions” and “facial orientation”, 

suppressing interference signals from screen reflections. The 

environmental segmentation module of the shared Encoder 

accurately marks “device-occupied areas”, excluding non-

learning targets from false detections and ensuring the 

reliability of core behavior classification. In dynamic-task 

classrooms, despite having the lowest results among the four 

scenarios—Precision 0.83, Recall 0.8, and mAP 0.81—these 

metrics are still significantly better than random guessing. The 

shared Encoder rapidly delineates “task areas” and “learning 

areas” through environmental segmentation, aiding the 

detection module in distinguishing between students and 

workers. The improved EFL addresses motion-blurred student 

targets, maintaining robustness in core behavior detection 

under dynamic interference. To summarize, through dual-task 

collaboration of the shared Encoder, dynamic feature 

enhancement by BiFPN, and hard sample optimization by 

improved EFL, the model achieves collaborative 

breakthroughs in precision, recall, and mAP across complex 

scenarios such as lighting fluctuation, target density, device 

occlusion, and dynamic interference. This fully verifies the 

scientific and practical value of the proposed method in 

diverse smart classroom environments. 

 

 

4. CONCLUSION 

 

This study, targeting the core demands of intelligent 

classroom environmental monitoring and learning behavior 

analysis, proposed a dual-branch collaborative model based on 

object detection and semantic segmentation. It achieved joint 

extraction of environmental and behavioral features through a 

shared Encoder, enhanced dim boundary line detection via 

BiFPN’s dynamic weight mechanism, and alleviated pixel 

distribution imbalance using an improved EFL loss. Together, 

these formed a complete technical path of “feature sharing–

enhancement–optimization”. Experimental results 
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demonstrated that the model achieves high-precision 

environmental boundary segmentation and learning behavior 

detection in complex classroom scenarios, including natural 

light fluctuation, high-density interaction, dense device 

presence, and dynamic operations. It performed particularly 

well in dim boundary recognition and imbalanced sample 

scenarios. The research contributes in two main aspects: In 

technical aspect, it verified the effectiveness of a dual-task 

collaborative framework in classroom scenes, providing a 

reference for multi-task visual model design; In application 

aspect, it can output real-time joint analysis results of 

“environmental boundaries + behavior states”, providing 

quantitative support for teachers in adjusting teaching 

strategies and for administrators in optimizing classroom 

resource allocation, thereby promoting the transition of 

intelligent education from “passive monitoring” to “active 

support”. 

However, the study still has three limitations: (1) Behavior 

analysis depends on location and region information, resulting 

in insufficient accuracy for fine-grained behavior recognition. 

(2) Model inference delay slightly increases in dynamic 

scenarios. (3) Generalization relies on annotated classroom 

scene data, limiting adaptability to atypical classrooms. Future 

research can proceed in the following directions: Integrate 

pose estimation with object detection to refine behavior 

classification via keypoint features; Introduce lightweight 

network structures to optimize inference speed for edge-end 

real-time deployment; Adopt semi-supervised learning to 

reduce annotation dependence, and utilize multi-modal data to 

enhance robustness in complex scenes, further expanding 

application boundaries in smart education scenarios. 
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