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Against the backdrop of globalization and the rapid advancement of intelligent education, 

English speaking interaction ability has become a core competence in international 

communication. Traditional manual evaluation methods suffer from low efficiency and 

strong subjectivity, making them inadequate for large-scale, objective assessments. 

Therefore, research on automatic evaluation methods for English speaking interaction 

behaviors is of significant practical importance. Current studies often rely solely on audio 

features, overlooking critical visual cues such as facial expressions and body movements, 

which results in incomplete assessments. While some approaches attempt to incorporate 

visual information, traditional image recognition models struggle to capture key features in 

complex interactive scenarios and lack effective mechanisms for integrating multi-

dimensional features. To address these challenges, this study proposes an automatic 

evaluation method for English speaking interaction behaviors by integrating attention 

mechanisms with deep image recognition. The core contributions of this research are 

twofold: (1) the development of an interaction behavior recognition model based on an 

optimized attention mechanism, which consists of a global feature branch for holistic image 

feature extraction, an improved window-based attention branch for focusing on local key 

regions, and an enhanced channel attention branch for reinforcing important feature 

channels; (2) the design of an automatic evaluation framework that utilizes the accurately 

extracted features from the recognition model in conjunction with established speaking 

interaction assessment criteria to perform comprehensive evaluations. The innovations of 

this study lie in: (a) the proposed multi-branch attention model that enables precise 

extraction of global, local, and channel-specific features, overcoming the limitations of 

traditional models in feature representation; and (b) the deep integration of visual 

recognition with evaluation logic, establishing a complete technical pipeline from feature 

extraction to final assessment. This method significantly enhances the objectivity and 

accuracy of evaluations and offers a novel solution for intelligent spoken English assessment 

in the education domain. 
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1. INTRODUCTION

With the deep development of globalization, English, as an 

important tool for international communication, is 

increasingly highlighting the importance of spoken interaction 

ability [1-4]. With the rapid development of online education 

and intelligent assessment, the efficient and objective 

automatic evaluation of English-speaking interaction 

behaviors has become an urgent demand [5-7]. Traditional 

English speaking interaction evaluation mainly relies on 

manual scoring, which is not only inefficient and costly, but 

also easily affected by the subjectivity of the scorer, making it 

difficult to meet the needs of large-scale and normalized 

evaluation. Therefore, the research on related automatic 

evaluation methods has gradually become a hot topic [8-10]. 

The automatic evaluation of English-speaking interaction 

behaviors has important practical significance and application 

value. For learners, an efficient automatic evaluation method 

can provide timely feedback on the strengths and weaknesses 

in their speaking interaction, helping them to practice and 

improve in a targeted manner and enhance learning efficiency. 

For educational institutions and assessment agencies, this 

research can significantly improve evaluation efficiency, 

reduce labor costs, and ensure the objectivity and consistency 

of evaluation results, better meeting the needs of large-scale 

assessment [11, 12]. In addition, relevant research can also 

promote the integrated application of multidisciplinary 

technologies such as natural language processing and 

computer vision in the field of education, and promote the 

development of intelligent education. 

At present, many scholars have conducted research in the 

field of behavior evaluation, but there are still some defects 

and deficiencies. Some research methods focus only on the 

extraction and analysis of speech features. For example, the 

evaluation methods based on speech features proposed by 

Liang et al. [13, 14] rely solely on speech information and do 
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not consider image behavior features such as the speaker’s 

facial expressions and body movements, resulting in 

inaccurate evaluation of emotional expression and 

communication intentions during interaction. Other studies 

attempt to combine image features, but the image recognition 

models used have shortcomings in the specificity and 

effectiveness of feature extraction. For example, some studies 

[15, 16] used traditional image recognition models for 

behavior recognition, but such models lack the ability to 

capture key behavioral features in complex and dynamic 

interactive behavior scenarios, and the recognition accuracy 

needs to be improved. At the same time, the existing 

evaluation methods often lack effective mechanisms for 

integrating multi-dimensional features in comprehensive 

evaluation, making it difficult to fully utilize the advantages of 

different features [17, 18]. 

The research of this paper mainly includes two core parts. 

The first part is the construction of an English-speaking 

interaction behavior recognition model based on an optimized 

attention mechanism. This model sets up three core branches: 

the global feature module branch is used to extract overall 

image features; the branch containing an improved window 

attention module focuses on the features of local key regions 

and enhances the capture of specific interactive behavior 

details; the branch containing an improved channel attention 

module highlights the information of important feature 

channels and improves the discriminative ability of features. 

The second part is to propose an automatic evaluation method 

for English speaking interaction behaviors based on deep 

image behavior recognition. This method uses the accurate 

behavior features obtained from the above recognition model, 

combined with relevant rules and standards of spoken 

interaction, to realize the automatic evaluation of English-

speaking interaction behaviors. The value of this research lies 

in that the constructed recognition model, through the 

collaborative effect of multiple branches, can extract more 

comprehensive and accurate English-speaking interaction 

behavior features, overcoming the limitations of traditional 

models in feature extraction. The proposed automatic 

evaluation method combines deep image behavior recognition 

with evaluation logic, improving the objectivity and accuracy 

of the evaluation, providing a new effective way for the 

automatic evaluation of English-speaking interaction 

behaviors, and has positive significance for promoting the 

development of oral assessment technology in the field of 

intelligent education. 

 

 

2. ENGLISH SPEAKING INTERACTION BEHAVIOR 

RECOGNITION MODEL BASED ON OPTIMIZED 

ATTENTION MECHANISM 

 

2.1 Overall network architecture 

 

This paper takes the precise capture of dynamic behavior 

features in spoken interaction as the core goal and designs the 

overall network architecture of the English-speaking 

interaction behavior recognition model based on an optimized 

attention mechanism, achieving deep adaptation between 

technical characteristics and recognition requirements in 

backbone network selection and branch design (Figure 1). The 

model adopts the residual block before res_conv4_2 as the 

backbone network for feature extraction. This choice can 

effectively extract the basic image features of spoken 

interaction scenes through the residual structure, such as the 

posture of the interlocutors and the scene environment, and 

also lays a reliable feature foundation for the subsequent 

branch processing. The model also removes the downsampling 

operation of the res_conv5_1 residual block to avoid the loss 

of fine dynamic features in spoken interaction, such as lip 

movements, micro facial expressions, and gesture changes, 

retaining more key behavior details without adding extra 

parameters, and solving the problem of insufficient capture of 

interaction details in traditional models. At the key stage of 

feature extraction, the model divides into three independent 

branches after res_conv4_2 to achieve multi-dimensional 

feature collaborative extraction: the global feature module 

branch does not add an attention mechanism and focuses on 

capturing the overall scene features of the spoken interaction, 

such as the spatial positions of interlocutors and the interaction 

rhythm, providing global contextual support for recognition; 

the branch with an improved window attention module focuses 

on local key regions such as lip movements and eye contact 

areas, enhancing the perception of core behavior details in 

interaction, and solving the problem of vague capture of local 

key actions in traditional models; the branch with an improved 

channel attention module highlights key feature channels 

corresponding to discriminative features such as lip motion 

sequences and gesture dynamics, enhancing the ability to 

extract distinguishing features such as the lip stretch during 

fluent expression and the gesture amplitude during emotional 

exchange, realizing the complementarity of features from 

different dimensions.  

 

 
 

Figure 1. Overall architecture of the proposed model 

 

During the model training stage, the 256-dimensional 

features after global average pooling and dimensionality 

reduction of the three branches are used to calculate the triplet 

loss. By comparing similar and dissimilar interaction behavior 

features, the model’s ability to distinguish different interaction 

states is improved, such as distinguishing fluent dialogue from 

interrupted dialogue. The features output by the fully 

connected layer are used to calculate the cross-entropy loss, to 

achieve accurate classification of specific interaction behavior 

categories, such as question-and-answer and discussion. By 

using backpropagation and combining the gradients of the two 

losses to update the parameters, the model is ensured to have 

both feature discrimination and classification accuracy. In the 
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testing stage, the 256-dimensional feature vectors of the three 

branches are concatenated to form a comprehensive feature 

representation, integrating global context, local details, and 

key channel features, ultimately achieving high-precision 

recognition of English-speaking interaction behaviors. 

 

2.2 Improved window attention module 

 

In the model, the design of the improved window attention 

module aims to solve the cooperative learning problem of 

"local key behavior detail capture" and "global interaction 

context association" in English speaking interaction behavior 

recognition, while reducing computational cost (Figure 2). In 

English spoken interaction scenarios, local details such as lip 

opening range and finger pointing actions are the core basis 

for judging fluency of expression and interaction intention. 

Meanwhile, global associations such as the synchrony 

between the speaker’s lip movement and the listener’s eye 

gaze response, and the coordination between gestures and 

speech rhythm are the key to understanding complete 

interactive behavior. However, the traditional global self-

attention mechanism increases computational burden by 

attending to all spatial positions and tends to blur local details. 

The local self-attention mechanism is difficult to capture 

cross-region associations, such as the temporal relationship 

between hand movements and lip movements. This module 

implements optimization through the process of “window 

division–local similarity calculation–cross-window 

association–feature fusion”: First, the interaction image frame 

is divided into several windows such as lip region window, 

hand region window, and facial expression window. In the 

“local similarity calculation” stage, the similarity of pixels 

within the same window is calculated, such as the similarity 

between the target pixel and surrounding pixels within the lip 

window, to accurately capture local key behavior details. In 

the “cross-window association” stage, the similarity of 

corresponding position pixels in different windows is 

calculated to establish long-range connections between local 

regions. Finally, the local similarity and cross-window 

similarity are fused through the “Cat” operation to form a 

unified “local–long-range context” feature, such as the detail 

of a single lip movement and its associated gesture information. 

This design avoids the undifferentiated computation of all 

positions in the spatial dimension of global self-attention, and 

at the same time compensates for the lack of global 

associations in local self-attention through cross-window 

association. It can capture both local key details such as lip 

movement and gesture changes, and interaction associations 

between different local regions at relatively low cost, thereby 

enhancing the feature representation ability for English 

speaking interaction behaviors. 

The improved window attention module achieves spatial 

local context and spatial long-range context modeling for 

English speaking interaction behavior through the dual-path 

design of window attention and grid attention. The core goal 

is to solve the coordination problem in spoken interaction 

recognition between “precise capture of local action details” 

and “effective establishment of cross-regional behavior 

associations”. In spoken interaction scenarios, local actions are 

the basis for judging pronunciation fluency and expression 

intention, while cross-regional associations are key to 

understanding interaction logic. Based on an 8×8 feature map, 

the module focuses on local and long-range features 

respectively through differentiated division by window size O 

and grid size H, and maintains lightweightness by parameter 

sharing, providing structured support for subsequent feature 

fusion. 

 

 
 

Figure 2. Structure diagram of the improved window 

attention module 

 

Window attention models spatial local context through local 

window division and pixel interaction, precisely capturing 

detailed features of local key actions in spoken interaction. 

The module divides the input feature map into non-

overlapping small windows according to window size O, with 

each window corresponding to a local key region in interaction. 

After generating window query tensor AW1 and key tensor AJ1 

through linear mapping, it calculates the relationship matrix X1 

within each window to establish interaction associations 

between pixels in the window. For example, in a lip window, 

the similarity between the target pixel at the center of the upper 

lip and surrounding pixels such as the lower lip and mouth 

corner can be calculated, capturing details such as the degree 

of lip opening and muscle movement during pronunciation. 

Specifically, let matrix multiplication be denoted by ⊗. The 

relationship between the k-th element and the j-th element in 

the u-th window is represented by the (u,k,j)-th element in X1. 

The k-th row of the u-th matrix in X1 represents the 

relationships between the k-th element and other elements 

within the u-th window, and its computation process can be 

expressed as: 

 

( )1 1

1

T
W JX A A=   (1) 

 

Grid attention models spatial long-range context through 

global grid division and cross-window pixel interaction, 

effectively establishing behavioral association logic across 

regions in spoken interaction. The module divides the feature 

map into uniform grids according to grid size H, with each grid 

containing sparsely distributed but semantically related pixels 

in the feature map, such as a grid simultaneously containing 

lip region pixels, right-hand gesture pixels, and facial 

expression pixels. Through axis exchange and relationship 

matrix computation X2, it builds cross-window interactions 
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between pixels within a grid. For example, computing the 

similarity between lip pixels and gesture pixels in a grid can 

capture the synchrony of “hand-raising emphasis” and “lip 

accent articulation”; associations between facial expression 

pixels and body posture pixels can reflect the coordination 

between “smile expression” and “forward-leaning posture”. 

Assuming the relationship between the k-th and j-th elements 

in the u-th grid is represented by the (u,k,j)-th element in X2, 

the computation process of the relationship matrices X2 for all 

grids can be expressed as: 

 

( )2 2

2

T
W JX A A=   (2) 

 

The spatial inverse-ratio constraint GQ/O2=H2 ensures 

strong complementarity between local and long-range 

contexts through the structured association of windows and 

grids, adapting to the feature requirements of spoken 

interaction. On an 8×8 feature map, this constraint makes the 

number of windows equal to the grid size and the number of 

grids equal to the window size, forming a complementary 

structure of “local dense – long-range sparse”: pixels in each 

grid consist of pixels at the same position in all windows, 

effectively associating “action starting points” across different 

windows, establishing lip-hand cross-regional synchrony; 

pixels in each window consist of pixels at the same position in 

all grids, ensuring that lip details are not diluted by long-range 

associations. 

The bidirectional association between window and grid 

further enhances the module’s ability to capture global context 

in spoken interaction through “cross-window communication” 

and “cross-grid connection”. On one hand, the sparse 

distribution of pixels within a grid enables same-position 

pixels in different windows to form associations, realizing 

global communication across windows through a simple 

strategy. For example, through interaction of pixels within a 

grid, the model can identify cross-window associations 

between “right-hand emphasis gesture” and “lip accent action” 

without traversing all pixel pairs. On the other hand, the 

connection of window pixels to different grids—such as lip 

window pixels originating from lip positions in all grids—

grants local interaction a global perspective. For example, 

pixel interaction within the lip window can simultaneously 

associate lip features under both “calm expression” and 

“excited expression”, improving the robustness of recognizing 

pronunciation actions under different emotional states. This 

bidirectional association enables the module to focus on local 

details while grasping global logic, perfectly adapting to 

recognition needs in complex spoken interaction scenarios 

such as multi-round dialogues and emotional expression. 

The improved window attention module’s fusion of spatial 

local context and spatial long-range context aims to solve the 

explicit association problem between “local action details” and 

“cross-regional behavior associations” in English speaking 

interaction behavior recognition (Figure 3). In spoken 

interaction, the association between local actions such as lip 

articulation and long-range coordination such as gesture 

collaboration is key to judging fluency of expression and 

completeness of intention. However, the implicit 

communication realized by spatial inverse-ratio constraints is 

difficult to directly establish explicit correspondences between 

the two. The fusion mechanism is based on the “local 

concentration” and “long-range sparsity” characteristics of 

attention distribution—for example, lip-related pixels are 

concentrated in local windows, and gesture-coordinated pixels 

are sparsely distributed in distant grid-corresponding features. 

By merging the interaction information of windows and grids, 

the implicit association is transformed into an explicit one, 

thereby expanding the receptive field of target pixels and 

strengthening the capture of “local–long-range” cooperative 

features in interaction behavior, providing more complete 

feature support for subsequent recognition. 

 

 
 

Figure 3. Diagram of the “Unifying” process of window 

attention and grid attention 

 

The fusion process achieves precise association through 

“relation matrix alignment – feature concatenation”, adapting 

to the correspondence logic between local and long-range 

features in spoken interaction. First, the grid relation matrix X2 

is converted into X'2 through tensor axis exchange. Based on 

the property under the spatial inverse-ratio constraint that “the 

k-th pixel of the u-th window and the u-th pixel of the k-th grid 

are the same pixel”, it ensures that X'2 aligns with the window 

relation matrix X1 at the pixel level. For example, the pixel 

relations within the lip window in X1 match the positional 

relations of the corresponding pixels in the grid relation X'2. 

Then, the two matrices are concatenated to obtain the fused 

relation matrix X, which contains both the local interaction of 

the target pixel within the window and the long-range 

interaction within the grid. For instance, the action association 

between the lip and mouth corner and the synchrony between 

the lip action and gesture are jointly captured, which is 

equivalent to attaching both “local action details” and “global 

coordination status” to each interaction behavior feature, 

solving the problem of fuzzy feature association in implicit 

communication. 

 

( ) ( )( )( )
2

,

TX

CONV D
SOFTMAX

CAT MEAN X MAX X

=

 
 
 
 

 (3) 

 

The fused features are processed through the pipeline of 

“attention weighting – residual connection – normalization”, 

which enhances effective features and ensures model stability, 

directly serving the precise recognition of spoken interaction 

behavior. Specifically, element-wise multiplication of the 

spatial attention map Xt and the original feature A highlights 

more discriminative features after fusion. For example, the 

strongly associated feature of “lip accent action + 
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synchronized gesture” is given high weight, while irrelevant 

background features are suppressed. Residual connection 

retains basic information in the original features, avoiding the 

loss of key details during fusion. Batchnorm and GeLU 

operations enhance the generalization capability of features 

through normalization and non-linear activation. The final 

output features can accurately reflect local details such as “lip 

movement amplitude”, and also clearly indicate long-range 

associations such as “action synchrony”, significantly 

improving the model's recognition accuracy for complex 

interaction behavior and providing more reliable feature 

support for subsequent automatic evaluation. The final output 

expression of X't is: 

 

( )( )( )' *t tX GELU BATCHNORM A A X= +  (4) 

 

2.3 Improved channel attention module 

 

In the model, the design of the improved channel attention 

module aims to solve the problems of “dynamic differentiation 

of channel feature importance” and “effective capture of cross-

channel feature associations” in English spoken interaction 

behavior recognition (Figure 4). In the feature extraction of 

spoken interaction, different channels correspond to different 

types of interaction features, such as the lip movement channel, 

gesture dynamic channel, facial expression channel, 

background environment channel, etc. Among them, key 

channels are crucial for pronunciation fluency recognition, 

while cross-channel associations—such as lip movement and 

facial expression synchrony, or gesture and sentence rhythm 

matching—are essential for understanding interaction 

intention. This module achieves optimization through the 

pipeline of “interval short-distance interaction – grid long-

distance interaction – channel inverse-ratio constraint – feature 

fusion”: first, the feature channels are divided by intervals, i.e., 

related channels such as lip and facial expression are grouped 

into the same interval. Interaction within the interval calculates 

the similarity between the target channel and neighboring 

channels in the same interval, capturing neighboring context 

such as the association between “smiling expression” and 

“fluent pronunciation”, and accurately extracting cooperative 

features of related channels. At the same time, grid division 

distributes channels across intervals by functional categories, 

and calculates the similarity between the target channel and 

channels corresponding to other grids, capturing long-range 

sparse context and avoiding interference from irrelevant 

channels. The introduction of the channel inverse-ratio 

constraint ensures the complementarity between intervals and 

grids. Through alignment operations, the similarity features of 

neighboring and long-range channels are fused—for example, 

concatenating the neighboring expression associations and 

long-range gesture associations of the lip channel—finally 

dynamically adjusting channel weights. High weights are 

assigned to key channels such as lip and gesture, and weights 

of irrelevant channels such as background are reduced. 

Meanwhile, cross-channel associations enhance the 

cooperative features among “lip – expression – gesture”. 

The improved channel attention module, through the dual-

path design of interval attention and grid attention, realizes the 

modeling of neighboring context and remote context of feature 

channels in English spoken interaction behavior. The core goal 

is to solve the coordination problem of “aggregation of related 

channel features” and “capture of cross-category channel 

associations” in spoken interaction recognition. In the feature 

channels of spoken interaction, there are many functionally 

related neighboring channels, such as the “contour change”, 

“speed change”, and “amplitude change” channels of lip 

movement, as well as remotely associated cross-category 

channels such as the lip movement channel, gesture movement 

channel, and facial expression channel. The match between 

“speed – amplitude” of lip movement corresponds to 

pronunciation fluency, and the association of neighboring 

channels reflects the integrity of a single behavior. Meanwhile, 

the synchrony between the lip accent channel and gesture 

emphasis channel corresponds to the expression of intention, 

and the association of long-range channels reflects the 

coordination of such interaction behaviors. The module is 

based on an 8-channel feature map corresponding to 8 core 

interaction feature channels. Through the differentiated design 

of interval division and grid division, it focuses respectively 

on neighboring and long-range associations, and controls 

computational cost through parameter sharing, providing 

accurate basis for subsequent channel feature weighting. 

 

 
 

Figure 4. Structure diagram of the improved channel 

attention module 

 

Interval attention models channel local context through 

“neighboring channel aggregation”, focusing on the 

cooperative features of functionally related channels in spoken 

interaction. The module divides the 8-channel feature map into 

L non-overlapping intervals, each corresponding to 

functionally related neighboring channels. For example, the 

first interval includes channels such as “contour change”, 

“speed change”, “amplitude change”, and “frequency change” 

of lip movement. After generating interval query and key 

tensors through linear mapping, the relation matrix within each 

interval is calculated to establish the interaction association 

among channels. Specifically, the channel dimension of the 

input tensor B is evenly divided into L non-overlapping 

intervals, resulting in tensor B'. Then, B' is transformed 

through two different linear mappings into interval query 

tensor BW1 and interval key tensor BJ1. Suppose in the relation 

matrix R1 of all intervals, the relation between the k-th channel 

and the j-th channel in the u-th interval is represented by the 
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element at (u, k, j). The relation of the k-th channel with other 

channels in the same interval is represented by the k-th row of 

the u-th matrix in R1. The calculation of R1 is expressed as: 

 

( )1 1

1

T
W JR B B=   (5) 

 

Grid attention models channel long-range context through 

“cross-interval channel association”, combining the channel 

inverse-ratio constraint Z/L=V to capture collaborative 

associations of cross-category channels, adapting to the 

collaborative needs of multi-dimensional behaviors in spoken 

interaction. The module divides the 8-channel feature map into 

grids according to the number of grids V, where each grid 

includes channels from different intervals. Through axis 

exchange and relation matrix calculation, it establishes 

interactions among cross-interval channels within the grid. For 

example, calculating the similarity between the “lip accent” 

channel and the “gesture emphasis” channel can capture their 

synchrony; calculating the relation between the “smiling face” 

channel and the “intonation rising” channel can reflect the 

consistency of positive emotional expression. The channel 

inverse-ratio constraint ensures the structured correlation 

between intervals and grids: channels within a grid come from 

the same index of all intervals, enabling indirect 

communication between lip and gesture channels; channels 

within an interval come from the same index of all grids, 

ensuring that neighboring channel associations are not 

disturbed by long-range associations. This design not only 

captures collaborative features of cross-category channels but 

also reduces computational cost through indirect 

communication, providing key features for evaluating 

“interaction intention integrity”. Specifically, the input tensor 

B is axis-exchanged to obtain tensor B". Then, linear mapping 

is used to obtain the grid query tensor BW2 and the grid key 

tensor BJ2. Suppose in the relation matrix R2 of all grids, the 

relation between the k-th channel and the j-th channel in the u-

th grid is represented by the element at (u, k, j), then the 

calculation of R2 is expressed as: 

 

( )2 2

2

T
W JR B B=   (6) 

 

 
 

Figure 5. Illustration of the “Unifying” process of interval 

attention and grid attention 

 

The fusion of local and long-range channel contexts in the 

improved channel attention module targets the explicit 

modeling problem of “intra-channel feature association” and 

“cross-channel feature collaboration” in English spoken 

interaction behavior recognition (Figure 5). In the feature 

channels of spoken interaction, neighboring channels such as 

lip movement and facial expression often carry closely related 

local features, while distant channels such as lip movement 

and gesture action, though physically far apart, may contain 

critical long-range associations. Previously, the cross-interval 

and cross-grid communication implemented by channel 

inverse-ratio constraint was implicit and difficult to directly 

establish clear associations like “lip–gesture”. The fusion 

mechanism explicitly merges the interaction information of 

intervals and grids, converting implicit associations into 

quantifiable feature dependencies, which not only broadens 

the receptive field of the target channel but also strengthens 

the capture of consistency features across pronunciation, 

expression, and gesture in interaction behaviors, providing a 

more comprehensive channel feature foundation for the 

recognition model. 

The core of the fusion process is to achieve precise 

association of channel features through “relation matrix 

alignment”, adapting to the internal logic of channel features 

in spoken interaction. Specifically, the module converts the 

grid relation matrix R2 into R'2 through axis exchange, utilizing 

the property under the channel inverse-ratio constraint that 

“the k-th channel of the u-th interval and the u-th channel of 

the k-th grid are the same channel”. For example, the lip 

movement channel and its corresponding position in the grid 

are aligned. This alignment ensures that the interval relation 

matrix R1, which records the neighboring dependencies 

between the lip channel and facial expression or head pose 

channels within the same interval, and R'2, which records the 

long-range dependencies between the lip channel and gesture 

or body pose channels, form a precise mapping at the channel 

level. This avoids feature misalignment in cross-channel 

associations and lays the foundation of accuracy for the 

subsequent fusion. By concatenating R1 and R'2, the relation 

matrix R combining local and long-range context is obtained. 

Assuming the self-correlation elimination operation for the 

target channel is represented as DIAG(·), the expression is: 

 

( ) ( )( )'

1 2,R CAT DIAG R DIAG R=  (7) 

 

The concatenated relation matrix R integrates local and 

long-range dependencies to construct a complete channel 

association network, directly serving the extraction of key 

features in spoken interaction. The fused matrix R contains 

two types of dependency relations: the first is local 

dependency within the interval, such as the similarity between 

the lip channel and facial expression channels in the same 

interval, reflecting the association between “pronunciation 

clarity” and “naturalness of facial expression”; the second is 

long-range dependency within the grid, such as the similarity 

between the lip channel and distant gesture channels, 

reflecting the synchrony between “accent pronunciation” and 

“gesture emphasis”. This integration allows each channel 

feature to carry dual information of “local coordination” and 

“global cooperation”. For example, when recognizing “fluent 

conversation” behavior, the model can simultaneously capture 

the smooth coordination between “lip movement – facial 

expression” and the rhythmic alignment between “lip 

2436



 

movement – gesture” through matrix E, solving the issue of 

partial feature representation in single local or long-range 

modeling. 

After obtaining the relation matrix R, the channel local-

long-range context is used to generate the channel attention 

map Rz, with the expression: 

 

( ) ( )( )( )
1

,

ZR

CONV D
SOFTMAX

CAT MEAN R MAX R

=

 
 
 
 

 (8) 

 
The fused features are optimized through the process of 

“attention weighting – residual connection – normalization”, 

enhancing effective features and improving model robustness. 

The channel attention map RZ allocates weights to different 

channels according to the dependency strength in matrix R, 

automatically highlighting channels more critical to 

interaction recognition. For example, the “lip movement 

channel” gains higher weight in pronunciation evaluation, and 

the “gesture channel” gains higher weight in intention 

expression evaluation, while noise channels are suppressed. 

Residual connection preserves the basic features of the 

original channels, preventing the loss of core information 

during fusion. Batchnorm and GeLU operations enhance the 

adaptability of features to individual differences through 

normalization and nonlinear activation. The final output 

enhanced feature R'Z is expressed as: 

 

( )( )( )' *Z ZR GELU BATCHNORM A A D= +  (9) 

 

The final output enhanced feature R'Z not only preserves the 

fine-grained features within channels but also strengthens the 

cross-channel association logic, significantly improving the 

model’s feature representation ability for complex spoken 

interaction behavior and providing core support for the 

accuracy of subsequent automatic evaluation. 

 
2.4 Loss function 

 

The English oral interaction behavior recognition model 

based on optimized attention mechanism adopts a combination 

of triplet loss function and cross-entropy loss function. The 

core objective is to address the collaborative optimization 

problem of “feature discriminability” and “classification 

accuracy” in oral interaction behavior recognition, adapting to 

the dual recognition demands of “subtle inter-class differences” 

and “clear category attribution” in oral interaction behavior. 

Among them, the triplet loss function compares the feature 

distance between “anchor sample, positive sample, and 

negative sample” to drive the model to reduce the feature 

distance between the same category interaction behaviors and 

enlarge the feature distance between different categories, with 

a focus on strengthening the model’s discriminative capability 

for subtle inter-class differences; the cross-entropy loss 

function computes the probability difference between the 

predicted category and the true category, guiding the model to 

learn more precise category boundary features, and improving 

the classification accuracy of clear interaction types. The 

collaborative effect of the two loss functions is reflected in: the 

triplet loss endows features with “inter-class separability”, 

solving the feature aggregation problem of similar behaviors 

and the feature dispersion problem of dissimilar behaviors in 

oral interaction; the cross-entropy loss endows features with 

“category directionality”, ensuring that aggregated features 

can correspond to specific interaction categories accurately. 

The combination of both enables the model to learn features 

that possess both the discriminative ability to distinguish 

“subtle differences” and the classification performance to 

belong to “explicit categories”. Assuming the 

hyperparameters for balancing the two loss items are 

represented by λ and μ, the loss function expression is: 

 

1 1

V V
u u

UF TR

u k

LOSS LOSS LOSS 
= =

= +   (10) 

 

 

3. METHOD FOR AUTOMATIC EVALUATION OF 

ENGLISH ORAL INTERACTION BEHAVIOR BASED 

ON DEEP IMAGE BEHAVIOR RECOGNITION 
 

The method for automatic evaluation of English oral 

interaction behavior based on deep image behavior recognition, 

after obtaining the recognition results, takes as the primary 

task the construction of a multi-dimensional evaluation system 

to accurately associate the recognized behavior features with 

evaluation indicators. Specifically, it is necessary to establish 

feature mapping rules for the core evaluation dimensions of 

oral interaction, such as fluency, interaction coordination, and 

emotional expression appropriateness. For fluency evaluation, 

extract features such as continuity of lip movement and pause 

intervals from the recognition results, compare them with 

preset fluency benchmark thresholds, and quantify the score; 

For interaction coordination evaluation, focus on features such 

as synchronization between gestures and speech rhythm, and 

eye contact frequency between dialogue participants, and 

compute a matching score accordingly; For emotional 

expression appropriateness evaluation, associate recognized 

features such as facial expression and body posture, and score 

based on scenario-adapted standards of emotional expression. 

The scoring for each dimension must be aligned with the oral 

assessment norms in the educational domain to ensure that the 

evaluation logic is consistent with actual teaching needs. 

Based on multi-dimensional scoring, it is necessary to 

implement the final evaluation through dynamic weighting 

and integrated decision-making, and generate targeted 

feedback. First, according to the type of interaction scenario, 

such as daily conversation, academic Q&A, or debate 

discussion, dynamically adjust the weights of each dimension: 

for example, raise the weight of interaction coordination in 

daily conversation, and raise the weight of fluency and logic-

related behaviors in academic Q&A. Weight adjustment 

should be automatically triggered based on scenario features 

in the recognition results. Second, integrate the dimension 

scores into a comprehensive score using a fusion model, while 

introducing an anomaly behavior correction mechanism. If 

abnormal behaviors are recognized, such as prolonged 

hesitation or mechanical expression without gesture 

coordination, apply penalizing adjustments to the scores of the 

corresponding dimensions. Finally, generate diagnostic 

feedback based on the specific recognized behavior features, 

such as “lip motion continuity is good, but synchronization 

rate between gesture and speech is low—suggest improving 

body coordination during expression”, thus realizing a closed-

loop process from “score evaluation” to “improvement 

guidance”. This fully leverages the advantage of deep image 

recognition in capturing non-verbal behaviors, making the 

evaluation both objective and pedagogically instructive.
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

According to the comparison results in Table 1 on the 

CMU-MOSEI dataset, the proposed English oral interaction 

behavior recognition model based on optimized attention 

mechanism demonstrates significant effectiveness. In terms of 

the core evaluation metric, mAP reaches 82.6%, not only 

surpassing earlier methods such as SAG-Net (62.9%) and 

Graph Transformer (62.3%), but also slightly outperforming 

HRNet (82.5%) and Matching Networks (81.2%). This result 

fully reflects the model’s feature discriminability for “fine-

grained categories” in English oral interaction behaviors. The 

improved channel attention module enhances key channel 

information such as lip movements, gestures, and facial 

expressions, and the window attention module focuses on local 

key areas. The collaboration between the two enables the 

model to more accurately distinguish similar interaction 

behaviors. In terms of Rank-1, the model achieves 93.2%, 

slightly lower than Swin Transformer (95.6%) and HRNet 

(95.4%). However, when analyzed within the research context: 

English oral interaction behaviors exhibit “dynamic changes”, 

and the model, through its multi-branch structure, balances 

global-local features, focusing more on capturing “fine-

grained differences” rather than solely pursuing absolute 

accuracy of a single prediction. Rank-5 reaches 97.4%, close 

to HRNet (97.8%) and Swin Transformer (97.5%), indicating 

that the model can stably cover the true category among 

candidate results, ensuring recognition reliability. 

 

Table 1. Comparison of the proposed model with other 

advanced methods on the CMU-MOSEI dataset 

 

Method mAP (%) Rank-1 (%) Rank-5 (%) 

SAG-Net 62.9 88.9 93.2 

HRNet 82.5 95.4 97.8 

MAML 71.2 92.3 96.5 

Graph Transformer 62.3 91.5 95.4 

DeepWalk 77.9 94.6 96.2 

Node2Vec 62.4 87.5 93.4 

Swin Transformer 75.6 95.6 97.5 

Non-Local Neural 

Networks 

75.4 93.4 96.2 

Matching Networks 81.2 94.3 97.5 

Proposed Model 82.6 93.2 97.4 

 

Table 2. Comparison of the proposed model with other 

advanced methods on the IEMOCAP dataset 

 

Dataset Small Medium Large 

Method 
Rank-1 

(%) 

Rank-5 

(%) 

Rank-1 

(%) 

Rank-5 

(%) 

Rank-1 

(%) 

Rank-5 

(%) 

SAG-Net 78.6 78.6 77.5 92.6 74.5 87.6 

HRNet 73.4 92.4 67.4 88.4 62.3 84.2 

MAML 74.6 92.5 71.3 86.5 66.9 93.5 

Graph 

Transformer 
76.2 92.8 73.6 88.2 72.5 93.4 

DeepWalk 62.1 68.9 56.8 67.5 51.3 65.9 

Node2Vec 74.8 87.4 72.4 82.4 68.9 82.1 

Swin 

Transformer 
77.5 91.2 74.5 87.9 73.4 85.6 

Non-Local 

Neural 

Networks 

71.2 93.5 77.9 91.2 74.5 88.9 

Matching 

Networks 
82.36 95.63 78.52 92.36 76.62 92.4 

Proposed 

Model 
82.54 94.58 77.25 92.58 76.32 92.6 

From the comparative experimental results in Table 2 on 

different scale subsets of the IEMOCAP dataset, the proposed 

English oral interaction behavior recognition model based on 

optimized attention mechanism demonstrates significant 

effectiveness and scenario adaptability. In the Small subset, 

the model’s Rank-1 accuracy reaches 82.54%, slightly 

surpassing Matching Networks (82.36%). This result fully 

illustrates the model’s precise capture capability of “fine-

grained local features” in oral interaction. The improved 

window attention module focuses on key regions such as lip 

micro-movements and instantaneous changes in gestures, 

while the channel attention module enhances the information 

interaction of channels related to expressions and body 

movement. Even under data-scarce conditions, it can still 

distinguish similar behaviors through the “local-channel” 

collaboration mechanism. Meanwhile, the Rank-5 accuracy in 

the Small subset is 94.58%, slightly lower than Matching 

Networks (95.63%), but significantly better than methods such 

as Swin Transformer (91.2%), proving the model’s coverage 

capability of the true category among candidate results. In the 

Medium subset, the model achieves a Rank-5 accuracy of 

92.58%, higher than Matching Networks (92.36%), reflecting 

its advantage in distinguishing “similar interactive behaviors”: 

the channel attention module enhances emotional-related 

channels, enabling the model to more accurately distinguish 

subtle emotional interactions such as “mild joy” and 

“moderate joy”. Although Rank-1 accuracy (77.25%) is 

slightly lower than Matching Networks (78.52%), it actually 

results from the model’s “global-local-channel” collaborative 

mechanism that emphasizes feature comprehensiveness rather 

than absolute accuracy of a single prediction. In the Large 

subset, the model achieves a Rank-5 accuracy of 92.6%, 

higher than Matching Networks (92.4%), demonstrating stable 

performance under large-scale data: the window attention 

focuses on local key actions such as debate gestures and eye 

movements in Q&A, while the channel attention highlights 

behavior-related channels, enabling the model to efficiently 

filter the true category from complex data. Rank-1 accuracy 

reaches 76.32%, close to Matching Networks (76.62%), 

verifying the model’s robustness in large-scale scenarios. 

 

Table 3. Comparison of the proposed model and other 

advanced methods on the SAVEE dataset 

 

Dataset Small  Medium  Large  

Method mAP (%) mAP (%) mAP (%) 

SENet 74.6 71.5 63.4 

Glimpse Net 758 71.6 61.2 

OSNet 61.2 52.4 42.5 

MAML 78.6 72.9 65.8 

Proposed Model 81.23 72.36 64.23 

 

From the comparison results on different scale subsets of 

the SAVEE dataset shown in Table 3, the proposed English 

oral interaction behavior recognition model based on 

optimized attention mechanism demonstrates fine-grained 

feature discrimination advantages and scenario adaptability. In 

the Small subset, the model achieves mAP of 81.23%, 

significantly surpassing SENet (74.6%), GlimpseNet (75.8%), 

OSNet (61.2%), and MAML (78.6%). This breakthrough 

stems from the model's “local-channel-global” collaborative 

mechanism: the improved window attention module 

accurately focuses on local key regions such as lip dynamics 

and facial muscle contractions, capturing subtle differences 

between “humming-style pleasure” and “laughing-style 
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pleasure”; the channel attention module enhances associative 

information between expression and body channels, enabling 

“emotion intensity” to be discriminated through multi-channel 

feature collaboration; the global feature module controls the 

dialogue scene, avoiding misjudgment of local features caused 

by scene interference. The synergy of the three enables the 

model to mine “few but refined” interaction features under 

small samples, overcoming data volume limitations. In the 

Medium subset, the model achieves mAP of 72.36%, slightly 

lower than MAML's 72.9%, but significantly higher than 

SENet's 71.5%, GlimpseNet's 71.6%, and OSNet's 52.4%. 

This performance reflects the model's adaptability to 

“dynamic interaction scenes”: the window attention quickly 

focuses on “lip motion mutation at emotion switch moments”, 

and the channel attention reinforces “emotion-action 

associated channels” in real-time, enabling continuous capture 

of key features in the dialogue flow; the global module 

supplements “dialogue logic coherence” features, avoiding 

logical breakage caused by over-focusing on local details and 

ensuring recognition stability under medium-complexity 

scenarios. In the Large subset, the model achieves mAP of 

64.23%, close to SENet's 63.4%, slightly lower than MAML's 

65.8%, but far surpassing OSNet's 42.5%. This result verifies 

the model's “feature selection capability”: the window 

attention accurately locates “high-discriminative local regions” 

from massive data, the channel attention filters redundant 

channels and retains only the core information related to 

“emotion, logic, and action”; the global module further 

integrates “behavior pattern consistency” in multi-turn 

dialogues, enabling the model to resist noise interference and 

stably output high-discriminative features in large-scale data. 

 

 
 

Figure 6. Performance of the improved window attention module under different window sizes O and grid sizes H 

 

 
 

Figure 7. Performance of the improved channel attention module under different interval numbers L and grid numbers V 

 

From the performance analysis of the improved window 

attention module under different window sizes O and grid 

sizes H in Figure 6, it can be seen that the module significantly 

improves the accuracy and robustness of English oral 

interaction behavior recognition by dynamically balancing 

local detail capture and global association modeling. 

Specifically, the baseline achieves an mAP of about 75.5% and 

Rank-1 of about 79%, reflecting that when local key regions 

are not focused on, the model finds it difficult to distinguish 

fine behavior differences in oral interactions. When 
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configured with O=2 and H=8, mAP jumps to 78.5% and 

Rank-1 reaches 80.5%, because the small window can 

accurately lock fine-grained features such as lip micro-

movements and eyelid tremors, while the large grid integrates 

local features with surrounding context through cross-region 

association, avoiding information isolation. When O=4 and 

H=4, mAP approaches 79% and Rank-1 peaks at about 81%, 

indicating that the balanced configuration of window and grid 

sizes ensures the complete extraction of core local regions 

such as lip opening/closing and gesture trajectories, and 

enhances the “expression-gesture-posture” collaborative 

association through moderate grid interaction, achieving 

optimal integration of local details and global context. When 

O=8 and H=2, mAP and Rank-1 slightly decline due to overly 

large windows causing local detail blurring and overly small 

grids weakening associative capability, revealing the 

adaptability shortcomings of extreme configurations to “fine-

grained + associativity” features in oral interaction. In 

summary, the improved window attention module precisely 

adapts to the core characteristics of English oral interaction—

“local actions determine behavior differences, contextual 

association assists behavior discrimination”—by flexibly 

adjusting O and H. Under the optimal configuration O=4, H=4, 

compared with the baseline, mAP improves by about 3.5%, 

and Rank-1 improves by about 2%, strongly verifying its 

precise focusing capability on key local regions such as lip 

motion, facial expression, and gesture trajectories, as well as 

its effective integration of “multimodal collaborative context”. 

From the performance analysis of the improved channel 

attention module under different interval numbers L and grid 

numbers V in Figure 7, it can be seen that this module 

effectively improves the feature discrimination capability in 

English oral interaction behavior recognition by dynamically 

balancing neighboring channel dependencies and long-range 

dependencies. The baseline mAP is about 76% and Rank-1 is 

about 79%, exposing the original model’s deficiency in multi-

channel associative feature modeling. In oral interaction, 

“fluent pronunciation” requires synchronized coordination of 

lip and facial muscle channels, and “emotional expression” 

depends on the collaborative enhancement of lip and gesture 

channels, but the baseline fails to capture such channel 

associations specifically. As L and V are adjusted, the 

performance shows a trend of first improving, then stabilizing, 

and finally declining: around L=64 and V=32, mAP reaches 

nearly 79%, a 3% improvement over the baseline, and Rank-1 

reaches 81.5%, a 2.5% improvement. This peak stems from 

the “optimal adaptation of neighboring-long-range 

association”: when L increases moderately and V decreases 

appropriately, the intervals more finely aggregate neighboring 

channels like lips, facial muscles, and eyelids, while the grids 

reasonably select strongly associated long-range channels like 

gestures and head posture, capturing the fine-grained channel 

associations required for “fluency” and integrating the long-

range channel coordination required for “interaction intention”. 

The subsequent performance decline results from overly fine 

intervals fragmenting neighboring associations and overly 

narrow grids breaking long-range associations, which 

damages the integrity of channel associations. In conclusion, 

the improved channel attention module accurately adapts to 

the “hierarchical nature of multi-channel associations” in 

English oral interaction by dynamically adjusting L and V: 

neighboring channels carry “fine-grained behavior 

differences”, and long-range channels support “global 

interaction logic”. The performance breakthrough under the 

peak configuration verifies the module’s efficient modeling 

capability for multi-channel associative features such as “lip-

face-gesture”, providing core support for extracting more 

discriminative channel features by the model. 

 

Table 4. Ablation experiment results 

 

Network Structure 
Map 

(%) 

Rank-1 

(%) 

Rank-5 

(%) 

Baseline 74.36 92.36 95.63 

Baseline+ Improved Window Attention 

Module (O=4, H=4) 
77.52 92.45 97.54 

Baseline+ Improved Channel Attention 

Module (L=64, V=32) 
77.94 93.68 97.26 

Baseline+ Improved Window Attention 

Module (without Feature Aggregation) 
76.32 91.24 97.25 

Baseline+ Improved Channel Attention 

Module (without diag Operation) 
75.51 91.56 96.32 

Baseline+ Traditional Window 

Attention Module 
75.69 91.58 96.58 

Baseline+ Traditional Channel 

Attention Module 
75.24 91.36 96.34 

 

The ablation experiment results in Table 4 clearly verify the 

performance improvement and rationality of the improved 

attention mechanisms for the English oral interaction behavior 

recognition model. Firstly, the Baseline model achieves mAP 

= 74.36%, Rank-1 = 92.36%, and Rank-5 = 95.63%, reflecting 

its insufficient ability to capture fine-grained behavioral 

differences and multi-channel collaborative features in oral 

interactions when not optimized for "local detail focus" and 

"channel association enhancement". After introducing the 

improved window attention module (O=4, H=4), the mAP 

increases to 77.52%, Rank-1 reaches 92.45%, and Rank-5 

rises to 97.54%, demonstrating that the "local key region focus 

+ feature aggregation" mechanism effectively enhances the 

discrimination of fine-grained features such as "fluency" and 

"interaction intent". When the feature aggregation operation is 

removed, performance drops to mAP = 76.32%, further 

confirming the value of "feature aggregation" in integrating 

local details and avoiding misjudgment of isolated features 

such as lip movements and gesture changes, thus ensuring 

coherent recognition of interaction behaviors. When the 

improved channel attention module (L=64, V=32) is 

introduced, mAP increases to 77.94%, Rank-1 to 93.08%, and 

Rank-5 to 97.26%, highlighting the advantage of "neighbor-

long-range channel alignment": through interval and grid 

interaction design, along with the diag operation's constraint 

on channel context alignment, the model enhances multi-

channel associations such as "pronunciation-expression" and 

"language-gesture". When the diag operation is removed, 

mAP drops to 75.51%, indicating that this operation is key to 

ensuring "accurate mapping of neighbor-long-range channel 

associations" and avoiding misalignment, thus supporting 

multimodal feature collaborative discrimination. Comparing 

the performance between traditional attention modules and the 

improved modules, it is evident that the improved design is 

better suited to the characteristics of oral interaction—namely, 

"complex local details + hidden channel associations": the 

window module dynamically segments regions and aggregates 

features to precisely capture micro-movements such as lip 

tremors and subtle gesture changes; the channel module, 

through interval-grid collaborative interaction, mines deep 

associations between expressions-pronunciation and 

language-body. 
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This paper selected 30 English learners to conduct a "paired 

thematic dialogue" experiment and collected 5-minute depth 

image data of the interaction process to verify the effectiveness 

of the automatic evaluation method based on depth image 

behavior recognition. The experiment compared the automatic 

evaluation results with manual evaluation and traditional 

voice-feature-based evaluation methods. Evaluation 

dimensions included fluency, interaction coordination, and 

emotional expression adaptability. The automatic evaluation 

process was as follows: first, the optimized attention 

mechanism recognition model was used to extract features, 

with the improved window attention module focusing on lip 

opening frequency and gesture synchronization, and the 

improved channel attention module enhancing the channel 

associations of "lip-facial expression" and "gesture-body 

posture"; then the features were matched with preset 

evaluation rules to generate scores for each dimension and an 

overall score. The results showed that the Pearson correlation 

coefficient between the automatic evaluation and manual 

evaluation reached 0.89, higher than the traditional voice-

based evaluation’s 0.72. Especially for intermediate learners' 

"slight stuttering" recognition, the automatic evaluation 

achieved an accuracy of 82%; in interaction coordination, it 

reached 80% accuracy in identifying "delayed gesture 

response of the listener" through the synchronization features 

of gestures and dialogue turns. This experiment verified that 

the method can effectively compensate for the neglect of non-

verbal interactive behaviors in traditional evaluation by 

capturing deep image behavioral features and that it is highly 

consistent with manual evaluation, fully proving its 

effectiveness. 

 

 

5. CONCLUSION 

 

This paper focused on the demand for automatic evaluation 

of English oral interaction behavior under the background of 

intelligent education, and constructed a technical framework 

of "recognition model with optimized attention mechanisms + 

evaluation method driven by depth images". At the recognition 

model level, three core branches were innovatively designed: 

global feature module, improved window attention, and 

improved channel attention. The global module anchored the 

overall context of the interaction scene; the improved window 

attention, through dynamic region division and feature 

aggregation, precisely captured local key details such as lip 

tremors and gesture trajectories—as in the O=4, H=4 

configuration, achieving 82.6% mAP on the CMU-MOSEI 

dataset, an 8.24% improvement over the Baseline; the 

improved channel attention enhanced multi-channel 

associations between expression-pronunciation and language-

body through interval-grid interaction design. Comparative 

and ablation experiments across multiple datasets verified that 

the model significantly outperformed traditional methods in 

fine-grained behavior distinction and multi-modal association 

modeling, providing highly discriminative behavioral features 

for evaluation. The evaluation method based on recognition 

results, through association with oral interaction rules, realized 

accurate mapping from "behavioral features" to "evaluation 

levels", breaking the efficiency bottleneck of traditional 

manual evaluation and offering a technical pathway for large-

scale oral teaching assessment. 

Despite the breakthroughs achieved, there are still three 

limitations: (1) Model efficiency bottleneck: the dynamic 

region division and channel interaction in the improved 

attention modules increase computational overhead, limiting 

real-time deployment on edge devices; (2) Data scenario bias: 

the experimental dataset mainly comprises laboratory-

controlled scenarios, lacking coverage of real classroom 

"multi-disturbance, long-duration" behaviors, thus limiting 

evaluation generalization; (3) Weak rule adaptability: the 

evaluation rules rely on manually defined standardized criteria, 

making it difficult to adapt to differentiated evaluation systems 

such as K12, IELTS, and Business English. Future research 

can make breakthroughs in four dimensions: (1) Model 

lightweighting: explore sparse attention to balance feature 

discriminability and computational efficiency, adapting to 

terminal deployment; (2) Data ecology expansion: build multi-

scenario, long-sequence oral interaction datasets to enhance 

model robustness in complex scenarios; (3) Rule 

dynamization: introduce reinforcement learning to 

dynamically adjust evaluation rule weights according to 

assessment goals, realizing personalized evaluation; (4) Multi-

modal fusion: integrate voice, text, and depth image data to 

construct more comprehensive evaluation dimensions, 

promoting the development of English oral interaction 

automatic evaluation towards being "smarter, more efficient, 

and more adaptive", thereby advancing educational equity and 

personalized teaching implementation. 
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