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This study primarily aims at the pre-diagnosis and prediction of specific brain tumors by 

applying traditional and popular segmentation methods with deep learning models and also 

investigates the comparative performance between Artificial Intelligence (AI) and Deep 

Learning (DL) methods and models. The diagnostic methods currently used are generally 

subjective, time-consuming, and require highly specialized knowledge in detail. To 

determine and overcome these limitations, we propose the well-developed implementation 

of two deep learning segmentation methods capable of accurately and efficiently analyzing 

brain tumor based Magnetic Resonance Imaging (MRI) and Computerized Tomography 

(CT) radiological imaging data. These models were the Support Vector Machine (SVM) for 

the traditional AI model and ResNet50 and InceptionV3 for the popular DL model 

architectures, and these were used for diagnosing specific important brain conditions, 

including ischemic stroke, low-grade glioma (LGG), and normal (tumor-free) cases. In 

addition, in the medical field, ischemic stroke and LGG images could not be well 

determined, and misdiagnosing could occur. Because of these reasons, by using these deep 

learning models, the problems and limitations were overcome. The initial phase involved 

the meticulous collection and pre-processing of a large open-source/public dataset of MRI 

and CT images, carefully distinguishing those from ischemic stroke and LGG patients and 

healthy individuals. The models underwent rigorous training using the pre-processed image 

dataset and were assessed using various accuracy metrics. While traditional methods 

utilizing Support Vector Machines (SVM) achieved an accuracy of 77%, deep learning 

architectures exhibited significant advancements, with ResNet50 and InceptionV3 

achieving accuracies of approximately 97%. The InceptionV3 model's lightweight 

architecture, integrated with effective data augmentation and transfer learning strategies, 

demonstrated exceptional diagnostic efficiency and accuracy. These results underscore the 

immense potential of deep learning in revolutionizing brain tumor/lesion diagnosis. 
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1. INTRODUCTION

Low-Grade Gliomas (LGGs) are primary brain tumors 

originating from glial cells and represent a less aggressive 

form of brain cancer. Despite their slow growth, LGGs can 

cause significant neurological symptoms such as seizures, 

cognitive disorders, and headaches, as they can be located in 

critical areas of the brain. Timely detection and monitoring of 

these tumors are crucial for patient health, given the potential 

for untreated cases to progress to high-grade malignancies. 

Brain imaging techniques such as Magnetic Resonance 

Imaging (MRI) play a fundamental role in diagnosing and 

monitoring LGGs. However, the manual segmentation of 

these tumors from image data can be time-consuming, variable 

among radiologists, and prone to human error [1]. 

On the other hand, ischemic stroke occurs when blood flow 

to the brain is interrupted, leading to tissue damage due to a 

lack of oxygen and nutrients. As one of the leading causes of 

death and long-term disability worldwide, early diagnosis and 

treatment are vital for minimizing brain damage and 

improving patient outcomes. The primary diagnostic tools for 

ischemic stroke include computed tomography (CT) and MRI 

scans, which allow doctors to identify affected areas of the 

brain. Similar to brain tumors, the manual segmentation of 

ischemic stroke regions is a labor-intensive process that can 

lead to inconsistencies in diagnosis. These challenges 

underscore the need for automated systems to assist in 

detection and segmentation processes [2]. 

Recent advances in Artificial Intelligence (AI) and machine 

learning have opened new possibilities for medical image 

analysis. Image processing algorithms, particularly those 

supported by deep learning models, have shown remarkable 

potential for automating complex diagnostic tasks. For 

instance, Convolutional Neural Networks (CNNs) can learn to 

identify and segment brain abnormalities from imaging data 

with high accuracy [3]. Traditional methods like Support 

Vector Machines (SVM) rely on handcrafted feature 

extraction and classification, which often struggle to capture 
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the complex patterns inherent in brain imaging data. This 

limitation has led to the adoption of more advanced 

architectures like ResNet50 and InceptionV3, which can 

automatically learn relevant features from raw data and 

improve diagnostic accuracy [4, 5]. 

The InceptionV3 architecture offers an efficient and 

lightweight design, making it ideal for environments with 

limited computational resources. It employs separable 

separable convolutions to lower computational demands while 

maintaining strong performance. Additionally, InceptionV3 

supports transfer learning, enabling the use of pre-trained 

weights for specialized tasks like medical imaging with 

minimal adjustments. This flexibility is essential for creating 

reliable diagnostic systems that perform well across varied 

datasets [6]. 

The integration of deep learning techniques with medical 

imaging helps overcome the limitations of traditional methods, 

providing faster, more consistent, and more accurate results. 

Various studies have explored this potential, with Zhang et al. 

achieving over 90% accuracy in tumor segmentation using 

CNNs [7], and Li et al. reporting significant improvements in 

stroke detection through deep learning algorithms [8]. 

Furthermore, InceptionV3 has demonstrated its potential in 

mobile health applications, where its efficiency and high 

performance make it a strong candidate for real-time 

diagnostic systems [9]. 

This study compares the performance of traditional 

segmentation methods with the ResNet50 and InceptionV3 

architectures. Our dataset consists of three categories: 

ischemic stroke, low-grade gliomas (LGG), and normal 

(tumor-free) images. For the traditional method, SVM was 

trained on 380 images and tested on 156. In contrast, both 

ResNet50 and InceptionV3 models were trained on 534 

images, with 70% allocated for training and 30% for testing. 

This research contributes to the existing literature by 

evaluating the accuracy of traditional and deep learning 

methods, emphasizing the importance of advanced 

technologies in improving diagnostic performance. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Dataset description 

 

The dataset used in this study consists of medical images 

categorized into three groups: ischemic stroke, low-grade 

glioma (LGG), and normal (tumor-free) cases. A total of 534 

images (178 ischemic; 178 LGG and 178 no tumor) were 

collected for the deep learning models, ResNet50 and 

InceptionV3, while for the traditional method, 380 images 

were allocated for training and 156 images for testing. Indeed, 

these images were selected from the open source database 

randomly between CT and MRI sequences. Since a publicly 

open-access dataset was used, ethical committee approval was 

not required for this study in detail. The images were obtained 

from the Kaggle platform [7, 8]. The normal (tumor-free) and 

ischemic stroke images are the same, while the glioma (LGG) 

images were obtained from a separate dataset. These images 

were given in Figure 1. 

 

2.2 Proposed system 

 

In this chapter, the details of the proposed system were 

given in detail. 

 

2.2.1 Image pre-processing 

To ensure the effectiveness of segmentation and 

classification, the images underwent several preprocessing 

steps, including normalization, resizing, and data 

augmentation. 

Normalization was the process of converting all images to a 

uniform intensity range. This step was crucial as it helps in 

eliminating variations caused by differences in image 

acquisition methods and settings. Without normalization, the 

model could misinterpret these variations as significant 

features, leading to inaccuracies in the analysis. Normalized 

images were available and given in Figure 2. 

Resizing each image to a standard dimension suitable for 

the input requirements of the ResNet50 and Inception models 

was the next step. Standard dimensions such as 224×224 

pixels were commonly used in deep learning models because 

they balanced the need for detailed feature extraction with 

computational efficiency. Resizing ensured that all images are 

compatible with the model's architecture, facilitating more 

consistent and reliable training and testing. Resized images 

were given in Figure 3. 

Data augmentation techniques such as rotation, scaling, and 

flipping were applied to increase the variability of the training 

dataset. Specifically, horizontal reflection flipped the images 

horizontally, aiding the model in recognizing features 

invariant to left-right orientation. Random rotation within -20 

to 20 degrees helped the model handle variations in image 

angles. Random X-axis and Y-axis translations, shifting 

images horizontally and vertically by -10 to 10 pixels, ensured 

the model for detecting objects in different positions within the 

image. These augmentations improved the model's robustness 

and generalization capabilities by teaching it to recognize 

patterns under various conditions, making it more resilient to 

real-world data variations [9-12]. An example image of this 

process was given in Figure 4. 

 

 
 

Figure 1. Image samples used in the dataset for the study 
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Figure 2. Normalization process results of the specific input 

brain images 

 

 
 

Figure 3. Resizing process results of the specific input brain 

images 

 

 
 

Figure 4. Data augmentation process results of the specific input brain images 

 

 
 

Figure 5. Image process main flowchart 

 

2.2.2 Traditional segmentation and feature extraction 

processes 

The traditional method for image analysis in medical 

imaging involved a systematic process of segmenting the 

images using morphological operations, followed by detailed 

feature extraction. Morphological operations—erosion, 

dilation, opening, and closing—were applied to the images 

using a 3×3 structuring element to enhance significant regions 

while suppressing noise. These operations played a 

fundamental role in medical image processing as they refined 

the boundaries of regions of interest, making it easier to isolate 

and analyze specific areas such as tumors, lesions, or other 

pathological regions. Erosion, for example, helped in 

shrinking objects by removing pixels on object boundaries, 
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while dilation expands these objects, filling small gaps and 

holes. When combined, opening (erosion followed by dilation) 

and closing (dilation followed by erosion) enabled the 

effective removal of small noise particles and the smoothing 

of region boundaries without significantly altering their shape 

[13, 14]. The flowchart of the section was given in Figure 5. 

The next part of the progress was segmentation. This step 

was crucial, especially in medical applications, where the 

precision of boundaries could significantly influence the 

subsequent analysis. Accurate boundary detection helped in 

clearly defining pathological regions, ensuring that only 

relevant areas were considered for further analysis. Such 

precision was vital in cases where even a small miscalculation 

could lead to incorrect diagnosis or treatment planning. The 

sample processing stages of a specific brain image was given 

in Figure 6. 

Following segmentation, feature extraction was performed 

to derive quantitative metrics from the segmented regions. 

This study focused on computing various specific features, 

including area, perimeter, variance, standard deviation, 

kurtosis, and skewness. These features provided essential 

insights into the geometric and intensity characteristics of the 

regions, which were critical for accurate classification. For 

instance, the area and perimeter of a region give information 

about its size and shape, which could be indicative of the type 

and stage of a tumor. Irregular shapes and large perimeters, 

compared to their area, could suggest malignancy. 

Variance and standard deviation were calculated to assess 

the intensity distribution within the regions. These metrics 

provided a measure of how much pixel intensities deviate from 

the mean intensity value, offering insights into the texture and 

heterogeneity of the region. High variance could indicate a 

heterogeneous region, often associated with complex tissue 

structures or pathological changes. On the other hand, regions 

with low variance typically represented more uniform textures, 

which could correspond to healthy or less complex tissue 

structures [15, 16]. 

Kurtosis and skewness were also included to analyze the 

distribution shape of the pixel values within the regions. 

Kurtosis generally measures the "tailedness" of the 

distribution, indicating whether the intensity values are prone 

to extreme deviations from the mean. High kurtosis might 

suggest regions with sharp intensity variations, while low 

kurtosis indicates more evenly distributed intensities. 

Skewness, which generally measures the asymmetry of the 

intensity distribution, helped in distinguishing between 

regions with a predominantly high or low pixel intensity. This 

could be particularly useful in identifying abnormalities, as 

different types of tissues or pathological states may exhibit 

distinct skewness values. For example, a positively skewed 

distribution could indicate bright regions, such as 

calcifications, while a negatively skewed one could 

correspond to darker regions like fluid-filled spaces or necrotic 

tissues [17, 18]. Sample image property value tables were 

shown in Figure 7 in detail. 

While traditional segmentation and feature extraction 

provided valuable insights, they were inherently limited by 

their dependence on manual intervention and predefined 

features. To address these limitations, advanced deep learning 

architectures like ResNet50 and InceptionV3 were explored in 

this study. These models utilized convolutional neural 

networks to automatically learn hierarchical features from raw 

image data, eliminating the need for handcrafted features and 

enhancing classification accuracy. 

 

 
 

Figure 6. Results of special image processing steps for a specific brain image 

 

 
 

Figure 7. Sample image property value tables of three groups 
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2.2.3 Analysis of AI based machine learning models 

The traditional AI-based Support Vector Machine (SVM) 

classification model has long been recognized for its 

effectiveness in tackling classification tasks, especially within 

the realm of medical image analysis. In this research, features 

extracted from pre-processed images were used to train an 

SVM classifier, renowned for its resilience and capability in 

handling high-dimensional datasets. A dataset comprising 380 

carefully curated images was utilized during training, ensuring 

coverage of a wide range of medical cases and conditions. 

The training process incorporated a radial basis function 

(RBF) kernel, a widely used form of Gaussian kernel in SVMs. 

This kernel maps input data into a higher-dimensional space, 

allowing the classifier to define a linear decision boundary in 

that space—corresponding to a non-linear boundary in the 

original domain. This transformation is especially beneficial 

in medical imaging, where relationships between features such 

as texture, intensity, and structure can be subtle yet critical for 

accurate classification, such as identifying disease types or 

anatomical difference. 

The RBF kernel’s ability to detect these complex patterns 

enhances the SVM’s precision in distinguishing between 

closely related classes, making it highly suitable for sensitive 

medical applications where accuracy is essential. Furthermore, 

the kernel’s gamma parameter controls the influence of each 

training example. By fine-tuning gamma alongside the SVM’s 

regularization parameter, the model achieves an optimal 

balance between overfitting and generalization, ensuring 

reliable performance on unseen data. 

 

2.2.4 Analysis of deep learning models  

The initial deep learning model based on InceptionV3 

marked a significant leap forward compared to traditional 

approaches, thanks to its streamlined and efficient architecture. 

By utilizing depthwise separable convolutions, InceptionV3 

significantly reduced computational load while maintaining 

high accuracy—an advantage especially valuable in resource-

limited settings like mobile health tools or real-time diagnostic 

platforms. The model was fine-tuned through transfer learning, 

where pre-trained weights were adapted to the specific task of 

brain tumor classification [19-21]. 

To improve model generalization, various advanced data 

augmentation techniques were employed, including random 

rotations, scaling, translations, and brightness adjustments. 

These strategies increased training data diversity, helping the 

model perform well on previously unseen data. Additionally, 

the architecture’s use of inverted residual blocks allowed for 

the effective learning of complex image features, capturing the 

subtle distinctions necessary for precise medical diagnoses 

[22-24]. 

InceptionV3's design also integrated linear bottlenecks and 

inverted residuals, allowing the network to retain rich, high-

level features while keeping the model compact. These 

enhancements made it particularly suitable for medical 

imaging tasks where both speed and accuracy are critical. In 

this study, the model was fine-tuned by replacing the original 

top layers with a custom configuration: a fully connected layer, 

a softmax activation function, and an output layer tailored for 

a three-class classification problem related to brain conditions. 

Among all tested models, InceptionV3 achieved the highest 

accuracy—97.87%—outperforming the traditional SVM 

approach and slightly surpassing ResNet50. Its excellent 

accuracy, combined with its lightweight and efficient design, 

makes it an ideal solution for deployment in clinical settings, 

particularly in mobile or edge computing environments where 

real-time decision-making is essential [25-30]. 

The second deep learning model used in this study was 

ResNet50, a 50-layer convolutional neural network designed 

to automatically learn meaningful features from input images. 

Its architecture comprises convolutional layers, batch 

normalization, and fully connected layers. 

Convolutional layers were responsible for extracting key 

features from the images. This process was mathematically 

represented by Eq. (1): 

 

Y = f(X ∗ W + b) (1) 

 

According to this equation; 

• X represents the input image, 

• W is the convolution filter, 

• b is the bias term, 

• f denotes the activation function, and 

• ∗ signifies the convolution operation. 

These layers were designed to identify visual elements like 

edges, textures, and patterns at various abstraction levels, 

enabling the network to capture detailed image features. 

A core component of ResNet50 was its residual blocks, 

which included skip connections to ease the training of very 

deep networks. The functioning of a residual block was 

described by Eq. (2): 

 

Y = f(X + F(X)) (2) 

 

According to this equation; 

• X is the input, 

• F(X) is the residual mapping (i.e., the transformation 

to be learned), and 

• f is the activation function. 

These residual connections helped mitigate the vanishing 

gradient problem, allowing deeper networks to train more 

effectively—a key advantage when analyzing medical images, 

where minor differences could have diagnostic significance. 

Finally, fully connected layers handled the classification 

task. This operation was captured in Eq. (3). 

 

Z = σ(W ∗ Y + b) (3) 

 

According to this equation; 

• Y is the input vector, 

• W is the weight matrix, 

• b is the bias, and 

• σ is the activation function. 

These layers aggregate the features learned by earlier layers 

and produce the final, detailed classification result for the 

input image. 

 

 

3. RESULTS 

 

After the training phase, the model's effectiveness was 

thoroughly assessed using a separate test dataset containing 

156 images. This evaluation aimed to determine how well the 

trained SVM classifier could apply its learned decision 

boundaries to new, unseen data. The classifier’s accuracy was 

calculated using the formula shown in Eq. (4): 

 

Accuracy = (Number of Correct Predictions / Total (4) 
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Number of Test Images) × 100% 

 

This metric offers a clear and intuitive indication of the 

model’s performance by expressing the percentage of test 

images correctly classified. A high accuracy score reflects the 

model’s ability to capture critical features in the data, allowing 

it to make precise predictions on unfamiliar inputs. In the 

context of medical imaging, such accuracy is vital, as it 

directly impacts the model’s reliability in clinical applications. 

Accurate classification supports early diagnosis, better 

treatment planning, and improved patient outcomes. 

 

3.1 Training and evaluation 

 

The dataset was split into training and testing subsets, with 

70% allocated for training and the remaining 30% reserved for 

testing. Both the ResNet50 and InceptionV3 models were fine-

tuned using the training set and evaluated on the test set to 

assess their performance. To improve generalization and 

robustness, data augmentation techniques were applied to the 

training data, introducing greater variability and helping the 

models perform better on unseen images. 

The input image size for InceptionV3 was standardized to 

224×224 pixels, in alignment with its design requirements. 

Various data augmentation techniques—such as random 

rotations, translations, and scaling—were applied to increase 

the models’ ability to handle diverse real-world image 

variations, ultimately enhancing their generalization 

performance. 

Each model was trained using an optimizer suited to its 

specific architecture. ResNet50 was optimized using 

Stochastic Gradient Descent (SGD), which updates model 

weights iteratively to reduce prediction errors and incorporates 

a dynamic learning rate scheduler for efficient convergence. In 

contrast, InceptionV3 used the Adam optimizer, chosen for its 

adaptive learning rate mechanism, making it particularly 

effective for lightweight networks. 

The results of this study underscore the importance of 

feature extraction and kernel choice in SVM classification. By 

leveraging the RBF kernel's strengths, the model was able to 

handle the non-linearities inherent in medical image data, 

delivering high classification accuracy and demonstrating its 

potential for real-world clinical applications. The SVM 

confusion matrix is shown in Figure 8. 

 

 
 

Figure 8. Confusion matrix of SVM traditional model 

 

Indeed, ResNet50 achieved an accuracy of 97%, 

showcasing its ability to handle complex patterns and 

relationships in the dataset. InceptionV3, designed for 

efficiency, achieved an impressive accuracy of 97.89%, 

slightly surpassing ResNet50. The performance gap highlights 

the lightweight model’s ability to deliver high accuracy while 

maintaining computational efficiency of ResNet50 and 

detailed accuracy and loss graph is as Figure 9. 

One significant advantage of InceptionV3 is its 

computational efficiency. The model required approximately 

half the training time compared to ResNet50 due to its 

streamlined architecture and depthwise separable 

convolutions. This makes InceptionV3 a suitable choice for 

applications requiring real-time predictions or deployment on 

devices with limited computational resource and detailed 

accuracy graph of InceptionV3 is as Figure 10. 

 

 
 

Figure 9. Performance results of the popular DL model-ResNet50 
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Figure 10. Performance results of the popular DL model of InceptionV3 

 

In the traditional approach, the Support Vector Machine 

(SVM) classifier was applied following several preprocessing 

steps, including normalization, resizing, and morphological 

operations. These preprocessing techniques enhanced relevant 

image features and minimized noise, contributing to improved 

SVM performance. However, due to the complexity of brain 

images and the limitations of manual feature extraction, this 

method yielded lower accuracy compared to deep learning 

models. 

In contrast, the ResNet50 model utilized its deep 

architecture to automatically extract features directly from raw 

images. Its convolutional layers captured features at multiple 

levels of abstraction, while residual blocks enabled efficient 

training of the deep network by addressing issues like 

vanishing gradients. This allowed the model to learn intricate 

patterns within the data, leading to high classification accuracy. 

InceptionV3 further improved performance by employing a 

more efficient architecture, using depthwise separable 

convolutions to maintain computational efficiency without 

sacrificing accuracy. As a result, it achieved slightly better 

accuracy than ResNet50, demonstrating strong feature 

extraction and generalization capabilities. Both models also 

benefited from data augmentation, which introduced more 

variability into the training set, enhancing their robustness and 

ability to generalize to new, unseen data. 

 

 

4. DISCUSSION 

 

The findings of this study highlight the effectiveness and 

superiority of deep learning models like ResNet50 and 

InceptionV3 compared to traditional segmentation techniques. 

InceptionV3, in particular, achieved an impressive accuracy of 

97.39%, coupled with high computational efficiency—making 

it a strong candidate for integration into medical diagnostic 

systems. Unlike conventional approaches that depend on 

manual feature extraction, these deep learning models 

automatically learn and extract meaningful features from raw 

input data. This capability enables them to detect intricate 

patterns that might be challenging to identify through manual 

analysis. The performance results are illustrated in Figure 11. 

 
 

Figure 11. Result rates of the three models used in this study 

 

To expand on this, ResNet50 utilizes convolutional layers 

to extract features across multiple levels of abstraction. These 

layers identify elements such as edges, textures, and patterns 

at varying scales and orientations, creating a layered and 

detailed representation of the input images. A key component 

of ResNet50’s architecture is the use of residual blocks, which 

incorporate shortcut connections that skip over one or more 

layers. These shortcuts help mitigate the vanishing gradient 

issue by enabling smoother gradient flow during training, thus 

facilitating the effective learning of very deep neural networks. 

In contrast, InceptionV3 features a streamlined architecture 

specifically designed for both efficiency and high performance. 

A major innovation in this model is the use of depthwise 

separable convolutions, which drastically lower the number of 

parameters and reduce computational load compared to 

traditional convolution operations. This technique breaks the 

convolution process into two stages: depthwise convolution, 

which applies a separate filter to each input channel, and 

pointwise convolution, which uses a 1×1 filter to combine the 

outputs from the depthwise step. 
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Integrating deep learning models into clinical practice 

offers numerous benefits. Their high accuracy can greatly 

improve diagnostic precision, easing the workload of 

radiologists and ensuring consistent results. In medical 

diagnostics, where even small errors can lead to misdiagnoses 

and incorrect treatments, accuracy is crucial. The exceptional 

accuracy of 97.89% achieved by InceptionV3, along with its 

efficiency, highlights its potential as a reliable and scalable 

tool for medical diagnosis. Early and precise diagnoses are 

vital for effective treatment planning and improving patient 

outcomes. For example, in the case of brain tumors or strokes, 

early detection enables timely interventions that can 

significantly reduce morbidity and mortality. 

Although robust, traditional methods like Support Vector 

Machine (SVM) classifiers fall short when compared to the 

generalization and accuracy capabilities of deep learning 

approaches. In this study, the SVM classifier was trained on 

predefined features, such as area and intensity distribution, 

extracted from the images. While SVM achieved an accuracy 

of 77%, its performance depended heavily on the quality of the 

feature extraction process. Manual feature extraction can be 

error-prone and may not capture all the relevant patterns in the 

data. On the other hand, InceptionV3’s automated feature 

learning surpasses this performance by using hierarchical 

feature extraction. This method allows the model to better 

handle data variability and complexity by learning features at 

multiple levels—starting with simple edges and textures at 

lower layers and progressing to more complex patterns in 

higher layers. 

In conclusion, the efficiency and accuracy of deep learning 

models like ResNet50 and InceptionV3 make them ideal for 

medical diagnostic applications. Their ability to automatically 

learn and extract relevant features from raw data enables them 

to capture complex patterns that manual methods might miss. 

Data augmentation further strengthens their robustness, 

enabling better generalization to new data. The high accuracy 

achieved by these models can enhance diagnostic precision, 

reduce the workload of radiologists, and ensure consistent 

results. As deep learning models continue to advance, their 

integration into clinical workflows is poised to revolutionize 

medical diagnostics and improve patient outcomes. 

 

4.1 Comparison with other related studies 

 

Comparing the findings of this study with other research in 

the field offers valuable insight into the effectiveness of deep 

learning models for medical imaging. While there are only a 

few studies closely related to this one, they provide useful 

context. For example, Li et al. [31] used a CNN architecture 

and reported a 90% accuracy for stroke detection using deep 

learning algorithms. In contrast, the ResNet50 model in this 

study achieved an accuracy of 97%, with the InceptionV3 

model slightly outperforming it at 97.89%. These results 

highlight the superior ability of these models to capture 

complex patterns and relationships in brain images. The 

success can be attributed to the use of a comprehensive dataset 

and advanced image processing techniques, both of which 

played a critical role in enhancing performance. The quality of 

the dataset and the models’ ability to learn from augmented 

data were key factors in achieving such high accuracy. 

 

4.2 Limitations of the study 

 

Despite achieving high accuracy, this study has several 

limitations that should be addressed to further enhance its 

findings and applicability. Firstly, the dataset size, while 

sufficient for this research, is relatively small compared to the 

large-scale datasets typically used in deep learning 

applications. The limited size may affect the model's ability to 

generalize to new, unseen data. Expanding the dataset would 

introduce greater variability, allowing the models to learn from 

a wider range of examples.  

Another important limitation is the focus on only two deep 

learning models: ResNet50 and InceptionV3. Although these 

models performed well in brain tumor and stroke classification 

tasks, other architectures may offer even more effective 

solutions. For example, EfficientNet provides a scalable 

architecture that balances accuracy and computational 

efficiency. DenseNet, with its densely connected 

convolutional layers, can improve feature propagation and 

alleviate the vanishing gradient issue.  

Furthermore, the study primarily utilized basic data 

augmentation techniques such as rotation, scaling, and 

flipping to improve model performance. While these methods 

help increase the variability of the training data, more 

advanced augmentation strategies could be employed. For 

example, Generative Adversarial Networks (GANs) can 

generate synthetic data that closely mirrors the original dataset. 

GANs create new instances that retain the characteristics of 

the original data, enriching the dataset and providing a more 

diverse range of training examples. This could help address the 

issue of limited data and enhance the model's ability to handle 

out-of-distribution data, ensuring that the models perform well 

in the face of new and unexpected data variations. 

In conclusion, while this study has shown the effectiveness 

of deep learning models like ResNet50 and InceptionV3 in 

diagnosing brain tumors and strokes, it is limited by the small 

dataset size, the narrow focus on only two architectures, and 

reliance on basic data augmentation techniques. Addressing 

these limitations by increasing the dataset size, exploring 

additional model architectures, and incorporating advanced 

data augmentation methods could significantly improve the 

robustness, generalization, and overall performance of the 

models, making them more reliable and effective for clinical 

applications. 

 

 

5. CONCLUSION 

 

This study compared traditional SVM-based segmentation 

methods with deep learning models, specifically ResNet50 

and InceptionV3, for diagnosing brain conditions. Both deep 

learning models significantly outperformed the traditional 

SVM approach, with InceptionV3 achieving the highest 

accuracy of 97.89%, followed closely by ResNet50 at 97%, 

and SVM at 77%. These results highlight the transformative 

potential of deep learning in medical imaging, particularly in 

tasks such as brain tumor and stroke classification. 

The superior performance of these models emphasizes their 

ability to automatically learn hierarchical features directly 

from raw data, making them more effective and adaptable than 

traditional methods that rely on manual feature extraction. 

InceptionV3’s lightweight design and computational 

efficiency make it an appealing choice for resource-limited 

environments, such as real-time or mobile health applications. 

The dataset used in this study had unique characteristics that 

significantly contributed to the findings. It consisted of open-

access data from Kaggle, incorporating ischemic stroke, LGG, 
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and tumor-free cases to provide a comprehensive 

representation of diagnostic scenarios. The integration of 

separate datasets for glioma and ischemic stroke cases added 

variability, which enhanced the robustness of model training. 

By focusing on real-world scenarios where early and accurate 

diagnosis is crucial, this study highlights the transformative 

potential of deep learning in medical diagnostics, setting the 

stage for scalable, efficient, and highly accurate healthcare 

solutions. 

Looking ahead, future work should focus on expanding 

datasets, exploring a variety of model architectures, and 

considering ensemble approaches to further improve 

performance. Additionally, integrating these models into 

clinical workflows and validating their effectiveness in real-

world settings are essential next steps. The ongoing 

advancement of AI technologies has the potential to 

revolutionize diagnostic practices, improving accuracy, 

efficiency, and ultimately enhancing patient outcomes in 

healthcare. 
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