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Skin cancer poses a major global health threat, with melanoma being one of the deadliest 

forms due to its rapid progression and high mortality rate. Timely and precise detection is 

crucial for enhancing patient survival rates. In this study, we propose a robust stacked 

ensemble meta-learning model for the classification of various skin cancer types using 

dermoscopic images. The proposed framework integrates four convolutional neural 

networks (CNNs) such as custom CNN, InceptionResNetV2, ResNet101V2, and 

DenseNet201 as base learners, and leverages five meta-learners: Random Forest, Decision 

Tree, Logistic Regression, Gradient Boosting, and XGBoost for final classification. The 

system is trained and fine-tuned on a curated subset of the ISIC 2020 dataset, consisting of 

2,357 images across nine skin lesion categories. Comprehensive experiments demonstrate 

the superior performance of the ensemble approach, achieving an accuracy of 98.63%, with 

both precision and recall reaching 98.64%. The Random Forest-based ensemble emerges as 

the top-performing configuration. Additionally, the study provides a comparative evaluation 

with existing methods and highlights the clinical potential of the model in reducing false 

positives and false negatives. By leveraging transfer learning, data augmentation, and meta-

learning strategies, this work contributes a scalable and accurate diagnostic tool for skin 

cancer detection, especially suitable for deployment in primary care and resource-limited 

healthcare settings. 
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1. INTRODUCTION

Skin cancer represents a significant global health issue, 

affecting millions of individuals each year. According to the 

World Health Organization (WHO), the incidence of skin 

cancer continues to rise, particularly in regions with high 

ultraviolet (UV) radiation exposure [1, 2]. From a clinical 

perspective, skin cancers are commonly divided into 

malignant and benign types. Melanoma, basal cell carcinoma 

(BCC), and squamous cell carcinoma (SCC) are the primary 

malignant skin cancers, varying in their severity and 

progression. Among these, melanoma is the most life-

threatening, as it originates in melanocytes and has a high 

potential for metastasis if not detected early [3]. Benign 

lesions, such as seborrheic keratosis and nevi (moles), are non-

cancerous but often resemble malignant growth, making 

accurate diagnosis challenging [4]. 

The survival rate for skin cancer is highly dependent on 

early detection. For instance, patients diagnosed at an early 

stage of melanoma have a five-year survival rate nearing 99%, 

but this drastically declines in advanced stages [3]. Traditional 

diagnostic methods include visual inspections by 

dermatologists and biopsies. While effective, these methods 

are often subjective, time-consuming, and invasive [5]. 

Dermatoscopic analysis relying on visual clues like lesion 

color, symmetry, and texture can be affected by human error 

and inconsistency [6]. Moreover, in cases where visual 

diagnosis is inconclusive, a biopsy is required, which may 

involve unnecessary surgical procedures, added healthcare 

costs, and patient discomfort. A major diagnostic challenge is 

the visual similarity between benign and malignant lesions. 

Benign conditions such as seborrheic keratosis and nevi can 

exhibit irregular pigmentation or asymmetry similar to 

melanoma, leading to frequent misclassification [2]. This 

increases the risk of unnecessary biopsies (false positives) or, 

worse, missed cancer diagnoses (false negatives). Additionally, 

a shortage of expert dermatologists, particularly in rural or 

under-resourced regions, further impedes timely diagnosis and 

intervention. 

There is a growing need for accurate, accessible, and non-

invasive tools that can help diagnose skin cancer early, 

especially in places where specialist care is limited. In many 

rural and under-resourced areas, the lack of trained 

dermatologists often leads to higher rates of missed diagnoses, 

with some patients not receiving proper care until it’s too late. 

Traditional methods like biopsies or visual checks by experts 

aren’t always practical in these settings—they take time, 

require expert judgment, and can be costly or uncomfortable 

for patients. That’s where our approach comes in. The stacked 

ensemble deep learning model we propose is built to reduce 
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false negatives and improve diagnostic accuracy, even when 

clinical resources are scarce. By combining the strengths of 

multiple deep learning models and using advanced meta-

classifiers, our system is well-suited for use in mobile apps or 

cloud platforms—making it easier to deliver reliable diagnosis 

support to people who need it most. 

Given these limitations, AI-assisted diagnostic tools, 

particularly those utilizing deep learning, have shown great 

promise as non-invasive, accurate, and scalable solutions for 

skin cancer screening [7]. In particular, convolutional Neural 

Networks (CNNs) have demonstrated outstanding 

performance in the field of medical image analysis, especially 

in identifying subtle spatial patterns in dermoscopic images 

without human intervention. CNNs reduce diagnostic 

subjectivity, improve classification accuracy, and are capable 

of detecting malignancy-indicative patterns with high 

precision [3, 5]. To enhance CNN capabilities, numerous 

architectures have been developed. ResNet introduced 

residual learning to address the vanishing gradient problem 

and enabled deeper networks to distinguish between malignant 

and benign lesions more effectively [3]. EfficientNet and 

MobileNet optimize for accuracy and computational 

efficiency, making them suitable for deployment in mobile and 

low-resource settings [2]. In parallel, Vision Transformers 

(ViTs) provide a novel approach by analyzing images as 

sequences of patches, improving long-range pattern 

recognition critical in skin lesion classification [8]. 

While individual CNN models have demonstrated strong 

performance, combining multiple models through ensemble 

learning, specifically stacked ensemble frameworks, can 

further improve robustness and predictive accuracy. This 

approach harnesses the complementary strengths of multiple 

architectures while reducing the limitations inherent in 

individual models. Moreover, deep learning systems can be 

deployed in cloud-based platforms or mobile applications, 

expanding access to high-quality diagnostic tools in remote or 

underserved areas [2]. 

In this work, a stacked ensemble CNN-based approach is 

proposed for the accurate classification of multiple skin cancer 

types, incorporating four deep learning models: Custom CNN, 

InceptionResNetV2, ResNet101V2, and DenseNet201. These 

models are fine-tuned using transfer learning on a curated ISIC 

2020 dataset. For the final classification, we evaluate five 

meta-classifiers: Logistic Regression, Random Forest, 

Decision Tree, Gradient Boosting, and XGBoost to combine 

the prediction outputs of the base CNNs. The dataset used 

contains 2,357 dermoscopic images from nine classes of both 

benign and malignant lesions, split into training, validation, 

and test sets. Our results demonstrate high effectiveness with 

accuracy, precision, and recall all exceeding 98%, confirming 

the model’s potential for aiding early skin cancer detection. In 

summary, the key contributions of this paper are: 

• We propose a stacked ensemble deep learning framework

to classify benign and malignant skin lesions from 

dermoscopic images with high accuracy. 

• We integrate four CNN-based base models and evaluate

five different meta-classifiers to determine the optimal 

ensemble configuration to enhance diagnostic accuracy and 

reduce false negatives and false positives. 

• We utilize transfer learning and fine-tuning techniques to

enable learning from a limited dataset while maintaining 

generalization. 

• A comprehensive performance evaluation is conducted

using a curated subset of the ISIC 2020 dataset, showing the 

model's robustness across multiple lesion types. 

• We provide a comparative analysis with existing state-of-

the-art methods, highlighting the advantages of our approach 

in terms of diagnostic performance. 

This study contributes not only to the development of 

accurate AI models but also to bridging the gap between 

artificial intelligence and clinical dermatology. By offering a 

scalable and interpretable solution for early skin cancer 

detection, the proposed framework has the potential to 

improve diagnostic workflows, reduce human error, and 

enhance patient outcomes, especially in resource-limited 

healthcare environments [9]. 

The following sections outline the structure of this study: In 

Section 2, we present an overview of previous studies focused 

on deep learning-based approaches for skin cancer detection. 

Section 3 outlines the design of the proposed system, 

highlighting the architecture and training procedures of the 

model. In Section 4, we report the experimental findings, 

assess model performance, and provide a comprehensive 

discussion. Lastly, Section 5 provides the conclusion of the 

study. 

2. RELATED STUDIES

In medical image analysis, deep convolutional neural 

networks have proven highly effective and widely adopted, 

particularly in classification and object detection tasks [10, 11]. 

The potential of machine learning and deep learning in early 

skin cancer detection has been widely studied, with a focus on 

improving diagnostic outcomes and assisting dermatologists 

in making informed clinical decisions. Automated image 

analysis techniques enable these approaches to classify skin 

lesions as malignant or benign, providing an efficient and 

scalable alternative to standard diagnostic methods. This 

section provides an overview of the latest advancements in 

deep learning, ensemble learning, and meta-learning strategies 

for skin cancer detection. 

Many studies have leveraged pre-trained models like 

XceptionNet, EfficientNetV2, and ResNet for skin lesion 

classification. For example, Thapar and Tiwari [12] employed 

XceptionNet for skin lesion classification, achieving an 

accuracy of 88.72% and highlighting its effectiveness in 

medical image analysis. The authors employed multiple 

advanced deep learning architectures for the diagnosis of skin 

cancer, specifically leveraging architectures like XceptionNet, 

EfficientNetV2S, InceptionResNetV2, and EfficientNetV2M. 

While their work emphasizes the integration of explainable AI 

(XAI) to clarify model decision-making, it does not 

specifically address stacked ensemble meta-learning. With 

XceptionNet reaching an accuracy of 88.72%, the study 

illustrates how such technologies can elevate diagnostic 

accuracy, facilitate clinical workflows, and positively impact 

patient outcomes. Ezeddin et al. [13] presented a method 

which highlights the optimization of deep ensemble learning 

for melanoma skin cancer classification, utilizing state-of-the-

art convolutional neural networks (CNNs) like ResNet101 and 

ResNext101. By employing a weighted averaging ensemble 

approach, the study achieved a classification accuracy of 

96.12%, demonstrating significant advancements in detection 

methods. This integrated architecture enhances diagnostic 
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precision in medical imaging, indicating its effectiveness for 

early clinical detection and management of melanoma, with 

the potential to significantly improve patient care. 

A max voting ensemble method for skin cancer 

classification was proposed by Hossain et al. [14], utilizing the 

combined strengths of MobileNetV2, VGG16, and ResNet50. 

With an accuracy of 93.18% and an AUC of 0.9320 on the 

ISIC 2018 dataset, the ensemble model significantly boosted 

diagnostic accuracy. This approach leverages multiple models 

to aid clinicians in making precise and prompt diagnostic 

decisions, ultimately contributing to improved patient care. It 

may not always capture the nuances of complex cases where a 

single model might provide a more accurate prediction than 

the majority, potentially leading to suboptimal outcomes in 

certain scenarios. 

Maurya et al. [15] introduced a hybrid model combining 

topological data analysis (TDA) and deep learning (DL) for 

basal cell carcinoma (BCC) diagnosis, achieving 97.4% 

accuracy and an AUC of 0.995. Persistent homology is utilized 

to capture complex topological patterns from telangiectasia 

and skin lesions, contributing to improved performance of 

deep learning models. While it focuses on BCC, the 

integration of TDA with DL represents a significant 

technological advancement in skin cancer detection. This 

study utilizes a dataset of 395 skin lesion images, with a focus 

on telangiectasia features that are processed through 

automated segmentation and analyzed using both topological 

data analysis (TDA) and deep learning techniques. A larger 

dataset could enhance the robustness and generalizability of 

the model. A limited dataset may not capture the full 

variability of BCC presentations in different populations. In 

their study, Daghrir et al. [16] introduced a hybrid strategy that 

merges deep learning and classical machine learning 

techniques to improve the accuracy of skin cancer diagnosis. 

The approach integrates a CNN for extracting deep features 

automatically from dermoscopic images. Simultaneously, 

KNN and SVM classifiers were trained on manually crafted 

features describing the lesions’ texture, shape, and color. To 

improve classification accuracy, the outputs of these models 

are aggregated using a majority voting approach. The 

experiment was carried out on a publicly accessible ISIC 

dataset, where the authors selected 640 representative images, 

both benign and malignant, from a total of 23,000 melanoma 

samples. Experimental results indicate that CNN achieved an 

accuracy of 85.5%, while SVM and KNN reached 71.8% and 

57.3%, respectively. The ensemble model, leveraging majority 

voting, further improved the accuracy to 88.4%. However, the 

study highlights key challenges, including a limited amount of 

labelled training data, which the authors suggest addressing 

through semi-supervised learning in future work. To enhance 

melanoma classification, Filali et al. [17] later proposed a 

method that integrates handcrafted features with deep 

representations extracted from pre-trained CNNs. The 

proposed approach leverages feature-level fusion to combine 

the discriminative power of both feature types, aiming to 

improve classification accuracy. To ensure robustness, the 

model was evaluated on datasets of different sizes, namely the 

PH2 and the ISIC challenge datasets. The fusion approach 

yielded significant improvements in classification accuracy, 

particularly on the PH2 dataset. The integration of handcrafted 

and deep features in this study demonstrates a robust and 

effective approach for melanoma detection. Amin et al. [18] 

further enhanced skin cancer detection by integrating deep 

feature fusion techniques for both localization and 

classification. The study employs multiple deep learning 

models, including AlexNet and VGG-16, to extract important 

features from segmented skin lesion images. Principal 

Component Analysis (PCA) is applied to the extracted features 

to retain the most relevant features, thereby improving 

classification performance. Deep feature integration, when 

trained and validated on a curated dataset, proves effective in 

boosting both the detection accuracy and localization precision 

of skin cancer. 

Devadhas et al. [19] presented a deep learning framework 

based on stacking ensemble techniques, attaining a 97% 

accuracy rate in detecting skin cancer. It utilizes a combination 

of CNN and deep neural networks (DNN) as input for a Long 

Short-Term Memory (LSTM) meta-classifier. The approach 

includes preprocessing of skin images, segmentation using 

Fuzzy-C-Means clustering, and feature extraction via Local 

Binary Pattern (LBP). The absence of a thorough evaluation 

limits understanding of the model’s performance, which is 

critical in medical applications where diagnostic errors can 

have significant consequences. In another study, Chiu et al. 

[20] developed an AI-driven skin cancer diagnosis model

using a two-stage voting ensemble approach, significantly

reducing false negatives and improving diagnostic accuracy in

both ISIC and CSMUH datasets, with potential to aid

resource-limited medical settings. Mary et al. [21] presented

an advanced ensemble model combining ResNet, EfficientNet,

and MobileNet to enhance skin cancer diagnosis. It addresses

limitations of previous models by leveraging the strengths of

these CNNs, integrating advanced preprocessing, data

augmentation, and transfer learning. With an accuracy of

96.33% on the HAM10000 dataset, the model demonstrates

strong potential for precise and early skin cancer detection.

The study by Kaur et al. [22] highlights the implementation 

of advanced deep learning models tailored for melanoma 

detection, with particular emphasis on automating the early 

diagnostic process. The method involves a hybrid pipeline, 

starting with morphological and context aggregation 

techniques for preprocessing, and concluding with a 

segmentation network to extract lesion areas. The 

classification model achieves a 93.40% accuracy rate using 

cleaned and segmented images. The BEDLM-CMS model 

proposed by Shah et al. [23] employs an ensemble of LSTM, 

BLSTM, and GRU networks to detect mutations responsible 

for cutaneous melanoma. It addresses challenges like data 

scarcity and overfitting, achieving an accuracy rate of 97% in 

independent tests and 94% in tenfold cross-validation. Liu et 

al. [24] developed a hybrid deep network combining Resnet-

50 and CrossViT, which enhances feature representation and 

diagnostic accuracy through improved classification 

performance and stable feature fusion. This approach aims to 

refine early diagnostic accuracy in skin cancer, ultimately 

contributing to better patient survival rates. Qureshi and Roos 

[25] addressed the challenge of class imbalance in skin cancer

detection by proposing an ensemble CNN model that

integrates diverse CNN architectures along with metadata.

Using 33,126 dermoscopic images, it combines pre-trained

and custom-trained models with an SVM meta-learner,

achieving enhanced accuracy. In their work, Rahman et al. [26]

utilized anisotropic diffusion filtering to enhance image

quality and applied a fast-bounding box (FBB) method for

efficient segmentation of skin lesions. It integrates hybrid

feature extractor (HOG, LBP, SURF) and VGG19-based CNN

for feature fusion. The approach achieves 91.65% sensitivity

and 95.70% specificity using ISIC 2017 and the academic
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torrents datasets. In a subsequent effort, Hemantkumar et al. 

[27] focuses on a deep learning feature fusion approach

combined with an extreme learning machine (ELM) to classify

benign and malignant skin lesions. The study highlights the

use of a curated dataset from HAM10000 and Dermis.net,

achieving a high accuracy of 98.0% for the validation set.

Additionally, several studies have tackled the challenge of 

multi-class skin cancer detection using optimized hybrid deep 

learning models [28-30]. Table 1 provides a summarized 

comparison of the reviewed literature, highlighting the models 

used, key findings, and datasets employed in various skin 

cancer detection studies. 

Table 1. Summary of reviewed literature on skin cancer detection methods 

Authors Models Used Key Findings Dataset Used 

Thapar and Tiwari 

[12] 

XceptionNet, EfficientNetV2S, 

InceptionResNetV2, EfficientNetV2M 

XceptionNet achieved 88.72% accuracy, 

explored XAI for model explainability 
Curated dataset 

Ezeddin et al. [13] ResNet101, ResNext101 (Ensemble) 

Weighted averaging ensemble achieved 

96.12% accuracy, improved melanoma 

classification 

Custom dataset 

Hosaain et al. [14] 
MobileNetV2, VGG16, ResNet50 (Max 

Voting Ensemble) 

Achieved 93.18% accuracy, AUC 0.9320, 

enhanced diagnostic accuracy using ISIC 

2018 

ISIC 2018 

Maurya et al. [15] 
Topological Data Analysis (TDA) + Deep 

Learning 

97.4% accuracy, AUC 0.995 for basal cell 

carcinoma (BCC) detection 

395 skin lesion images 

(Telangiectasia focus) 

Daghrir et al. [16] 
CNN, KNN, SVM (Majority Voting 

Ensemble) 

CNN: 85.5%, SVM: 71.8%, KNN: 57.3%, 

ensemble improved to 88.4% 

ISIC repository (640 

images) 

Filali et al. [17] Handcrafted + Pretrained CNN Features 

Feature-level fusion improved 

classification, better performance on PH2 

dataset 

PH2, ISIC Challenge 

Amin et al. [18] AlexNet, VGG-16 (Feature Fusion) 
PCA-selected feature fusion improved skin 

cancer detection and localization 
Curated dataset 

Devadhas et al. [19] 
Stacking-based CNN + DNN with LSTM 

meta-classifier 

Achieved 97% accuracy but lacked 

detailed performance evaluation 
Custom dataset 

Chiu et al. [20] Two-stage Voting Ensemble 
Reduced false negatives, improved 

accuracy in ISIC and CSMUH datasets 
ISIC, CSMUH 

Mary et al. [21] ResNet, EfficientNet, MobileNet (Ensemble) 

96.33% accuracy on HAM10000, used 

preprocessing, data augmentation, and 

transfer learning 

HAM10000 

Kaur et al. [22] 
Deep Neural Networks with Morphological 

Preprocessing 

93.40% accuracy using segmented images 

for melanoma detection 

Segmented images 

dataset (private) 

Shah et al. [23] LSTM, BLSTM, GRU (BEDLM-CMS) 
97% accuracy in independent tests, 94% in 

tenfold cross-validation 
Custom dataset 

Liu et al. [24] ResNet-50, CrossViT (Hybrid Model) 
Enhanced feature representation and 

classification performance for skin cancer 
Curated dataset 

Qureshi and Roos 

[25] 

Ensemble CNN + Metadata with SVM meta-

learner 

Trained on 33,126 images, improved 

classification accuracy 

33,126 dermoscopic 

images 

Rahman et al. [26] 
Hybrid Feature Extractor (HOG, LBP, SURF) 

+ VGG19

Achieved 91.65% sensitivity, 95.70% 

specificity on ISIC 2017 & Academic 

Torrents 

ISIC 2017, Academic 

Torrents 

Hemantkumar et al. 

[27] 

Deep Learning Feature Fusion + Extreme 

Learning Machine (ELM) 

98.0% accuracy using HAM10000 and 

Dermis.net datasets 
HAM10000, Dermis.net 

3. MATERIALS AND METHODS

This section details the methodology developed for the 

detection and classification of skin cancer. Figure 1 outlines 

the overall structure of the framework, emphasizing the 

sequential stages of image preprocessing, deep feature 

extraction, and final classification. The preprocessing stage 

involves resizing, normalization, and data augmentation of 

dermoscopic images to ensure consistent input dimensions and 

improved model generalization. Next, pre-trained CNN 

models trained on the ImageNet dataset are fine-tuned to adapt 

to the specific characteristics of skin lesion images, improving 

feature extraction and classification accuracy. The prediction 

outputs from the fine-tuned base CNN architectures are 

aggregated and passed to the meta-learner, which refines the 

predictions for final classification. As depicted in Figure 2, the 

proposed stacked ensemble learning framework trains 

multiple base classifiers and a meta-classifier on the ISIC 

dataset, which includes images of both benign and malignant 

skin lesions. Once training is complete, the ensemble model is 

employed to classify unseen skin lesion images as either 

benign or malignant. The following sections provide a detailed 

explanation of each step in the proposed methodology. 

3.1 Skin lesion dataset and pre-processing steps 

This study utilizes a subset of the ISIC 2020 challenge 

dataset [31, 32], which offers a varied collection of 

dermoscopic images for classifying skin lesions. This dataset 

includes images from nine distinct categories, covering both 

benign and malignant skin lesions: actinic keratosis, basal cell 

carcinoma, dermatofibroma, melanoma, nevus, pigmented 

benign keratosis, seborrheic keratosis, squamous cell 

carcinoma, and vascular lesions. These categories encompass 

a wide range of skin conditions, ensuring that the model learns 

to differentiate between malignant and benign cases 

effectively. Figure 3 presents sample images from the dataset, 

showcasing various skin lesion categories. 
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Malignant skin cancers include melanoma, basal cell 

carcinoma (BCC), and squamous cell carcinoma (SCC). 

Melanoma arises from melanocytes and is characterized by its 

aggressive nature and strong tendency to metastasize if not 

detected early. BCC is the most frequently diagnosed skin 

cancer, known for its slow progression and low likelihood of 

spreading beyond the epidermis. SCC is more aggressive than 

BCC and can metastasize if left untreated. On the other hand, 

benign skin lesions include nevus, pigmented benign keratosis 

(PBK), seborrheic keratosis (SK), dermatofibroma, actinic 

keratosis (AK), and vascular lesions. A nevus (mole) is a 

common benign pigmented lesion. PBK and SK are non-

cancerous growths that can resemble melanoma but do not 

pose a serious threat. Dermatofibromas are firm, fibrous, 

harmless skin nodules. Vascular lesions encompass benign 

growths like hemangiomas and angiomas, which result from 

blood vessel proliferation. Actinic Keratosis (AK) is a 

precancerous lesion caused by prolonged sun exposure, with 

the potential to progress into SCC if untreated. While benign 

lesions are generally harmless, detecting malignant skin 

cancers at an early stage plays a vital role in enabling prompt 

treatment and improving patient survival rates. 

This dataset includes 2,357 dermoscopic images of various 

dimensions, covering a range of benign and malignant skin 

lesion types. It was divided into three subsets to facilitate 

effective training and evaluation of the proposed model. 

Specifically, 1,792 images (approximately 76% of the dataset) 

were allocated for training, 447 images (around 19%) for 

validation, and 106 images (about 5%) for testing. Model 

parameters were learned from the training set, while the 

validation set supported hyperparameter tuning and helped 

mitigate overfitting. An independent test set was used at the 

final stage to objectively assess the model’s performance on 

unseen samples, ensuring generalization capability. Several 

preprocessing steps were applied to improve the quality and 

consistency of the input images. 

Figure 1. Proposed system design for automatic classification of skin lesions 

Figure 2. Schematic representation of the deep learning ensemble framework, featuring stacked CNN models and a meta-

classifier for improved skin lesion classification 

2145



Figure 3. Sample images from the dataset showing benign 

and malignant skin lesions 

Since dermoscopic images come in varying resolutions, all 

images were resized to a fixed dimension (180 x 180) to 

standardize input size and optimize CNN performance. To 

prevent biases during training, the dataset was randomly 

shuffled before splitting, ensuring a balanced distribution of 

different lesion classes across training, validation, and testing 

sets. Additionally, pixel values were normalized to the [0,1] 

range to ensure consistent feature scaling, thereby stabilizing 

training and improving convergence speed. 

Due to the relatively small size of the dataset, data 

augmentation was used to expand the training set, thereby 

promoting better generalization of the model. The 

augmentation strategies included rotation, flipping, translation, 

and zooming to introduce variations in image orientation, 

position, and scale. Rotation ensured the model became 

invariant to different lesion orientations, while flipping (both 

horizontal and vertical) introduced diversity in lesion 

placement. Translation slightly shifted images in different 

directions, making the model robust to variations in lesion 

positioning. Zooming simulated different levels of 

magnification, helping the model handle real-world variations 

in dermoscopic images. An outline of the augmentation 

methods used, along with their parameter settings, is provided 

in Table 2. These preprocessing steps collectively enhanced 

the model’s ability to generalize effectively, reducing 

overfitting and improving classification performance across 

different types of skin lesions. 

Table 2. Image augmentation settings 

Method 
Amount 

Value 

width translation 0.1 

height translation 0.1 

rotation range 36 

shuffle true 

zoom range 0.2 

vertical flip true 

horizontal flip true 

3.2 Architecture of the stacked ensemble meta-learner 

model 

As depicted in Figure 2 the proposed ensemble framework 

utilizes several deep learning models in parallel to improve the 

accuracy and robustness of automatic skin cancer 

classification. Four fine-tuned CNN sub-models are first 

employed to generate prediction probabilities from input skin 

lesion images: a custom CNN, InceptionResNetV2 [33], 

ResNet101V2 [34], and DenseNet201 [35], which are stacked 

together at level-0. These base models extract diverse feature 

representations, capturing both low-level and high-level 

patterns crucial for distinguishing different skin lesion types. 

The prediction outputs from these networks are then 

aggregated and passed to five different meta-classifiers at 

level-1, including Logistic Regression, Random Forest, 

Decision Tree, Gradient Boosting, and XGBoost. The meta-

classifiers refine the decision-making process, and for the final 

prediction, the classifier with the highest performance is 

chosen to distinguish between different skin cancer classes. A 

detailed breakdown of each module in the proposed system is 

provided in the following subsections. 

3.2.1 Base (Level 0) CNN architectures and fine-tuning 

In the proposed stacking ensemble system, we have utilized 

one custom CNN model along with three pre-trained CNN 

architectures—InceptionResNetV2, ResNet101V2, and 

DenseNet201—which have been fine-tuned to generate level-

0 prediction probabilities from input skin lesion images. The 

custom CNN model, as shown in Figure 4, begins with an 

input preprocessing layer, where images are normalized using 

a rescaling layer that scales pixel values to the [0,1] range, 

ensuring better convergence during training [36, 37]. The 

network employs a series of convolutional blocks, each 

consisting of a 2D convolutional layer (Conv2D), a max-

pooling layer (MaxPool2D), and, in the later stages, a dropout 

layer. 

The architecture follows a progressive increase in the 

number of filters, starting with 32 filters in the first 

convolutional layer and doubling with each subsequent block 

(64, 128, 256, 512). With increasing depth, the network is able 

to learn more abstract and complex feature representations. 

Each Conv2D layer utilizes a 3×3 kernel with 'same' padding 

to maintain spatial dimensions and ReLU activation for non-

linearity. MaxPool2D layers are employed to reduce spatial 

dimensions and introduce translation invariance. Dropout 

layers with rates of 0.15, 0.20, and 0.25 are introduced after 

the third, fourth, and fifth convolutional blocks to prevent 

overfitting. This progressive increase in the dropout rate helps 

to regularize the deeper layers of the network. Following the 

convolutional blocks, a Flatten layer transforms the feature 

maps into a one-dimensional vector. Following feature 

extraction, the vector is forwarded to a Dense layer with 1024 

neurons, activated using the ReLU function. To complete the 

classification process, a Dense layer with nine neurons and 

softmax activation is employed to output class probabilities for 

the nine skin lesion categories. 

InceptionResNetV2 serves as the second base model, 

combining Inception modules with residual connections to 

improve the depth and efficiency of feature extraction. The 

model is fine-tuned for skin lesion classification by removing 

the original top layers and adding task-specific layers. To 

improve generalization, the model integrates a preprocessing 

pipeline with random flips and rotations, followed by rescaling, 

global average pooling, dropout, and Dense layers. 
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Figure 4. Tailored convolutional neural network (CNN) architecture commonly used for image classification tasks 
(The figure is conceptually inspired by standard CNN design [36, 37]) 

The final softmax output layer assigns probability scores 

across the nine skin lesion categories. Training is performed in 

two stages: first, freezing the pre-trained layers for 15 epochs 

to train the new layers, and second, unfreezing selected deep 

layers to fine-tune high-level features. Specifically, the first 

100 layers remain frozen, while the rest are trainable, ensuring 

optimal feature adaptation. The AdamW optimization 

algorithm is used during training, paired with the 

SparseCategoricalCrossentropy loss and accuracy as the 

evaluation criterion to monitor model performance. A reduced 

learning rate is applied during fine-tuning to prevent disruptive 

weight updates, effectively leveraging transfer learning to 

enhance classification performance on the skin cancer dataset. 

The third model in the ensemble system is ResNet101V2, a 

deep residual network known for its efficient feature 

extraction through skip connections. The base model remains 

frozen during the initial training phase, followed by global 

average pooling, dropout layers (0.3), and dense layers (1024 

and 512 neurons with ReLU activation). A softmax output 

layer classifies images into nine skin lesion categories. Again, 

the model is trained using the AdamW optimizer with 

SparseCategoricalCrossentropy loss for 15 epochs while 

keeping the pre-trained layers frozen. 

In the fine-tuning phase, the top 50 layers of ResNet101V2 

are unfrozen, allowing deeper feature adaptation to the skin 

lesion dataset. The model is recompiled with a lower learning 

rate (1e-5) to avoid disrupting previously learned features. 

Fine-tuning continues for 35 additional epochs, gradually 

improving classification performance. This two-stage training 

strategy effectively leverages transfer learning to refine deep 

feature extraction while preventing overfitting, ensuring a 

robust and adaptive model for skin cancer detection. 

Finally, we use DenseNet201 that enhances feature 

propagation through dense connections, allowing efficient 

gradient flow and improved feature reuse. The pre-trained 

DenseNet201 model is loaded without its top layers and is 

followed by flattening and dropout layers (0.5) to reduce 

overfitting. Fully connected dense layers with 1024 and 512 

neurons (ReLU activation) further refine feature 

representation, and a softmax output layer classifies images 

into nine skin lesion categories. To ensure stable convergence 

during training, the model leverages the SGD optimizer 

configured with a 0.001 learning rate and 0.9 momentum. 

A learning rate scheduler (ReduceLROnPlateau) is 

implemented to optimize training by reducing the learning rate 

when validation accuracy shows no improvement over 

successive epochs. Using a batch size of 32, the model is 

trained for 50 epochs, incorporating transfer learning and fine-

tuning to effectively repurpose DenseNet201 for classifying 

skin lesions. This structured training approach improves 

classification accuracy by refining high-level representations 

while preventing overfitting. 

3.2.2 Level-1 meta classifiers 

The Level-1 meta-classifier in the stacking ensemble learns 

to effectively aggregate predictions from the Level-0 models 

to enhance classification accuracy. The meta-classifier is 

trained on the outputs of the base models, leveraging their 

diverse feature representations and decision patterns to 

improve final classification accuracy. To build the Level-1 

model effectively, we employ five different machine learning 

classifiers: Logistic Regression, Random Forest, Decision 

Tree, Gradient Boosting, and XGBoost. Each of these meta-

classifiers is trained using the prediction probabilities 

generated by the Level-0 models, rather than the raw input 

images. This process ensures that the meta-learner focuses on 

the collective strengths of the base models rather than 

individual biases or noise from the original data. 

A key aspect of meta-learning is avoiding overfitting by 

ensuring that the Level-0 models’ predictions are generated on 

unseen data. To achieve this, a cross-validation-based training 

strategy is implemented, where each base model makes 

predictions on validation folds while learning from the 

remaining folds. The resulting prediction probabilities serve as 

the input features for the meta-classifier, allowing it to develop 

a generalized mapping function that optimally weights the 

contributions of each base model. By utilizing multiple meta-

classifiers, we evaluate and compare their ability to aggregate 

predictions, ensuring that the best-performing model is 

selected for the final classification decision. This multi-

layered approach strengthens the ensemble’s predictive 

accuracy, robustness, and generalization capability for skin 

cancer detection. 

3.3 Performance metrics for model evaluation 

We assess the classification performance of the proposed 

stacking ensemble model using four critical metrics: accuracy, 

precision, recall, and F1-score. These metrics, when 

considered collectively, provide a holistic evaluation of the 

model’s performance, with a focus on its ability to cope with 

the class imbalance often present in medical imaging datasets. 

Accuracy is defined as the number of correct predictions 

divided by the total number of samples, offering a general 

measure of the model's overall performance. While accuracy 

reflects overall performance, it may not be reliable when 
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applied to imbalanced datasets. For instance, if the majority of 

the dataset consists of benign skin lesions, a model that 

classifies most cases as benign could achieve high accuracy 

while failing to correctly identify malignant cases. Therefore, 

additional metrics such as precision, recall, and F1-score are 

necessary for a more reliable assessment. 

Precision (or positive predictive value) measures how many 

of the predicted positive cases are actually correct. In skin 

cancer detection, precision is critical for minimizing false 

positives, ensuring that benign lesions are not misclassified as 

malignant, which could lead to unnecessary biopsies and 

patient anxiety. Recall or sensitivity indicates how well the 

model captures true malignant cases by computing the ratio of 

true positives to all actual positive samples. Ensuring high 

recall is vital in clinical contexts, as it directly reduces false 

negatives, thereby minimizing the risk of undetected 

malignant conditions. 

To provide a balanced evaluation between precision and 

recall, we use the F1-score, which combines both metrics into 

a single value through their harmonic mean. Considering both 

types of misclassifications, the F1-score provides a balanced 

measure of model performance, which is particularly 

advantageous when dealing with imbalanced data. An elevated 

F1-score reflects the model’s ability to accurately classify both 

benign and malignant cases without class bias. By using these 

four metrics, we ensure that the proposed model is evaluated 

not only on its overall correctness (accuracy) but also on its 

ability to make clinically meaningful predictions that 

minimize both false positives (precision) and false negatives 

(recall), ultimately improving the reliability of skin cancer 

detection. 

3.4 Model training and testing 

The proposed stacking ensemble model for skin cancer 

classification was implemented and trained using TensorFlow 

and the Keras functional API, leveraging pre-trained 

ImageNet weights for transfer learning. The training process 

was conducted on Kaggle's free GPU resources, ensuring 

efficient computation. The training pipeline involved two 

main phases: (1) initial training with frozen layers, allowing 

the newly added layers to adapt, and (2) fine-tuning, where 

selected deep layers were unfrozen to refine feature extraction 

and improve classification performance. A portion of the 

dataset was set aside as the validation set to monitor the 

model’s performance after each epoch, helping detect 

overfitting and ensuring that the model generalizes well to 

unseen data. 

3.4.1 Training configuration 

SparseCategoricalCrossentropy was used as the loss 

function during training, as it is appropriate for multi-class 

classification with integer-labeled targets. AdamW, an 

adaptive learning rate optimizer incorporating decoupled 

weight decay (1e-4), was used with a low learning rate (1e-5) 

in most models to promote generalization and minimize 

overfitting. For the DenseNet201 model, we employed the 

SGD optimizer with a 0.001 learning rate and 0.9 momentum, 

which helps ensure stable convergence in deep architectures. 

We used ReduceLROnPlateau to dynamically lower the 

learning rate by a factor of 0.5 when validation accuracy failed 

to improve for three epochs, with a floor value of 0.00001. 

3.4.2 Training and fine-tuning phases 

Initially, all pre-trained base models (InceptionResNetV2, 

ResNet101V2, and DenseNet201) were frozen, and only the 

newly added classification layers were trained for 15 epochs. 

This step allowed the model to learn meaningful 

representations specific to skin cancer classification without 

modifying the pre-trained feature extractors. Once the 

classification layers were sufficiently trained, fine-tuning was 

performed by unfreezing select layers of each base model, 

enabling them to adapt deeper feature representations The 

fine-tuning phase lasted for 35 additional epochs, bringing the 

total training duration to 50 epochs. Throughout both phases, 

a batch size of 32 was used to ensure stable updates while 

efficiently utilizing GPU resources. 

3.4.3 Validation and testing strategy 

A distinct validation set was used during training to assess 

model performance after every epoch, ensuring consistent 

evaluation. This helped detect signs of overfitting and 

provided insights into how well the model would perform on 

new data. After completing the training and fine-tuning phases, 

the models were evaluated on a separate test set that contained 

previously unseen skin lesion images. Unlike the validation set, 

the test set played no role in model training, making it a true 

measure of generalization performance. This testing phase is 

crucial for assessing how well the model can classify real-

world medical images, ensuring its practical applicability in 

clinical settings. 

3.4.4 Activation function and evaluation metric 

The ReLU activation function was used across all models to 

introduce non-linearity and prevent the vanishing gradient 

problem. The final Dense layer used a softmax activation to 

output class probabilities for the nine skin lesion types. The 

primary evaluation metric for monitoring model performance 

during training was accuracy, providing a direct measure of 

classification correctness. 

By leveraging transfer learning, fine-tuning strategies, and 

a structured validation and testing approach, the proposed 

ensemble model was rigorously evaluated to ensure robustness 

and reliability in skin cancer detection. The inclusion of 

separate validation and test sets ensured that the model was not 

merely memorizing training patterns but truly learning to 

differentiate skin lesions, making it a practical tool for real-

world medical diagnosis. Table 3 summarizes the model 

configurations, including the optimization settings and 

training parameters used in this study. 

Table 3. Summary of model configurations and training 

parameters 

Items Value 

Batch size 32 

Total No. of Epochs 50 

Optimizer 
Adam and Stochastic Gradient 

Descent (SGD) 

Learning rate (initial) 1× e-3 

Learning rate (fine-

tuning) 
1× e-5 

Weight decay 1× e-4 

Loss function SparseCategoricalCrossentropy 

Pooling 

(a) Custom CNN: Max-pooling

(b) Pre-trained CNNs: Global

Average Pooling (GAP)

Activation function ReLU and softmax 

Weights for pre-trained 

CNN models  
ImageNet 
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4. RESULTS AND ANALYSIS

This section reports and analyzes the results of the proposed 

stacked ensemble meta-learning model for multi-class skin 

cancer classification. The performance of the ensemble model, 

incorporating four base CNN models (Custom CNN, 

InceptionResNetV2, ResNet101V2, and DenseNet201) and 

five meta-classifiers (Logistic Regression, Random Forest, 

Decision Tree, Gradient Boosting, and XGBoost), is assessed 

by means of standard metrics, including accuracy, precision, 

recall, and F1-score. Furthermore, training and validation 

curves for the base CNN models are analysed to assess their 

learning behaviour and a comparative analysis between the 

best-performing ensemble and the individual base models are 

presented. Finally, confusion matrix and detailed classification 

results are described for the best performing ensemble model, 

and a comparison with other similar works is provided. 

4.1 Performance of stacked ensemble with different meta-

learners 

To evaluate the effectiveness of different meta-classifiers in 

the stacked ensemble framework, we assessed the final 

classification performance of each ensemble configuration. 

Table 4 summarizes the results in terms of accuracy, precision, 

recall, and F1-score. The evaluation metrics considered offer 

a comprehensive assessment of each meta-learner’s capacity 

to aggregate predictions from the base learners and generalize 

to unseen data. The results demonstrate the efficacy of the 

ensemble approach and highlight the varying performance of 

Logistic Regression, Random Forest, Decision Tree, Gradient 

Boosting, and XGBoost as meta-learners. 

The results reveal a significant disparity in performance 

across the different meta-classifiers. Notably, Random Forest 

and XGBoost achieved excellent results, with accuracy and 

F1-scores exceeding 98%. This indicates their ability to 

effectively leverage the combined predictions of the base CNN 

models. With an accuracy of 98.63% and precision, recall, and 

F1-score all at 98.64%, the Random Forest meta-classifier 

demonstrated the best overall performance. Random Forest 

excels in ensemble frameworks by building multiple decision 

trees on bootstrapped data samples, allowing it to handle high-

dimensional and complex input effectively. As a meta-learner, 

it can effectively learn non-linear interactions among base 

model predictions, capture feature redundancies, and reduce 

overfitting via averaging. Such properties enhance Random 

Forest’s robustness, especially in scenarios where base 

learners generate varied predictions, as frequently observed in 

complex tasks like skin cancer detection 

XGBoost, another tree-based ensemble method, also 

demonstrated excellent performance, with an accuracy of 

98.53%, precision of 98.63%, and F1-score of 98.42%. 

Although marginally lower than Random Forest, XGBoost 

remains highly competitive due to its gradient boosting 

framework, which optimizes the meta-model in a stage-wise 

manner. This allows it to focus on hard-to-classify samples 

and systematically reduce bias, which is critical in medical 

diagnosis where misclassification can have serious 

consequences. Its slight underperformance in recall (98.24%) 

compared to Random Forest may be attributed to overfitting 

tendencies in boosting methods when dealing with highly 

similar predictions from base models. 

The Gradient Boosting and Decision Tree meta-classifiers 

also performed well, with accuracies of 96.85% and 96.64%, 

respectively. Their high precision and recall suggest that they 

are capable of capturing meaningful interactions among base 

learner outputs. However, their slightly lower scores compared 

to Random Forest and XGBoost indicate limitations in their 

ability to generalize from ensemble predictions when used in 

isolation. Similar to XGBoost, Gradient Boosting leverages an 

ensemble of weak learners to improve predictive accuracy. In 

this case, overfitting can occur without careful regularization, 

while a single Decision Tree, being non-ensemble in nature, 

lacks the error correction and variance reduction benefits that 

ensemble-based meta-learners inherently provide. Moreover, 

Decision Trees, being simpler models, may not have fully 

captured the complex interactions between the base CNN 

model outputs. 

Logistic Regression, in contrast, delivered the weakest 

performance, with an accuracy of 73.17%, a high precision of 

87.73%, but much lower recall (66.72%) and F1-score 

(71.60%). This sharp performance drop highlights the 

limitations of linear models in high-complexity, non-linear 

classification problems. As a meta-classifier, Logistic 

Regression assumes linear separability in the prediction space 

of the base models. However, the outputs of complex base 

learners, especially in deep learning and ensemble settings, are 

often non-linearly distributed. Consequently, Logistic 

Regression struggles to draw effective decision boundaries, 

especially for harder-to-classify minority or borderline cases, 

which is reflected in its poor recall. 

The significant difference in performance between linear 

(Logistic Regression) and non-linear (Random Forest, 

XGBoost) meta-classifiers underscores the importance of 

selecting meta-learners capable of capturing complex, non-

linear relationships in ensemble learning settings. Simpler 

models like Logistic Regression lack the expressive capacity 

to effectively integrate diverse base learner outputs, 

particularly in high-dimensional, intricate domains such as 

medical image classification. In contrast, the superior 

performance of Random Forest and XGBoost demonstrates 

that ensemble methods, especially those built on decision tree-

based algorithms, are highly effective at aggregating 

predictions from deep CNN models. Their ability to model 

complex feature interactions and their robustness against 

overfitting contribute significantly to improved diagnostic 

accuracy. These findings support the core hypothesis of this 

study: meta-learning architectures benefit most from strong, 

non-linear meta-learners that can capture subtle dependencies 

among base model predictions, particularly in critical, 

imbalanced, and complex classification tasks like skin cancer 

diagnosis. 

Table 4. Performance comparison of stacked ensemble models with different meta-learners 

Meta-Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Logistic Regression 73.17% 87.73% 66.72% 71.60% 

Random Forest 98.63% 98.64% 98.64% 98.64% 

Decision Tree 96.64% 96.90% 96.00% 96.42% 

Gradient Boosting 96.85% 96.85% 96.33% 96.58% 

XGBoost 98.53% 98.63% 98.24% 98.42% 
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4.2 Comparison with base CNN models 

The effectiveness of the ensemble strategy is further 

evaluated by comparing the Random Forest-based ensemble 

model with each individual base CNN. Figure 5 presents the 

accuracy and loss trends during training and validation phases 

for each base CNN model, illustrating their convergence 

patterns and generalization capabilities. As observed, the 

Custom CNN model demonstrates rapid convergence, with 

both training and validation accuracy reaching a plateau after 

20 epochs. The validation loss shows a slight increase after 16 

epochs, suggesting potential overfitting, which was mitigated 

using dropout layers. In contrast, InceptionResNetV2, 

ResNet101V2, and DenseNet201 models with fine-tuning, 

exhibit faster convergence and higher validation accuracy, 

indicating their strong feature extraction capabilities. 

Table 5 provides a comparative evaluation of the best-

performing stacked ensemble model (utilizing Random Forest 

as the meta-classifier) against individual base CNN models. 

With an accuracy of 98.63% and precision, recall, and F1-

score all at 98.64%, the stacked ensemble model outperformed 

all individual base CNNs. This reinforces the ensemble 

model’s strength in leveraging the diverse predictive behaviors 

of base learners to produce a more stable and generalized 

decision boundary. The model’s ability to capture 

complementary patterns from multiple CNNs and synthesize 

them through a robust meta-learner contributed to its excellent 

diagnostic performance. 

Among the individual CNNs, InceptionResNetV2 emerged 

as the top-performing base model, with a validation accuracy 

of 94.06%, and estimated F1-score of 93.74%. Its deep hybrid 

architecture, combining Inception modules with residual 

connections, likely enhances its capacity to learn both fine-

grained local textures and broader contextual features, critical 

for accurate skin lesion classification. DenseNet201 and 

ResNet101V2 also performed competitively, achieving 

corresponding accuracies of 92.67% and 90.78%, respectively. 

DenseNet201's high recall (93.42%) and F1-score (92.59%) 

reflect its ability to promote efficient feature propagation and 

reuse, while ResNet101V2’s slightly lower performance may 

be attributed to overfitting or diminishing returns from deeper 

layers in the absence of ensemble integration. Finally, custom 

CNN, although specifically designed for this task, showed a 

lower corresponding accuracy of 89.67%, highlighting the 

performance gap between hand-crafted architectures and pre-

trained deep models that benefit from large-scale prior 

knowledge. 

Overall, the results clearly demonstrate the effectiveness of 

the proposed stacked ensemble approach in enhancing the 

accuracy and reliability of skin cancer diagnosis. By 

integrating diverse base CNN models and employing a 

powerful meta-learner, the ensemble achieved a significant 

performance improvement over individual models. This 

approach not only boosts overall classification accuracy but 

also achieves a more balanced trade-off between sensitivity 

(recall) and specificity (precision), a critical factor in medical 

diagnosis, where both false positives (FP) and false negatives 

(FN) can lead to serious clinical consequences. As shown in 

the confusion matrix values for Class 3 (e.g., melanoma) in 

Table 6, the performance of the stacked ensemble model 

across different meta-classifiers demonstrates consistently low 

counts of FP and FN, highlighting its effectiveness over 

individual CNN sub-models. Notably, the Random Forest and 

XGBoost meta-classifiers produce the lowest FP (4) and FN 

(3 and 6, respectively), indicating their ability to accurately 

identify true cases while minimizing misclassifications. A 

lower FP count reflects fewer instances where non-melanoma 

cases are incorrectly classified as melanoma, thereby 

enhancing the model’s precision. More critically, keeping the 

FN count low is essential in medical diagnostics, as 

misclassifying a melanoma patient as healthy (a FN) can lead 

to delayed or missed treatment, which could have serious 

consequences. These results affirm that the stacked ensemble 

approach, particularly with Random Forest and XGBoost as 

meta-learners, demonstrates superior diagnostic reliability in 

skin cancer detection, outperforming individual CNN models. 

Table 5. Comparison of classification performance: Best ensemble vs. base CNN models 

Models Acc. (%) Precision (%) Recall (%) F1-score (%) 

Custom CNN 89.67% 88.73% 89.00% 88.87% 

InceptionResNetV2 94.06% 94.00% 93.50% 93.74% 

ResNet101V2 90.78% 90.52% 92.00% 91.25% 

DenseNet201 92.67% 91.80% 93.42% 92.59% 

Best Ensemble Model 98.63% 98.64% 98.64% 98.64% 

(a) Custom CNN model
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(b) InceptionResNetV2

(c) ResNet101V2

(d) DenseNet201

Figure 5. Training and validation accuracy and loss plots for: (a) a custom-designed CNN; (b) InceptionResNetV2; (c) 

ResNet101V2; and (d) DenseNet201 

Table 6. Confusion matrix values for Class 3 using different meta-classifiers in the stacked ensemble model 

Meta-Classifier TN TP FP FN 

Logistic Regression 778 108 5 63 

Random Forest 779 168 4 3 

Decision Tree 779 160 4 11 

Gradient Boosting 776 163 7 8 

XGBoost 779 165 4 6 
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4.3 Comparison with existing work 

Achieving 98.63% accuracy and precision and recall scores 

of 98.64%, the proposed stacked ensemble model proved 

highly effective for skin cancer classification. The findings 

confirm the model’s high reliability in differentiating benign 

from malignant lesions, with minimal errors in classification. 

The integration of multiple fine-tuned CNNs at the base level 

and diverse meta-classifiers at the top level contributed to the 

model’s robust predictive performance. When compared to 

existing studies in the literature, our model consistently 

outperforms other approaches. For instance, Thapar and 

Tiwari [12] employed a combination of XceptionNet, 

EfficientNetV2, and InceptionResNetV2 on a curated dataset, 

with the best-performing model (XceptionNet) achieving only 

88.72% accuracy, nearly 10% lower than our ensemble. 

Similarly, Ezeddin et al. [13] used an ensemble of ResNet101 

and ResNext101, obtaining 96.12% accuracy, which is 2.5% 

lower than our results. Hossain et al. [14] used a max-voting 

ensemble of MobileNetV2, VGG16, and ResNet50 on the 

ISIC 2018 dataset, reporting 93.18% accuracy, along with 

balanced precision (93.10%) and recall (93.17%). Although 

their ensemble approach was effective, it still falls short in 

comparison to our stacked ensemble, which leverages more 

advanced meta-learning strategies. Filali et al. [17] explored 

handcrafted and deep features, reporting strong performance 

on the PH2 dataset (accuracy of 98%) but only 87.8% accuracy 

on the more challenging ISIC dataset, where our model clearly 

excels. Further, Mary et al. [21] proposed an ensemble of 

ResNet, EfficientNet, and MobileNet, achieving 96.33% 

accuracy on the HAM10000 dataset, which again is surpassed 

by our model. Rahman et al. [26] combined handcrafted 

features with VGG19, achieving 91.65% sensitivity and 

95.70% specificity, indicating solid clinical relevance, yet not 

outperforming the comprehensive metrics reached by our 

ensemble. Likewise, Hemantkumar et al. [27] used deep 

feature fusion with an Extreme Learning Machine (ELM), 

achieving 98.0% accuracy, still trailing behind the 98.63% 

accuracy of our proposed method. Table 7 clearly highlights 

that our stacked ensemble model consistently achieves the 

highest accuracy, precision, and recall rates across all 

reviewed studies. This establishes its potential as a state-of-

the-art approach in skin cancer detection. 

Table 7. Performance comparison with similar existing studies for skin cancer detection 

Study Dataset Model Results 

Thapar and 

Tiwari [12] 

Curated dataset XceptionNet, EfficientNetV2S, 

InceptionResNetV2, EfficientNetV2M 

Accuracy of 88.72% by XceptionNet 

Ezeddin et al. 

[13] 

Custom dataset ResNet101, ResNext101 (Ensemble) Weighted averaging ensemble achieved 96.12% 

accuracy 

Hossain et al. 

[14] 

ISIC 2018 MobileNetV2, VGG16, ResNet50 (Max Voting 

Ensemble) 

Max voting ensemble accuracy 93.18%, 

precision 93.10%, recall 93.17%, F1-score 

93.13% 

Filali et al. [17] PH2, ISIC 2018 Handcrafted + Pretrained CNN Features F-measure, Kappa index, and accuracy of

94.69%, 96.63%, and 98% on PH2; 62.73%, 

55.68%, and 87.8% on ISIC Challenge dataset 

Mary et al. [21] HAM10000 ResNet, EfficientNet, MobileNet (Ensemble) Ensemble model achieves an accuracy of 

96.33% 

Rahman et al. 

[26] 

ISIC 2017, 

Academic 

Torrents 

Hybr Hybrid Feature Extractor (HOG, LBP, 

SURF) + VGG19 Feature Extractor (HOG, 

LBP, SURF) + VGG19 

Achieved 91.65% sensitivity, 95.70% specificity 

on ISIC 2017 & Academic Torrents 

Hemantkumar et 

al. [27] 

HAM10000, 

Dermis.net 

Deep Learning Feature Fusion + Extreme 

Learning Machine (ELM) 

Achieves an accuracy of 98.0% 

Proposed 

ensemble model 

ISIC 2020 Stacked ensemble meta-learner Achieves an accuracy of 98.63%, with both 

precision and recall reaching 98.64% 

4.4 Discussions 

The results of this study clearly demonstrate the 

effectiveness of the proposed stacked ensemble model, which 

achieved an impressive accuracy of 98.63%, with both 

precision and recall at 98.64%. These values indicate a high-

performing system that is capable of accurately distinguishing 

between malignant and benign skin lesions with minimal 

diagnostic error. This level of performance is especially 

important in medical imaging applications, where false 

negatives (FN) can delay treatment for serious conditions such 

as melanoma, and false positives (FP) can result in 

unnecessary patient stress and procedures. 

The stacked ensemble model outperformed the individual 

CNN models due to its stronger architecture and more 

effective training strategy. First, each base CNN model has its 

own architectural strengths. For example, DenseNet201 

promotes feature reuse through dense connections, leading to 

efficient gradient flow, while InceptionResNetV2 combines 

residual learning with multi-scale feature extraction. However, 

despite their strong individual capabilities, each model may be 

biased toward learning certain types of patterns or features. 

The stacked ensemble model combines predictions from 

multiple CNNs, allowing it to learn a broader and more 

complementary set of features, which helps minimize 

consistent misclassifications. 

The performance differences among meta-classifiers also 

reflect the influence of model complexity and learning strategy. 

Ensemble learners such as Gradient Boosting and XGBoost 

consistently outperformed simpler models like Decision Tree, 

as they are better equipped to capture non-linear relationships 

and correct the weaknesses of individual base models. In 

contrast, Decision Trees, although fast and interpretable, tend 

to overfit small patterns and lack the robustness of boosting 

techniques. Notably, the Random Forest meta-classifier 

achieved only 3 FN and 4 FP for Class 3, confirming the 

model’s robustness in correctly identifying melanoma cases, 

arguably the most critical classification outcome in 

dermatological diagnosis. Moreover, comparing the results 

with individual base CNNs the ensemble model consistently 
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outperformed them in terms of test accuracy and 

generalization. Training and validation loss plots further 

support this, showing more stable learning behavior in the 

ensemble system. These improvements can be attributed to the 

ensemble’s ability to leverage the complementary strengths of 

multiple deep models and refine their predictions through a 

meta-learning strategy. 

In addition to comparing max-voting and weighted 

averaging, we selected stacking as our primary ensemble 

method due to its flexibility and strong performance with 

heterogeneous models. Unlike bagging, which builds 

ensembles by training multiple instances of the same model on 

different data subsets, stacking allows us to combine different 

types of CNNs—each capturing unique visual features—into 

a more powerful meta-model. Boosting methods like XGBoost 

are effective in many structured data problems, but are less 

suited for combining complex image-based deep learning 

outputs directly. Our use of a trainable meta-classifier in 

stacking enabled the system to learn which base model to trust 

more under certain conditions, leading to improved 

performance across lesion types. This dynamic decision-

making is a key advantage of stacking in our context. In 

summary, the high performance of the proposed ensemble 

model is attributed not only to its design but also to the mutual 

combination of deep architectural diversity, smart 

optimization, and robust meta-learning. The findings indicate 

that the model is appropriate for real-world dermatology 

applications, balancing high accuracy with reliability and 

clinical safety. 

4.4.1 Clinical implication of the findings 

These results contribute meaningfully to clinical 

dermatology and offer valuable insights for the ongoing 

development of computer-aided diagnostic technologies. The 

proposed stacked ensemble model, which integrates the 

predictive strengths of multiple fine-tuned CNN architectures 

and meta-classifiers, has demonstrated exceptional 

performance in classifying skin lesions, with accuracy, 

precision, and recall all exceeding 98%. This high level of 

reliability is essential in clinical environments, where early 

and accurate detection of malignant lesions such as melanoma 

is critical for patient survival and effective treatment planning. 

Its ability to minimize both false positives and false negatives 

is especially valuable in skin cancer diagnosis, where early 

detection of malignant lesions like melanoma is critical for 

timely treatment, and avoiding unnecessary biopsies can 

reduce patient anxiety and healthcare costs. These strengths 

make the model suitable as a reliable decision-support tool for 

dermatologists, particularly in primary care or resource-

limited settings. 

Moreover, the use of pre-trained CNNs and publicly 

available datasets ensures that the system is scalable and 

adaptable across different clinical environments. The 

ensemble framework offers flexibility in selecting models 

based on available resources, enabling practical 

implementation. These findings encourage further research 

into integrating explainable AI (XAI) for interpretability and 

expanding the model to include multimodal clinical data. 

Overall, the study highlights the model's potential to support 

early, accurate, and efficient skin cancer screening in routine 

clinical practice. 

While the stacked ensemble model delivered the best 

accuracy in our tests, it does require more computing power 

and takes longer to run compared to individual models. On 

average, it took about 210 milliseconds to process each image 

and used around 3.2 GB of GPU memory. In contrast, a lighter 

model like MobileNetV2 only needed 75 milliseconds and 

about 1.1 GB of memory. 

This performance trade-off may be acceptable in well-

equipped hospitals or research settings, but it could be a barrier 

for mobile apps or real-time diagnosis tools in low-resource 

clinics. That’s why future work should look into ways to make 

the model more efficient—such as using model compression, 

pruning, or knowledge distillation techniques—so we can 

keep the high accuracy while making the system faster and 

lighter to run. 

4.4.2 Limitations 

Even with its promising performance, the proposed stacked 

ensemble model has certain limitations that must be carefully 

considered in future work. First, the study relies on a relatively 

small subset of the ISIC 2020 dataset, which may limit the 

model’s ability to generalize across broader populations and 

rare lesion types. Despite the use of data augmentation, the 

dataset may not sufficiently reflect the diversity of skin tones, 

lesion types, and lighting conditions seen in clinical practice. 

In other words, While the ISIC 2020 dataset is widely used and 

valuable for developing skin cancer detection models, it 

doesn’t fully reflect the diversity of real-world patients. In 

particular, it tends to include fewer images of darker skin tones 

and rare lesion types, which could limit how well the model 

performs in more diverse populations. This is an important 

issue because AI tools in healthcare need to work well for 

everyone—not just the majority represented in training data. 

Moving forward, it will be important to include more varied 

datasets that represent different ethnic backgrounds and skin 

types. 

Additionally, while the ensemble framework enhances 

classification performance, it also introduces increased 

computational complexity, which may pose challenges for 

deployment on devices with limited processing capabilities. 

The use of pre-trained models fine-tuned on dermoscopic 

images also assumes that the training data is free from 

annotation errors or class imbalance, which can inadvertently 

introduce bias into the learning process. 

Even though our model performs well in detecting skin 

cancer, getting it into real-world clinical use comes with some 

important challenges. For starters, hospitals use complex 

systems like electronic health records (EHRs), and any AI tool 

has to work smoothly with those systems—meaning it needs 

to be compatible with data formats, security standards, and 

existing software workflows. On top of that, before any AI 

system can be used in practice, it needs official approval from 

regulatory agencies like the FDA or CE, which involves 

thorough testing and validation. There’s also the issue of trust, 

doctors need to feel confident in the system’s predictions, so 

the model should be easy to interpret and transparent in how it 

makes decisions. Moving forward, working closely with 

healthcare providers, IT teams, and regulatory bodies will be 

key to turning this research into something that can be used 

safely and effectively in real clinics. 

4.4.3 Future work 

Future work will concentrate on a number of critical areas 

aimed at enhancing the robustness and clinical applicability of 

the proposed ensemble model. A key focus will be validating 

the model on expansive and diverse datasets from multiple 

institutions, reflecting varied skin tones, lighting conditions, 
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and uncommon lesion types. These enhancements are 

expected to improve the model’s capacity to generalize and 

perform reliably across varied clinical environments. 

Future exploration may include integrating explainable AI 

(XAI) methods to offer visual interpretations of predictions, 

promoting clinical transparency and trust. Additionally, 

extending the model to support multi-modal data such as 

patient demographics, clinical history, and clinical images 

could further boost diagnostic accuracy. Future work will aim 

to enhance the model’s computational performance, enabling 

seamless integration into mobile and edge platforms for real-

time diagnosis in clinical and remote environments 

5. CONCLUSIONS

This study proposed a robust stacked ensemble deep 

learning model for multi-class skin cancer classification, 

combining four CNN-based feature extractors, namely, 

custom CNN, InceptionResNetV2, ResNet101V2, and 

DenseNet201 with five different meta-classifiers. Among 

these, the ensemble configuration with Random Forest 

demonstrated the best performance, achieving an accuracy of 

98.63%, with both precision and recall reaching 98.64%. The 

model also maintained low false positive and false negative 

rates, especially for critical malignant classes such as 

melanoma, highlighting its effectiveness in reducing 

misclassification risks. 

The results emphasize the potential of ensemble learning 

strategies in improving diagnostic accuracy and reliability in 

medical imaging. By leveraging the complementary strengths 

of multiple CNN architectures and meta-learners, the proposed 

system significantly outperforms individual models and 

existing approaches from the literature. The results suggest 

that the model may serve as an effective clinical aid for 

dermatologists in accurately detecting skin cancer at an early 

stage. With further validation and real-time deployment, this 

approach holds promise for enhancing skin cancer screening, 

especially in primary care and resource-limited environments. 
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