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Osteoporosis is a condition in which bones become fragile and prone to fractures. This 

condition occurs due to reduced Bone Mineral Density (BMD), heredity, smoking, etc. 

Dual-energy X-ray Absorptiometry (DEXA) images are used for detecting and diagnosing 

this disease at its earlier stage. Limited generalization across diverse populations, various 

imaging modalities, and different algorithms were used for extracting the features, but still 

led to false positives or negatives. This article introduces a Deep Learning-assisted Variance 

Computation Technique (DL-VCT). In this technique, the learning network is trained using 

different classes of osteoporosis based on their ranges. The occurrence of any range in the 

input DEX image is analyzed using the hidden layer processing. In this hidden layer 

processing, the pixelate features for standard deviation and mean are used for correlating the 

training class range. The matching ranges are marked under the appropriate osteoporosis 

classification. The problem of variance detection and suppression is thus handled by the 

proposed computation technique to improve the precision. The variance from correlation 

and training is independently extracted to prevent errors. Using this classification, the 

medical diagnosis is initiated; the variance of BMD is responsible for this classification 

verified under different learning repetitions. This technique thus improves the detection and 

classification accuracy of osteoporosis regardless of its stage. From the experimental 

analysis, it is seen that for the highest classification factor, the proposed technique improves 

detection accuracy and precision by 8.27% and 13.77% respectively. 
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1. INTRODUCTION

A prevalent bone condition that often causes disability, 

especially in the elderly, is osteoporosis. Low Bone Mineral 

Density (BMD) and the micro-architectural degradation of 

bone tissue are the direct causes of this disease [1]. Apart from 

clinical tests, one of the most significant developments is the 

detection of this disease by X-ray imaging, even if this 

technique is not widely used in clinical practice [2]. The 

estimate of BMD in the proximal femur and lumbar spine 

using DEXA is the standard test for diagnosing osteoporosis. 

Therapeutic pharmacological therapies for osteoporosis are 

more successful in the early stages of the illness [3]. Early 

identification is crucial for preventing osteoporotic fractures-

rays can help to detect osteoporosis, an elusive skeletal 

condition characterized by a decline in bone density and 

calcium content [4]. The Singh index qualitatively assesses 

trabecular patterns in the femoral neck to evaluate bone 

density, with significant correlations observed between 

cortical thickness, fracture-risk assessments, and femoral neck 

BMD [5]. 

Osteoporosis types are primary (postmenopausal/type I and 

senile/type II) and secondary, with causes like malabsorption, 

specific medications (e.g., glucocorticoids), and conditions 

such as hyperparathyroidism [6]. For the diagnosis of 

osteoporosis risk, DEXA is frequently utilized. DEXA is not 

often done until symptoms (like a fracture) show up, which 

might lead to needless exposure of the other organs near the 

test site [7]. These factors make the use of other widely used 

modalities essential for an early diagnosis. Computed 

tomography (CT), for instance, is widely used and 

comparatively safe. Furthermore, CT can be used to evaluate 

an individual's risk of osteoporosis [8]. While osteopenia and 

osteoporosis exhibit texture abnormalities with a decrease in 

the Hounsfield unit (HU), the typical case has a homogeneous 

texture [9]. CT features enable assessment of osteoporosis and 

osteopenia, potentially reducing the social and financial 

impact of fractures and allowing early treatment. DEXA scans 

are commonly used to diagnose and monitor osteoporosis and 

assess body composition [10]. 

Using deep learning to diagnose osteoporosis from hip 

radiographs and using clinical data in addition to image mode 

enhances diagnostic performance. Convolution neural 

networks (CNN) have a high degree of accuracy when 

diagnosing osteoporosis from dental panoramic radiographs 

[11]. The CNN model with fewer parameters was one instance 

where the ensemble model performed better. Deep learning 

classification of osteoporosis uses oral panoramic radiographs 

[12]. In comparison to the image, the inclusion of patient 

variables enhanced all performance metrics and yielded extra 

information about significant osteoporosis classifications [13]. 

Deep learning has enhanced diagnostic accuracy by enabling 
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advanced inference, using clinical data derived solely from 

dental panoramic X-rays. When combined with a CNN model, 

it can classify osteoporosis from these radiographs with 

relatively high accuracy [14]. Furthermore, an ensemble 

model including patient covariates showed improved 

classification of osteoporosis. The performance was enhanced 

using the ensemble model across all CNN models, with fewer 

parameters proving to be more effective [15]. The 

contributions are: 

• To propose a novel Deep Learning-assisted Variance

Computation Technique (DL-VCT) to identify osteoporosis 

from DEXA images. 

• To statistically analyze the BMD through the variance

detection in DEXA inputs aided by the deep learning paradigm. 

• To analyze the proposed technique’s efficiency through

statistical and comparative assessments with different 

parameters and methods. 

The article’s flow is: Section 2 describes the works 

presented by different authors in the past, with a brief 

description and the identified problem. Section 3 presents the 

proposed technique’s description with appropriate equations, 

diagrams, and descriptions. In Section 4, the experimental and 

comparative study is presented for and a conclusion is 

presented in Section 5. 

2. RELATED WORKS

Wang et al. [16] developed a method to estimate lumbar 

BMD using chest X-rays. This pioneering algorithm shows 

strong potential for early osteoporosis screening and public 

health benefits, achieving excellent classification performance. 

Hwang et al. [17] introduced a Multi-View Computed 

Tomography Network (MVCNet) to classify osteopenia and 

osteoporosis using two images from a CT scan. MVCTNet 

consists of three task layers and two feature extractors, which 

apply dissimilarity loss to capture distinct features from each 

image.  

Breit et al. [18] introduced an algorithm that computes the 

spine's attenuation profile, enhancing mean attenuation in 

patients and aiding in more accurate bone density evaluation. 

Luo et al. [19] suggested an Osteoporosis Diagnostic Model 

using Quantitative Ultrasound Radiofrequency Signals with a 

Multichannel Convolutional Neural Network (MCNN), 

benchmarked against Dual-energy X-ray Absorptiometry 

(DEXA). The improved MCNN method achieved a higher 

area under the receiver operating characteristic curve than the 

speed of sound, enhancing diagnostic performance. Liu et al. 

[20] designed a High-precision BMD assessment using an

automated, phantom-less QCT system for osteoporosis

screening. The primary goal of the method is to verify the

precision and accuracy of a single, recently created automatic

PLQCT system for the measurement of spinal BMD. Prakash

et al. [21] developed 4 x-expert system using multi-model

algorithms for early osteoporosis prediction. Machine learning

techniques are applied to improve prediction accuracy through

various computational processes, enhancing overall prediction

performance. Bouzeboudja et al. [22] proposed a Multifractal

Analysis for better classification of Osteoporosis. The

suggested technique makes it possible to describe the

trabecular bone's roughness and local and global regularity in

radiographic pictures. The multifractal spectrum is used to

uncover alterations in bone microarchitecture brought about

by osteoporosis and to extract new texture properties. The

proposed method provides excellent promise as an additional 

tool for osteoporosis diagnosis. 

He et al. [23] introduced an Osteoporosis Detection Using 

Radiomics Based on Lumbar Spine Magnetic Resonance 

Imaging. The purpose of the model is to investigate a 

radionics-based lumbar spine magnetic resonance imaging 

method for osteoporosis detection. The estimated area under 

the receiver operating characteristic curve was used to assess 

the classification models' performance. The introduced model 

increases the detection performance. Keerthika et al. [24] 

suggested a bio-inspired, intelligent system for osteoporosis 

prediction and diagnosis. The suggested approach uses an 

artificial immune system to analyze a classifier and categorize 

individuals into affected and unaffected groups based on their 

medical histories. It helps to ascertain the likelihood of this 

disease in patients. The suggested approach increases the 

precision and efficiency of the identification process. 

Lalitha et al. [25] introduced effective machine learning 

techniques for the adaptively enhanced Adaboost-based 

detection of spinal anomalies. Contour-based hybrid median 

filter with histogram equalization was used to preprocess the 

data set. The introduced method achieved an accuracy level. 

Öziç et al. [26] designed a YOLOv5 Deep Learning Model-

Based, Fully Automated Osteoporosis Stage Identification on 

Panoramic Radiographs. The test data that the system was not 

exposed to previously were examined using the model weights 

that were acquired. The designed method effectively performs 

osteoporosis staging and automated localization. 

Tang et al. [27] suggested CNN-based approach that 

primarily consists of two functional modules that analyze the 

diagnostic 2D CT slice to accomplish qualitative BMD 

detection. Fang et al. [28] proposed a Multiple-level 

classification method utilizing a sequential deep-learning 

algorithm to diagnose osteoporosis and osteopenia. For 

automated vertebral body segmentation, a fully convolutional 

neural network known as U-Net was utilized. The proposed 

model enhances the correlation. Wani and Arora [29] 

suggested a deep learning strategy that uses transfer learning 

to categorize various disease stages. The introduced method 

achieves a better accuracy level. Ramesh and Santhi [30] 

suggested a Multiple-level classification method utilizing a 

sequential deep-learning algorithm to diagnose osteoporosis 

and osteopenia. The suggested approach is used in healthcare 

datasets related to osteoporosis and osteopenia to improve 

classification accuracy. 

BMD-based osteoporosis detection has been performed 

with intelligent and bio-inspired methods in the past. In the 

few other methods discussed above, learning and its image 

pre-processing features are incorporated. However, the 

variance in identifying multiple differences between density-

reducing and normal regions is tedious due to different pixel 

distributions and region overlapping. The correlation is 

therefore required to be intense to identify variance between 

pixelated and non-pixelated distributions. This single process 

is lagging in many of the above-mentioned methods, due to 

which an alternate computation technique using deep learning 

is introduced in this article. 

3. PROPOSED DL-VCT

The proposed variance computation technique aims to 

detect fragile bones prone to fractures; a condition associated 

with low bone mass that weakens bones and heightens fracture 
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risk, particularly in the spine, wrist, and hip. The method 

involves using both healthy and affected bone images to train 

the learning network. The technique is outlined as follows: a 

DEXA image is inputted, from which features are extracted. 

The diagnosis intervals are then compared with historical 

BMD data for the feature-extracted regions. The learning 

paradigm analyzes the mean and deviation features from the 

training data to perform classification for matching and non-

matching BMD values. This process consolidates the clinical 

range for diagnosing osteoporosis (Figure 1). 

The proposed technique inputs a DEXA image from which 

feature extraction is performed. The diagnosis intervals are 

mapped with BMD data from the past for the feature-extracted 

regions. This value is analyzed by the learning paradigm for 

the (mean and deviation) features from the training inputs. The 

classification is performed for the matching and un-matching 

BMD along with the features. This consolidates the range of 

clinical osteoporosis values for diagnosis (Figure 1). 

Figure 1. Proposed computation technique 

3.1 BMD measurement from DEXA images 

The DEXA method has been employed from pencil beam to 

fan beam outputs in high image quality. The primary adult 

screening is performed mostly with DEXA to reduce the 

number of individuals at risk of osteoporosis. The DEXA input 

images observed from the human are processed and then an 

accurate and precise bone mineral mass is evaluated. Hence, 

this technique is modeled into two segments such as 

osteoporosis classification and osteoporosis detection. 

3.2 Osteoporosis classification 

The equipped detectors are used for screening the tissue and 

bone from the human body. The different regions this problem 

will happen. Some regions are the femur, spine, etc. In this 

input image screening process, the textural patterns require 
(𝑇𝑃) from the input image is computed as, 

𝑇𝑃 = ∑  𝑛
𝑑𝑖𝑛𝑡𝑙

1 +
𝑂𝑟𝑖𝑚𝑎𝑔𝑒(𝐵𝐷−𝑁𝐷+𝛻𝐷)

𝜎
(1) 

𝐹𝑒𝑥 =
1

√𝑇𝑃
(
𝑂𝑟𝑖𝑚𝑎𝑔𝑒

𝐵𝐷
−

𝑁𝐷

𝛻𝐷
) + 2(𝑇𝑃 − 𝜕∗) (2) 

where, 𝜎 indicates the active detector to record DEXA image 

for performing pre-processing and segmentation for diagnosis 

time intervals𝑑𝑖𝑛𝑡𝑙 . The variable 𝑂𝑟𝑖𝑚𝑎𝑔𝑒 ,𝐵𝐷 ,𝑁𝐷  and ∇𝐷  are

used to show the original image, boundary detection, noise 

detection, and denoise detection in different screening 

instances for accurately and easily validating BMD 

measurement. The variables 𝐹𝑒𝑥  and 𝜕∗  denote the textural

feature extraction and pthe revious healthy bone screened. If 𝑛 

representsthe number of image processing. The uncertainty in 

detecting osteoporosis is computed as the number of skeletal 

structure variations observed at different instances is recorded 

for identifying the break in bone. Some cases of error take 

place in textural patterns due to reduced bone mineral content 

or mass, smoking, or heredity are observed at the time of 

image processing. Therefore, this error affects the textural 

patterns at any diagnosing interval for which the normalization 

is evaluated as: 

𝑁(𝑇𝑃) =
𝑚𝑎𝑥∆

(
𝑂𝑟𝑖𝑚𝑎𝑔𝑒

𝐵𝐷
−𝑆∆)

2 (3) 

And, 

𝑆∆ =
1

√𝐹𝑒𝑥
(

1

𝐵𝐷−1
∑  𝑛
𝑑𝑖𝑛𝑡𝑙=1

(
𝑇𝑃−𝜕∗

𝑁𝐷+𝛻𝐷
)
2

) (4) 

Eqs. (3) and (4) evaluates the normalization of textural 

patterns containing the maximum deviation (𝑚𝑎𝑥∆)  and

standard deviation (𝑆∆)  for accurate variation detection. In

this instance, where 𝑆∆  is said to be a normalized measure

instead 𝑚𝑎𝑥∆  is the uncertain measure evaluated from the

given image for which the precise and accurate BMD 

measurement is made. Based on 𝐹𝑒𝑥  and 𝑁(𝐹𝑒𝑥) , the

sequential uncertainty detected from the osteoporosis 

condition is validated as: 

𝑈(𝐹𝑒𝑥, 𝑁(𝐹𝑒𝑥)) = 

√

[
𝑂𝑠𝑡𝑒𝑜𝑐(𝑅)

𝑁𝐷 + 𝛻𝐷
]
1

2

+ [
𝑂𝑠𝑡𝑒𝑜𝑐(𝑅)

𝑁𝐷 + 𝛻𝐷
]
2

2

+

…+ [(1 −
𝜕∗

𝑇𝑃
)𝑚𝑎𝑥∆]

𝑑𝑖𝑛𝑡𝑙

2

(5) 

In Eq. (5), the uncertainty sequence is addressed from the 

instance until the detector is active in screening the tissue and 

bone from the human body. Where the 𝑂𝑠𝑡𝑒𝑜𝑐(𝑅) classes of

osteoporosis conditions based on their ranges is trained using 

hidden layer processing. The uncertainty class for deviation 

detection is illustrated in Figure 2. 

The 𝐹𝑒𝑥  for the input image is normalized for identifying

BHD variations across 𝑥 or 𝑦. Such variations are normalized 

for identifying any overlaps are pixel variations. In this 

process, the BMD variance for 𝑆∆  and𝑚𝑒𝑎𝑛  are computed

through comparison. The process relies on variance between 

𝑁(𝐹𝑒𝑥) and𝐹𝑒𝑥 for the mean and standard deviation. Therefore
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the 𝐹𝑒𝑥 that does not belong to𝑁(𝐹𝑒𝑥) ∀ 𝜕
∗, the uncertainty is

measured. This uncertainty results in a precision decrease 

(Figure 2). The sequence of uncertainty is validated for 

detecting and diagnosing the disease at its earlier stage using a 

DEXA image. In this technique, the ranges are obtained for 

identifying the osteoporosis condition that must be 

disseminated in accurate diagnosis intervals to improve the 

detection. Besides, osteoporosis detection is to be 

instantaneous in training the learning network using different 

class regions. Therefore, the occurrence of the different ranges 

is observed from the input DEXA images used for detecting 

osteoporosis conditions. Using maximum and standard 

deviation, the mean 𝑀𝑒𝑎𝑛 is computed as: 

𝑀𝑒𝑎𝑛 = 𝑚𝑎𝑥∆ + 𝑆∆ + 𝑂𝑠𝑡𝑒𝑜𝑐(𝑅) + 𝑁𝐷 + 𝛻𝐷 (6) 

In Eq. (6), the mean is evaluated to extract the features based 

on ranges. The learning is trained to identify the osteoporosis 

condition at any instance through hidden layer processing. The 

first step is to sample the textural patterns and maximum 

deviation sequence. The correlation of variation is achieved 

through the expression  (1 −
𝜕∗

𝑇𝑃
)𝑚𝑎𝑥∆  is the precise output

for osteoporosis classification from the instances. For this 

purpose, the pixelate features for mean and standard deviation 

at different diagnosing intervalsare obtained, 𝑀𝑒𝑎𝑛  and 𝑆∆
are serving as the input for correlating the training class range. 

For this correlation ∁i assessment is given as:

𝑀𝑒𝑎𝑛 = 𝐹𝑒𝑥 + 𝐵𝐷𝑆∆ = 0 }, 
𝑎𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

(7a) 

𝑀𝑒𝑎𝑛 = 𝑁(𝐹𝑒𝑥)𝑆∆ =
𝑚𝑎𝑥∆

𝑂𝑠𝑡𝑒𝑜𝑐(𝑅)
 }, 

𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 
(7b) 

Therefore, 

𝑀𝑒𝑎𝑛 + 𝑆∆ = 𝐹𝑒𝑥 + 𝐵𝐷 ,
 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑝𝑢𝑡 

(8a) 

And, 

𝑀𝑒𝑎𝑛 + 𝑆∆ = 𝑁(𝑇𝑃) +
𝑚𝑎𝑥∆

𝑂𝑠𝑡𝑒𝑜𝑐(𝑅)
,

 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑓𝑜𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 
(8b) 

This training initiates from the sequential instances along 

with the DEXA technology for accurately diagnosing and 

detecting diseases. The textural patterns and pixelated features 

are observed from the non-uncertain instance. The correlation 

of mean and standard deviation is achieved. Hence, the 

consecutive training of the learning network is accounted for 

detecting the osteoporosis condition. The occurrence of any 

range observed in the input DEXA image is analyzed using 

hidden layer processing. Figure 3 presents the learning process 

for variance detection. 

The mean and 𝑆∆  are the inputs for the learning process

along the BMD values. In the joint estimation of 𝐵𝐷 , 𝑁𝐷, and

∆𝐷 , three conditions are identified in the hidden layer (i.e.)

𝑆∆ = 0, 𝑆∆ = 𝑚𝑎𝑥 and 𝑆∆ = 𝑁(𝑇𝑃). The first two conditions

are optimal for 𝐹𝑒𝑥 [with  𝑁(𝐹𝑒𝑥)] and BMD inputs. Contrarily,

𝑆∆ = 𝑁(𝑇𝑃)  is exclusive to the variance identified. This

generates sequential and variation outputs as in Eqs. (7b) and 

(8a). Among these, the mean𝑁(𝐹𝑒𝑥) is the training (Variance)

input for 𝛻𝐷 . The 𝑆 = 0  sequence segregation is the

conventional training input for 𝐵𝐵 . Here, 𝑁𝐷 does not require

any such iterated training inputs as the variance between the 

BMD values is identified at any instance (Figure 3). 

Figure 2. Deviation detection process 

Figure 3. Learning process for variance detection 
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The learning network is configured with one input layer, 

followed by a hidden layer and an output layer. The input layer 

is assigned the mean and 𝑁∇ neurons for the features extracted.

Therefore, these neurons are variable based on the number of 

maximum and minimum considerations of 𝐵𝐷 , 𝑁𝐷 , and ∇𝐷 .

The variance between these minimum and maximum values, 

referencing the difference as 0 is considered for analysis. The 

detection of zero and non-zero variance is used to segregate 

the features (representing the regions) and the 𝐶𝑖 estimation.

This estimation in the hidden layer is eased by the maximum 

mean and 𝑠∇ classification changes. Thus, the classification is

conjoined with the hidden layer output to maximize the 

variance detection precision from the initiated hidden layer 

inputs. The process of DL-VCT-based osteoporosis detection 

and classification requires BMD measurement at different 

diagnosis intervals through the detector. The osteoporosis 

conditions are addressed based on matching and un-matching 

range classification using DL-VCT, depending on the 

maximum deviation standard deviation and uncertainty 

function. The noise is initially filtered in the given input image. 

If matching range𝑥  and unmatched range𝑦  raise and fall 

concerning 𝑑𝑖𝑛𝑡𝑙  and then 𝑥 ∈ (0,∞)  and 𝑦 ∈ (−∞, 0)  is

satisfied based on their range. From the instance, the matching 

and un-matching range is identified and segregated using 

correlation output. Based on𝑥  and𝑦  range at any diagnosis 

interval (𝑛 × 𝑑𝑖𝑛𝑡𝑙).
As represented in the first and consecutive instance, the 

hidden layer processing used for the training {𝐹𝑒𝑥 , 𝑆∆, 𝑀𝑒𝑎𝑛}
is performed. In the first instance, the pixelate features and 

standard deviation are defined as in the above equation. Hence, 

the BMD measurement with  𝑇𝑃  is retained with maximum 

uncertainty. In particular, based on features and diagnosis 

intervals in the given input DEXA image is analyzed to satisfy 

either the matching or un-matching range. This is because the 

𝑀𝑒𝑎𝑛  and 𝑆∆  are marked using matching ranges under the

accurate osteoporosis classification, such that the probability 

of occurrence is identified from the instance. In this technique, 

the osteoporosis condition is expressed as 𝑂𝑠𝑡𝑒𝑜𝑐 >
𝑀𝑒𝑎𝑛

𝑆∆
 or 

𝑂𝑠𝑡𝑒𝑜𝑐 ≤
𝑀𝑒𝑎𝑛

𝑆∆
is evaluated. Using Eq. (9), the 𝑂𝑠𝑡𝑒𝑜𝑐  and

ranges of  𝑀𝑒𝑎𝑛 and 𝑆∆  is mapping to partial output  𝑝𝑜  is

given as 

𝑂𝑠𝑡𝑒𝑜𝑐 = 1 −
𝜌𝑚𝑎𝑥∆
𝜌𝑆∆

(9) 

And, 

𝑆∆(𝐹𝑒𝑥) 𝑚𝑎𝑝𝑠 𝑡𝑜 𝑅, 𝑖𝑓 𝑂𝑠𝑡𝑒𝑜𝑐 >
𝑀𝑒𝑎𝑛

𝑆∆
𝑒𝑙𝑠𝑒, 

𝑆∆(𝐹𝑒𝑥) 𝑚𝑎𝑝𝑠 𝑡𝑜 𝑀𝑒𝑎𝑛  𝑜𝑟 𝑆∆, 𝑖𝑓 𝑂𝑠𝑡𝑒𝑜𝑐 ≤
𝑀𝑒𝑎𝑛

𝑆∆
 } 

(10) 

The variables 𝜌𝑚𝑎𝑥∆  and 𝜌𝑆∆  shows the probability of

maximum and standard deviation from the least possible 

instance. Now, the hidden layer processing for the 

conditions𝑂𝑠𝑡𝑒𝑜𝑐 >
𝑀𝑒𝑎𝑛

𝑆∆
and 𝑂 𝑠𝑡𝑒𝑜𝑐 ≤

𝑀𝑒𝑎𝑛

𝑆∆
 is expressed as 

in Eqs. (11) and (12). 

𝐻𝐿1 = 𝑁(𝐹𝑒𝑥)1𝐻𝐿2 = 𝑁(𝐹𝑒𝑥)2 − (
𝑀𝑒𝑎𝑛

𝑆∆
)
1
−

(
𝑂𝑠𝑡𝑒𝑜𝑐(𝑅)

𝑁𝐷+𝛻𝐷
)
1
𝐻𝐿3 = 𝑁(𝐹𝑒𝑥)3 − (

𝑀𝑒𝑎𝑛

𝑆∆
)
2
−

(
𝑂𝑠𝑡𝑒𝑜𝑐(𝑅)

𝑁𝐷+𝛻𝐷
)
2
⋮  𝐻𝐿𝑛 = 𝑁(𝐹𝑒𝑥)𝑛 − (

𝑀𝑒𝑎𝑛

𝑆∆
)
𝑛−1

−

(
𝑂𝑠𝑡𝑒𝑜𝑐(𝑅)

𝑁𝐷+𝛻𝐷
)
𝑛−1

}, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

(11) 

Such that, 

𝐻𝐿1 = 𝐹𝑒𝑥1 − 𝑆∆ (
𝑥

𝑦
)
1
𝐻𝐿2 = 𝐹𝑒𝑥2 − 𝑆∆ (

𝑥

𝑦
)
2
−

(
𝑂𝑠𝑡𝑒𝑜𝑐∗𝑅

𝑁𝐷+𝛻𝐷
)
1
𝐻𝐿3 = 𝐹𝑒𝑥3 − 𝑆∆ (

𝑥

𝑦
)
3
− (

𝑂𝑠𝑡𝑒𝑜𝑐∗𝑅

𝑁𝐷+𝛻𝐷
)
2
 ⋮

𝐻𝐿𝑛 = 𝐹𝑒𝑥𝑛 − 𝑆∆ (
𝑥

𝑦
)
𝑛
− (

𝑂𝑠𝑡𝑒𝑜𝑐∗𝑅

𝑁𝐷+𝛻𝐷
)
𝑛−1

},

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

(12) 

The hidden layer processing outputs are obtained 𝑛 

instances, where the normalization of extracted features from 

the input DEXA image is analyzed, and the textural patterns 

and pixelate features are considered factors for determining 

the classification output. The classification process is 

illustrated in Figure 4. 

Figure 4. Classification of matching and un-matching 𝐹𝑒𝑥
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Classification 1 above describes the matching and 

Classification 2 describes the un-matching ranges. The 𝑆𝛻 <
𝑚𝑒𝑎𝑛  identifies the precise  (𝑥, 𝑦)  for  𝑅  segregation. This 

requires an uncertainty case that elevates 𝐵𝐷  and the actual

clinical range. Therefore, the chance of unmatching is high due 

to the actual clinical range [31]. Therefore, the chances of un-

matching are high, due to which the iterations are pursued 

for  𝑁(𝐹𝑒𝑥) . The first classification relies on 𝑁𝐷 ± 𝐵𝐷 ∀ 𝐹𝑒𝑥
under BMD inputs. This classification achieves high matching 

post the normalization to satisfy 𝑆∆ > 𝑀𝑒𝑎𝑛 (Figure 4). Based

on the range occurrence, the uncertainty function as in Eqs. 

(7a), (7b), (8a), and (8b) are analyzed and verified for their 

osteoporosis detection for the conditions of 𝑂𝑠𝑡𝑒𝑜𝑐 >
𝑀𝑒𝑎𝑛

𝑆∆

and 𝑂𝑠𝑡𝑒𝑜𝑐 ≤
𝑀𝑒𝑎𝑛

𝑆∆
 using the following evaluations. The 

osteoporosis classification and detection is performed under 

various learning repetitions helps to improve the precision and 

accuracy of this disease detection regardless of its stage [32]. 

4. RESULTS AND DISCUSSION

4.1 Radiographic absorptiometry 

The radiograph input image is processed, the bone and 

reference wedge are validated to find the bone density. The 

advantages of this technique are easiness, low cost, and 

rapidity in every use in the medical field. The proposed 

technique is statistically evaluated using the data [33]. This 

data provides a cumulative mean of BMD values of 564 

participants using the screening process. The patients above 50 

years of age are considered in this data collection, in which 

359 are male and 205 are female. The images are obtained 

from a dual energy X-ray absorptiometry (DEXA) machine 

operating two peak X-ray beams: 30-50 keV and 70 keV for 

BMD measurement. This imaging is used to compute T and Z 

scores from which the precise bone density is estimated. The 

radiation dose between 1 and 50 𝜇Sv is used for measuring the 

Z and T values. Based on the observed outcomes, the BMD 

with variance is presented in Table 1. This deviation is used as 

a T-score to validate the bone density; the range between -1 

and 1 refers to a normal mass, -1 to -2.5 indicates lesser bone 

mass, and above -2.5 refers to the osteoporosis problem. Based 

on the deviation observed, the classification is presented in the 

following Table 1 and Table 2. 

Table 1. BMD values with the variance identified using the 

proposed method 

Type Region 
Max. 

Deviation 
Variance Classification 

Lumbar 

spine 

L1 0.905 ±0.04 Normal 

L2 0.811 ±0.01 Normal 

L3 0.655 ±0.02 Normal 

L4 0.729 ±0.09 Normal 

L2 -0.19 ±0.07 Low Mass 

L3 0.04 ±0.07 Normal 

L4 -0.17 ±0.11 Osteoporosis 

L3 -0.1 ±0.06 Low Mass 

L4 0.09 ±0.03 Normal 

L4 0.93 ±0.08 Normal 

The chances of variance occurrence for different 

classification ranges for 4 regions are tabulated above. The 

variance occurrence ratio is estimated by accounting 

the 𝑂𝑠𝑡𝑒𝑜𝑐 >
𝑀𝑒𝑎𝑛

𝑆∆
 condition across (𝑥, 𝑦) ∈ 𝑅. Based on the 

𝑆∆(𝐹𝑒𝑥), the iteration for the consecutive𝑀𝑒𝑎𝑛 is defined such

that 𝑈(𝐹𝑒𝑥 , 𝑁(𝐹𝑒𝑥)) is analyzed for multiple 𝜕∗. In this case,

as the classification factor increases, the chances based on 

occurrence are detected with better precision. Yet another 

consideration is the feature extraction rate based on the noise 

pixels and image quality, for which the 𝑁𝐷 ± 𝐵𝐷 ∀ 𝐹𝑒𝑥 is used

to compute its impact on the variances. Therefore, the 

acquisition parameters, including the device operational 

frequency and image quality, are accounted for to improve the 

computation of variation occurrence and its chances (Table 2). 

Following the above, the computation cost for the training 

process based on the iterations and classification factors is 

tabulated in Table 3. 

Table 2. Variance occurrence and its chances for different 

lumbar regions 

Type Region 
Classification 

Factor 

Occurrence 

(%) 
Chances 

Lumbar 

Spine 

L1 

0.2 31.90 5.25 

0.4 26.44 3.51 

0.6 13.96 6.60 

0.8 15.48 4.95 

1 9.83 2.53 

L2 

0.2 17.82 8.30 

0.4 14.34 4.29 

0.6 28.32 7.83 

0.8 14.47 6.67 

1 29.24 8.42 

L3 

0.2 20.82 2.68 

0.4 24.83 7.76 

0.6 24.11 7.16 

0.8 22.66 5.05 

1 12.38 7.28 

L4 

0.2 38.07 4.50 

0.4 27.51 4.28 

0.6 24.55 8.57 

0.8 8.30 5.97 

1 29.45 5.74 

Table 3. Computation cost for training based on iterations 

and classification 

Region 
Classification 

Rate 

Computation 

Cost 
Iteration 

Computation 

Cost 

L1 

0.2 0.23 400 0.21 

0.4 0.19 600 0.22 

0.6 0.58 800 0.37 

0.8 0.15 1000 0.38 

1 0.60 1200 0.38 

L2 

0.2 0.31 400 0.35 

0.4 0.47 600 0.34 

0.6 0.19 800 0.49 

0.8 0.58 1000 0.35 

1 0.14 1200 0.35 

L3 

0.2 0.43 400 0.60 

0.4 0.20 600 0.21 

0.6 0.14 800 0.59 

0.8 0.31 1000 0.41 

1 0.24 1200 0.41 

L4 

0.2 0.60 400 0.35 

0.4 0.33 600 0.35 

0.6 0.54 800 0.29 

0.8 0.48 1000 0.29 

1 0.24 1200 0.29 

The computation cost for the different classification and 
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iterations is presented in Table 3 above. The computation 

based on recurrent training intervals, the network training rate, 

drop, and halting rates is computed. For the varying intervals, 

the need for classification precision is high, for which 
(𝑇𝑃 − 𝜕∗) is the computation causing factor. Therefore, new

feature extraction and processing until𝐵𝐷  and𝑁𝐷 are classified

to prolong the training drop rate. This requires an additional 

computation cost to reduce 𝑈(𝐹𝑒𝑥 , 𝑁(𝐹𝑒𝑥)) using the first and

sequential variance observed. Therefore, the computation cost 

is retained in the next iteration, or the classification rate (high) 

confines the uncertainty. These two computations for 

uncertainty reduction control the cost for further classification. 

4.2 Experimental analysis 

The experimental analysis is performed using the dataset 

[32] that provides 180 osteoporosis images for testing and 372

images for training. The average run-time is 198.1s with

continuous 3 epochs. In this experimental analysis, 2-sample

results using MATLAB are presented in Figures 5-6. The

dataset contains both normal and osteoporosis images for

testing and training; therefore, in the training phase, an

imbalance occurs due to feature extraction rates and variance

estimation between these two kinds of images. To mitigate this

imbalance, the post-extraction is followed by the

normalization process before the sequence classification. If the

sequence classification shows up difference, then imbalances

are found relating to the training input type. In the tables below,

the matching and detected regions are highlighted.

4.3 Comparative analysis 

The comparative analysis is discussed using metrics such as 

detection accuracy, classification accuracy, precision, 

classification time, and variance. In this analysis, the 

classification factor, ranging from 0.1 to 1, and the considered 

methods (MCNN [19], MLC-SDL [30], and MCVTNet [17]) 

are accounted for. 

The proposed technique achieves a high bone fracture 

detection rate using hidden layer processing to identify BMD 

drops at various diagnosis intervals (Figures 7(a) and 7(b)). It 

minimizes variance and classification time by maintaining 

standard deviation and mean consistency during DEXA image 

processing and segmentation. The DL-VCT method mitigates 

BMD reduction, with 𝐹𝑒𝑥  and 𝜕∗  minimizing variation in

consecutive instances. The learning network evaluates bone 

mass, quality, and BMD, using extracted features to determine 

disease likelihood. Pixilated feature correlation speeds up the 

process and failed correlations train subsequent inputs to 

enhance accuracy (Figure 7(c)). 

In Figure 8, this article sequentially identifies osteoporosis 

by classifying matching and non-matching ranges observed in 

input DEXA images using DL-VCT. The proposed technique 

achieves high precision in classification and detection through 

multiple learning repetitions. This proposed technique 

analyzes textural patterns to identify bone structure breaks. 

This method enhances disease detection and classification 

accuracy, allowing for early-stage diagnosis with less 

classification time using DEXA images and DL-VCT. 

The proposed DL-VC technique detects errors and variance 

across various diagnosis intervals to maximize detection 

accuracy and precision for osteoporosis classification. The 

learning process is trained to identify osteoporosis using 

hidden layer processing and the proposed method. Textural 

pattern variations and maximum deviations are analyzed 

during diagnosis. The correlation between deviation and mean 

is expressed as (1 −
𝜕∗

𝑇𝑃
)𝑚𝑎𝑥∆  providing precise output for

osteoporosis classification. Range occurrences are verified in 

the input DEXA images to ensure correct classification. 

Hidden layer processing identifies variance to improve 

accuracy. The correlation of mean and standard deviation 

further enhances detection and classification. As shown in 

Figures 9(a) and 9(b), the DL-VCT reduces variance and 

improves osteoporosis condition identification. In Table 4, the 

p-values based on comparative analysis are presented.

(a) Input samples (b) Variance region (c) Normalized output (d) Matching

Figure 5. Osteoporosis region matching output for input samples 
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(a) Sample (b) Un-matching (c) Classified

Figure 6. Osteoporosis region detected output from input samples 

(a) Classification factor (b) Methods

(c) Classification accuracy

Figure 7. Detection and classification accuracy comparisons
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Figure 8. Precision and classification time comparisons 

The p-values are tabulated based on the classification rate 

in Table 4. The p-values are the prime outputs for the 

classification described in Eqs. (7) and (8). Based on the 

sequence for classification, the 𝑀𝑒𝑎𝑛 is estimated to improve 

the feature extraction and normalization. If these two 

processes are successful, then the variance is estimated with 

less uncertainty. In the existing methods, the uncertainty 

mitigation is less due to new feature replacement, based on 

which the computations for classification are made. Therefore, 

for the maximum classification rate, the proposed method 

using the learning network achieves better convergence in 

precision. The comparative analysis results are summarized in 

Tables 5 and 6 for the classification factor and methods. 

The proposed technique improves detection accuracy and 

precision by 8.27% and 13.77% respectively. The proposed 

technique reduces classification time and variance by 10.34% 

and 8.37% respectively. These values are précised from the 

existing method's cumulative sum tallied to the proposed 

technique mathematically. Besides, the values are presented as 

the outcome of the final value of the proposed technique. 

(a) Classification factor

(b) Methods

Figure 9. Variance comparisons for (a) Classification factor 

(b) Methods

Table 4. p-Values Tabulation 

Classification Rate MCNN MLC-SDL MCVTNet Proposed Methodology DL-VCT 

0.1 0.37 0.53 0.66 0.64 

0.2 0.49 0.57 0.70 0.81 

0.3 0.44 0.61 0.46 0.74 

0.4 0.52 0.53 0.41 0.72 

0.5 0.26 0.32 0.69 0.94 

0.6 0.57 0.57 0.71 0.85 

0.7 0.28 0.53 0.60 0.81 

0.8 0.57 0.63 0.77 0.82 

0.9 0.26 0.53 0.48 0.71 

1 0.63 0.75 0.87 0.95 
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Table 5. Comparative analysis summary for classification factor 

Metrics MCNN MLC-SDL MCVTNet Proposed Methodology DL-VCT 

Detection Accuracy (%) 81.23 85.42 90.93 94.12 

Precision 0.85 0.88 0.924 0.95 

Classification Time (ms) 745.79 625.42 502.52 236.94 

Variance 0.12 0.018 -0.04 -0.13

Table 6. Comparative analysis summary for methods 

Methods 
Metrics 

Detection Accuracy (%) Classification Accuracy (%) Precision Classification Time (ms) Variance 

MCNN 80.26 82.32 0.83 754.1 0.12 

MLC-SDL 84.25 89.25 0.9 457.0 0.1 

MCVTNet 91.25 93.6 0.93 247.1 59.52 

Proposed Method (DL-VCT) 94.263 95.12 0.96 59.52 -0.17

The proposed technique improves detection accuracy, 

classification accuracy, and precision by 9.01%, 13.46%, and 

14.67% respectively. The proposed technique reduces 

classification time and variance by 14.63% and 7% 

respectively. Similar to the comparative analysis results in the 

previous table, these values are mathematically formulated. 

5. CONCLUSIONS

In this article, the DL-VCT to identify osteoporosis using 

DEXA inputs is introduced and discussed. The BMD variance 

under various intervals through statistical and image 

observations are jointly handled using this technique. The 

input is preprocessed using textural features for BMD and 

BMD drops at regular intervals. In particular, the mean and 

standard deviation for the variance assessment are used for 

identifying osteoporosis classification from training input 

correlations. Depending on the variance, the matching and un-

matching classifications are performed to detect osteoporosis 

conditions. This complete process is aided by deep learning 

using its hidden layers for occurrence and correlation. The 

training is revived using pixel-based features and matching 

BMD observations with fewer variances. This ideal case is set 

as the training factor to identify osteoporosis from the input 

image using different repetitions. From the experimental and 

comparative analysis, it is seen that the proposed technique 

improves detection accuracy and precision by 8.27% and 

13.77% respectively. This technique also faces the problem of 

convergence in correlation due to statistical and image 

differences. Such a problem results in less precision for 

immediate BMD variances under irregular observation 

intervals. Therefore, future work is likely to rely on pre-

classification-dependent processing from the feature 

extraction category. Such an option would reduce the 

difference between actual and observed variance to detect 

osteoporosis. 
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