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 Marine microplastics pose a significant ecological and health risk due to their widespread 

sources and distribution. As a result, the rapid and accurate identification and classification 

of microplastics have become critical for marine environmental protection. Currently, 

traditional visual and microscope detection methods are inefficient and subjective. Some 

image-based recognition methods suffer from insufficient feature extraction capabilities, 

resulting in limited accuracy, while spectral-based techniques fail to effectively address data 

redundancy and noise, leading to poor classification performance in complex environments. 

To address these challenges, this study focuses on the development of an automatic 

recognition and classification technology for marine microplastic pollution using deep 

learning combined with spectral images. The research includes: proposing a feature 

extraction method for marine microplastics from multispectral images based on the ReliefF 

algorithm, which effectively selects features and removes redundant information; and 

developing a Conv-ReliefF-based recognition method for marine microplastics, integrating 

the feature learning ability of Convolutional Neural Networks (CNNs) with the feature 

selection advantages of the ReliefF algorithm. The innovation of this study lies in precisely 

extracting key features from multispectral images using the ReliefF algorithm to solve the 

problems of redundancy and noise interference in traditional feature extraction. By 

combining CNNs with the ReliefF algorithm, the Conv-ReliefF method balances feature 

learning depth and selective screening, thereby improving the accuracy and efficiency of 

microplastic recognition in complex marine environments. This approach provides technical 

support for large-scale marine microplastic monitoring. 
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1. INTRODUCTION 

 

Marine microplastic pollution has become a major 

environmental challenge that needs to be addressed globally 

[1-4]. These tiny plastic particles have widespread sources [5, 

6], including the degradation of everyday plastic products, 

industrial emissions, and sewage discharge, among others. 

They are widely distributed in the ocean, from coastal areas to 

the open sea, from the ocean surface to the deep sea. Marine 

microplastics not only pose a serious threat to marine life 

through ingestion, which can endanger their survival and 

reproduction, disrupting the balance of marine ecosystems, but 

they may also enter the human body through the food chain, 

posing potential risks to human health [7-10]. Due to their 

small size, large quantity, and complex composition, the rapid 

and accurate identification and classification of marine 

microplastics have become key challenges in the field of 

marine environmental protection and are prerequisites for 

effective pollution management. 

Research on the automatic identification and classification 

of marine microplastic pollution is of great practical 

significance and scientific value. From a practical application 

perspective, accurate identification and classification of 

marine microplastics can provide strong evidence for tracing 

pollution sources [11, 12], helping to identify the main sources 

of pollution and take targeted control measures. Additionally, 

understanding the distribution of microplastics in different 

regions and types can allow for in-depth analysis of their 

diffusion paths [13, 14], providing data support for developing 

scientifically sound pollution prevention and control 

strategies. From a scientific research perspective, this research 

can promote the development of marine environmental 

monitoring technologies, enrich the research content of marine 

environmental science, and provide basic data for 

understanding the environmental behavior and ecological 

effects of marine microplastics. 

Currently, several research methods have been proposed for 

the identification and classification of marine microplastics, 

but they have obvious flaws and shortcomings. Traditional 

detection methods mainly rely on visual inspection and 

microscope techniques [15, 16], which require researchers to 

manually sort and identify samples. These methods are not 

only highly inefficient and fail to meet the demand for large-

scale detection of marine microplastics, but the results are also 

heavily influenced by the experience and subjective judgment 

of the testers, making accuracy difficult to guarantee. Some 
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image-based recognition methods have improved efficiency to 

a certain extent [17-20], but they still fall short in feature 

extraction, making it difficult to accurately capture the subtle 

features of marine microplastics, leading to low identification 

accuracy. Some methods that combine spectral technology 

have poor classification performance in complex marine 

environments due to their failure to effectively handle 

redundancy and noise in spectral data. 

This paper focuses on the automatic identification and 

classification technology of marine microplastic pollution 

using deep learning and spectral images. It specifically 

includes two core components. First, a feature extraction 

method based on the ReliefF algorithm for marine 

microplastic pollution multispectral images is proposed. This 

method can effectively filter out features that are important for 

microplastic identification from multispectral images, 

removing redundant information and improving the 

discriminative power of features. Second, a marine 

microplastic pollution recognition method based on Conv-

ReliefF is developed. This method combines the powerful 

feature learning ability of CNNs with the feature selection 

advantages of the ReliefF algorithm to improve the accuracy 

and efficiency of marine microplastic recognition. The value 

of this study lies in the fact that the proposed method can 

achieve automatic, rapid, and accurate identification and 

classification of marine microplastics, providing a new 

technical approach for large-scale monitoring of marine 

microplastic pollution. This will contribute to the scientific 

and effective management of marine environments and has 

important application prospects for advancing the work of 

marine microplastic pollution control. 
 

 

2. FEATURE EXTRACTION METHOD FOR MARINE 

MICROPLASTIC POLLUTION MULTISPECTRAL 

IMAGES 
 

2.1 Texture features of multispectral images 

 

In this study, seven texture features were selected for the 

statistical calculation of marine microplastic pollution 

multispectral image features: (1) Mean; (2) Standard 

deviation; (3) Smoothness; (4) Third-order moment; (5) 

Information entropy; (6) Average gradient; (7) Fractal 

dimension. 

(1) Mean 

In the feature extraction of marine microplastic pollution 

multispectral images, the mean refers to the arithmetic average 

of the spectral reflectance values of the pixels in the target 

region containing marine microplastics within a specific band 

of the multispectral image. Due to the different materials of 

marine microplastics, they exhibit relatively stable reflection 

characteristics in multispectral bands, while the spectral 

reflectance values of background substances such as seawater 

and plankton fluctuate significantly. By calculating the mean, 

we can capture the typical spectral response of microplastics 

in specific bands, providing a basis for distinguishing 

microplastics from background materials. The mean of the 

microplastic region usually differs significantly from that of 

the background region. For example, in the near-infrared band, 

the mean of microplastics may be higher than that of seawater, 

which can preliminarily filter potential microplastic areas. Let 

the gray value of the pixel in the target area be Au, and the total 

number of pixels be V, then the mean ω of the target region 

image can be calculated as: 

1

1 V

u

u

A
V


=

=   (1) 

 

(2) Standard Deviation 

The standard deviation is an indicator of the degree of 

dispersion of the spectral reflectance values of the microplastic 

target region pixels in a specific band of the marine 

microplastic pollution multispectral image, that is, the square 

root of the average of the squared deviations of the spectral 

values of each pixel from the mean of that region. The physical 

structure of marine microplastics is relatively stable, and their 

spectral reflectance values fluctuate less within the region, so 

the standard deviation is small. However, in the background, 

suspended particles, bubbles, and other substances can cause 

significant fluctuations in spectral reflectance values, resulting 

in a larger standard deviation. By calculating the standard 

deviation, we can effectively distinguish the “uniform spectral 

value microplastic regions” from the “disordered spectral 

value background regions”, reducing the impact of 

background interference on feature extraction and improving 

the accuracy of subsequent recognition. The standard 

deviation calculation formula is: 
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(3) Smoothness 

Smoothness is used to describe the degree of smooth 

variation of the spectral reflectance values in the microplastic 

target region in the marine microplastic pollution multispectral 

image. The surface of marine microplastics is relatively 

regular, and their spectral reflectance values change smoothly 

from the center to the edge in the multispectral image. 

However, in the background, substances such as mud, sand, 

and seaweed may exhibit sudden jumps in spectral reflectance 

values due to irregular shapes, resulting in lower smoothness. 

This feature highlights the “regular texture and smooth 

spectral variation” characteristics of microplastics, helping to 

locate potential microplastic regions in complex backgrounds 

and providing the basis for accurate recognition in subsequent 

steps. The calculation formula for smoothness T is: 

 

2

1
1

1
T


= −

+
 (3) 

 

(4) Third-order Moment 

The third-order moment is an indicator of the skewness of 

the distribution of spectral reflectance values in the 

microplastic target region of the marine microplastic pollution 

multispectral image. If the distribution is symmetric, the third-

order moment is close to 0; if the distribution is skewed to the 

left or right of the mean, the third-order moment will be 

negative or positive. The spectral reflectance value 

distribution of marine microplastics is relatively symmetric 

and is minimally affected by material and shape, so the third-

order moment is close to 0. In contrast, background substances 

such as plankton may have a skewed distribution of spectral 

reflectance values due to varying individual sizes and uneven 

distribution, resulting in a deviation of the third-order moment 

from 0. The third-order moment σ3 can distinguish between 

“symmetrical spectral distribution microplastics” and “skewed 

spectral distribution background materials”, further refining 

feature differences and improving the specificity of feature 
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extraction. The calculation formula for third-order moment σ3 

is: 

 

( )

1

333
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 
= − 
 
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(5) Information Entropy 

Information entropy is used to measure the disorder of 

spectral information in the microplastic target region of the 

marine microplastic pollution multispectral image. A lower 

entropy value indicates more ordered information, while a 

higher entropy value indicates more disordered information. 

The composition and structure of marine microplastics are 

relatively simple, and in multispectral images, the distribution 

pattern of their spectral reflectance values is clear, resulting in 

lower entropy. However, the background regions containing 

various impurities exhibit complex and disordered spectral 

information, leading to higher entropy. By calculating 

information entropy, we can filter out “ordered spectral 

information of pure microplastic regions”, excluding impurity 

interference and providing cleaner feature data for subsequent 

classification. Let the probability of occurrence of each gray 

level be represented by O(Au), the calculation formula for 

information entropy r is: 

 

( ) ( )
1

log
V

u u

u

r O A A
=

= −  (5) 

 

(6) Average Gradient 

The average gradient is an indicator of the clarity of the 

edges in the microplastic target region of the marine 

microplastic pollution multispectral image. It is calculated by 

the average of the rate of change of the spectral reflectance 

values of adjacent pixels. A higher value indicates a clearer 

edge. The physical properties of marine microplastics differ 

significantly from seawater, and in multispectral images, there 

is a significant change in spectral reflectance values at the 

boundary between the two, resulting in a larger average 

gradient. In contrast, in the background, substances with 

similar properties exhibit smooth changes in spectral 

reflectance values, resulting in a smaller average gradient. 

This feature helps precisely locate the boundary contours of 

microplastics, distinguishing between “microplastics with 

clear boundaries” and “background materials with fuzzy 

boundaries,” thus improving the accuracy of microplastic 

region segmentation. The average gradient H represents the 

multi-level details of the image. The larger H is, the more 

levels the image has. Let the number of rows and columns in 

the sample image be l and v, and the gray value of the image 

be D(u,k), then the calculation formula is: 
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

 
(6) 

 

(7) Fractal Dimension 

Fractal dimension is used to describe the spatial complexity 

of the texture in the microplastic target region of the marine 

microplastic pollution multispectral image. The higher the 

value, the more complex the texture, while a lower value 

indicates a more regular texture. The shape of marine 

microplastics is relatively regular, and the texture structure 

presented in multispectral images is simple, resulting in a 

lower fractal dimension. However, in the background, 

substances such as seaweed and biological debris have 

irregular shapes and interwoven textures, resulting in a higher 

fractal dimension. The fractal dimension can quantify the 

texture differences between microplastics and the background, 

especially in complex marine environments, and can 

effectively filter out the regularly textured microplastic 

features, providing key data for recognition and classification. 

Let the total number of boxes required to cover the entire 

image be V(γ), and the side length of the sub-images dividing 

the original image be γ, the calculation formula for fractal 

dimension DF is: 

 

( ) ( )
0

log / log 1/DF LIM V


 
→

=     (7) 

 

2.2 Feature selection for marine microplastic pollution 

multispectral images based on the ReliefF algorithm 
 

In the feature extraction of marine microplastic pollution 

multispectral images, combining multiple bands of the 

multispectral image with the seven texture features will result 

in a high-dimensional feature dataset. Some features may be 

redundant due to the correlation between bands or their low 

relevance to the microplastic recognition task. For example, 

the "information entropy" feature of two adjacent bands may 

be highly similar, or the "third-order moment" feature of a 

specific band may have a weak effect in distinguishing 

microplastics from the background. These redundant features 

not only increase the input volume for subsequent recognition 

models, leading to large computational overhead and low 

efficiency but may also introduce irrelevant information that 

interferes with the model’s learning of key features, reducing 

recognition accuracy in complex marine environments. 

Therefore, this paper uses the ReliefF algorithm for feature 

selection, with the classification goal of "distinguishing 

marine microplastics from background materials". The 

ReliefF algorithm calculates the weight of each feature for the 

classification task, where a higher weight indicates that the 

feature contributes more to distinguishing microplastics from 

seawater, sediment, and other background materials, and thus 

the key features with higher ranks are retained. Additionally, 

methods such as Partial Least Squares Regression (PLSR) can 

be used to evaluate the selection effect and verify the 

adaptability of the selected feature set to the microplastic 

recognition task. Through this process, redundant features can 

be removed to reduce the computational complexity of the 

subsequent model, making the model lighter, while preserving 

the core features that are highly relevant to microplastic 

recognition, providing more accurate input for subsequent 

recognition models and improving the efficiency and accuracy 

of marine microplastic automatic recognition. 

The core of the marine microplastic pollution multispectral 

image feature selection based on the ReliefF algorithm is to 

determine the feature importance by evaluating the ability of 

each feature to distinguish "microplastics from the 

background" and "different types of microplastics". The basic 

principle begins with sample selection and distance 

calculation: a random sample is selected from the 

multispectral image feature dataset, which contains the 

spectral reflectance values, texture features, etc., of the 

microplastic targets, seawater, plankton, sediment, and other 

background materials. Then, j nearest neighbor samples are 
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found in the same material microplastics or the same type of 

background, and the total within-class distance of these 

samples on each feature is calculated. At the same time, j 

nearest neighbor samples are found in the heterogeneous 

samples such as microplastics and background or different 

material microplastics, and the total between-class distance is 

calculated. For marine microplastic multispectral images, 

effective features should minimize the within-class distance 

for the same microplastics and maximize the between-class 

distance between microplastics and the background. This is the 

core judgment criterion for the algorithm's selection process. 

Specifically, for a randomly selected sample au in the dataset, 

the distance Σj
k=1t(du,au,Gu) of the j nearest neighbor samples 

in the same class as au is calculated, and the distance 

Σj
k=1F(du,au,Lk(X)) of the j nearest neighbor samples in 

different classes as au is calculated. Assuming that the weight 

of the m-th feature d in the u-th sample is represented by Qu(d), 

the k-th sample in the same class as au is represented by 

Gk(k=1,2,...,j), and the proportion of samples in category X in 

the training set is represented by o(X), while the proportion of 

same-class samples in the total sample is represented by 

O(CL(au)), wherein the label of au is represented by CL(au). 

The k-th sample among the j nearest neighbors of different 

classes from au is denoted by Lk(X)(k=1,2,...,j). The weight is 

adjusted based on the magnitude of inter-class distance and 

intra-class distance, and is updated iteratively for l iterations. 
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Figure 1. Target region segmentation effect of marine microplastic pollution in RED, REG, and GREEN channels 
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In the distance calculation step, normalization of the feature 

attributes of the marine microplastic multispectral images is 

required. The multispectral image features include spectral 

features and texture features, and the value ranges of different 

features vary significantly. Therefore, the normalized distance 

of a sample on a particular feature is calculated: using the 

maximum and minimum values of the feature, the sample’s 

feature value is converted to a uniform range, and then the 

absolute difference of the transformed values is computed. 

This processing eliminates the interference of dimensional 

differences between features in the distance calculation, 

ensuring that the distance weights of different types of 

features, such as "near-infrared band reflectance" and "average 

gradient", are fair and accurately reflect the contribution of 

features to category differentiation. Specifically, assuming 

that the normalized distance between samples a1 and a2 on the 

d-th feature is denoted by Fd(a1, a2), the d-th features of 

samples a1 and a2 are denoted by a1d and a2d, and the maximum 

and minimum values of the corresponding feature d in all 

samples are denoted by MAX(d) and MIN(d), the distance 

calculation formula is: 

 

( )
( ) ( )

1 2

1 2,
d d

d

a a
F a a

MAX d MIN d

−
=

−
 (9) 

 

Finally, feature selection is achieved through weight 

iteration and updating: initially, all features are assigned the 

same weight. After each round of calculation, the weights are 

adjusted based on the within-class and between-class 

distances. If a feature results in a small within-class distance 

for the same microplastic sample and a large between-class 

distance for microplastics and background samples, its weight 

is increased; otherwise, its weight is decreased. This process is 

iterated multiple times on the multispectral image feature 

dataset, and the features with higher final weights are the key 

features for microplastic recognition, such as the specific band 

standard deviation that distinguishes polyethylene 

microplastics from seawater, or the fractal dimension that 

distinguishes fibrous from plate-shaped microplastics. 

Through this method, the algorithm can select the core features 

with low redundancy and high discriminability from the multi-

dimensional features, providing precise input for subsequent 

recognition models. Figure 1 shows the target region 

segmentation effect of marine microplastic pollution in the 

RED, REG, and GREEN channels. 

 

 

3. MARINE MICROPLASTIC POLLUTION 

RECOGNITION METHOD BASED ON CONV-

RELIEFF 
 

Figure 2 shows the marine microplastic pollution 

recognition and classification model architecture diagram. 

This paper adopts a recognition and classification method 

based on Conv-ReliefF for marine microplastic pollution. Its 

basic principle is to complement the advantages of CNNs 

(Conv) and the ReliefF algorithm to solve the core problems 

in the recognition of marine microplastic multispectral images. 

CNNs are good at automatically extracting deep spectral 

features and complex texture features from high-dimensional 

multispectral images. Even under complex background 

interference such as seawater and plankton, CNNs can capture 

the subtle feature patterns of microplastics, making up for the 

limitations of traditional manual feature extraction methods. 

The ReliefF algorithm can perform secondary screening on the 

features extracted by the CNN, removing redundant features 

unrelated to microplastic category discrimination and 

retaining the core features most critical for classification such 

as "microplastics and background" and "different 

material/morphology microplastics", thereby avoiding high 

feature dimensionality which leads to model complexity and 

reduced generalization ability. The combination of the two 

enables Conv-ReliefF to achieve deep feature mining through 

the CNN and precise feature selection via ReliefF, ultimately 

outputting a more discriminative feature set to improve the 

accuracy and efficiency of marine microplastic recognition, 

meeting the practical requirements of automatic recognition 

and classification. 

The method takes the multispectral image features selected 

by the ReliefF algorithm as the core input, realizing the 

synergy of feature optimization and deep learning. ReliefF 

selects the most contributive feature subset to microplastic 

recognition from the original multidimensional multispectral 

features, such as the mean value of the near-infrared band for 

distinguishing microplastics from seawater, and the fractal 

dimension for distinguishing different material microplastics. 

After normalization, these features form input vectors with 

adapted dimensions. This input method retains the core 

discriminative features of microplastics while removing 

redundant information, reducing the computational load for 

subsequent convolution operations and avoiding interference 

from irrelevant features during model training. 

The first convolution module undertakes the task of basic 

feature extraction and is composed of a convolution layer, 

activation function, and pooling layer. For the input key 

feature vector, this module uses eight 1×5 convolution kernels 

with a stride of 1 to perform convolution operations. By using 

a sliding window to perform weighted summation on five 

adjacent features in the feature vector, it captures the "spectral-

texture" correlation patterns unique to microplastics. For 

example, high reflectance values in specific bands of 

polyethylene microplastics are often accompanied by low 

smoothness texture features. After convolution, the ReLU 

activation function is used to introduce nonlinear mapping to 

enhance the response intensity of effective features. Then a 

max-pooling layer with a window size of 2 compresses the 

feature dimensions, retains local maxima, filters out minor 

information, and outputs a 6×8 feature map. Specifically, 

assume that the feature map output from the k-th convolution 

in the m-th layer is denoted by bm
k, the nonlinear activation 

function is d, the convolution operation is represented by *, the 

number of kernels in the (m−1)-th layer is V, the u-th feature 

map in the (m−1)-th layer is am-1
u, the weights are qm

uk, and the 

bias of the k-th convolution kernel in the m-th layer is ym
k. The 

1D convolution operation is given by: 

 

( )1

1
*

Vu m m m

k uk u ku
b d q a y−

=
= +  (10) 

 

Assume that the value of the s-th neuron corresponding to 

the u-th feature in the m-th layer is wm
u(s), the width of the 

pooling layer is q, and the neuron value in the (m+1)-th layer 

is om+1
u(k). The max-pooling process used in this paper is as 

follows: 

 

( )
( )

( ) 1

1 1

m m

u u
k q m kq

o k MAX w s+

− +  
=  (11) 

 

The second convolution module focuses on deep feature 
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mining and is composed of convolution layers and pooling 

layers. This module uses sixteen 1×3 convolution kernels to 

perform secondary convolution on the feature map output 

from the first module, mainly to capture the subtle differences 

in microplastic features, such as the combined differences in 

fractal dimension and information entropy between fibrous 

and flake microplastics. The convolution process still uses the 

ReLU activation function to enhance nonlinear representation, 

and then a max-pooling layer with a window size of 2 further 

compresses the features, retaining the core differential 

features. The final output is a 2×16 feature map, which at this 

point has been transformed into more abstract class-

discriminative signals for microplastics. 

The third convolution module and fully connected layer 

complete feature integration and classification decision-

making. The third convolution layer uses thirty-two 1×1 

convolution kernels to perform the final convolution on the 

previous feature map, reorganizing the 16 feature channels 

into 32 fusion channels, enhancing the correlation between 

different features. After ReLU activation, a 1×32 feature 

vector is formed. This vector is input into the fully connected 

layer, where 32 neurons perform weighted integration of the 

features. Finally, the output layer uses the Softmax activation 

function to output the probability value of each category, and 

the category with the highest probability is the recognition 

result. Suppose that the weight coefficient at position (l, g) in 

the connection weight matrix n is bk
g, the g-th element of the 

bias vector in the k-th fully connected layer is vk
g, and the l-th 

element received by the k-th fully connected layer is xk+1
l. The 

mathematical calculation formula of the fully connected layer 

is as follows: 

 

( )1

,1

Lk k k k

g l l g gl
b x n v −

=
= +  (12) 

 

The entire method achieves accurate recognition of marine 

microplastics through the cooperative process of "ReliefF 

feature selection - convolution feature extraction - fully 

connected classification". ReliefF preprocessing ensures the 

specificity of the input features and avoids interference from 

irrelevant information. The convolution modules, through 

multi-layer convolution and pooling, gradually transform 

shallow features into deep class features, adapting to the 

characteristics of marine microplastics which are "complex in 

features but exhibit stable discriminative patterns". The 

combination of the two not only improves the model's anti-

interference capability in complex marine environments but 

also reduces computational complexity through feature 

dimension reduction, ultimately achieving efficient 

recognition and classification of marine microplastics in 

different types and environments. 

 

 
 

Figure 2. Marine microplastic pollution recognition and classification model architecture diagram 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the analysis of multispectral image texture feature 

values in Figures 3(a)-(c), it can be seen that different bands 

show significant differences in mean, standard deviation, and 

smoothness. In the mean feature, the mean values of the NIR 

and REG bands are generally higher than those of the RED 

and GREEN bands, indicating that the near-infrared and 

related bands are more sensitive to the spectral reflectance 

characteristics of microplastics. Their high mean value 

characteristics can effectively distinguish microplastics from 

the seawater background. The standard deviation feature 

shows that the standard deviations of the NIR and REG bands 

fluctuate greatly, reflecting that these bands can capture the 

diversity among microplastic samples. In contrast, the low 

standard deviations of the RED and GREEN bands indicate 

more stable reflectance characteristics, contributing less to 

classification. In the smoothness feature, the smoothness of the 

NIR and REG bands is closer to 1, reflecting the smoothness 

of their texture, which is highly related to the physical state of 

the microplastic surface. Meanwhile, the smoothness of the 

RED band fluctuates significantly, possibly corresponding to 

rough-textured microplastics, where the low smoothness 

feature can assist in distinguishing the surface morphology of 
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microplastics. 

From the analysis of multispectral image texture feature 

values in Figures 3(d)-(e), it can be seen that different bands 

show significant differences in these features. In the third-

order moment, the RED band fluctuates sharply, reflecting its 

high sensitivity to the skewness of microplastic morphology 

and its usefulness in distinguishing shape categories. The 

third-order moments of the NIR, REG, and GREEN bands are 

relatively stable, with weaker capability to capture 

morphological skewness. In terms of information entropy, the 

overall values in the NIR and REG bands are higher than those 

in the RED and GREEN bands, indicating that they can encode 

the texture complexity of microplastics more fully, playing a 

key role in material classification. The RED band has lower 

information entropy, corresponding to microplastics with 

simpler texture, which can assist in material identification. In 

average gradient, the values in the NIR and REG bands are 

generally higher, showing strong ability to capture the edge 

details of microplastics, which is conducive to recognizing 

surface features. The RED and GREEN bands have lower 

average gradients, showing insufficient resolution for fine 

textures. 

From the analysis of the fractal dimension feature in Figure 

3(f), it can be seen that different bands show significant 

differences in describing microplastic textures. The fractal 

dimension of the NIR band fluctuates within a large range, 

reflecting its high sensitivity to complex surface textures of 

microplastics and serving as a core discriminative feature for 

material and surface state. The RED band has a generally low 

fractal dimension, suitable for identifying smooth-surfaced 

microplastics and distinguishing them from the background 

through low fractal dimension values. The fractal dimension 

of the REG band lies between NIR and RED, and combined 

with the characteristics of the red-edge band, it can assist in 

identifying microplastics with biofilm. The fractal dimension 

of the GREEN band is the lowest and has the smallest 

fluctuation (0.0005–0.0007), with weak texture resolution, and 

is prone to being removed during ReliefF algorithm filtering 

to reduce redundancy. 

Experimental data show that the mean, standard deviation, 

and smoothness of the near-infrared and red-edge bands have 

core discriminative value in microplastic identification: high 

mean and high standard deviation enhance the spectral 

distinguishability between microplastics and the background, 

while smoothness characterizes the surface texture features of 

microplastics. The high response of the NIR and REG bands 

in terms of information entropy and average gradient is highly 

consistent with the high near-infrared reflectivity and the 

transitional characteristics of the red-edge band of 

microplastics, which can effectively distinguish different 

materials and surface states. The third-order moment of the 

RED band shows significant discrimination ability for shape 

categories such as fibers and fragments. The fractal dimension 

features of the NIR and RED bands play a key role in 

microplastic classification: the high fluctuation of NIR 

captures the differences in material and surface complexity, 

while the low fractal dimension of RED distinguishes smooth 

shape categories. 

From the distribution of ReliefF feature scores in Figure 4, 

the scores of the 14 features are all above 0.6, with the top few 

features approaching 0.8, indicating that the ReliefF algorithm 

successfully selected multispectral features with high 

discriminative power for marine microplastic identification. 

These high-score features reflect the significant differences 

between microplastics and the background and other 

interferences in spectral reflectance and texture complexity. 

The high-score features of the near-infrared band correspond 

to the high reflectivity of microplastics in the near-infrared 

region and serve as the core basis for material classification. 

The standard deviation feature of the red-edge band captures 

the texture variation of microplastics, assisting in shape 

category differentiation. The fractal dimension feature 

describes the surface roughness of microplastics, 

strengthening surface feature recognition. Although the 

subsequent features have slightly lower scores, they still 

maintain effective discriminative power, showing that ReliefF 

retains secondary but critical information while avoiding 

interference from redundant features. The experimental data 

verify the effectiveness of the ReliefF algorithm: through 

feature selection, the signal-to-noise ratio of the feature set is 

greatly improved, reducing computational complexity and 

enhancing the relevance of model inputs. High feature scores 

mean that these features can be more efficiently learned by the 

CNN during training. For example, the high score of near-

infrared features enables the model to quickly capture the 

spectral uniqueness of microplastics, and the high score of 

fractal dimension features helps the model distinguish surface 

states, ultimately improving the recognition accuracy and 

efficiency of the Conv-ReliefF model for marine 

microplastics. 

 

 
(a) Mean 

 

 
(b) Standard deviation 

 

 
(c) Smoothness 
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(d) Third-order moment 

 

 
(e) Information entropy 

 

 
(f) Average gradient 

 

 
(g) Fractal dimension 

 

Figure 3. Multispectral image texture feature values of 

marine microplastic pollution 
 

From the evaluation results of the PLSR regression models 

in Figure 5, the performance differences of different feature 

selection methods are intuitively presented. Taking the R² 

metric as an example, the feature selection method based on 

the ReliefF algorithm performs outstandingly in terms of 

model interpretability, indicating that the selected 

multispectral features can highly fit the spectral-texture 

relationship of microplastic pollution and effectively capture 

the differences between microplastics, the background, and 

interfering objects. The mean squared error, mean absolute 

error, and root mean squared error are significantly lower in 

the ReliefF-related methods than in other comparative 

methods, indicating that the features selected by ReliefF 

greatly reduce model prediction error and improve regression 

accuracy. These data validate the effectiveness of the ReliefF 

algorithm: by removing redundant spectral features and 

retaining key features that are highly sensitive to microplastic 

pollution, the PLSR model can more accurately describe the 

spectral-texture patterns of microplastics. 

From the performance curves of training and testing in 

Figure 6, it is evident that the Conv-ReliefF-based model 

performs excellently over 500 iterations. The training set 

accuracy rises rapidly and stabilizes above 0.95 after 100 

epochs, and the loss rate drops sharply from 70 to nearly 0, 

indicating that the model efficiently learns the multispectral 

features selected by ReliefF and can deeply capture the 

spectral-texture patterns of microplastics. The testing set 

accuracy also stabilizes around 0.95, and the loss rate 

decreases to a very low level, closely matching the training set 

performance, proving that the model does not overfit and has 

strong generalization ability. These data verify the 

effectiveness of the Conv-ReliefF method: the high-value 

features pre-selected by ReliefF provide accurate inputs for the 

convolutional network, avoiding interference from redundant 

information and allowing the model to focus on the core 

discriminative dimensions of microplastics during learning. 

The convolutional layers extract features in a multi-level 

manner and, combined with the classification decisions of 

fully connected layers, achieve efficient recognition of 

microplastics in complex marine environments. 

 

 
 

Figure 4. ReliefF feature scores of multispectral images of 

marine microplastic pollution 

 

 
 

Figure 5. Evaluation results of PLSR regression models 

using different feature selection methods 
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(a) Training set accuracy 

 

 
(b) Training set loss rate 

 

 
(c) Testing set accuracy 

 

 
(d) Testing set loss rate 

 

Figure 6. Accuracy and loss rate of marine microplastic 

pollution automatic recognition and classification in 500 

training and testing iterations 

 
 

Figure 7. Performance results of the model in marine 

microplastic pollution automatic recognition and 

classification 

 

 
 

Figure 8. 3D visualization of spectral classification of marine 

microplastic pollution 

 

From the performance comparison results of the models in 

Figure 7, the Conv-ReliefF-based method proposed in this 

paper significantly outperforms traditional methods and other 

deep learning models in key evaluation metrics such as 

accuracy, precision, recall, and F1-score. Specifically, the 

accuracy of the proposed method is close to 1.0, and the 

precision, recall, and F1-score all exceed 0.95, while the 

metrics of the comparison models mostly fall in the 0.8–0.9 

range, showing a clear gap. This result verifies the 

effectiveness of the Conv-ReliefF method, whose advantage 

stems from the deep synergy between the ReliefF algorithm 

and the CNN: first, ReliefF selects highly discriminative 

features from multispectral images, removes redundant 

information, and provides precise input for the convolutional 

network, avoiding interference from irrelevant features in 

model learning. Second, the convolutional network extracts 

features in multiple levels and deeply learns the spectral-

texture correlations of microplastics in complex marine 

environments, achieving efficient classification of 

microplastic materials, shapes, and surface features. 

Compared with traditional methods, Conv-ReliefF avoids the 

limitations of manual features and uses deep learning to 

automatically mine feature representations; compared with 

other deep learning models, it optimizes the input through 

ReliefF, reduces training noise, and improves learning 

efficiency and generalization capability. 

From the 3D visualization results in Figure 8, it can be seen 

that fragment-like, fiber-like, particle-like, and film-like 

microplastics form distinct clustering groups in the principal 

component space composed of PC1, PC2, and PC3, with clear 

boundaries between categories and no obvious overlap. This 

indicates that the method based on Conv-ReliefF, through the 
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multispectral features selected by ReliefF, successfully 

captures the core discriminative information of different 

microplastic types in the low-dimensional space: the 

distribution of fiber-like microplastics on PC1 and PC2 is 

significantly separated from other types, reflecting that their 

unique texture features are effectively learned by the model; 

the clustering of film-like microplastics on PC3 reflects that 

the spectral reflectance characteristics of their smooth surfaces 

are accurately extracted. This clear clustering effect echoes the 

high accuracy, precision, recall, and F1-score of the model in 

Figure 7, verifying the effectiveness of the method. 

 

 

5. CONCLUSION 

 

This paper constructed a "feature selection–deep learning 

integration" technical system for the automatic recognition 

and classification of marine microplastic pollution. First, 

based on the ReliefF algorithm, key features were extracted 

from multispectral images, redundant information was 

removed, and a feature set with high discriminative power was 

formed. Second, a Conv-ReliefF model was constructed, 

which learnt the spectral-texture correlation of microplastics 

through a multi-level convolutional network to achieve precise 

classification. Experimental results show that the method 

significantly outperformed traditional methods and similar 

deep learning models in metrics such as accuracy and F1-

score. Moreover, 3D visualization demonstrated clear 

clustering of different microplastic types in the feature space, 

verifying the effectiveness of the technique. Through feature 

optimization and model design, the complexity of microplastic 

classification in marine environments was successfully 

addressed, providing an efficient automated tool for ecological 

monitoring. 

The technical innovation of this paper lies in combining the 

feature selection advantages of ReliefF with the deep learning 

capability of convolutional networks, overcoming the 

limitations of traditional manual features and achieving high-

precision classification of microplastic materials, shapes, and 

surface features. This provides key technical support for real-

time monitoring and source tracing analysis of marine 

microplastic pollution, promoting the intelligent upgrade of 

marine ecological protection and pollution control. The 

model's robustness under extreme environments has not yet 

been fully verified, and the feature selection process depends 

on parameter tuning of ReliefF, which requires further 

optimization in practical applications. Future directions 

include: ① expanding multimodal data to enhance feature 

dimensions and improve classification accuracy in complex 

scenarios; ② exploring model lightweighting and edge 

deployment to meet the real-time computing needs of mobile 

monitoring devices such as drones and buoys; ③ introducing 

self-supervised learning and few-shot learning to reduce the 

cost of data annotation and enhance the generalization ability 

of the technology in data-scarce scenarios. Through 

continuous iteration, the technology will advance from 

laboratory validation to real-world marine monitoring 

applications, contributing more practical solutions to global 

marine ecological protection. 
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