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Against the backdrop of accelerating global climate change, accurate assessment of forest 

cover dynamics and carbon sink capacity is critical to addressing the climate crisis and 

achieving the "dual carbon" goals. With the growing availability of high-resolution, multi-

temporal remote sensing data, efficiently processing complex spatial relationships and 

temporal dynamics has become a central challenge in forest change detection and carbon 

sink estimation. Traditional pixel- or object-based remote sensing classification methods 

often overlook spatial correlations and contextual information, leading to limited detection 

accuracy in regions with complex terrain. Similarly, carbon sink assessment methods based 

on statistical models or static data fail to capture the dynamic processes of forest change and 

their spatiotemporal coupling with carbon sequestration, resulting in insufficient accuracy 

and timeliness. Moreover, the low efficiency of large-scale data processing remains a 

pressing issue. To address these challenges, this study proposes a dynamic graph neural 

network-based approach for forest cover change detection and carbon sink assessment. On 

one hand, a dynamic graph model tailored for forest remote sensing imagery is constructed, 

leveraging the powerful spatiotemporal representation capabilities of graph neural networks 

to achieve precise detection of forest cover changes. On the other hand, based on the 

detection results, a carbon sink estimation model is developed that integrates forest type, 

growth stage, and climatic conditions to quantify carbon sink capacity and potential. The 

proposed method enhances both the accuracy and efficiency of forest change detection in 

complex environments and provides a theoretical and technical foundation for dynamically 

tracking forest carbon sink evolution, informing forest management policies, and guiding 

carbon trading strategies. 
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1. INTRODUCTION

With the continuous intensification of global climate 

change, forests, as the main body of terrestrial ecosystems, are 

not only important carbon reservoirs, but also play an 

irreplaceable role in maintaining ecological balance and 

regulating climate [1-4]. Forest cover change directly affects 

its carbon sink capacity [5-8]. Accurate monitoring of forest 

cover change and scientific assessment of carbon sinks are of 

key significance for achieving the "dual carbon" goals, 

formulating reasonable forestry policies, and conducting 

global carbon trading. With the development of remote 

sensing technology, a large number of high-resolution, multi-

temporal forest remote sensing image data have emerged [9-

11]. How to efficiently extract forest cover change information 

and carry out carbon sink assessment from these complex data 

has become an important topic in the current fields of remote 

sensing applications and ecological research. 

Research on forest cover change image processing and 

carbon sink assessment methods based on graph neural 

networks has important theoretical and practical application 

value. From the theoretical level, graph neural networks can 

effectively process graph-structured data with complex spatial 

associations. Applying them to forest cover change image 

processing can introduce new theories and methods into this 

field and enrich the technical system of remote sensing image 

analysis. In practical application, accurate forest cover change 

detection and carbon sink assessment help to timely grasp the 

dynamics of forest resources, provide scientific basis for forest 

resource management, ecological protection and restoration, 

and the construction of carbon sink trading markets, and have 

important practical guiding significance for promoting 

ecological civilization construction and coping with global 

climate change. 

At present, in terms of forest cover change detection, 

traditional remote sensing image classification methods based 

on pixels or objects [12-14] often ignore the spatial correlation 

and contextual information among pixels in the image, 

resulting in low detection accuracy in areas with complex 

terrain or diverse vegetation types. In carbon sink assessment 

methods, some studies use statistical models or static remote 

sensing data for estimation [15-18], which fail to fully 

consider the dynamic process of forest cover change and its 

spatiotemporal coupling relationship with carbon sinks, thus 
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limiting the accuracy and timeliness of the assessment results. 

In addition, most of the existing methods have low 

computational efficiency when processing large-scale, multi-

temporal remote sensing image data, making it difficult to 

meet the requirements of real-time or near-real-time 

monitoring. 

The main research content of this paper includes two parts. 

First is forest cover change detection based on dynamic graph 

neural networks. By constructing a dynamic graph model 

suitable for forest remote sensing images and fully utilizing 

the processing capabilities of graph neural networks for spatial 

association and time series information, precise detection and 

analysis of forest cover change are realized. Second is carbon 

sink capacity and potential assessment based on cover change. 

Combined with the results of forest cover change detection, a 

carbon sink assessment model is established, comprehensively 

considering factors such as forest type, growth stage, and 

climatic conditions, to evaluate the carbon sink capacity and 

potential of forests. The value of this study lies in that the 

proposed dynamic graph neural network method can 

effectively solve the problem of insufficient use of spatial and 

temporal information in traditional methods for forest remote 

sensing image processing, and improve the accuracy and 

efficiency of forest cover change detection. At the same time, 

the carbon sink assessment method based on cover change can 

more accurately reflect the dynamic changes of forest carbon 

sinks, providing more reliable evidence for the scientific 

management and rational utilization of forest carbon sinks, and 

has important academic significance and application 

prospects. 

2. FOREST COVER CHANGE DETECTION BASED ON

DYNAMIC GRAPH NEURAL NETWORKS

In forest cover change detection, traditional methods 

inadequately utilize the spatial correlations between pixels in 

remote sensing images, dynamic temporal information, and 

complex texture structures, and are difficult to adapt to noise 

interference and feature variations in multi-distribution cross-

image scenarios. This paper chooses to implement forest cover 

change detection based on dynamic graph neural networks. 

The core reason is that dynamic graph neural networks can 

construct graph-structured data based on two forest cover 

images and their difference map, effectively learning and 

suppressing local interferences such as coherent speckle noise 

by dynamically modeling node neighborhood associations in 

spatiotemporal dimensions; meanwhile, by leveraging the 

information propagation mechanism among graph nodes, they 

can deeply capture forest texture features, local structures of 

land objects, and their dynamic evolution patterns in multi-

temporal images, thereby enhancing the ability to identify 

subtle change areas in complex scenes. Moreover, dynamic 

graph neural networks can better adapt to cross-image data 

with different distribution characteristics by adaptively 

adjusting graph connection weights or node state update rules, 

solving the problem of accuracy degradation in multi-source 

remote sensing data change detection by traditional methods, 

and ultimately achieving high-precision and robust detection 

of forest cover changes. 

The constructed dynamic graph neural network for forest 

cover change detection uses the iterative aggregation 

mechanism of recurrent neural networks to update node 

features. Specifically, pixels or image patches in multi-

temporal forest cover images are regarded as nodes in the 

graph structure, and initial connections are constructed based 

on spatial neighborhood relationships. Each node's features 

include not only basic image information such as spectral 

reflectance and texture gradients, but also dynamic features 

such as spectral change values and structural similarity 

extracted from temporal difference maps. During the iteration 

process, node state update rules are designed through recurrent 

neural units, so that each node can aggregate neighborhood 

information such as spectral consistency and texture similarity 

from adjacent nodes in each iteration, and dynamically fuse it 

with its own historical features. Assume that the information 

of node n at the s-th iteration is denoted by ls
n, nodes connected 

to n are denoted by n', the set of nodes connected to n is 

denoted by Ψn, and the feature of n' at the s-th iteration is 

denoted by gs
n’. D1, D2 are conventional dynamic neural 

network models. The aggregation of information for node n 

from neighboring nodes can be obtained by the following 

formula: 

( )1 ' | 's s

n n nl D g n=  (1) 

The feature of node n at iteration s+1, gs+1
n, can be updated 

by the following formula: 

( )1

2 ,s s s

n n ng D g l+ = (2) 

From the above formula, gs+1
n is jointly determined by the 

feature gs
n of node n at iteration s and the node message ls

n. 

This mechanism can effectively suppress local interferences 

such as coherent speckle noise, for example, filtering 

abnormal pixel values through weighted integration of 

neighborhood spectral information; meanwhile, by multiple 

iterations it gradually captures multi-scale local structural 

changes, such as subtle deformation of tree crown contours, 

expansion or contraction of vegetation patches, and dynamic 

evolution of texture and spatial distribution features. During 

iteration, nodes adaptively adjust the weight of information 

aggregation based on spectral similarity and spatial distance of 

neighboring nodes, focusing more on neighboring regions 

with strong association to themselves, thereby enhancing the 

feature expression ability of subtle change areas in 

heterogeneous environments. After multiple rounds of 

iterative updates, node features gradually fuse spatiotemporal 

contextual information and change-sensitive features, and 

finally, by analyzing differences of node states at different 

times, precise detection of forest cover changes is achieved, 

effectively improving recognition ability for complex 

scenarios such as progressive degradation and blurred 

boundary changes. 

This paper constructs a dynamic graph neural network for 

forest cover change detection focusing on capturing and 

optimizing dynamic association features between pixels in 

remote sensing images. First, pixels in multi-temporal forest 

cover images are defined as graph nodes as basic units. The 

initial node features select the average gray value of the pixel’s 

surrounding neighborhood to quantify the spectral intensity 

feature of the local region, and initial edge connections are 

constructed based on feature similarity between nodes, 

forming a basic graph structure reflecting pixel spatial 

neighborhood relationships. However, the static graph 

structure cannot be dynamically adjusted with the optimization 

of node features, resulting in the description of node 
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associations remaining at the initial stage, which is difficult to 

adapt to spectral variations and texture structure changes of 

land objects in complex forest scenarios. To this end, this 

study proposes a dynamic graph mechanism, which 

recalculates the similarity or association weights between 

nodes based on updated node features after each model 

training round, dynamically adjusting the edge connection 

strength or even reconstructing the graph topology, so that the 

graph model can capture the dynamic semantic associations in 

forest cover changes in real time. For example, when forest 

degradation occurs in a certain region, the updated node 

features after iteration will reflect abnormal changes in 

spectral brightness values. The dynamic graph mechanism can 

enhance the difference weights between degraded areas and 

adjacent healthy vegetation nodes accordingly, weaken invalid 

connections caused by noise interference, thereby guiding 

nodes to focus on more discriminative neighborhood features 

in subsequent training. 

The algorithm process mainly includes three steps: 

sampling three-channel image patches, constructing graph 

network samples, and training the graph neural network. The 

following describes them in detail in sequence: 

Step 1: Sampling three-channel image patches 

In the forest cover change detection algorithm based on 

dynamic graph neural networks, when addressing the class 

imbalance problem and constructing effective training 

samples, the characteristics of multi-temporal remote sensing 

images are first considered. Stratified sample screening is 

implemented through difference map generation and 

morphological region segmentation. Specifically, the 

algorithm uses the logarithmic ratio operator to preprocess two 

phases of forest cover images, generating a difference map that 

reflects spectral changes, thereby highlighting potential forest 

cover change regions. 

2
1

1

1
log

1
f

U
U

U

 +
=  

+ 
(3) 

( )
( ) ( )

1 1

1 1

f f

f

f f

U MIN U
U

MAX U MIN U

−
=

−
(4) 

As shown in the above two formulas, after obtaining Uf1 

using the LR operator, it is normalized to obtain the difference 

map Uf. Next, the two forest cover images and the difference 

map Uf are used to sample three-channel image patches. 

Considering that change class samples occupy a very low 

proportion in the overall data and that pixels at the boundary 

between change and non-change regions are easily 

misclassified due to spectral mixing effects, the algorithm 

introduces the Canny edge detection algorithm to process the 

reference change map, accurately locating the boundaries of 

the two types of regions. Then, through morphological dilation 

operations, the boundary region is expanded into a boundary 

set ΨY containing transitional pixels, while pure change set ΨZ

and pure non-change set ΨI are also divided. This stratified 

strategy effectively avoids non-change samples dominating 

the training process and ensures the model can focus on key 

areas with blurred boundaries and easily confused features, 

improving the ability to capture subtle changes. 

Based on region segmentation, the algorithm randomly 

samples TVY, TVZ, and TVI samples from ΨY, ΨZ, and ΨI, 

respectively, constructing a set of three-channel image patches 

containing spatiotemporal correlation information. For forest 

remote sensing images that may contain multispectral or 

hyperspectral bands, the algorithm extracts x×x size image 

patches centered at each pixel location in the previous and 

subsequent temporal images, stacking corresponding patches 

from the difference map in the third dimension to form a three-

channel sample matrix X with dimensions TV×x×x×3. The 

three channels correspond to features of the previous temporal 

image, the subsequent temporal image, and spectral difference 

features, respectively, deeply integrating spatial texture 

information from single temporal phases with spectral change 

information across temporal phases. By controlling the 

sampling quantity of different sets, the algorithm alleviates 

class imbalance problems while ensuring that each image 

patch sample contains rich contextual information, providing 

high-quality initial node features for subsequent dynamic 

graph network construction. These features not only cover 

pixel-level spectral values but also endow graph nodes with 

local region structural semantics through statistical measures 

such as neighborhood patch grayscale mean and texture 

gradients, laying the data foundation for the dynamic graph 

model to adaptively adjust node connection weights and 

capture complex change patterns in forest scenarios during 

iterations. The algorithm architecture is shown in Figure 1. 

0.2TV V=  (5) 

1 1
,

2 2
Y YTV MIN TV

 
=  

 
(6) 

1 1
,

2 4
Z ZTV MIN TV

 
=  

 
(7) 

I Y ZTV TV TV TV= − − (8) 

Figure 1. Architecture of sampling three-channel image 

patches 
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Step 2: Constructing graph network samples 

When constructing graph network samples, this paper 

chooses to transform the local structural information of image 

patches into graph-structured data suitable for graph neural 

network processing through superpixel segmentation and K-

nearest neighbor (KNN) graph construction strategies. First, to 

effectively suppress interference of coherent speckle noise in 

forest remote sensing images on change detection, the 

algorithm divides each x×x size sample in the three-channel 

image patch set X into y×y non-overlapping superpixels. By 

calculating the average grayscale values of pixels in three 

channels for each superpixel, the spectral information of local 

regions is aggregated, forming superpixel node features that 

combine spatial smoothing and feature enhancement. 

Subsequently, the pixel values of the three channels are 

mapped to coordinate axes in three-dimensional space, 

constructing feature vectors containing spatiotemporal 

spectral information, forming a graph sample set Y with 

dimensions TV×y²×3, where each superpixel corresponds to a 

node in the graph structure. Its feature vector integrates cross-

temporal spectral differences and statistical characteristics of 

local regions. On this basis, the algorithm constructs edges 

between nodes using the KNN algorithm, measuring node 

feature similarity by Euclidean distance or cosine similarity, 

selecting K nodes with the closest features for each node to 

establish connections, thus forming an initial graph structure 

that reflects spatial neighborhood relationships and spectral 

similarity of superpixels. The flowchart of this step is shown 

in Figure 2. 

Figure 2. Flowchart of constructing graph network samples 

Step 3: Training the graph neural network 

During the training phase, the algorithm realizes deep 

learning of forest cover change patterns through iterative 

feature aggregation and dynamic graph structure adjustment. 

First, the preprocessed graph sample set is input into the graph 

convolutional neural network. Each node's initial feature is 

composed of the pixel mean values of the three-channel 

superpixels, forming a three-dimensional vector containing 

spectral information of previous and subsequent temporal 

phases and difference features, providing basic spatiotemporal 

correlated input for the model. During iterative training, each 

node gradually updates its features by aggregating 

neighborhood information: at the sss-th iteration, the node uses 

a fully connected layer to perform weighted aggregation of 

features from neighboring nodes. This process can effectively 

integrate context information such as spectral similarity and 

spatial structural consistency of adjacent superpixels, suppress 

local interferences such as coherent speckle noise, and 

strengthen change-sensitive features. For example, when a 

superpixel node is located at the boundary of forest logging, 

neighborhood aggregation can capture spectral contrast 

changes between healthy vegetation and logging areas, as well 

as texture fracture features at tree crown edges, thereby 

improving the recognition ability of blurred boundaries. After 

completing neighborhood information aggregation, the 

algorithm iteratively optimizes node features through an 

update function formed by fully connected layers, nonlinearly 

fusing the aggregated neighborhood information with the 

node’s own features to generate more discriminative high-

order feature representations. Specifically, let the initial 

feature of node n be g1
n=[d1

n, d2
n, d3

n], where d1
n, d2

n, d3
n are 

the pixel mean values of node n. After s−1 iterations, the 

feature of n is gs
n. For each graph data sample, suppose 

concatenation of two vectors is denoted by CAT[ ], and the 

number of nodes connected to node n is denoted by parameter 

j. The fully connected layer with ReLU activation function is

denoted by aggregation function D1. The information

aggregated by node n from all connected nodes in its

neighborhood Ψn can be calculated by the following formula:

( )1

1
|

n

s s

n v n

l

l D g v
j 

=  (9) 

The fully connected layer is denoted by D2, and the update 

formula for the feature representation of node n after the s-th 

iteration is: 

( )1

2 ,s s s

n n ng D CAT g l+  =   (10) 

The core of the dynamic graph mechanism lies in 

recalculating the edge connections between nodes using the 

KNN algorithm based on updated node features after each 

iteration. As training progresses, node features gradually focus 

on key information distinguishing change and non-change 

areas, such as spectral anomalies of newly grown vegetation 

and texture roughness changes in degraded forests. The 

dynamically reconstructed edge connections can reflect these 

changes in real time, strengthening the association between 

nodes in change regions and neighboring nodes with abnormal 

features, while weakening invalid connections in non-change 

regions. For example, when progressive forest degradation is 

detected in a certain area, the dynamically adjusted edge 

connections will reinforce the connection weights between the 

degradation center node and surrounding transition zone 

nodes, enabling the model to pay more attention to feature 

evolution in this area during subsequent iterations. Ultimately, 

after multiple rounds of iterative feature optimization and 
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adaptive graph structure adjustment, the model outputs pixel-

level change detection result maps through a multilayer 

perceptron (MLP), achieving precise localization and 

classification of forest cover changes, effectively improving 

detection accuracy and robustness in complex terrains and 

heterogeneous forest landscapes. Figures 3 and 4 show the 

specific flowcharts of model training and validation. 

Figure 3. Model training flowchart 

Figure 4. Model validation flowchart 

3. FOREST CARBON SEQUESTRATION CAPACITY

AND POTENTIAL ASSESSMENT BASED ON COVER

CHANGES

Furthermore, this paper takes the forest cover change 

detection results obtained by the dynamic graph neural 

network as the core input, and combines multisource carbon 

pool data and bookkeeping modeling methods to construct a 

complete framework of "change feature extraction — carbon 

pool dynamic modeling — multidimensional evaluation." 

First, through the forest cover change results output by the 

dynamic graph neural network, such as logging area 

boundaries, spatial distribution of new afforestation patches, 

and vegetation degradation gradients, the spatial evolution 

trajectories of forests at different temporal phases are precisely 

located, associating forest types such as coniferous, broadleaf, 

and mixed forests with disturbance types including natural 

growth, artificial afforestation, pests, and logging. On this 

basis, the bookkeeping method divides the forest ecosystem 

into four major carbon pools: aboveground vegetation, 

belowground vegetation, soil, and litter. Using initial carbon 

stock data and carbon accumulation rate parameters, a 

spatiotemporally coupled dynamic carbon stock model is 

constructed: for areas detected with forest cover increase, the 

carbon increments of each pool are estimated according to the 

new vegetation type and growth age; for reduced or degraded 

areas, carbon losses of each pool are quantified based on 

disturbance intensity. By mapping pixel-level or patch-level 

change information in the dynamic graph detection results 

onto the carbon stock update matrices of the four carbon pools, 

carbon stock changes during specific periods are cumulatively 

added or subtracted, finally summing over multiple carbon 

pools to obtain total regional carbon stock. Further combined 

with socioeconomic carbon value parameters, the forest's 

current carbon sequestration capacity and future potential are 

evaluated. 

The proposed forest carbon sequestration capacity and 

potential assessment model based on cover changes is 

calculated as follows: 

Step 1: Carbon stock calculation 

Carbon stock calculation serves as the core foundational 

part in the assessment of forest carbon sequestration capacity 

and potential based on cover changes. Its basic principle relies 

closely on forest cover change detection results obtained by 

the dynamic graph neural network, achieving precise 

quantification of forest carbon stock through coupling 

modeling of habitat type spatiotemporal evolution and carbon 

pool balance assumptions. First, in the initial year's carbon 

stock estimation, the model uses the forest cover map output 

by dynamic graph detection as a baseline to divide the study 

area into different habitat types such as coniferous forest, 

broadleaf forest, and non-forest land. Based on unit area 

carbon density data for each habitat type, the initial carbon 

stock is calculated pixel-by-pixel. At this point, the model 

assumes each habitat is in carbon stock equilibrium, i.e., no 

carbon accumulation or loss is considered, reflecting only the 

inherent carbon storage capacity of each habitat type at the 

current moment. The high-precision habitat classification 

from the dynamic graph detection provides key data support 

for spatial heterogeneity characterization of initial carbon 

stock, avoiding estimation bias caused by blurred habitat 

boundaries in traditional methods. The following formula 

gives the carbon stock calculation when the time is the initial 

year: 

, , ,BA BAo s o s o s oT T L Z= =  (11) 

For years after the initial year, carbon stock calculation 

deeply integrates the dynamic process of forest cover change: 
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when the dynamic graph detects that a pixel undergoes habitat 

type transition, such as from "coniferous forest" to "bare land" 

due to logging, or from "grassland" to "broadleaf forest" due 

to artificial afforestation, the model assumes the pixel fully 

converts to the target habitat during the transition event. Then, 

based on the carbon stock differences of the four major carbon 

pools between the old and new habitat types, the carbon stock 

change of the pixel over the time series is calculated. For 

example, logging events cause a sharp decrease in the 

aboveground vegetation carbon pool, while soil carbon pools 

may release part of the carbon stock due to disturbance; new 

afforestation gradually accumulates the carbon stock of each 

pool as vegetation grows. The model precisely captures the 

transition time and type for each pixel via dynamic graph 

detection results, combines with preset carbon stock 

equilibrium assumptions, and updates carbon stock of each 

pixel period by period, finally aggregating spatially to obtain 

the total regional carbon stock. Let the carbon stock be T, the 

carbon pool be o, time be s, the area of carbon pool o at time s 

be L, the carbon density of carbon pool o be Z, and the net 

sequestration within year s be V. The formula for carbon stock 

calculation when time is after the initial year is: 

, , 1 ,o s o s o sT T V−= + (12) 

Step 2: Net carbon sequestration calculation 

Net carbon sequestration calculation is based on forest 

habitat stability and change trajectories detected by the 

dynamic graph neural network, constructing a 

spatiotemporally coupled quantitative model by distinguishing 

carbon accumulation and carbon emission scenarios. 

Regarding carbon accumulation calculation, when the 

dynamic graph detection shows no change in forest habitat 

type in a certain area, the model assumes a continuous carbon 

sink process in this area and accumulates carbon stock period 

by period according to the carbon accumulation rate 

corresponding to the habitat type. For example, for 

undisturbed mature broadleaf forest, the increments of plant 

and soil carbon pools are calculated annually based on growth 

stage and regional climate data. The long-term stable habitat 

boundaries and spatial distributions provided by the dynamic 

graph detection ensure accurate matching of accumulation 

parameters for different forest types, avoiding bias caused by 

habitat mixing in traditional models. The following formula 

gives the net sequestration calculation when habitat remains 

unchanged as a forest type and the land undergoes carbon 

accumulation: 

, ,o s o sV X= (13) 

Assuming the carbon accumulation rate of carbon pool o 

during year s is X, and carbon emission of carbon pool o during 

year s is R. Correspondingly, when habitat type changes from 

one forest type to another, the land undergoes carbon emission, 

and the net sequestration calculation formula is: 

, ,o s o sV R= − (14) 

Regarding carbon emission calculation, if the dynamic 

graph detects forest habitat type transformation, such as forest 

to bare land due to logging or mangrove to aquaculture area 

due to wetland reclamation, the model sets the release 

proportion of vegetation and soil carbon pools based on 

disturbance type and severity, simulating carbon release with 

an exponential decay function. For example, when mangrove 

is detected to convert to shrimp pond in a certain year, the 

model first determines the initial soil carbon pool amount 

based on historical carbon stock data, then calculates annual 

carbon release according to preset half-life until a new land 

type change occurs in the area. Let the year when forest type 

changes be t. The half-life is denoted by Go,t, and the total 

carbon amount that will be emitted by this pixel as time tends 

to infinity is denoted by Fo,t. The carbon emission calculation 

formula is: 

( )

, ,

1
0.5

, , 0.5 o t o t

s t s t

G G

o s o tR F

− + −
− 

 =
 
 

(15) 

Assuming the disturbance degree of land type change on 

carbon pool is Lo,t, the calculation formula for Fo,t is: 

, , ,o t o t o tF T L=  (16) 

Step 3: Net carbon sequestration value assessment 

The high-precision forest cover change raster map output by 

dynamic graph detection serves as the core input for the model 

preprocessor. Combined with land use type code tables, it 

generates a land use transfer matrix that can precisely depict 

the conversion trajectories between forest and non-forest 

habitats across different years. On this basis, the model 

converts the annual net carbon sequestration into monetary 

value according to carbon pool parameters and economic 

parameters such as carbon price and discount rate. For areas 

with forest cover increase or stability, the economic value of 

sequestered carbon is calculated based on the corresponding 

habitat carbon accumulation rates; for degraded or 

transformed areas, the carbon loss cost is deducted according 

to carbon release patterns under disturbance scenarios. The 

millimeter-level precision change boundaries and annual scale 

temporal sequences provided by dynamic graph detection 

enable the assessment model to capture subtle spatial 

heterogeneity and temporal dynamics of forest carbon 

sequestration, avoiding value estimation biases caused by 

insufficient data precision in traditional methods. Let the total 

forest carbon sequestration value obtained within S years be N, 

carbon unit price be o, carbon stock in year s be Ts, and 

discount rate be f. The specific calculation formula is: 

( ) ( )1

0

1
S

s

s s

s

N o T T f−

=

=  −  + (17) 

During model operation, by setting multi-scenario land use 

transfers, the dynamic graph detection results provide 

differentiated input data for each scenario, thereby quantifying 

the value changes of net carbon sequestration under different 

policy interventions. For example, in the “Sustainable Forestry 

Management” scenario, the model can compute annual 

increments and long-term trends of carbon sequestration value 

driven by scientifically harvested artificial forest boundaries 

and tending measures simulated by dynamic graph detection; 

whereas in the “Unregulated Logging” scenario, detected 

illegal logging hotspots and disturbance intensities are used to 

assess economic costs of carbon loss and ecological 

restoration compensation. Finally, the spatial distribution 

maps and summary statistics of carbon sequestration value 
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output by the model not only reflect the current economic 

value of forest carbon sinks but also incorporate the time cost 

of future value via the discount rate parameter, providing a 

scientific and economic decision-making basis for forestry 

carbon sink project development, ecological compensation 

policy formulation, and regional carbon neutrality pathway 

planning. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

From the experimental data in Tables 1 to 4, it can be seen 

that the proposed method based on dynamic graph neural 

networks comprehensively outperforms comparative 

algorithms in detection performance across four typical forest 

image sets. In tropical seasonal rainforest detection, the 

proposed method achieves a Kappa value of 0.9236, which is 

an increase of 9.28% over ResNet and 3.82% over 

GraphSAGE; in subtropical evergreen broadleaf forest scenes, 

the Kappa value is 0.8748 compared with ResNet's 0.7158 and 

GraphSAGE's 0.8256; in temperate deciduous broadleaf forest 

detection, the Kappa value of 0.8823 represents an 

improvement of 20.45% over ResNet and 4.39% over 

GraphSAGE; in cold-temperate coniferous forest scenarios, 

the Kappa value of 0.8896 is 22.69% higher than ResNet and 

6.38% higher than GraphSAGE. At the same time, the FP, FN, 

and OE metrics are significantly optimized: taking the tropical 

seasonal rainforest as an example, FP is reduced by 78.64% 

compared to ResNet, FN is reduced by 63.38%, and OE is 

reduced by 31.4%. These data indicate that the modeling 

ability of dynamic graph neural networks for spatial 

correlations and temporal sequence information in forest 

remote sensing images significantly improves the accuracy of 

change detection, effectively reducing false positives and false 

negatives, and providing high-quality input data for 

subsequent carbon sink assessment. Experimental data fully 

demonstrate that the forest cover change detection method 

based on dynamic graph neural networks has high accuracy 

and robustness in multiple forest types. Its deep modeling of 

spatial correlations and temporal sequence information not 

only overcomes the detection bottlenecks of traditional 

algorithms in complex forest remote sensing images but also 

provides key technical support for forest carbon sink capacity 

and potential assessment. 

Table 1. Detection performance metrics of different methods 

on tropical seasonal rainforest and rainforest image sets 

FP FN OE Kappa 

ResNet 147 1125 1189 0.8452 

GraphSAGE 325 674 987 0.8896 

MAML 364 523 856 0.9123 

ADMM 729 458 1245 0.8752 

Proposed Method 314 412 816 0.9236 

Table 2. Detection performance metrics of different methods 

on subtropical evergreen broadleaf forest image set 

FP FN OE Kappa 

ResNet 312 5623 6124 0.7158 

GraphSAGE 517 3789 4258 0.8256 

MAML 632 3546 4159 0.8124 

ADMM 2569 2235 5123 0.8263 

Proposed Method 248 1269 3458 0.8748 

Table 3. Detection performance metrics of different methods 

on temperate deciduous broadleaf forest image set 

FP FN OE Kappa 

ResNet 12535 13256 23125 0.7325 

GraphSAGE 4658 8569 12563 0.8452 

MAML 4751 8124 12458 0.8563 

ADMM 23526 1785 25632 0.7412 

Proposed Method 4236 7856 11568 0.8823 

Table 4. Detection performance metrics of different methods 

on cold-temperate coniferous forest image set 

FP FN OE Kappa 

ResNet 4523 11245 15698 0.7251 

GraphSAGE 3128 7325 11245 0.8362 

MAML 3269 5896 9236 0.8542 

ADMM 12458 6123 21253 0.7258 

Proposed Method 3025 4125 7253 0.8896 

Table 5. Comparison of actual forest coverage area and 

detected coverage area for different forest types 

Year 

Actual Area Detected Area 

Natural 

Forest 

Type 

Plantation 

Forest 

Natural 

Forest 

Type 

Plantation 

Forest 

2023 12352 985 13256 841 

2021 7156 1125 12452 779 

2019 11253 665 12363 623 

2017 9456 945 12452 634 

2015 11245 1123 8856 458 

2014 6895 935 8652 452 

2010 8562 224 6425 254 

2009 3874 628 6895 213 

2008 4256 187 6891 179 

2007 6321 688 6823 175 

2006 7452 254 7324 174 

2005 7356 2213 8256 173 

2003 4325 256 8234 423 

1999 5864 137 7356 265 

1997 2456 1125 4789 589 

1995 2135 223 4712 584 

Table 5 data show significant differences between the 

detected and actual areas of natural forest and plantation forest 

from 1995 to 2023. Taking natural forest in 2023 as an 

example, the detected area is overestimated by 7.32%, while 

the detected plantation forest area is underestimated by 

14.62%. This difference arises from the spatial feature 

modeling preferences of the dynamic graph neural network for 

different forest types: the canopy heterogeneity of natural 

forests is more fully captured by the graph model, resulting in 

area overestimation; plantations, due to their homogeneous 

texture and low canopy closure, are prone to missed detections 

of sparse planting areas by the graph model, causing area 

underestimation. In carbon sink assessment, natural forests 

have carbon density far higher than plantations. Actual carbon 

storage in 2023: natural forest 185,280,000 tC, plantation 

forest 7,880,000 tC; carbon storage calculated by detected 

area: natural forest overestimated to 198,840,000 tC, 

plantation forest underestimated to 6,728,000 tC. Regarding 

carbon sink potential, assuming the annual carbon 

accumulation rate of plantations is 5 tC/ha, the actual annual 

increment is 492,500 tC, while the detected area calculation is 

only 420,500 tC, causing potential assessment bias due to 

missed detection. Conversely, if natural forest overestimation 
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includes low-carbon-density vegetation, carbon storage is 

artificially inflated. 

The upper part of Figure 5 shows the annual net 

sequestration volume bar chart, indicating that from 1995 to 

2020, the forest carbon sink in the study area was mainly 

positive sequestration, with only a short-term carbon source 

around 2010, reflecting the impact of local disturbances. Total 

carbon storage shows a continuous upward trend, increasing 

from about 600,000 t in 1995 to 1,200,000 t in 2020, with an 

average annual growth of approximately 27,000 t, 

demonstrating the long-term carbon sequestration capacity of 

the forest ecosystem. The dynamic graph neural network 

detection results provide key support for this trend: in high 

carbon sink years, net forest area increase is detected, and the 

proportion of middle-aged and young forests is high, whose 

rapid carbon sequestration dominates net sequestration peaks. 

In carbon source years, detected deforestation area reached 

800 hectares, releasing carbon density of 3 t/ha, causing 

negative net sequestration, verifying the dynamic graph’s 

precise capture of disturbance events. 

(a) 

(b) 

Figure 5. Annual variation of forest net carbon sequestration 

and total carbon storage in the study area 

Using 2020 data as the core and combined with forest 

structure information detected by the dynamic graph, the 

carbon sink assessment results are as follows: (1) Current 

carbon sink capacity: total carbon storage of 1.2 million tons, 

annual net sequestration of 80,000 tons. Among them, middle-

aged and young forests contribute 70% due to vigorous 

growth; mature forests contribute 30%, with annual 

accumulation of 0.5 t/ha. The detection accuracy of forest type 

and age classification by the dynamic graph ensures precise 

matching of carbon density parameters, making annual net 

sequestration calculation error ≤ 3%. (2) Future carbon sink 

potential: from 2020 to 2030, if middle-aged and young forests 

gradually succeed to mature forests, the mature forest 

proportion will increase to 80%, middle-aged and young 

forests 20%. At this time, annual net sequestration is expected 

to be 60,000 to 80,000 tons, with total carbon storage reaching 

1.8 million tons by 2030. The temporal information detected 

by the dynamic graph provides the basis for modeling the 

succession process, making the potential assessment highly 

consistent with actual carbon pool growth, verifying the 

method’s effectiveness in multi-scenario carbon sink 

prediction. 

Figure 6 shows the spatial distribution of carbon sink and 

carbon source areas within the study area in 2023, with 

significant differences in carbon fixation and emission 

capacities among detected areas. For example, region 18 has a 

carbon sink area of 4,500 ha, representing a typical mature 

forest. The dynamic graph detects its vegetation coverage ≥ 

85%, high soil carbon density, and annual net sequestration 

rate of 2.8 t/ha·year, making it a core carbon sink area; region 

7 has a carbon source area of 2,500 ha, corresponding to 

logged land. Vegetation coverage detected is ≤ 30%, with soil 

carbon exposure and combined biomass loss, making it a 

significant carbon source. The precise identification of forest 

types and disturbance states by the dynamic graph neural 

network ensures matching of carbon pool parameters with 

regional characteristics, providing reliable basis for carbon 

sink quantification. For the high carbon sink region 18, the 

2023 carbon sequestration value is: 4500 × 2.8 × carbon price 

= 1,512,000 USD. If the forest status is maintained over the 

next 5 years, with stable annual sequestration rates of mature 

forest, an additional carbon fixation of 4500 × 2.8 × 5 = 63,000 

tons is expected, valued at 7,560,000 USD, reflecting the long-

term carbon sink potential of the forest. For the high carbon 

source region 7, the 2023 carbon loss value is: 2500 × (1.5 + 

0.8) × 120 = 780,000 USD. If ecological restoration is 

implemented in 2024, the net sequestration in 2028 will be 

2500 × (1.6 - 0.5) × 5 = 13,750 tons, valued at 1,650,000 USD, 

demonstrating the potential for converting disturbed areas into 

carbon sinks through restoration. 

Figure 6. Spatial distribution of carbon sink and carbon 

source areas in the study area in 2023 

Figure 7. Carbon sink potential of different subregions in the 

study area in 2028 

2138



Figure 7 shows significant differences in carbon sink 

potential among subregions in the study area in 2028. Region 

9, with a potential of 550 million tons/year, becomes the core 

hotspot. The dynamic graph neural network precisely 

identifies the rapid carbon sequestration phase of middle-aged 

and young forests in this region by analyzing its 

characteristics, with an area estimation error ≤ 3%, ensuring 

high reliability of the potential value. Compared to low 

potential areas, the dynamic graph detects these as mature 

forests or sparse forests, with carbon accumulation rates only 

0.8–1.2 t/ha·year, forming a sharp contrast with high potential 

areas. This type-specific detection provides key forest 

structure parameters for potential assessment, making carbon 

sequestration capacity quantification in each area more 

realistic. High potential area Region 9 has a 2028 potential of 

550 million tons/year, corresponding to a concentrated area of 

Cunninghamia lanceolata plantations, with its annual carbon 

fixation accounting for 31.8% of the total regional potential. 

Over the next 10 years, if current growth trends continue, the 

carbon sink potential in 2038 will reach 720 million tons/year, 

supporting over 30% of the regional carbon neutrality target. 

This result validates the dynamic graph’s precise capture of 

the fast-growing stage of plantations, providing a scientific 

basis for priority layout of forestry carbon sink projects. 

Medium potential area Region 6 has a 2028 potential of 200 

million tons/year, representing a secondary broadleaf forest 

succession area, with annual carbon fixation of 2.5 t/ha·year. 

By monitoring its succession trajectory with the dynamic 

graph, it is predicted to succeed to near-mature forest by 2035, 

with potential increasing to 240 million tons/year, reflecting 

the long-term gain of natural succession on carbon sink 

potential. This case demonstrates the value of the dynamic 

graph in ecological process modeling, providing temporal 

dimension prediction capability for forest restoration area 

potential assessment. 

5. CONCLUSION

This study constructed a methodological system of 

“dynamic graph neural network detection—carbon sink 

assessment model coupling,” with the core focus on solving 

accuracy issues in forest cover change detection through 

dynamic graph models and realizing scientific quantification 

of carbon sink capacity based on this. In detection methods, 

the proposed dynamic graph neural network iteratively 

reconstructed node connections, effectively capturing spatial 

neighborhood relationships of the forest canopy and temporal 

change information, overcoming the limitations of traditional 

CNNs relying on local pixel features. Experimental data show 

that this method improved Kappa coefficients by 9.28% to 

22.69% compared to ResNet in complex scenarios such as 

tropical seasonal rainforests and subtropical evergreen 

broadleaf forests, with greatly reduced false positive and false 

negative rates, especially significantly improving recognition 

accuracy for progressive degradation and boundary-blurred 

changes. In carbon sink assessment, the study integrated 

detection results with parameters such as forest type, growth 

stage, and disturbance type to establish a cross-scale 

assessment model, achieving transformation from “pixel-level 

change detection” to “regional-level carbon sink accounting.” 

Case studies show that carbon storage estimation error in 2025 

was controlled within ±3.2%, and carbon net sequestration 

prediction deviation over the next ten years was reduced by 

40% compared to traditional methods, providing key technical 

support for precise quantification of forest carbon 

sequestration value. 

At the methodological level, the research breaks through 

traditional bottlenecks in remote sensing detection and carbon 

sink assessment, realizing multi-scale information fusion from 

“pixel–patch–region” through the spatiotemporal modeling 

advantage of dynamic graphs, solving core problems of 

insufficient change detection accuracy and carbon parameter 

mismatch in complex forest scenarios; at the application level, 

it can directly serve forestry carbon sink project development, 

ecological compensation policy formulation, and carbon 

neutrality pathway planning. For example, dynamic graph 

detection accurately locates high-potential carbon 

sequestration areas, providing scientific asset quantification 

basis for the carbon trading market. However, limitations 

remain: the detection model relies heavily on remote sensing 

data registration accuracy and spectral consistency, with 

accuracy potentially decreasing by 5%–8% in cloud-covered 

areas; the carbon sink assessment model simplifies mixed 

pixel effects in habitat transition zones and soil carbon pool 

dynamic processes. Future research should focus on multi-

source data fusion to improve detection robustness in complex 

terrain, expand real-time frameworks for global-scale carbon 

sink assessment, deepen coupling with terrestrial ecosystem 

models, refine soil carbon pool dynamic release mechanisms, 

and promote research toward operationalization and 

refinement. 
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