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Neuroblastoma (NB) is a childhood malignancy associated with high cancer-related 

mortality and disability, remaining a persistent challenge in paediatric oncology. High-risk 

NB tumours often metastasize, resulting in survival rates below 50%. Early detection and 

accurate risk stratification are thus essential for improving patient prognosis and therapeutic 

outcomes. In recent years, computational approaches, including machine learning (ML) and 

deep learning (DL), have been extensively applied to extract meaningful clinical and 

biological insights from multi-modal NB datasets. This review systematically synthesizes 

literature applying ML, DL, and statistical methods to analyze multi-omics profiles, 

histopathological images, and medical imaging for diagnostic and prognostic modeling in 

NB. It evaluates various computational methodologies for tumour classification, risk group 

stratification, and outcome prediction. Special attention is given to emerging advancements 

such as Vision Transformers (ViTs) for histopathology, self-explainable AI (S-XAI), 

counterfactual interpretability, and federated learning (FL) frameworks (e.g., Swarm 

Learning, SplitFed), which support transparency, privacy, and decentralized collaboration. 

Furthermore, this study highlights the clinical potential of integrating computational models 

into real-time decision-making workflows and emphasizes the importance of ethical 

fairness, multi-institutional validation, and personalized treatment strategies. By addressing 

these challenges, AI-driven tools are poised to significantly improve NB diagnosis, risk 

stratification, and outcome prediction in paediatric oncology. 
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1. INTRODUCTION

NB is the most common extracranial solid tumour in 

paediatric patients, originating from embryonic neural crest 

cells known as neuroblasts. Typically, these immature cells 

differentiate into functional nerve cells. Still, in NB, they 

undergo uncontrolled proliferation, leading to tumour 

formation primarily in the adrenal glands, which regulate 

hormone production, blood pressure, and other vital functions 

[1]. However, NB can also develop in different regions of the 

sympathetic nervous system, including the abdomen, chest, 

and neck. In its early stages, NB may be asymptomatic, 

making early detection challenging. As the disease progresses, 

tumour metastasis occurs through hematogenous and 

lymphatic spread, affecting distant organs such as the bones, 

liver, lungs, and bone marrow, significantly complicating 

prognosis [1, 2]. The heterogeneous nature of NB leads to 

widely varying clinical outcomes, ranging from spontaneous 

regression in low-risk cases to aggressive, treatment-resistant 

tumours in high-risk patients. 

NB predominantly affects infants and children under the age 

of five, accounting for 15% of paediatric cancer-related deaths. 

Prognosis is influenced by age at diagnosis, tumour stage, 

MYCN amplification status, and histopathological 

classification. Despite advancements in molecular profiling 

and targeted therapy, early and accurate diagnosis remains a 

significant challenge due to overlapping clinical features with 

other paediatric malignancies [3]. 

To address these challenges, computational approaches, 

including ML and deep learning DL, have emerged as 

powerful tools for NB detection, risk stratification, and 

treatment prediction. This review explores state-of-the-art 

computational methodologies integrating multi-omics, 

histopathological imaging, and clinical data to enhance early 

diagnosis, prognosis, and personalized treatment strategies. 

1.1 Statistical study of Neuroblastoma 

NB is the predominant tumour affecting the sympathetic 

nervous system, accounting for 97% of cases. It is also the 

most prevalent form of cancer among infants, with an average 

diagnosis age of 17 months [1]. It constitutes 15% of all 
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paediatric cancer-related deaths [2]. The yearly occurrence of 

NB in the United States is approximately 650 cases, translating 

to an incidence rate of 10.2 cases per million children (or 65 

cases per million infants). This rate has remained stable over 

time, with a negligible variation of 0.4% [3]. Despite a general 

decrease in the five-year mortality rate from 1975 to 2005, 

subgroup-specific mortality trends indicate significant 

variation in survival outcomes. 

Globally, variations in detection rates exist due to 

differences in screening programs and healthcare 

infrastructure. For example, urinary catecholamine screening 

in Japan has led to earlier NB detection, potentially reducing 

mortality rates in high-risk cases. However, standardization 

challenges prevent the widespread adoption of such programs 

worldwide [4]. A graphical representation comparing 

incidence rates, survival trends, and regional variations can 

provide additional insight into how NB is managed across 

different populations. 

 

1.2 Pathophysiological behaviour of Neuroblastoma 

 

NB arises due to genetic and molecular alterations in neural 

crest cells, leading to aberrant cellular proliferation and 

differentiation failure. Several key biochemical and molecular 

markers have been identified in its pathophysiology: 

● MYCN Amplification: In ~25% of cases, MYCN 

amplification is associated with rapid tumour progression and 

poor prognosis [4]. Patients with MYCN-amplified tumours 

often exhibit aggressive disease, early metastasis, and 

chemotherapy resistance. 

● ALK Mutations: Anaplastic lymphoma kinase (ALK) 

mutations have been implicated in NB pathogenesis and 

represent a target for novel therapies. 

● NTRK-1 & CD-44 Expression: While NTRK-1 

expression is linked to low-risk tumours, CD-44 absence 

correlates with poor prognosis. 

● DNA Index (Ploidy Status): Tumours with a high DNA 

index (hyperdiploidy) respond better to chemotherapy, 

whereas near-diploid tumours have a worse prognosis. 

● Serum Biochemical Markers: Elevated levels of LDH, 

serum ferritin, and neuron-specific enolase (NSE) indicate a 

higher tumour burden and worse outcomes [5]. 

Approximately 90% of patients show increased urinary 

vanillylmandelic acid (VMA) and homovanillic acid (HVA) 

levels, aiding in biochemical screening and diagnosis. The 

heterogeneity of NB makes risk stratification essential for 

personalized treatment planning. 
 

1.3 Developmental stages of Neuroblastoma 

 

Assessing the tumour stage is a critical factor in determining 

the risk category and treatment strategy. Two primary staging 

systems are used. 
 

1.3.1 International Neuroblastoma Staging System (INSS) 

Introduced in 1986, the INSS relies on post-surgical tumour 

assessment (Figure 1). This staging method depends on the 

extent of surgical tumour resection, making it less applicable 

for children who are inoperable at diagnosis. 
● Stage 1: Localized tumour, completely resected, no lymph 

node involvement. 

● Stage 2A: Localized tumour, incomplete resection, no 

lymph node involvement. 

● Stage 2B: Localized tumour with regional lymph node 

involvement. 

● Stage 3: Tumour crosses the midline or involves 

contralateral lymph nodes. 

● Stage 4: Distant metastases present. 

● Stage 4S: Metastases limited to liver, skin, and bone 

marrow in infants under one year, associated with better 

prognosis. 

Figure 1 visually represents the INSS staging criteria, 

showing how tumour progression correlates with surgical 

removal feasibility and metastasis. 

 

1.3.2 International Neuroblastoma Risk Group Staging System 

(INRGSS) 

The INRGSS, established in 2005, is based on pre-treatment 

imaging (CT, MRI, and MIBG scans) rather than surgical 

outcomes. This approach enables risk stratification before 

surgical intervention. 

● L1: Localized tumour, no Image-Defined Risk Factors 

(IDRFs). 

● L2: Tumour with IDRFs but without distant spread. 

● M: Distant metastases present. 

● MS: Metastases limited to skin, liver, or bone marrow, 

often seen in infants under 18 months. 

Figure 2 provides a detailed overview of the developmental 

stages of NB using the INRGSS framework. It also integrates 

MYCN amplification status and histopathological 

differentiation, which are key determinants of risk 

stratification in NB patients [1]. 

 

 
 

Figure 1. INSS staging criterion to access NB 
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Figure 2. Developmental stages of Neuroblastoma with risk associates 

 

Table 1. Comparision on staging system on the basis of certain criterion 

 
Criteria INSS INRGSS 

Basis of Staging Post-surgical tumour evaluation Pre-treatment tumour evaluation 

Assessment Method Histopathological examination after tumour resection Imaging-based (CT, MRI, MIBG scans) 

Lymph Node Involvement Considered in staging Not a determinant factor 

Distant Metastasis Considered in advanced stages Used to classify metastatic disease 

Surgical Consideration Surgery is required for staging determination No surgery required for staging 

Stages Stages 1-4S L1, L2, M, MS 
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Table 1 provides a comparative summary of INSS vs. 

INRGSS, highlighting key differences in staging criteria, 

surgical requirements, and risk classification. 

 

1.3.3 Shimada classification system for Neuroblastoma  

The Shimada Classification System, developed by the 

International NB Pathology Committee, categorizes NB 

tumours based on histopathological differentiation and stromal 

composition. It is a key determinant of prognosis, particularly 

in distinguishing between favorable and unfavorable histology 

(UH). 

● Favorable Histology (FH): Characterized by well-

differentiated ganglion cells and abundant Schwannian stroma. 

More common in younger children and associated with a better 

prognosis. 

●UH: Poorly differentiated or undifferentiated tumour cells 

with high mitosis-karyorrhexis index (MKI), typically 

observed in older children with aggressive disease. 

Key criteria in the Shimada system include: 

● Schwannian stroma content (stroma-rich vs. stroma-poor 

tumours). 

● Differentiation level (differentiating, poorly differentiated, 

or undifferentiated NB). 

●MKI (low, intermediate, or high). 

● Age of the patient (critical in determining prognosis in 

conjunction with histology). 

The Shimada classification is essential in risk stratification, 

guiding treatment decisions alongside INSS and INRGSS. 

Figure 3 illustrates the Shimada classification standard, 

showcasing its role in predicting patient outcomes based on 

tumour histology [6]. 

 

1.4 Clinical strategies to deal with Neuroblastoma 

 

The management of NB requires a multidisciplinary 

approach, integrating surgery, chemotherapy, radiation 

therapy, immunotherapy, and emerging AI-driven diagnostic 

and treatment strategies. Treatment choice depends on tumour 

staging, molecular characteristics, and patient-specific risk 

factors [7]. 

Surgical intervention is the first-line treatment for localized 

NB. In low-risk cases, complete surgical resection can be 

curative. However, for high-risk or advanced-stage tumours, 

surgery is often complemented by chemotherapy and radiation 

therapy. Chemotherapy is used in two key phases: Induction 

therapy, where high-dose chemotherapy is administered 

before surgery to shrink tumours, and consolidation therapy, 

which follows surgery to eradicate any remaining cancer cells 

and prevent relapse. Radiotherapy has an essential function in 

NB management for high-risk, especially with tumours that 

cannot be resected entirely. External Beam Radiotherapy 

(EBRT) treats the residual areas of the tumour, whereas MIBG 

treatment, a type of targeted radiotherapy with radioiodinated 

metaiodobenzylguanidine (MIBG), is utilized with high 

metastatic disease. 

Emerging advances in immunotherapy and targeted therapy 

have revolutionized the management of NB. Dinutuximab, a 

monoclonal anti-GD2 antibody, increases survival among 

high-risk patients by targeting NB cells while sparing normal 

cells. ALK inhibitors like Crizotinib and Lorlatinib are novel 

targeted treatments for patients with ALK-mutated NB. 

Retinoic acid differentiation therapy is also utilized to trigger 

the maturation of NB cells and eliminate recurrence [8]. 

AI and ML are revolutionizing NB diagnosis and treatment 

planning. AI-based models combine tumour genomics, 

imaging biomarkers, and clinical information to enhance risk 

stratification, outcome prediction, and personalized therapy 

choice. AI-aided radiomics improves MRI and CT image 

analysis, enabling more accurate tumour detection and 

classification. DL-based histopathological models are also 

being investigated to detect molecular subtypes and predict 

therapeutic response, thereby propelling the field of precision 

oncology [8, 9]. 

 

 
Figure 3. Shimada classification standard [6] 
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In spite of these developments, there are challenges in the 

universal adoption of AI-based and computational approaches. 

Data bias, interpretability of AI models, regulatory clearances, 

and computational complexity are some of the areas that 

require resolution. FL strategies, where AI models are trained 

on multi-institutional data without violating patient privacy, 

should be the focus of future research. The incorporation of AI 

models into current clinical practices is required to guarantee 

that the technologies augment human intelligence in NB 

diagnosis and treatment planning instead of substituting it. 

The future of NB therapy is in the synergistic combination 

of conventional therapeutic modalities with AI and 

computational technologies. Through the application of ML, 

DL, and precision medicine strategies, clinicians can enhance 

diagnostic accuracy, maximize treatment regimens, and 

ultimately improve patient outcomes. The subsequent paper is 

structured in the following manner: in section 2, a presented 

systematic is presented. Presented in the following section 3 is 

the inference that can be drawn from the review of the 

literature as well as the reason behind the study and discussion. 

Sections 4 and 5 contain open issues and further direction and 

conclusion, respectively.  
 

 

2. COMPUTATIONAL APPROACHES TO ACCESS 

NEUROBLASTOMA 

 

A systematic review of ML applications in NB is presented 

to provide insights into how computational approaches are 

enhancing diagnosis, prognosis, and treatment planning. The 

review concerns multiple datasets utilized in current research, 

as well as the segmentation, feature extraction, and feature 

selection methods utilized to design ideal feature vectors. 

These features are then handled through diverse ML and DL 

architectures to identify NB cases based on established 

grading criteria. Comparison of evaluation metrics between 

studies facilitates the identification of the most efficient 

algorithms and the determination of the appropriateness of 

these for each dataset. The results of the systematic review 

assist in knowing the ML models that exhibit the highest 

accuracy, strength, and transferability in NB prediction and 

classification tasks. 

Beyond accuracy metrics, the clinical acceptance of 

machine learning models in NB critically depends on their 

interpretability. In several reviewed studies, explainable AI 

(XAI) techniques have been implemented to make predictions 

more transparent. For instance, in image-based models using 

histopathological whole slide images, Grad-CAM has been 

applied to highlight regions of high diagnostic relevance—

such as mitosis-rich or necrotic areas—thereby validating the 

model’s decision-making process from a pathological 

standpoint. In omics-based models, SHAP values have been 

used to quantify the contribution of individual genes or 

radiomic features to survival predictions or MYCN 

amplification classification. These tools not only improve 

clinician trust in AI systems but also reveal biologically 

meaningful patterns that may aid in biomarker discovery and 

clinical reasoning 

Systematic review is provided in Table 2 that lists various 

datasets utilized in recent state-of-the-art research, as well as 

segmentation, feature extraction, and feature selection criteria 

used to create optimal feature vectors. These features are 

further utilized in multiple ML and DL architectures for 

classification under various NB grading standards. The 

performance measures of these models are compared to select 

the best-performing algorithms and their appropriateness for 

the datasets considered in existing research. 

The application of ML in NB research has been widely 

explored across various domains, including histopathology, 

radiomics, gene expression profiling, and clinical data 

modeling. Numerous studies have employed diverse datasets, 

segmentation techniques, and classification models to improve 

diagnostic accuracy, prognostic assessment, and therapeutic 

stratification in NB patients. 

Across computational studies, model validation protocols 

differ significantly. Most employ k-fold cross-validation 

(typically k=5 or 10) to prevent overfitting, especially when 

working with small datasets [8], while leave-one-out cross-

validation (LOOCV) remains prevalent in gene expression 

analysis. Hyperparameter tuning is commonly performed 

through grid or random search, with tuning of dropout rates, 

learning rates, and kernel parameters shown to improve 

classification performance [6, 8]. Although accuracy remains 

a standard metric, newer studies emphasize AUC, F1-score, 

precision, and specificity, particularly for high-risk 

stratification in histopathological image analysis, studies like 

[10-14] utilized whole-slide images (WSI) with segmentation 

techniques such as SIFT, texture analysis, and region-based 

clustering. These studies implemented classifiers like kNN, 

SVM, and deep neural networks, achieving classification 

accuracies ranging from 84.6% to 90%. Recent advances have 

expanded this domain using ViTs, which employ self-attention 

mechanisms for global context capture in histology-based 

classification tasks. 

Radiomics and imaging-based ML approaches have 

demonstrated value in tasks like MYCN gene amplification 

prediction and bone marrow metastasis detection, with AUC 

values reaching 0.90 [15]. Traditional classifiers such as 

CNNs, logistic regression, and random forests continue to be 

utilized in these modalities. Multi-omics and gene expression 

studies have employed dimensionality reduction techniques 

like PCA, chi-square selection, and data mining [16-19]. 

Models including XGBoost, random forests, and ensemble 

classifiers have identified molecular signatures linked to 

outcome, with AUC values exceeding 91%. Newer works 

have employed deep learning on multi-omics fusion models, 

enabling integrative survival prediction and stratification. 

 

Table 2. Review of ML and DL approaches in NB 

 

References Data Set 
Segmentation 

Approaches 

Classification 

Approaches 
Classification Category 

Performance 

Evaluation 

[10] 

A total of 45 WSIs 

from the Nationwide 

Children’s Hospital 

were used, each 

scanned at 40× 

A feature selection phase is 

performed offline 

throughout the training 

process to select optimal 

features at different 

magnification. 

A revised kNN classifier 

is employed to ascertain 

the level of confidence in 

the categorization. 

Classification of stroma-

rich versus stroma-poor 

NB based on Schwannian 

stromal development. 

The overall accuracy of 

the proposed system is 

88.4%. 
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magnification with a 

spatial resolution of 

100,000 × 120,000 

pixels. 

[11] 

The dataset comprises 

1043 H&E-stained 

histologic images 

obtained from The 

Children's Hospital at 

Westmead in Sydney, 

Australia. 

The proposed approach 

utilizes a fusion of Scale 

Invariant Feature 

Transform (SIFT) and a 

feature encoding algorithm 

to extract highly 

discriminative features. 

Then these features are 

fed to classify with a 

support vector machine 

(histogram intersection) 

Classification among 

Differentiating 

Neuroblastoma (DN), 

Ganglioneuroma (GGN), 

GanglioNeuroblastoma 

(GGNB), Poorly 

Differentiated 

Neuroblastoma (PDN), 

and Undifferentiated 

Neuroblastoma (UDN). 

With 100X 

magnification, image's 

maximum accuracy is 

achieved at 87.25% 

with 2.51 latency. 

[12] 

The dataset comprises 

1043 H&E-stained 

histologic images 

obtained from The 

Children's Hospital at 

Westmead in Sydney, 

Australia. 

Deep neural-based 

segmentation algorithm 

with optimized feature 

engineering techniques. 

A convolved deep belief 

network known as 

CDBN, followed by a 

feature encoding 

algorithm. 

Classification among 

DN, GGN, GGNB, PDN, 

and UDN. 

86.01% of the average 

weighted F1 score is 

achieved. 

[13] 

The dataset comprises 

1043 H&E-stained 

histologic images 

obtained from The 

Children's Hospital at 

Westmead in Sydney, 

Australia. 

Techniques used to 

segment and extract the 

features are SIFT, followed 

by Bag of Visual Words 

(BOVW). 

SVM is used for 

classification purposes. 

Classification among 

DN, GGN, GGNB, PDN, 

and UDN. 

The model can achieve 

90% accuracy. This 

research saves 

computational time and 

vital image information 

better than [11]. 

[14] 

27,400 images were 

collected from 

nationwide children's 

hospitals under IRB 

with 40X 

magnification. 

512×512 pixel ratio, 

and H&E Staining. 

A noble technique is 

introduced to isolate five 

salient components (nuclei, 

cytoplasm, neuropil, red 

blood cells, and 

background), and this info 

is used to construct a 

feature space vector. 

Various ML classifiers 

are tested, like KNN, 

LDA, CORRLDA, 

Bayesian, and SVM. 

Classification among 

DN, PDN, and UDN. 

For classifying WSI, 

87.88% accuracy is 

achieved. 

[15] 
A dataset containing 65 

CT images. 

A trained CNN is used to 

slice the image, followed 

by 105 radiomics are 

extracted by pyradiomics. 

6 ML techniques 

(Radiomics-based NN, 

lasso regression, elastic 

regression, LR, RF, and 

SVM). 

To predict mortality, 

presence and absence of 

metastases, ND, MKI, 

presence and absence of 

MYCN gene, and 

presence of IDRF. 

ROC results: Primary 

outcome 0.76, Mortality 

0.79, presence of 

metastases 0.77, grade 

of neuroblastic 

differentiation 0.71, 

secondary outcome 

0.63, presence of IDRF 

0.74. 

[16] 

Two datasets are used: 

GSE49710 and E-

MTAB-8248. 

Features are selected using 

the chi-square test, and 172 

features are extracted, 

followed by the K-means 

clustering method to 

partition patients and 

genes. 

Encoders and decoders 

are used to predict the 

survival. 

Understanding the 

molecular mechanism of 

Neuroblastoma. 

The time-dependent 

ROC curve reaches 

0.968 and 0.979 in the 

training set. 

[17] 
182 patients of NB are 

taken. 

572 radiomic features are 

extracted from MRI 

images; among these, 41 

significant features are 

selected using the t-test. 

Thirteen different ML 

algorithms are deployed, 

and among these, the 

three best performers are 

chosen. 

Metastatic diagnosis and 

formulation of 

personalized healthcare 

strategies in clinics. 

AUC achieved is 0.90, 

and F2-Score was 0.82. 

sensitivity was 0.76. 

[18] 

The TARGET dataset, 

which is known as 

Therapeutically 

Applicable Research to 

generate Effective 

treatments, is used in 

this research. 

Heterogeneous ensemble 

learning method. 

ML approaches (Decision 

Tree, extreme gradient 

boosting algorithm, RF, 

genetic algorithm, and 

SVM). 

Predicting 

Neuroblastoma survival 

and extracting decision 

rules from the suggested 

technique to help doctors 

make decisions. 

AUC of 91.35% is 

achieved. 

[19] 
RNA-seq data from 

GDC. 

Mscore is calculated based 

on calculating Gene 

abundance, and random 

forestSRC for predicting 

the survival time. 

The chi-square test and 

Cox regression are used. 
COG risk stratification. 

Matrix-like, the Chi-

square test and Cox 

proportional hazards 

regression coefficient 

are calculated. 

[20] 
Digital Hologram 

frames are extracted, 

In total, 10 features from 

each image (Morphological 

Feature-based ML (MLP, 

LR) and DL (LeNet) 

Differentiate two 

Neuroblastoma cell lines. 

MLP and LR (on binary 

mask inputs) achieve 
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and also COCO data 

set is also used.  

and textural features) are 

extracted. 

algorithms are used,  92.2% and 95.5% 

classification accuracy 

on the test set, 

respectively. Mask-R-

CNN outputs paired 

with LeNet-like CNN-

based classification 

achieve 100% accuracy. 

[21] 

The expression data of 

59 genes are 

meticulously collected 

from 579 patients: 30 

for training, 313 for 

testing, and 236 for 

validation. 

Data mining techniques are 

used to extract information, 

multivariate regression. 

Spearman's rank 

correlation clustering, 

top-ranking univariate 

Cox and logistic 

regression studies, and the 

rank product approach. 

build and validate a gene 

expression profile for 

better outcome 

prediction. 

The signature accurately 

distinguishes patients 

based on overall and 

progression-free 

survival (p<0.0001). 

[22] 

H&E-stained 387 

cropped image tiles 

obtained from 3-WSI 

images. 

Textural features are 

extracted, and optimized 

features are selected. 

SVM is used at different 

resolution levels (1,2,3, 

and 4) and extracts 

different counts of 

features 3, 6, 10, and 5 

features to classify NB 

histology. 

NB histological 

classification: 

undifferentiated, 

differentiated, and poorly 

differentiated. 

The accuracies obtained 

are 90%, 84.62%, and 

90%, respectively. 

[23] 

In totality, 47 

microsamples were 

used in the study, 

extracted from 2 

different datasets 

(Dataset 1: having 23 

tumours of NB, while 

Dataset 2 contains 30 

NB tumours, with 101 

samples reserved for 

validation. 

4 different clusters are 

identified by using PCA. 

Unsupervised hierarchical 

clustering is used for 

validation. 

Subgrouping based on 

discrimination of gene 

profiling. 

4-subgroup is identified 

by 6 different gene 

expressions (MYCN, 

NTRK1, ALK, 

PHOX2B, BIRCS, and 

CCND1). 

[24] 

The data collection 

contains 96 samples' 

real-time gene 

expression. Real-time 

PCR and microarray 

studies include 362 

patients. 

Initially, gene expression is 

normalized using z-

transformation, and gene 

set combination is analyzed 

using PCA.  

Cox regression models 

are used to test the models 

The model segregates 

patients into 2 groups 

based on 3 identified 

genes (namely, 

PAFAH1B1, CHD5, and 

NME1).  

Two groups with 

different OS and EFS 

were identified from the 

352 validation samples. 

[25] 

The TARGET matrix 

data portal collected 

126 samples: 45 with 

MYCN gene 

amplification and 81 

without. 

The feature space is built 

using differential 

methylation analysis, 

clustering, and recursive 

feature elimination 

Cox regression, ML, and 

Kaplan–Meier estimates 

were used to classify 

MYCN amplification and 

non-amplified groups. 

Grouping is performed 

between the amplified 

MYCN gene cluster vs 

non-MYCN amplified 

cluster. 

The CpG score and 

patient survival were 

correlated with the 

MYCN amplification 

status (OS: HR = 5.11, 

EFS: HR = 4.84). 

[26] 
Human methylation 

450K dataset 

PCA is used for feature 

selection.  

Random forest is used as 

a classification approach. 

Clustering is performed 

based on MYCN genes. 

In total, 4 groups are 

formed.  

G1: is the MYCN 

amplified group, G2 is 

without MYCN 

amplification, G3 is 

those patients with the 

INSS-4 group, and G4 

is stage I-III without 

MYCN. 

[27] 

From 107 patents in 

total, 563 WSI were 

obtained in the study. 

The data set is divided 

into two groups first is 

FH (67), another is UH 

(40).  

ML algorithms are utilized 

for segmenting and 

extracting characteristics. 

Only instance 

segmentation is 

performed. 

Classification between 

favorable vs. UH. 

With 98.62% recall and 

98.65% precision, 3408 

nuclei and 46 false 

positives were found. 

Clinicopathological 

parameters: AUC 0.946 

in training and testing 

datasets. 

[28] 

The TARGET dataset 

contains 407 NB 

samples, of which 217 

samples provide gene 

expression data. 

Deep learning algorithms 

and auto-encoders are used 

to integrate multi-omics 

data. 

k-means clustering, 

various ML algorithms 

including DNN, Cox-

regression, SVM, naïve 

Bayes, LR, and XGboost 

were employed to 

distinguish two subtypes 

exhibiting notable 

survival variations. 

Divided the data into two 

subgroups. 

The P-value is 

calculated as 

P < 0.0001, indicating 

significant survival 

stratification.  
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[29] 

The dataset comprises 

microarrays from 182 

patients. The database 

is derived from 4 

cohorts, consisting of 

100 samples for 

training and 82 

samples for testing. 

Artificial neural network 

and leave-one-out method, 

along with Kaplan-Meier 

plots and log-rank tests. 

MLP is trained on 62 62-

probe set consisting of 

NB hypo signature genes. 

To determine the hypoxic 

state using NB-hypo 

signature genes.  

There are two prognosis 

groups categorized as 

good and bad based on 

separate overall survival 

(OS) and event-free 

survival (EFS). 

[30] 

Data is collected from 

the Cooperative 

Human Tissue 

Network (Ohio), the 

German Cancer 

Research Center, and 

the Children's Hospital 

at Westmead 

(Australia).  

Quality for filtering 

followed by PCA, 48 

samples for training, 

leaving one sample out for 

testing, and Kaplan–Meier 

analysis. 

Artificial neural network. 

Partitioning the High-

risk NB subtypes often 

metastasize in patients.  

ANN portioned high-

risk patients on 39,920 

clones, achieved p p-

value of 0.006, and 19 

ANN-ranked genes 

were achieved. 

[31] 
Histopathology (multi-

center WSIs). 

Patch-based region 

extraction 
Vision Transformer (ViT) 

NB subtype 

classification. 

Accuracy = 91.3%, 

AUC = 0.93 

[32] 
Simulated/benchmark 

datasets. 
Not applicable 

Self-eXplainable Neural 

Network. 

General disease 

prediction (XAI 

validation) 

Explanation fidelity, 

transparency score. 

[33] 
Clinical tabular data 

(COVID-19). 
Not applicable 

Swarm Learning (FL + 

Blockchain) 

Risk group prediction 

(cross-site) 

AUC = 0.81–0.91, 

cross-site agreement. 

[34] Simulated med datasets Not applicable SplitFed (CNN + FL) Distributed classification 
Accuracy = 87.5%, 

latency reduction. 

[35] 
Neuroblastoma (multi-

omics). 
Feature fusion 

Deep survival model 

(multi-omics DL) 

Risk stratification & 

prognosis. 

Concordance index = 

0.82, p < 0.001. 

[36] 
GDPR-focused 

decision frameworks. 
Not applicable 

Counterfactual 

Explanation Generator 

Legal audit of an AI 

decision. 

Interpretability 

validated qualitatively 

[37] 
ImageNet + medical 

variants. 
Not applicable 

Transformer 

explainability extension 

Class-level visual 

justification. 

IOU-based attention 

attribution. 

[38] Public ML datasets. Not applicable 
XAI-enabled ensemble 

models 

General interpretability 

framework. 

Case-study-based 

metrics. 

[39] ChestX-ray14 Bounding box pre-filter. DenseNet121 (CheXNet). Pneumonia detection. 
AUC = 0.94 

(Radiologist-level). 

Several papers [18, 19, 23] have also applied ML to 

individualized risk scoring using Kaplan-Meier curves, Cox 

regression, and decision trees, helping separate low- and high-

risk cohorts and tailoring clinical treatment planning. Deep 

learning architectures including CNNs and FCNNs have been 

applied to WSI classification and survival prediction, with 

some models reporting near-perfect classification metrics [12, 

20, 29]. With growing adoption of ML in clinical research, 

interpretability has become a major concern. Classical post-

hoc explainers like SHAP and Grad-CAM are increasingly 

being supplemented by S-XAI and counterfactual models, 

which offer embedded interpretability [32-33]. Similarly, FL 

frameworks such as Swarm Learning and SplitFed enable 

privacy-preserving model training across decentralized NB 

cohorts [31, 33]. These frameworks are especially suited to 

cross-institutional training environments where centralization 

of sensitive patient data is not permissible. 

In summary, ML methods have substantially enhanced NB 

classification, prognosis, and therapeutic guidance. Yet, 

limitations related to dataset heterogeneity, generalizability, 

and model explainability remain. Future studies must 

increasingly incorporate multi-institutional and multi-modal 

data, emphasize explainable model architectures, and explore 

privacy-first federated learning paradigms. These 

developments are poised to accelerate the safe clinical 

adoption of AI in paediatric oncology. 

 

 

3. DISCUSSION 

 

ML has emerged as a transformative tool in NB analysis, 

enabling computational evaluation of disease progression, 

therapeutic response, and survival outcomes. The integration 

of image processing, artificial neural networks (ANNs), 

multilayer perceptrons (MLPs), support vector machines 

(SVMs), deep learning models, decision trees, and random 

forest classifiers has substantially advanced diagnostic 

accuracy and risk stratification [10, 23]. These algorithms 

enable automatic feature extraction and classification of 

histopathological and radiological data, thereby facilitating 

robust risk prediction. 

Figure 4 illustrates the synergistic interaction among these 

models. The process typically begins with image 

preprocessing techniques that enhance raw histological and 

radiological inputs for computational analysis. ANNs and 

MLPs are used to identify intricate patterns within these data, 

informing prognosis and treatment pathways [20]. Extracted 

features are then analyzed using SVMs and random forest 

classifiers to classify NB into risk categories based on 

histological grade and imaging biomarkers [12]. 

Deep learning models extend this capability by integrating 

transcriptomic, histological, and clinical staging information 

(such as the INSS and MYCN amplification status), offering 

deeper insights into tumour biology and enabling patient 

stratification [15]. Decision tree-based models provide 

interpretable probabilistic predictions of survival outcomes, 

aiding oncologists in clinical decision-making. More recently, 

ensemble methods combining ML and DL frameworks have 

been shown to improve prediction accuracy by leveraging the 

strengths of multiple algorithms simultaneously [29]. 

Despite these achievements, substantial methodological 

limitations hinder the generalizability and clinical translation 
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of current approaches. Many reviewed studies are based on 

datasets with limited sample sizes or single-institution 

sourcing, which restrict population diversity and elevate the 

risk of overfitting. For instance, studies using fewer than 100 

patient samples or isolated histopathological slides often 

report high accuracy, but these findings may not hold when 

tested on external datasets. This restricts their use in real-world 

settings where demographic variability is substantial. 

In addition, dataset heterogeneity is a major barrier to 

reproducibility. Imaging studies vary significantly in 

magnification levels (e.g., 40× vs. 100×), staining protocols, 

and scanner calibration. Likewise, omics-based studies differ 

in gene normalization techniques, sequencing platforms, and 

preprocessing strategies. Without standardized pipelines, 

comparisons across models remain confounded by technical 

artifacts rather than true algorithmic performance. Annotation 

inconsistencies, particularly in differentiating poorly 

differentiated NB or stroma-poor subtypes, further impact the 

reliability of training labels and supervised learning outputs. 

Another critical concern is the lack of external validation. 

Most studies rely on random train-test splits or k-fold cross-

validation within the same dataset, which does not simulate 

real-world variability. True external validation using 

independent cohorts—across institutions and acquisition 

protocols—is rarely performed. As a result, models trained on 

homogenous data frequently underperform when exposed to 

broader populations. This issue calls for more rigorous 

benchmarking using public datasets and community-driven 

ML challenges. 

To address these limitations, we advocate for the integration 

of multi-institutional and demographically diverse datasets in 

future model training. Standardization of preprocessing 

workflows—such as using stain normalization methods (e.g., 

Macenko normalization for H&E slides) and unified gene 

normalization techniques—would reduce variability and 

improve reproducibility. Model evaluation protocols must 

incorporate nested cross-validation and independent test sets. 

Furthermore, open benchmarking platforms should be 

developed to facilitate fair and transparent algorithm 

comparisons. 

Parallel to these limitations, interpretability remains a 

significant barrier to clinical adoption. The "black-box" nature 

of deep learning models hinders transparency and trust. 

Clinicians are often reluctant to rely on predictions that lack 

explanatory depth. To counter this, explainable AI (XAI) 

techniques such as Shapley Additive Explanations (SHAP) 

and Gradient-weighted Class Activation Mapping (Grad-

CAM) have been introduced to visualize and interpret model 

decisions [21, 40, 41]. SHAP provides feature-level 

contribution scores, while Grad-CAM enables localization of 

salient image regions influencing decisions. Such tools can 

bridge the gap between algorithmic output and clinical 

reasoning [42, 43]. 

Ethical considerations are equally paramount in paediatric 

oncology. Ensuring patient confidentiality in training data—

especially under frameworks such as the General Data 

Protection Regulation (GDPR) and Health Insurance 

Portability and Accountability Act (HIPAA)—is non-

negotiable. In addition, biases in training data arising from 

underrepresentation of specific ethnic or socioeconomic 

groups can lead to inequitable outcomes [25]. Addressing this 

requires both adversarial debiasing strategies and deliberate 

inclusion of diverse cohorts during data acquisition. 

Beyond algorithmic accuracy and interpretability, ethical 

considerations and data fairness are critical in deploying ML 

models for NB care. One prominent concern is training data 

bias, particularly when datasets are derived from a single 

geographic or institutional cohort. Such models may fail to 

generalize across populations with different genetic, 

socioeconomic, or ethnic profiles, leading to unintended 

disparities in diagnostic performance. For instance, 

underrepresentation of certain risk groups or age 

demographics could lead to overfitting in well-represented 

cohorts while underperforming for others [20, 25]. 

To mitigate this, several strategies have emerged. The 

inclusion of demographically diverse, multi-institutional 

datasets is fundamental to reduce institutional bias. 

Additionally, adversarial debiasing techniques—which train 

the model to reduce correlation with sensitive attributes (e.g., 

age, ethnicity, institution)—have shown promise in ensuring 

equitable predictions [44, 45]. Another emerging practice is 

the stratified sampling of training and validation cohorts, 

ensuring balanced representation during both model 

development and evaluation phases. 

Furthermore, ethical compliance with data protection 

standards such as the GDPR and HIPAA is essential. FL, as 

discussed later, offers a privacy-preserving alternative by 

training models across multiple institutions without 

centralizing data. For equitable deployment, future 

frameworks must also include bias auditing, ensuring models 

are assessed across subpopulations and flagged when 

disproportionate error rates are observed. 

One promising solution is the development of FL 

frameworks, which allow decentralized training across 

multiple institutions without the need to pool sensitive patient 

data. This approach not only preserves privacy but also 

enhances model robustness by incorporating heterogeneous 

sources. Future research should also focus on integrating 

multi-modal models that combine histopathology, radiomics, 

genomics, and clinical records for comprehensive NB risk 

estimation. 

Recent advancements in FL have extended beyond 

conventional FL algorithms. For instance, Swarm Learning 

integrates blockchain with federated architectures to 

coordinate learning across untrusted medical institutions, 

ensuring both data privacy and verifiable contributions [33]. 

Similarly, SplitFed merges split learning and FL, enabling 

scalable training across resource-limited nodes by sharing only 

intermediary activations rather than raw data [34]. Such 

frameworks are especially suited to paediatric NB, where 

institutional silos and ethical restrictions make centralized data 

pooling unfeasible. Real-world validation, such as FL 

deployment across 20 hospitals for COVID-19 outcomes [44], 

demonstrates the viability of such methods in clinical 

environments. In addition to imaging and histopathological 

data, the integration of multi-omics layers (e.g., 

transcriptomics, methylation, proteomics) using deep learning 

has proven effective in refining risk prediction. A recent study 

by Dayan et al. [35] utilized a deep survival model on 

integrated omics datasets to identify complex molecular 

subtypes in NB, achieving superior predictive performance 

compared to unimodal models. These strategies support a shift 

toward biologically grounded stratification and could guide 

personalized therapeutic interventions by identifying latent 

prognostic features not visible in single-data domains. 

Histopathology analysis has also evolved with the application 

of ViTs, which surpass CNNs in modeling long-range tissue 

dependencies via self-attention mechanisms. ViTs have 
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demonstrated improved classification accuracy in whole-slide 

image tasks across oncology domains [31]. To complement 

this, transformer-specific interpretability tools, such as Layer-

wise Relevance Propagation (LRP) and attention rollout 

methods, enhance transparency by attributing decisions to 

spatially resolved features [37]. When combined with 

counterfactual explainability [36], these methods can offer 

actionable clinical insights while maintaining model trust and 

compliance with interpretability mandates. 

Finally, prospective clinical validation is a critical next step. 

While most existing studies rely on retrospective data, the true 

utility of ML models lies in their performance in real-time 

clinical workflows. Future research must prioritize clinical 

trials and longitudinal evaluations of AI-driven models in real 

hospital settings. 

While retrospective studies provide a foundational 

understanding of ML performance in NB diagnosis and 

prognosis, real-world clinical validation remains critically 

underexplored. Most of the cited works rely on previously 

collected datasets—often highly curated—lacking the 

complexity, noise, and variability of live clinical workflows. 

Prospective clinical trials are necessary to evaluate how these 

models perform in routine diagnostics, under diverse patient 

conditions, institutional workflows, and imaging modalities 

[11, 13]. 

 

 
 

Figure 4. NB analysis: With image processing with ML approaches 

 

 

4. OPEN ISSUES AND FUTURE DIRECTIONS 

 

The future of ML in NB research and clinical application 

depends on advancing beyond current limitations toward 

robust, interpretable, and ethically deployable systems. One of 

the foremost priorities is to resolve the biological and technical 

heterogeneity inherent in NB datasets. This includes not only 

expanding cohort size but also incorporating multi-modal and 

multi-omics data integration, such as combining genomic (e.g., 

MYCN amplification), transcriptomic, methylation, 

proteomic, and radiomics data within unified prediction 

pipelines. Recent studies have shown that deep survival 

models leveraging multi-omics data can outperform unimodal 

predictors, enabling finer patient stratification and risk 

modeling [35]. Additionally, the use of multi-task learning 

architectures may support concurrent predictions (e.g., risk 

classification, therapy response, survival outcomes) using 

shared features extracted across data modalities.  

A second key priority is enhancing model interpretability 

for clinical adoption. While techniques such as SHAP and 

Grad-CAM are currently used, future approaches should 

incorporate advanced XAI mechanisms. These include not 

only attention-based visualization modules in transformer 

networks, but also S-XAI frameworks that embed 

interpretability directly during model training [32]. Moreover, 

counterfactual explanation techniques offer an intuitive 

mechanism for clinicians to understand “why not” 

predictions—by illustrating the minimal changes needed to 

alter an outcome [36]. Tools like Layer-wise Relevance 

Propagation (LRP) and attention rollout further enable tracing 

decision paths in deep learning models, especially in complex 

visual contexts like histopathology. Embedding such 

explainability into diagnostic pipelines will increase clinician 

trust and assist regulatory compliance. Addressing data 
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privacy and institutional silos is equally crucial. FL has 

emerged as a viable solution to train models collaboratively 

without requiring direct data sharing. Beyond standard 

approaches such as Federated Averaging (FedAvg), newer FL 

variants like SplitFed, FedProx, and Swarm Learning support 

personalized modeling, asynchronous updates, and 

decentralized governance, respectively. Swarm Learning, for 

example, leverages blockchain consensus to manage 

collaborative model training across untrusted environments 

[33], while SplitFed partitions model layers across edge and 

central servers to improve scalability and privacy [34]. These 

techniques have already demonstrated real-world clinical 

potential, including federated deployment across 20 hospitals 

for COVID-19 outcome prediction [44], and hold similar 

promise for paediatric oncology. Importantly, clinical 

translation will require structured prospective validation trials. 

Unlike retrospective studies, these must be conducted under 

routine diagnostic conditions using real-time data streams and 

involve cross-disciplinary collaborations among oncologists, 

radiologists, pathologists, data scientists, and regulatory 

stakeholders. Deployment should be guided by adaptive AI 

protocols, incorporating performance monitoring, clinician 

feedback loops, and post-deployment audit mechanisms. 

Alignment with frameworks such as AI regulatory sandboxes 

or hospital-based digital innovation hubs can streamline the 

pathway from bench to bedside. 

Finally, ethical robustness must be built into every stage of 

ML model development. This involves deliberate inclusion of 

underrepresented populations during data collection, use of 

bias-detection and fairness auditing tools during training, and 

subgroup performance evaluation post-deployment [46]. 

Models should not only be accurate but also equitable across 

demographic boundaries. Transparent reporting of training 

data composition, validation protocols, and subgroup 

performance metrics should become standard practice in NB 

ML publications. Given the high stakes of paediatric oncology, 

aligning AI systems with ethical, legal, and clinical standards 

is not optional but foundational. 

 

 

5. CONCLUSION 

 

ML and AI have emerged as transformative paradigms in 

NB research, enabling breakthroughs in diagnosis, molecular 

risk stratification, and treatment optimization. By integrating 

multi-modal data—such as genomics, transcriptomics, 

radiological imaging, and histopathological features—

computational approaches are now capable of generating 

robust predictive models that enhance clinical decision-

making across stages of care. This review synthesizes the 

evolving landscape of ML methodologies applied to NB, 

highlighting their utility in classifying tumour subtypes, 

forecasting therapeutic response, and estimating survival 

probabilities with increasing accuracy. 

Nonetheless, critical limitations persist in terms of data 

heterogeneity, lack of external validation, model 

interpretability, and ethical oversight. The reviewed literature 

reveals a predominant reliance on retrospective datasets and 

single-institution studies, underscoring the urgent need for 

prospective, multi-institutional clinical trials under real-world 

diagnostic settings. Furthermore, the “black-box” nature of 

many deep learning models continues to hinder clinical trust 

and adoption. However, the emergence of explainable AI 

frameworks—such as self-explaining networks and 

counterfactual reasoning—alongside federated learning 

techniques like Swarm Learning and SplitFed, offers new 

paths toward transparency, privacy, and equitable AI 

deployment. 

Moving ahead, meaningful progress in NB care will require 

not only algorithmic innovation but also interdisciplinary 

collaboration, regulatory alignment, and intentional fairness 

auditing. Integrating bias-detection mechanisms, multi-omics 

fusion pipelines, and privacy-preserving modeling 

frameworks can ensure that ML evolves from research-centric 

experimentation to clinically embedded, trustworthy decision 

support systems. By addressing these multidimensional 

challenges, AI-driven solutions hold immense potential to 

improve diagnostic precision, personalize treatments, and 

enhance survival outcomes for children affected by NB. 
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