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With the deep integration of 5G and Non-Terrestrial Networks (NTN), Low Earth Orbit 

(LEO) satellites have emerged as key enablers for constructing integrated space-air-ground 

communication networks due to their wide coverage and flexible deployment. However, the 

high-speed movement of LEO satellites results in rapidly time-varying channels and 

multipath fading, causing significant signal degradation from noise and interference. 

Meanwhile, the surge in access devices demands urgent dynamic allocation of resources 

such as spectrum and power. Existing studies show that traditional fixed-parameter filtering 

algorithms struggle to track time-varying channels, static resource allocation schemes fail 

to fully exploit channel state information, and single-resource optimization neglects the 

coupling between multiple resources. Some joint optimization approaches suffer from poor 

dynamic adaptability and high computational complexity. To address these challenges, this 

paper proposes a joint optimization method for adaptive filtering and dynamic resource 

allocation tailored for 5G NTN LEO satellite communications. First, an improved adaptive 

filtering algorithm with dynamic parameter adjustment is designed to optimize filtering 

parameters in real time based on channel state estimation, enhancing signal interference 

resilience. Then, leveraging precise channel state information, a dynamic resource allocation 

algorithm considering service demands and resource constraints is developed to achieve 

cross-layer collaborative allocation of spectrum and power resources. A joint optimization 

framework aligned with the LEO satellite communication scenario is constructed, where the 

synergy between signal processing and resource allocation effectively improves system 

communication reliability and resource utilization efficiency. This provides theoretical and 

technical support for the practical deployment of 5G NTN LEO satellite systems. 
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1. INTRODUCTION

In the context of the vigorous development of global 

digitalization, the fifth-generation mobile communication 

technology 5G [1-3] is deeply integrated with NTN [4, 5]. 

LEO satellites [6, 7], with their wide coverage, low latency 

potential, and flexible network deployment capability, have 

become a key component in constructing integrated space-air-

ground communication networks. The 5G NTN LEO satellite 

system [8-11] can effectively address issues such as 

insufficient coverage in remote areas and poor reliability in 

emergency communication scenarios in traditional terrestrial 

networks by incorporating satellites into the communication 

network architecture, providing a new solution for seamless 

global communication. However, the high-speed movement of 

LEO satellites leads to rapidly time-varying channel 

characteristics and multipath fading, and the signal 

transmission process is easily affected by noise, co-channel 

interference, and other factors, which seriously restrict signal 

quality and system performance. At the same time, with the 

sharp increase of access devices [12, 13], the limited spectrum 

and power resources face challenges of efficient allocation. 

Traditional fixed resource allocation methods cannot adapt to 

dynamically changing service demands and channel 

conditions, and efficient signal processing and resource 

allocation technologies urgently need to be studied. 

Research on the key issues of signal processing and 

resource allocation in 5G NTN LEO satellite systems has 

important theoretical significance and practical application 

value. Through the joint optimization study of adaptive 

filtering and dynamic resource allocation for LEO satellite 

signals, the inherent mechanisms of signal transmission and 

resource utilization in integrated space-air-ground 

communication networks can be deeply revealed, enriching 

and expanding the application of wireless communication 

theory in complex dynamic environments. Efficient adaptive 

filtering algorithms can significantly improve the received 

signal quality, reduce bit error rate, and ensure communication 

reliability; reasonable dynamic resource allocation strategies 

can realize fine-grained management of resources such as 

spectrum and power, improve resource utilization, and meet 

the diverse requirements of different service types for 

transmission rate, latency, and other performance indicators, 

thus promoting the wide application of 5G NTN LEO satellite 

systems in IoT, aviation communication, maritime 

communication, and other fields, and assisting the 
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construction of seamless global coverage communication 

networks. 

Currently, research on LEO satellite signal processing and 

resource allocation has achieved certain results, but many 

problems still need to be solved. In terms of signal filtering, 

traditional fixed-parameter filtering algorithms [14, 15] are 

difficult to track the rapid channel changes caused by the high-

speed movement of LEO satellites in real time, and the 

filtering performance significantly deteriorates under strongly 

time-varying channel environments. In the field of resource 

allocation, most existing studies consider signal processing 

and resource allocation separately. For example, the static 

resource allocation strategies proposed in studies [16, 17] do 

not fully utilize the channel state information obtained during 

signal processing, resulting in decision-making for resource 

allocation that lacks specificity and effectiveness. In addition, 

some studies optimize only a single resource and ignore the 

coupling relationship among multiple resources, making it 

difficult to achieve overall system performance optimization. 

The joint optimization algorithms proposed in studies [18, 19] 

consider the combination of signal processing and resource 

allocation, but lack adaptability to satellite mobility and user 

service demand changes in dynamic scenarios. Furthermore, 

the complexity of the algorithms is relatively high, making 

practical deployment difficult. 

This paper focuses on the key technical challenges of 5G 

NTN LEO satellite systems and conducts joint optimization 

research on adaptive filtering and dynamic resource allocation. 

The main content includes two parts: On one hand, addressing 

the time-varying channel characteristics in LEO satellite signal 

transmission, an improved 5G NTN LEO satellite adaptive 

filtering algorithm based on dynamic parameter adjustment is 

proposed. This algorithm adaptively adjusts filtering 

parameters by real-time estimation of channel state 

information, effectively suppressing noise and interference 

and improving the received signal quality. On the other hand, 

combined with the accurate channel state obtained from the 

improved filtering algorithm, a dynamic resource allocation 

algorithm for 5G NTN LEO satellites is designed, considering 

service demands and resource constraints, to achieve dynamic 

allocation of spectrum, power, and other resources among 

different users and services, improving resource utilization 

efficiency. 

The research value of this paper lies in the first joint 

optimization of adaptive filtering and dynamic resource 

allocation, fully considering the interaction between the two, 

and constructing a joint optimization framework more 

consistent with the actual scenario of LEO satellite 

communications. By improving the adaptive filtering 

algorithm to enhance channel estimation accuracy, more 

reliable basis is provided for resource allocation; with the 

dynamic resource allocation algorithm optimizing resource 

configuration, the signal transmission environment is further 

improved, forming a synergistic optimization effect between 

the two. The research results can effectively improve the 

communication performance and resource utilization 

efficiency of 5G NTN LEO satellite systems, providing 

important theoretical support and technical solutions for the 

practical deployment and application of LEO satellite 

communication systems, and have important practical 

significance for promoting the development of integrated 

space-air-ground communication networks. 

 

 

2. DESIGN OF IMPROVED ADAPTIVE FILTERING 

ALGORITHM FOR 5G NTN LEO SATELLITE 

SIGNALS 

 

The proposed improved adaptive filtering algorithm for 5G 

NTN LEO satellite signals is divided into the following three 

parts: 

(1) To address the problem of time-varying channel noise 

and interference caused by high-speed movement in 5G NTN 

LEO satellite signals, the algorithm first performs Ensemble 

Empirical Mode Decomposition (EEMD) on the original 

signal, decomposing the nonlinear and non-stationary signal 

into multiple Intrinsic Mode Function (IMF) components and 

a residual term distributed from high frequency to low 

frequency. By calculating the zero-crossing rate of each order 

IMF component and the ratio of zero-crossing rates with 

adjacent higher-order components, and using the significant 

difference in frequency characteristics between high-

frequency noise and low-frequency noise in LEO satellite 

signals, dynamic identification is performed on the positions 

where the zero-crossing rate of IMF components changes 

abruptly. Specifically, components with high zero-crossing 

rate and abrupt ratio change are determined to contain high-

frequency noise, while components with low zero-crossing 

rate and smooth changes are classified as low-frequency noise 

influenced regions, thus achieving adaptive differentiation of 

different noise-type components and providing a basis for 

subsequent layered filtering. 

 

 
 

Figure 1. Design of the improved adaptive filtering algorithm flow for 5G NTN LEO satellite signals 

 

(2) In the filtering stage of IMF components dominated by 

high-frequency noise, the algorithm uses a fixed threshold 

method to determine the initial threshold for each order 

component, and proposes an improved threshold function by 

combining the advantages of traditional soft and hard 

threshold functions. This function introduces adjustable 

parameters to balance the precise reconstruction characteristic 

of the hard threshold function and the smooth continuity of the 
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soft threshold function, avoiding the discontinuous abrupt 

change at the threshold point in the hard threshold and the 

constant bias problem in the soft threshold. Especially 

considering the characteristics of high-frequency noise energy 

concentration and complex time-varying patterns in LEO 

satellite signals, it can more accurately retain effective signal 

components and suppress noise. By comparative analysis with 

commonly used threshold functions in the literature, the 

proposed improved algorithm performs better in signal-to-

noise ratio improvement and signal distortion control. In 

specific implementation, the improved function is applied 

progressively to IMF components judged to be dominated by 

high-frequency noise, filtering out burst noise while retaining 

high-frequency features of the signal, enhancing the signal’s 

anti-interference ability in time-varying channels. 

(3) For IMF components and residual terms influenced by 

low-frequency noise, the algorithm adopts a median filtering 

baseline correction method. First, the median filtering window 

width is adaptively determined according to the frequency 

range of low-frequency noise. Edge extension techniques at 

both ends are used to avoid signal distortion caused by edge 

effects, ensuring effective suppression of slowly time-varying 

noise. Median filtering can smooth baseline drift while 

preserving the signal contour, especially suitable for low-

frequency phase deviation and power fluctuation issues caused 

by satellite trajectory changes in LEO satellite signals. After 

targeted filtering of high- and low-frequency noise 

components, all processed IMF components and residual 

terms are superimposed to reconstruct the 5G NTN LEO 

satellite signal with different noise types removed. This 

process, through a layered processing strategy, realizes 

differentiated suppression of high- and low-frequency noise in 

LEO satellite signals, significantly improving the received 

signal quality while maintaining time-varying features, 

providing more reliable channel state inputs for subsequent 

dynamic resource allocation. 

 

 
 

Figure 2. Comparison of threshold functions before and after 

improvement 

 

Figure 1 shows the flow design of the improved adaptive 

filtering algorithm for 5G NTN LEO satellite signals. In 5G 

NTN LEO satellite signal processing, the inherent defects of 

traditional hard and soft threshold functions cannot meet the 

complex time-varying characteristics requirements of LEO 

satellite signals. Due to the satellite’s high-speed movement 

and multipath propagation, LEO satellite signals present 

strong non-stationarity and a wide noise frequency span. Their 

high-frequency IMF components contain both high-frequency 

signal components carrying key information, such as rapidly 

changing phase modulation features, and high-frequency noise, 

such as random interference caused by multipath fading. The 

discontinuity of the hard threshold function at the threshold 

point causes oscillations in the filtered signal near the 

threshold. For LEO satellite communication relying on precise 

phase and amplitude information, this may introduce 

demodulation errors. The soft threshold function’s fixed 

amplitude offset at the threshold guarantees continuity but 

causes amplitude distortion, especially in high-frequency 

components where signal energy concentrates near the 

threshold. This distortion accumulates and affects signal 

reconstruction accuracy. 

Assuming the amplitude of the k-th data point of the u-th 

order IMF is denoted by fuk, and the amplitude of that point 

after filtering is 𝑓𝑢𝑘 . The formula of the hard threshold 

function is: 
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The formula of the soft threshold function is: 
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For the adaptive filtering goal of LEO satellite signals, it is 

required to remove high-frequency noise while maximizing 

the retention of effective time-frequency features of the signal. 

Therefore, the threshold function needs to be improved to 

balance continuity and amplitude accuracy. Specifically, 

considering the complex time-varying characteristic of 

intertwined high-frequency noise and effective signals in 5G 

NTN LEO satellite signals, the improved threshold function 

design adopts an implementation idea that integrates the 

advantages of soft and hard thresholds to balance signal 

continuity and amplitude accuracy. Figure 2 shows the 

comparison of threshold functions before and after 

improvement. The specific formula is as follows: 
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When fuk→±∞, there is: 
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When fuk→ηu, there is: 
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Considering that after EEMD decomposition of LEO 

satellite signals, the amplitude distribution of effective signals 

and high-frequency noise in high-frequency IMF components 

shows continuity differences, the improved threshold function 
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constructs a piecewise continuous and adaptively adjustable 

function form: when the amplitude is less than the threshold, 

it borrows the continuous characteristic of the soft threshold 

function to avoid reconstruction oscillations caused by the 

discontinuity point of the hard threshold; when the amplitude 

exceeds the threshold, a nonlinear adjustment factor is 

introduced so that the filtered amplitude gradually approaches 

the true value with increasing original amplitude, eliminating 

the constant bias problem of the soft threshold. Specifically, 

through the function design of the above formula, the filtered 

IMF component amplitude maintains continuity at the 

threshold point, avoiding oscillations caused by hard threshold 

discontinuity, and gradually reduces the fixed offset of the soft 

threshold as amplitude moves away from the threshold, 

ensuring the key information carried in phase and amplitude 

of the high-frequency signal is completely preserved. 

 

 

3. DYNAMIC RESOURCE ALLOCATION FOR 5G NTN 

LEO SATELLITES 

 

3.1 System model 

 

Figure 3 shows the schematic diagram of the 5G NTN LEO 

satellite communication system model. The 5G NTN LEO 

satellite model constructed in this paper is based on multi-

beam coverage and Orthogonal Frequency Division 

Multiplexing (OFDM) as the core architecture, aiming to 

provide a foundational framework for dynamic resource 

allocation. The LEO satellite achieves wide-area coverage by 

generating Y directional beams, collectively denoted as Y={y 

| y =1,2,…,Y}. The user set I={i | i=1,2,…,I} contains I users 

randomly distributed within the coverage area of each beam. 

The number of users accessing beam y in time slot s is iy
s, 

satisfying ΣY
y=1Iy

s=I. Under the OFDM mode, users within the 

same beam communicate without interference via orthogonal 

subcarriers, while co-channel interference arises among 

different beams due to shared spectrum resources, which is the 

key problem to be solved in dynamic resource allocation. The 

model assumes that each beam is allocated V orthogonal 

subcarriers, and each subcarrier in time slot s can be assigned 

to only one user to avoid intra-beam interference, focusing on 

inter-beam interference coordination and resource 

optimization. 

 

 
 

Figure 3. 5G NTN LEO satellite communication system 

model 

 

The satellite information control center collects link state 

parameters in real time to provide data support for dynamic 

resource allocation. Among these, transmission power PPP is 

an adjustable resource, initialized when a beam is activated 

and dynamically adjusted according to user demand. The free-

space loss model is used to characterize channel fading, 

combined with the time-varying channel characteristics 

caused by the high-speed movement of the satellite, providing 

channel gain references for subcarrier allocation and power 

control. The model defines the available resources for each 

beam in time slot s as the set of V subcarriers 

V={v|v=1,2,…,V}. The resource allocation strategy must 

satisfy the single-user single-subcarrier constraint, while 

optimizing cross-beam power allocation to suppress co-

channel interference. By incorporating user access, subcarrier 

allocation, and power control into a unified framework, the 

model aims to balance coverage performance and Spectral 

Efficiency (SE) through dynamic resource allocation, 

reducing system complexity and improving communication 

reliability in multi-beam scenarios, thus providing a structured 

state space and action space input for deep reinforcement 

learning algorithms. 

In the dynamic resource allocation model based on time slot 

division, the channel characteristics of the satellite remain 

stable within each time slot. The signal transmission quality of 

a user connected to a specific beam subcarrier is determined 

by the channel gain parameter reflecting spatial propagation 

loss, which is directly related to dynamic factors such as the 

real-time distance and relative position between the satellite 

and the user. The transmission power on subcarriers of each 

beam is regarded as an adjustable resource: the transmission 

power of the beam determines the effective signal strength 

received by the target user, while the transmission power of 

other beams on the same subcarrier causes inter-beam 

interference due to spectrum sharing. Specifically, assuming 

the propagation loss in vacuum is denoted by M, the beam gain 

between user i and beam y is denoted by Hy,i, and the channel 

gain of user i connecting to subcarrier v in beam y at time slot 

s is: 

 

, , /v

y i y ig H M=  (6) 

 

Assuming the 3dB beamwidth angle is ϕ3fY, the maximum 

gain of the receiving antenna is HMAX, the angle between the 

beam center and user terminal is ϕy,i, and the first kind first- 

and third-order Bessel functions are K1 and K3. The expression 

for Hy,i is: 
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Assuming the propagation distance is f, and the wavelength 

is η, the expression for M is: 
 

24 /M f =  (8) 

 

Let the transmission power of the v-th subcarrier in the y-th 

beam at time slot s be denoted as O(y,v)
s. Similarly, the 

transmission power of user i in the v-th subcarrier of beam y' 

at time slot s is O(y`,v)
s. The non-interference signal power of 

subcarrier v in beam y is calculated as: 
 

( ) ( ), ,,
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When multiple beams use the same subcarrier 

simultaneously, the signal energy from non-target beams 

couples through spatial propagation to the target user's 

receiver, forming aggregated interference. Its intensity is 

related to the transmission power of interfering beams and 

corresponding channel gains. This co-channel interference is 

the core challenge of multi-beam systems in LEO satellites, 

directly affecting signal reception quality and resource 

allocation efficiency. The interference signal power from 

subcarrier v in other beams excluding beam y is calculated by: 
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The Signal-to-Interference-plus-Noise Ratio (SINR) is a 

key metric measuring the impact of interference on user signal 

reception, defined as the ratio of effective signal power to the 

sum of interference signal power and background noise power. 

Increasing transmission power in the beam can enhance target 

signal strength but simultaneously increases interference to 

users in other beams; conversely, reducing power can lower 

interference but may degrade the signal quality in the beam. 

The dynamic balance between these two is the core 

contradiction in resource allocation strategy design. Assuming 

the variance of additive white Gaussian noise is β, the binary 

variable indicating whether terminal device i is connected to 

beam y at time slot s is λ(y,i)
s, and the SINR of user i on 

subcarrier v in beam y at time slot s is ε(y,v,i)
s, its expression is: 
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The expression for λ(y,i)
s is: 
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The overall system throughput quantifies the effect of 

resource allocation and is defined as the sum of transmission 

rates of all activated users on allocated subcarriers. Since each 

subcarrier can be allocated to only one user in a single time 

slot (subcarrier exclusivity constraint), throughput 

optimization requires dynamically adjusting transmission 

power of subcarriers in each beam and user allocation 

strategies, maximizing SE while suppressing inter-beam 

interference. This process requires deep reinforcement 

learning algorithms to perceive signal strength, interference 

levels, and user access status of each beam in real time, making 

intelligent decisions to optimally balance interference and 

transmission efficiency, ultimately improving the overall 

performance of LEO satellite communication systems. The 

overall system throughput is: 
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In 5G NTN LEO satellite dynamic resource allocation, 

system performance needs to consider both SE and EE as core 

indicators. SE is defined as the overall data transmission rate 

of the system, reflecting the utilization density of spectrum 

resources; EE is the ratio of system throughput to power 

consumption, measuring the effective data transmission 

capability per unit energy consumption. There is a significant 

contradiction between these two in practical optimization: 

simply increasing SE can raise data rates but causes power 

consumption to surge, reducing EE; conversely, excessively 

pursuing EE may cause signal quality degradation or resource 

idleness, leading to SE loss. This conflicting trade-off makes 

single-metric optimization unable to meet the dual needs of 

green energy saving and efficient transmission in LEO satellite 

communications. A compromise strategy is needed to 

coordinate the relationship between them, achieving overall 

system performance improvement under limited spectrum and 

power resource constraints. Assuming the satellite system’s 

transmission power consumption is denoted as Ox, constant 

circuit power consumption as Oz, and total power consumption 

as OSUM=Ox＋Oz, the EE in time slot s is: 
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The SE of the system is: 
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By weighting EE and SE with weighting factors α and 

Y/OSUM respectively to unify the dimensions of the two terms, 

there is: 
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To address the above multi-objective optimization problem, 

this paper uses the weighted sum of SE and EE as the unified 

optimization objective. By introducing weighting parameters 

to balance their priorities, the original problem is transformed 

into a single-objective optimization problem. Specifically, 

under the dynamic resource allocation framework based on 

time slot division, decision variables include the transmission 

power of subcarriers in each beam and the allocation 

relationship between users and subcarriers. Constraints cover 

subcarrier exclusivity, power limits, and time-varying channel 

stability. Since SE and EE have different units and cannot be 

directly added with physical meaning, a dimensionless 

weighting coefficient constructs the weighted objective 

function, enabling the algorithm to optimize transmission rate 

and power consumption efficiency simultaneously when 

dynamically adjusting resource allocation strategies. 

Assuming the satellite’s maximum transmission power is 

OMAX, and the minimum transmission power per subcarrier is 

OMIN, the optimization problem can be expressed as: 
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3.2 Algorithm description 

 

Figure 4 shows the proposed dynamic resource allocation 
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framework for 5G NTN LEO satellites in this paper. To 

address the multi-objective optimization conflict between SE 

and EE in 5G NTN LEO satellite systems, the dynamic 

resource allocation problem is modeled as a Markov Decision 

Process (MDP), and intelligent policy optimization is realized 

by Deep Reinforcement Learning (DRL). Under the MDP 

framework, the environment is defined as the real-time 

operating scenario of the satellite communication system, 

including key parameters such as the dynamic distribution of 

user access to beams, the transmission power state of each 

beam, time-varying channel gain, and inter-beam co-channel 

interference levels. The state space is designed as ty,v={Iy,Oy
s}, 

where Iyrepresents the number of users accessing each beam 

in time slot s, intuitively reflecting the traffic load; Oy
s is the 

discretized beam power level, which reduces algorithm 

complexity while maintaining power adjustment precision by 

dividing the continuous power range into a finite number of 

fine levels. This adapts to the limited computing capability of 

LEO satellite payloads and provides feasible state input for 

real-time decision making. The defined discretization rule is: 
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Figure 4. 5G NTN LEO satellite dynamic resource allocation framework 

 

The action space is constructed as X={x1,x2,…,x3V|xy=(vy, 

ΔOy,v
s)}, where each action corresponds to a power adjustment 

operation on a specific subcarrier in a beam, including three 

choices: "increase," "decrease," and "no change." The power 

adjustment amount ΔOy,v
s is strongly correlated with the 

capacity change of the subcarrier's served user: when user 

capacity increases, power is increased to guarantee signal 

quality ΔOy,v
s=+|ΔOy,v

s|; when capacity decreases, power is 

reduced to save energy ΔOy,v
s=-|ΔOy,v

s|; when capacity is stable, 

power remains unchanged ΔOy,v
s=0. This design deeply 

couples subcarrier resource allocation with power control, 

enabling the algorithm to dynamically adjust resource 

allocation based on real-time service demands, achieving 

collaborative optimization of SE and EE while suppressing 

inter-beam co-channel interference, thus avoiding the 

response lag of traditional static strategies to traffic 

fluctuations. 

The reward function is designed with the weighted sum of 

SE and EE as the core objective. Through dimensionless 

weighting coefficients balancing their priorities, the multi-

objective optimization problem is converted into a single-

objective optimization problem. Considering the physical unit 

differences between SE and EE, their direct summation lacks 

comparability; therefore, a weighted comprehensive reward 

signal is constructed to provide real-time feedback on the 

overall benefit of resource allocation strategies: positive 

rewards are given when the policy increases system 

throughput within a reasonable power consumption range, and 

negative rewards are given when pursuing a single metric 

excessively causes performance imbalance. This design 

encourages the agent to explore the Pareto optimal solutions 

between SE and EE in a dynamic environment, satisfying the 

high-rate communication requirements of 5G NTN while 

meeting the stringent green energy-saving constraints of LEO 

satellites, thus forming an adaptive regulation mechanism 

balancing efficiency and power consumption. 

The core algorithm proposed in this paper improves training 

stability through the collaborative architecture of a main 

network and a target network. The main network is responsible 

for generating real-time power adjustment strategies based on 
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the current state, directly affecting satellite resource allocation; 

the target network estimates the target Q-values, reducing the 

variance fluctuations of the value function during training and 

enhancing the robustness of the algorithm under time-varying 

channels. The Q-function is decomposed into a state-value 

function N(t; ϕ, α) and an advantage function X(t, x; ϕ, β), 

where the former evaluates the overall value of the current 

state, and the latter quantifies the contribution of each action 

to the state value. Assuming the convolutional layer 

parameters of the network are denoted by ϕ, and the fully 

connected layer parameters of the two branches are denoted by 

β and α, the specific expression of the Q-function is: 

 

( ) ( ) ( ), ; , , , ; , , ; ,W t x N t x X t x      = +  (20) 

 

To avoid parameter non-uniqueness issues, the sum of the 

advantage function outputs is forced to be zero, ensuring 

precise evaluation of action benefits by the model. Therefore, 

the Q-function can be represented as: 

 

( ) ( )

( ) ( )( )

, ; , , ; ,

, ; , , '; , ,

W t x N t

X t x AMX t x

    

   

=

+ −
 (21) 

 

During training, an ε-greedy strategy balances "exploration-

exploitation": initially accumulating experience through 

random exploration, and later focusing on efficient policies to 

improve convergence speed; the experience replay buffer 

stores tuples of state, action, reward, and next state, reducing 

data correlation through batch learning. Network parameters 

are updated using the Adam optimization algorithm, and the 

target network is synchronized at fixed intervals, forming a 

stable end-to-end optimization closed loop. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 5 compares the performance of the proposed 

algorithm with traditional filtering methods such as LMS, KF, 

EMD, and MWF by the relationship between BMSE and 

signal-to-noise ratio (SNR). A smaller BMSE indicates 

smaller error between the filtered signal and the original signal, 

thus better filtering performance. As shown in the figure, 

across the entire SNR range, the BMSE values of the proposed 

algorithm are lower than those of other comparison algorithms. 

When SNR = 1 dB, the BMSE of the proposed algorithm is 

about 0.07, while MWF is about 0.08, and LMS is higher; 

when SNR = 10 dB, the BMSE of the proposed algorithm 

approaches 0.03, significantly lower than LMS, KF, and other 

algorithms. With increasing SNR, the BMSE decreasing trend 

of the proposed algorithm is more obvious, and it always 

maintains the lowest error level. At SNR = 5 dB, the BMSE of 

the proposed algorithm is about 12% lower than the second-

best MWF; at SNR = 8 dB, it is about 15% lower than LMS. 

These data indicate that the proposed algorithm has stronger 

noise and interference suppression capability for LEO satellite 

time-varying channels over a wide SNR range, and the 

filtering accuracy is significantly better than traditional 

methods. The experimental results fully verify the 

effectiveness of the proposed adaptive filtering improvement 

algorithm for 5G NTN LEO satellite signals. The algorithm 

adaptively adjusts filtering parameters by real-time estimation 

of channel state information, accurately matching the time-

varying characteristics of LEO satellite channels. Compared to 

traditional filtering algorithms with fixed parameters, it has 

stronger robustness in non-stationary channel environments, 

effectively reducing noise residual and signal distortion. In 

different SNR scenarios, the proposed algorithm shows the 

best filtering performance. The high-precision filtering results 

provide more accurate CSI input for the dynamic resource 

allocation algorithm, enabling resource allocation strategies to 

be optimized based on real channel states, thereby improving 

the weighted sum performance of SE and EE. 

 

 
 

Figure 5. Comparison of filtering performance of different 

filtering methods 

 

 
 

Figure 6. SE under different number of terminals in 5G NTN LEO satellite communication system 
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Figure 7. SE under different noise powers in 5G NTN LEO satellite communication system 

 

Figure 6 compares the SE of different algorithms in the 5G 

NTN LEO satellite system with the number of terminals as the 

variable. SE is the core indicator measuring resource 

utilization capability; higher values indicate faster 

transmission rates per unit bandwidth. Data show: When the 

number of terminals is between 10 and 20, the SE of the 

proposed method shows an upward trend and always leads 

DuelingDQN and QR-DQN. At 20 terminals, the SE of the 

proposed method reaches 3.2, an increase of about 39% over 

DuelingDQN (2.3) and about 28% over QR-DQN (2.5), 

demonstrating its efficient scheduling capability under 

medium load. When the number of terminals is between 20 

and 30, although the proposed method slightly decreases, it 

still maintains the highest value. Among comparison 

algorithms, DuelingDQN decreases to 2.0, QR-DQN 

decreases to 2.4 (4% decrease), while the proposed method 

decreases only 12.5%, and its absolute performance remains 

leading, reflecting robustness under high load scenarios. The 

experimental results fully verify the effectiveness of the 

proposed dynamic resource allocation algorithm for 5G NTN 

LEO satellites. The algorithm deeply integrates accurate 

channel states obtained from adaptive filtering, allowing 

resource allocation strategies to dynamically adjust based on 

real channel conditions. For example, with cleaner filtered 

signals, the algorithm can accurately judge terminal 

communication demands, avoiding resource waste caused by 

channel estimation errors in traditional algorithms. This joint 

optimization of "filtering-resource allocation" maintains 

leading SE amid terminal load changes, proving the 

effectiveness of the collaborative mechanism. Compared to 

the comparison algorithms, the proposed method has more 

comprehensive state space modeling and finer action space 

design, enhancing adaptability to the dynamic LEO satellite 

environment. 

Figure 7 compares the SE of different algorithms in the 5G 

NTN LEO satellite system with noise power as the variable. 

SE is the core indicator measuring resource utilization 

capability; higher values indicate faster transmission rates per 

unit bandwidth. Data show that at noise power of -40 dB, the 

SE of the proposed method is about 4.5, slightly higher than 

QR-DQN and DuelingDQN, initially demonstrating 

performance advantages. As noise power increases, SE of all 

three algorithms decreases, but the decrease in the proposed 

method is the smallest. At noise power 20 dB, the SE of the 

proposed method is about 2.8, 87% higher than DuelingDQN 

and 27% higher than QR-DQN; at noise power 0 dB, the 

proposed method is 40% higher than DuelingDQN and 17% 

higher than QR-DQN. This indicates that the proposed 

algorithm’s ability to maintain SE under high noise 

environments is significantly better than comparison 

algorithms, with outstanding anti-noise interference 

performance. The experimental results fully verify the 

effectiveness of the proposed dynamic resource allocation 

algorithm for 5G NTN LEO satellites. The algorithm deeply 

integrates accurate channel states obtained from adaptive 

filtering, enabling resource allocation strategies to 

dynamically adapt to noise environments. Under high noise, 

the cleaner filtered channel information allows the algorithm 

to precisely identify effective communication demands of 

terminals, avoiding resource waste and thus maintaining high 

SE. Comparison algorithms, lacking full utilization of filtered 

channel information, show increased blind resource allocation 

under noise enhancement, causing sharp drops in SE; the 

proposed method only decreases by 38%, highlighting the 

interference resistance benefits of joint optimization. 

Figure 8 visually presents the spatiotemporal optimization 

process of dynamic resource allocation by the subcarrier set 

partitioning illustrations at different time slots. At time slot s-

1, subcarriers are partitioned into multiple independent regions 

according to service distribution, reflecting the coverage of 

initial resource allocation; in time slot s, some regions shrink 

or reorganize, reflecting resource adaptive adjustment under 

changing service demands; in time slot s+1, subcarrier sets 

form dynamic scheduling paths connected by red lines, 

showing the algorithm’s real-time response capability to time-

varying channels and services. As can be seen, subcarrier 

regions continue to be optimized across time slots; for example, 

the yellow subcarrier group is an independent small region at 

s-1 but is integrated into the central resource pool at s+1, 

indicating the algorithm can flexibly merge or split resources 

according to service priority and channel state, avoiding 

resource waste caused by fixed allocation. Black circles 

closely enclose service distributions with no resource overlap 

or service blind spots, reflecting the algorithm’s refined 

management of resources such as spectrum and power. The 

high-priority services connected by red lines in time slot s+1 

obtain centralized resource scheduling, improving key service 

transmission efficiency. The algorithm dynamically adjusts 

subcarrier allocation on the time slot dimension based on real-

time channel state provided by adaptive filtering. The fast 
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fading of channels caused by LEO satellite high-speed 

movement is quickly adapted through "time slot-level" 

resource scheduling, avoiding performance degradation of 

traditional static algorithms. 

Figure 9 compares the provided capacity and 

communication demand of three algorithms by beam number. 

Provided capacity reflects the business traffic supported after 

resource allocation by the algorithm, and communication 

demand represents actual business load. Data show that for 

each beam, the proposed method’s provided capacity is always 

higher than or equal to communication demand, and 

significantly better than DuelingDQN and QR-DQN. For 

example, in beam 7, the proposed method provides about 1050 

capacity, highly matching the demand and achieving resource 

supply-demand balance; DuelingDQN provides only 950, QR-

DQN about 1020, showing clear advantages in resource 

utilization precision for the proposed method. As beam 

business complexity increases, the provided capacity of the 

proposed method always leads and best fits the demand. 

Taking beam 5 as an example, demand is about 800, the 

proposed method provides about 850, while DuelingDQN 

only 750, QR-DQN about 820, further verifying the proposed 

algorithm’s adaptability to dynamic business demands. The 

algorithm deeply integrates real-time channel state obtained 

from adaptive filtering, enabling resource allocation strategies 

to dynamically respond to business traffic changes. By 

dynamically adjusting subcarrier allocation, power spectral 

density, and beam resource scheduling, the proposed method 

achieves high matching between provided capacity and 

demand in each beam. In multi-beam scenarios of LEO 

satellites, business demand differences among beams are 

significant. The proposed algorithm realizes dynamic cross-

beam resource flow through global strategy optimization of 

deep reinforcement learning, improving overall system 

resource utilization. In the figure, red bars of beams 1–7 

closely fit the blue bars, proving the algorithm can balance 

resources among multiple beams, avoid local resource idleness 

or shortage, and enhance system adaptability to complex 

business loads. 

 

  
(1) Time Slot s-1                                      (2) Time Slot s 

 
(3) Time Slot s+1 

 

Figure 8. Illustration of subcarrier set partitioning results at different time slots 

 

Figure 10 compares the system utility of three algorithms 

with satellite transmit power as the variable. System utility 

comprehensively measures the weighted sum of SE and EE, 

with higher values indicating better balance of resource 

utilization and energy consumption. As power increases, the 

system utility of the proposed method is always higher than 

comparison algorithms. At power 160, the proposed method’s 

utility reaches 50, 25% higher than QR-DQN and 233% higher 

than DuelingDQN (15); at power 130, the proposed method 

already surpasses zero utility, while QR-DQN just reaches 
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zero, and DuelingDQN is still -10, proving its high efficiency 

even in low power scenarios, and more obvious advantages in 

high power. The utility growth slope of the proposed method 

is significantly higher than comparison algorithms, indicating 

better conversion of power resources into system utility. For 

example, as power increases from 110 to 160, the utility of the 

proposed method increases by 70, QR-DQN increases by 60, 

and DuelingDQN only increases by 40, reflecting refined 

utilization of power resources and avoiding power waste in 

traditional algorithms. The algorithm integrates accurate 

channel states from adaptive filtering and dynamically 

optimizes power allocation strategy. At low power, with 

cleaner CSI after filtering, power is prioritized for high-value 

services to improve utility output per unit power; at high 

power, multi-beam channel states are utilized to realize 

optimal scheduling of power among spectrum and users, 

maximizing utility. This "precise power delivery" mechanism 

solves the problem of disconnection between power and 

performance in traditional algorithms. 

 

 
 

Figure 9. Comparison of communication demand and 

provided capacity of each beam under different methods 

 

 
 

Figure 10. Relationship between system utility and satellite 

transmit power under different methods 

 

In summary, the proposed dynamic resource allocation 

algorithm significantly improves the utility of 5G NTN LEO 

satellite systems through efficient conversion of power 

resources, collaborative multi-objective optimization, and 

adaptation to dynamic environments. The experimental data in 

Figure 10 intuitively demonstrate its performance advantages 

across the full power range, especially its utility growth ability 

under high power, providing key technical support for green 

energy saving and efficient transmission of LEO satellite 

communications, effectively solving the contradiction 

between "power limitation and performance demand," with 

important engineering value. 

 

 

5. CONCLUSIONS 

 

This paper addressed key technical challenges of 5G NTN 

LEO satellite systems by conducting joint optimization 

research on adaptive signal filtering and dynamic resource 

allocation, constructing a closed-loop system of "channel 

awareness-resource optimization." At the signal processing 

level, the proposed dynamic parameter adjustment filtering 

algorithm effectively suppressed noise and interference by 

real-time estimation of channel state, providing high-precision 

channel input for resource allocation. At the resource 

management level, the deep reinforcement learning resource 

allocation algorithm, which integrated filtered channel 

information, realized dynamic scheduling of spectrum and 

power, balancing SE and EE. Under dynamic scenarios such 

as terminal load, noise power, and transmit power, the system 

utility significantly outperformed comparison algorithms, 

resolving conflicts of single-metric optimization and 

improving resource utilization efficiency. Experimental data 

show that the joint optimization mechanism enables the 

system to accurately match resources with services under 

time-varying channels and multiple service loads, enhancing 

the performance stability and adaptability of the space-air-

ground integrated network. 

In terms of research value, this paper innovatively deeply 

coordinates signal processing and resource management, 

breaking through the contradiction of "time-varying channels-

resource limitations-diverse services," providing key technical 

support for 5G NTN deployment, and promoting the space-air-

ground integrated network toward green, efficient, and 

intelligent adaptation with important engineering application 

value. However, limitations exist such as high computational 

complexity, adaptability to extreme channel scenarios yet to 

be verified, and insufficient consideration of multi-satellite 

cooperation. Future research may focus on lightweight models 

to reduce computational overhead, enhance robustness in 

extreme scenarios, expand distributed multi-agent 

reinforcement learning frameworks for satellite-ground 

cooperation, achieve global intelligent resource scheduling, 

further improve algorithm practicality and universality, and 

lay a more solid foundation for next-generation space-air-

ground integrated network resource management. Through 

continuous optimization, it is expected to solve core 

bottlenecks of LEO satellite communications, promoting 

technological upgrades and widespread application of 

integrated space-air-ground networks. 
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