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To address the challenges of non-stationarity and multi-scale feature extraction in bridge 

vibration signals for structural health monitoring, this paper proposes a deep learning 

framework, termed Wavelet-Statistic-Frame with LSTM-Attention Network (WSF-LANet), 

that integrates multi-source feature extraction with temporal modeling to extract damage-

sensitive features from bridge vibration signals for identification and localization of different 

damage states. The model architecture is designed with three parallel feature extraction 

pathways: Discrete Wavelet Transform (DWT) based time-frequency analysis, extract 

statistical descriptors for quantifying latent damage indicators, and frame-wise segmentation 

and extraction of spatiotemporal features. After merging the features extracted from these 

three paths, a multi-attention block dynamically allocates weights across feature dimensions. 

The Long Short-Term Memory (LSTM) network is then used to further effectively capture 

the temporal dependencies of the sequence. The output is the final predicted damage matrix, 

which contains damage identification for each channel. In order to achieve both damage 

identification and localization functions, we additionally use unique heat encoding to 

represent multi-location and multi-category labels in a unified format. Experimental results 

show that on a bridge dataset from Japan, the proposed method achieves an accuracy of up 

to 97.5% for damage classification and a macro precision of 96.82% for localization. 

Ablation studies further validate the effectiveness of each feature extraction path. Cross-

dataset evaluations also demonstrate strong generalization capability. In summary, the 

proposed WSF-LANet offers an efficient, accurate, and generalizable solution for intelligent 

damage identification and localization in bridge structural health monitoring. 
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1. INTRODUCTION

With the continuous advancement of science and 

technology, bridge construction has developed rapidly over 

the past 30 years. These bridges have made significant 

contributions to social and economic development. However, 

under the influence of loads, environmental erosion, and 

natural disasters, bridge structures inevitably suffer from 

issues such as material corrosion and degradation, structural 

damage and cracking, performance deterioration, functional 

failure, and other types of defects or deterioration [1-4]. If 

structural damage in bridges is not detected in a timely manner, 

it can lead to serious engineering accidents, potentially 

resulting in devastating casualties and significant property 

losses. Therefore, the development of structural damage 

identification is of critical importance [5].  

Structural health monitoring (SHM) systems can generally 

be categorized into visual-based damage detection methods, 

mathematical model-based damage detection methods, and 

data-based damage detection methods. Traditional visual 

inspection is usually based on manual visual inspection, which 

is labor-intensive, time-consuming, traffic-disturbing, and 

costly, in addition to the fact that the visual inspection results 

may be subject to the subjective judgment of the inspector [6, 

7]. Nowadays, bridge inspection based on computer vision has 

also been developed [8, 9], which can effectively reduce the 

work intensity and subjective error of manual inspection. In 

addition, through the unmanned aerial vehicle or robotic 

system equipped with high-resolution camera equipment, 

efficient, contactless and full-coverage inspection of bridge 

structures can be realized, which can significantly improve the 

inspection efficiency and safety. However, vision-based 

damage detection focusing on detecting concrete cracking, 

concrete crushing, steel corrosion and steel fracture in visible 

components still has limitations, relying on environmental 

conditions and being limited to surface detection, and is unable 

to detect damage to the internal structure of the bridge [10].  

In contrast, the bridge damage detection method based on 

mathematical modeling obtains the vibration signals (i.e., 

acceleration or strain) of the bridge through various sensors 

(e.g., displacement transducers, accelerometers, and strain 

gauges), and then constructs finite elements with physical 

formulas to deduce the specific damage conditions [4, 11-14]. 

The dynamic properties of the structure (e.g., intrinsic 
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frequency, vibration pattern, and modal damping) are 

investigated in damaged and healthy states, and these changes 

alter the vibration characteristics of the structure. Thus 

mathematical model-based detection methods can detect 

damage to the internal structure of a bridge, including both 

visible and invisible components [15, 16]. Although methods 

based on mathematical models have strong physical 

interpretability, they rely on model accuracy and are difficult 

to accurately locate damage. Modal parameters are affected by 

environmental and operating conditions such as temperature, 

humidity, and vehicle load, and these changes may mask or 

mislead changes caused by damage, reducing the robustness 

of detection. Actual bridges are usually in non-ideal working 

conditions, resulting in deviations between theoretical models 

and actual measured responses. 

In recent years, artificial intelligence has been gradually 

introduced into civil engineering, and this emerging and 

promising tool has attracted a great deal of attention from 

researchers [17]. Thus data-based damage detection methods 

were born. Machine learning has been applied to the task of 

data-based bridge damage detection, where damage-sensitive 

features are extracted directly from sensor-based 

measurements or simulated vibration data, and pattern 

recognition is performed on the structure [18]. The most 

popular algorithms used for data-based damage detection are 

such as Principal Component Analysis (PCA) [19, 20], 

Support Vector Machine (SVM) [21] and Random Forest (RF) 

[22]. However, these algorithms usually lead to considerable 

computational complexity and time, which affects the 

application of ML-based methods in real-time SHM 

operations. 

Moreover, the complexity of bridge vibration signals under 

varying operational and environmental conditions further 

increases the challenge. ML often fail to generalize well across 

different scenarios. A large number of deep learning-based 

bridge damage diagnosis technologies have achieved results 

superior to traditional technologies in many aspects. Therefore, 

the focus of research is gradually shifting from mathematical 

models to data-driven intelligent diagnosis [23-26]. It is 

necessary to develop a deep learning model to investigate the 

vibration data collected from bridges under different dynamic 

conditions. Deep learning methods also face some challenges. 

In practical applications, model performance is highly 

dependent on the quantity and quality of training data. 

However, it is difficult to collect real bridge damage data, and 

it is also necessary to effectively extract sufficient features 

from the data. 

In our paper, we propose a data-driven method to address 

the above issues by using three parallel methods to extract 

bridge vibration signal features. In the third branch, an 

improved Alexnet network is used as a feature extractor to 

extract intra-frame and inter-frame spatio-temporal features. 

The characteristic information contained in the signal that 

changes over time provides key clues about the target state. To 

extract features at a deeper level, we also use a multi-head 

attention mechanism to capture the correlations between 

features, and then use an Long Short-Term Memory (LSTM) 

module to capture the dynamic patterns of features, forming a 

model with a much more comprehensive understanding than a 

single model. This is particularly valuable for the processing 

of bridge vibration signals, as the correlation between damage 

and time series is of great importance. 

Specifically, our major contributions are summarized as 

follows. 

(i) The model architecture is designed with three parallel 

feature extraction pathways: Discrete Wavelet Transform 

(DWT) based time-frequency analysis, extract statistical 

descriptors for quantifying latent damage indicators, and 

frame-wise segmentation and extraction of spatiotemporal 

features. This achieves a multi-scale, multi-perspective 

representation of complex non-stationary vibration signals. 

(ii) After multi-source feature fusion, a multi-attention 

mechanism is introduced to adaptively assign weights to 

different feature dimensions. Combined with LSTM for in-

depth modeling of frame-level sequence dependencies, this 

effectively highlights damage-sensitive patterns and enhances 

the model's perception of temporal changes. To 

simultaneously enable both damage identification and 

localization, we further employ a distinctive heatmap-style 

encoding scheme that integrates multi-location and multi-

category labels into a unified representation. 

(iii) The results obtained using public data demonstrate the 

superiority of WSF-LANet in handling multi-channel time 

series classification and problems. In addition, ablation studies 

were conducted to verify the effectiveness of each design 

component. Furthermore, we verified the generalizability of 

WSF-LANet. 
 

 

2. RELATED WORK 

 

Convolutional neural network (CNN) as an artificial neural 

network can automatically learn many feature information 

from raw data and can be used to automatically detect relevant 

scenes, which ensures high detection accuracy and 

significantly improves the computational speed, and will be a 

potential SHM approach [27]. Sony et al. [28] proposed a 

multi-class SDI method based on 1D-CNN for analyzing the 

full bridge vibration response. In addition, Teng et al. [10] 

demonstrated a structural damage identification (SDI) method 

that uses CNNs to classify the location and severity of 

structural damage. Lin et al. [29] achieved structural damage 

identification by automatically extracting features from sensor 

data using CNN. Huang et al. [5] introduces an innovative 

approach to bridge SDI in a few-shot context by integrating an 

adaptive simulated annealing particle swarm optimization-

convolutional neural network (ASAPSO-CNN) as the 

foundational framework, augmented by data enhancement 

techniques. Cofre-Martel et al. [30] proposes a CNN-based 

deep structure damage localization and quantification method, 

which composes images generated from the transfer rate 

function of a structure in order to utilize the image processing 

capabilities of CNNs and automatically extract and select 

features related to the structure degradation process.  

In addition, LSTM has shown promising results in modeling 

long-term dependencies in sequential or time-series data for 

structural damage detection and localization. Fu et al. [31] 

proposed a CNN-LSTM based on hierarchical classification 

for capturing spatial and temporal information features 

between simulated data for large span bridge damage 

identification. The results show that the proposed hybrid 

approach achieves better classification performance (e.g., 

damage localization accuracy and average relative recognition 

error for damage severity identification) compared to the CNN 

model, even in the presence of noise.  

Sun et al. [32] proposed an intra-frame network and fusion 

method for extracting feature vectors from signals for vehicle 

type recognition in the field. At the same time, an inter-frame 
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classifier is proposed to analyze the temporal correlation 

between feature maps and overall classification. Although the 

combination of feature extraction and deep learning performs 

well in multi-dimensional time series classification, existing 

research has mainly focused on multi-sensor fusion, which is 

mainly applicable to single-frame target classification. Given 

that interframe classifiers can identify various types of 

vehicles based on damaged time series signals, it is 

theoretically possible to incorporate interframe correlation 

feature extraction of time series into the bridge damage 

identification process. 

 

 

3. METHODS 

 

3.1 Overview 

 

In this section, we first present our proposed method for 

classifying and locating bridge damage. The structure of WSF-

LANet is illustrated in Figure 1. The original data is 

preprocessed with spatial enhancement, and noise is injected 

to improve data robustness. In the feature extraction stage, the 

system implements three parallel processing paths for 

preprocessed data. The first pathway directs the data through 

a DWT module, applying multi-resolution analysis to produce 

wavelet coefficients that exhibit excellent time-frequency 

localization. The second pathway focuses on extracting 

statistical features to characterize the shape of the data 

distribution. These features include key parameters such as the 

mean, extreme values, and kurtosis. In the third pathway, a 

sliding window mechanism divides the continuous signal into 

data frames with temporal dependencies, from which a 

modified AlexNet module subsequently extracts features. 

After merging the features extracted from these three paths, a 

multi-attention block dynamically allocates weights across 

feature dimensions. The output of the weighted optimized new 

feature vector is fed into the LSTM layer, followed by a fully 

connected layer. The purpose of this module is to further learn 

the global temporal information of each channel at each time 

step, thereby identifying dynamic temporal features. The FC 

layer is followed by the softmax function, which outputs 

prediction probabilities for each channel, ultimately forming 

the damage matrix Y. 

 

 
 

Figure 1. The overall proposed framework and procedures 

 

3.2 The proposed framework 

 

3.2.1 DWT for time-frequency analysis (DWTA) 

Unlike the traditional Fourier transform, which only 

provides global spectral information, the wavelet transform 

can perform localized analysis of signals simultaneously in 

both the time domain and the frequency domain. This multi-

resolution characteristic makes DWT particularly suitable for 

analyzing non-stationary signals (such as mechanical 

vibrations), as their spectra change over time. DWT uses the 

Daubechies 4 (dB4) wavelet, which offers several significant 

advantages for extracting features from non-stationary signals. 

The extracted detail coefficients capture the high-frequency 

variations of the signal, enabling the representation of rapid 

changes and fine details Meanwhile, the approximation 

coefficients represent the low-frequency components of the 

signal, providing a deeper understanding of the signal's overall 

structure. The process of extracting features using DWT is 

shown in Figure 1. In which D1, D2, and D3 are the detail 

coefficients, and A4 is the approximation coefficient. 

In order to map the wavelet coefficients of each layer to a 

fixed-length feature vector, the mean of each set of 

coefficients was calculated, and then these means were 

concatenated hierarchically. Let the approximation 

coefficients of the jth layer be the vector 𝐶𝐴
(𝐿)

, and the detail 

coefficients of the Kth layer be the vector 𝐶𝐷
(𝐾)

. Then, the 

approximate coefficient for the Lth layer is 
 

𝜇𝐴
(𝐿) =

1

|𝐶𝐴
(𝐿)|

∑𝐶𝐴
(𝐿)[𝑛]

𝑛

 (1) 

 

For the Kth layer (K=1,2,…,L), the detail coefficient is 

 

𝜇𝐷
(𝐾) =

1

|𝐶𝐷
(𝐾)|

∑𝐶𝐷
(𝐾)[𝑛]

𝑛

 (2) 

 

Concatenate all these means into a feature vector: 
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𝑓 = [𝜇𝐴
(𝐿), 𝜇𝐷

(𝐿), 𝜇𝐷
(𝐿−1), … , 𝜇𝐷

(1)]𝑇 (3) 

 

Therefore, it can be concluded that if the input signal is a 

multidimensional time signal 

 

𝑓 = [𝜇𝐴
(𝐿,1)

, 𝜇𝐷
(𝐿,1)

, … , 𝜇𝐷
(1,1)

, 𝜇𝐴
(𝐿,2)

, … , 𝜇𝐷
(1,𝐶)

]𝑇 (4) 

 

3.2.2 Quantify potential damage indicators (QPDI) 

Statistical characterization of data is a method used to 

describe data distribution, providing information about the 

dataset, including the central location of the data, the 

dispersion of the data, and the skewness of the data. For the 

characteristics of measured data, this paper mainly selects the 

mean, standard deviation, root mean square, extreme value, 

and kurtosis as statistical characteristics. 

 

{
 
 
 
 

 
 
 
 𝛽1 =

1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖=1

𝛽2 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2
𝑁
𝑖=1

𝛽3 = √
1

𝑁
∑ 𝑥𝑖2
𝑁
𝑖=1

𝛽4 = 𝑚𝑎𝑥(|𝑥1|, |𝑥2|, … , |𝑥𝑁|)

𝛽5 =
1

𝑁
∑ (𝑥𝑖−𝜇)

4𝑁
𝑖=1

(
1

𝑁
∑ (𝑥𝑖−𝜇)

2𝑁
𝑖=1 )

2

  (5) 

 

The statistical features obtained from the above five 

calculations are input into the neural network for quantifying 

latent damage indicators. 

 

3.2.3 Extraction of spatiotemporal features (ESF) 

In this section, the entire input time signal segment is 

divided into multiple frames, and a method is employed to 

focus on the inter-frame change characteristics within the time 

series. The objective is to examine the minute changes in the 

signal that occur within extremely short time intervals, such as 

the response changes caused by impact vibrations on a bridge. 

In this paper, each frame is set to 0.1 seconds. When 

processing each frame, we use an improved AlexNet network 

as the inter-frame feature extractor to extract features. The 

network mainly consists of five convolutional layers, each 

followed by a BN layer and a nonlinear activation function 

(ReLU). The first two layers are two-dimensional 

convolutions used to extract features between eight channels 

within each time frame, while the last three layers are one-

dimensional convolutions used to extract inter-frame features 

to analyze the dynamic evolution patterns between frames. 

Figure 1 shows the architecture of the improved AlexNet. 

 

3.2.4 Deep contextual and dynamic analysis module 

This module deeply integrates the core models of two 

different schools of thought: multi-head attention and LSTM. 

This is not a simple stacking but rather a complementary 

collaboration: Multi-head attention adaptively constructs a 

global feature relationship map for different features, 

capturing specific relationships between different channels; 

LSTM then deeply models frame-level sequence dependencies 

based on these relationships, capturing their dynamic patterns. 

Therefore, the LSTM block simultaneously possesses global 

temporal information for each variable. 

 

 

4. EXPERIMENTAL VALIDATION 

 

4.1 Data setup 

 

In this section, the performance of the proposed method was 

validated using a bridge dataset and two other types of time 

series datasets. The bridge dataset is a steel truss bridge located 

in Japan. The other two datasets are HandMovementDirection 

and PenDigits. 

 

4.1.1 Old ADA Bridge 

The Old ADA Bridge [33], constructed in Japan during 

1959 as a steel-truss configuration, features a single-span 

supported design measuring 59.2 meters in length and 3.6 

meters in deck width (Figure 2). Ambient vibration data were 

systematically recorded from this infrastructure under various 

operational conditions before its demolition. Dynamic 

responses were recorded using eight single-axis 

accelerometers, with sensor locations shown in Figure 3. 

Vertical acceleration was measured at a sampling rate of 200 

Hz, with each scenario lasting approximately 45 seconds. The 

vehicle traveled across the bridge at a constant speed of 40 

km/h, passing over it only once. Table 1 shows the specific test 

conditions. The vertical components of the steel truss bridge 

are divided into 14 units, named E1–E14. Acceleration sensors 

A1–A5 are placed on components E2–E6, while acceleration 

sensors A6–A8 are placed on components E10–E12. In 

addition to the aforementioned 8 accelerometers, an optical 

sensor is placed at each end of the bridge to monitor the exact 

time of vehicle entry and exit, and another optical sensor is 

installed at the bridge’s midpoint to verify the exact time of 

vehicle passage through the bridge’s center. 

 

 
 

Figure 2. Photo of Old ADA Bridge 
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Figure 3. The overall layout, monitoring scheme and damage case of the bridge: (a) Sketch and sensor information; (b) Sketch of 

damage scenarios; (c) Artificial damage applied to tension members 

 

Table 1. Vehicle-induced vibration test information 

 
Case (Scenario) Vehicle Speed (km/h) No. Test Repetitions The Number of Channels 

INT 40 10 12 

DMG1 40 12 12 

DMG2 40 10 12 

RCV 40 10 12 

DMG3 40 10 12 

 

Table 2. Details of time series datasets abbreviations: EEG—electroencephalogram and meg—magnetoencephalography 

 
Dataset Name Num Class Train Size Series Length Test Size Num Dimensions Type 

HandMovementDirection 4 160 400 74 10 EEG/MEG 

PenDigits 10 7494 8 3498 2 EEG/MEG 

 

To artificially simulate damage, in addition to the healthy 

condition, four other different damage scenarios were 

considered. Figure 3(b) illustrates the sketches of the damage 

scenarios and the on-site photos of the artificially induced 

damage. INT represents a healthy condition; DMG1 involves 

cutting the vertical truss member at the third sensor location to 

half its cross-sectional depth; DMG2 involves completely 

cutting the vertical truss member from DMG1; RCV involves 

repairing the truss that was cut in DMG2; DMG3 involves 

completely cutting the vertical truss member at the fourth 

sensor location. Note that before restoring the completely cut 

truss member, a jack was used to attempt to reduce the gap 

between the two halves; however, it cannot be guaranteed that 

the bridge can be restored to its original intact state. In this 

paper, since damage identification is based on sensor locations, 

each location's damage type can be categorized into four types: 

INT, DMG1, DMG2, and RCV. 

 

4.1.2 External validation datasets 

HandMovementDirection is the third dataset from the BCI 

IV competition. The study recorded two participants moving a 

joystick from the center position to one of four targets radially 

distributed at 90° intervals using only their right hand and 

wrist after hearing a cue. The task was to classify the direction 

of movement based on magnetoencephalography (MEG) data 

recorded during the activity. Each instance included data from 

10 MEG reading channels located above the motor area, 

spanning 0.4 seconds before movement to 0.6 seconds after 

movement. Table 2 presents the specific details of the dataset. 

For more information on the data collection process, please 

refer to [34]. 

PenDigits is a handwritten digit classification task taken 

from the UCI Archive, originally described in [35].44 writers 

were asked to draw the digits 0 to 9, where instances are made 

up of the x and y coordinates of the pen-tip traced across a 

digital screen. The coordinate data was originally recorded at 

a resolution of 500x500 pixels. It was then standardized and 

resampled to 100x100. Subsequently, based on the expertise 

of the original dataset creators, the data was spatially 

resampled to enable sampling with a constant spatial step size 

and variable temporal step size. The data is resampled into 8 

spatial points, resulting in each instance having 2 dimensions 

of 8 points, with a single class label (0. . . 9) representing the 

digit drawn. Table 2 presents the specific details of the dataset. 

 

4.2 Data preprocessing 

 

To improve the robustness and generalization ability of the 

model, this study systematically preprocessed the original 

sensor data before model training, including data 

augmentation and label encoding operations. 

 

4.2.1 Data augmentation 

Due to the relatively limited amount of data available in 

bridge structural health monitoring tasks, especially under 

multi-sensor deployment conditions where the actual number 

of vehicle passages and damage conditions are scarce, this 

study uses an additive Gaussian white noise (AGWN) method 

for data augmentation to construct a more diverse training 

sample set. Specifically, let the original sensor-collected 
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acceleration time series be 𝑥 ∈ ℝ𝐶×𝑇 , where C denotes the 

number of sensor channels (8 in this study) and T denotes the 

number of sampling points per signal segment. The process of 

introducing noise into the original signal 𝑥  to form the 

enhanced sample 𝑥̃ is as follows: 

 

𝑥̃ = 𝑥 + 𝜖, 𝜖~Ν(0, 𝜎2) (6) 

 

Among these, Ν(0, 𝜎2)  denotes a Gaussian white noise 

distribution with a mean of 0 and a standard deviation of σ. To 

avoid damaging the structural characteristics of the original 

signal, the noise standard deviation σ is set to 5%~10%, of the 

original signal's mean amplitude, with specific values 

randomly sampled. Furthermore, to further enhance the 

diversity of the augmented data, the noise addition operation 

is performed independently on each channel, ensuring the 

variability of perturbations across different sensor channels 

and simulating the heterogeneity of multi-source signals in 

real-world scenarios. The augmented signals exhibit moderate 

perturbation characteristics in both the frequency domain and 

time domain, preserving key structural information while 

introducing minor perturbations to enhance the model's 

adaptability to non-ideal inputs. 

 

4.2.2 Model input processing 

After enhancing and preprocessing the raw sensor signals, 

the label information must also be encoded to meet the input 

requirements of the deep learning model. This study employs 

one-hot encoding to convert the target labels in the 

classification task. The objective is to integrate the damage 

category and damage location of the bridge into a single label, 

enabling the model to directly provide damage classification 

and localization functionality. This task has a multi-location 

output characteristic, where each sample corresponds to 

multiple damage detection locations, and each location 

requires prediction of its corresponding damage category. 

Therefore, the overall task can be categorized as a multi-label, 

multi-class classification problem, where each label channel 

represents a specific spatial location, and the label value 

indicates the damage type at that location. 

This paper converts label vectors into one-hot encoding 

form, allowing the classification task for each damage location 

to be performed independently, thereby forming a multi-

location, multi-class label joint prediction output space. 

Specifically, let the original label space be 𝒴 =
{𝐿0, 𝐿1, … , 𝐿𝐾−1}, where K denotes the total number of damage 

detection locations on the bridge. ℒ =  {0,1, … ,0}, where the 

dimension of ℒ is the number of damage categories. The entire 

process of one-hot encoding converts each category label n 

into an N-dimensional vector, where only the nth position is 1, 

and the remaining positions are 0. For example, if the damage 

category number is 2 (in this paper, the undamaged condition 

is assigned index 0), and the total number of categories is 5, 

then its one-hot encoding is [0,0,1,0,0]. If there are 5 sensor 

locations and this damage occurs at the third damage location 

on the bridge, then the label space Y is represented as a K×N 

matrix, with each row indicating the damage category 

encoding for that location. For example, 

 

𝒴 =

[
 
 
 
 
1,0,0,0,0
1,0,0,0,0
0,0,1,0,0
1,0,0,0,0
1,0,0,0,0]

 
 
 
 

 (7) 

This design not only retains damage category information 

but also explicitly encodes its location, enabling the network 

to jointly model damage classification and localization tasks. 

It can also be directly used for modeling multi-class cross-

entropy loss functions, supporting joint optimization of 

damage classification and localization. This setup not only 

captures potential spatial correlations between different 

locations but also allows the model to maintain strong 

expressive power and classification robustness in complex 

scenarios where different damage types exist at multiple 

locations. It also provides a foundation for the construction of 

multi-task loss functions, enabling the model to 

simultaneously optimize classification accuracy and damage 

localization precision. 

 

4.3 Model evaluation metrics 

 

In order to comprehensively evaluate the performance of the 

proposed model in bridge damage identification tasks, this 

paper selects several commonly used and representative 

evaluation indicators from the perspectives of classification 

accuracy and localization ability, including accuracy, 

precision, recall, and F1-score. 

On this basis, this paper also uses ROC curves to visually 

analyze the model's prediction results, allowing us to 

intuitively observe the model's ability to identify different 

damage samples, thereby revealing the model's strengths and 

weaknesses in specific categories. 

 

 

5. MODEL VALIDATION RESULTS AND ANALYSIS 

 

5.1 Experimental results 

 

To comprehensively evaluate the performance of the 

proposed method in bridge damage identification and 

localization tasks, this paper conducted multiple experiments 

on publicly available datasets. The model outputs are damage 

label matrix form, corresponding to damage categories at 

multiple locations in the bridge structure. In the experiments, 

all data collected from all sensors were used to train and test 

the algorithm. 80% and 20% of the images were used for 

training and testing, respectively. 

 

5.1.1 Damage identification performance 

In this study, to validate the effectiveness and feasibility of 

the proposed method, the damage detection method based on 

multi-modal feature extraction and classification described in 

Section 3.2 was applied to the bridge from Japan. Each multi-

label vector from each experiment can be regarded as a single 

label, and each combination can be viewed as a single category. 

Therefore, when evaluating model performance, the task can 

be flexibly treated as a standard multi-classification task for 

comparison with other models. The training process is shown 

in Figure 4(a). The results show that WSF-LANet can quickly 

reach convergence and maintain high and stable accuracy and 

low training loss values during the later training period. Figure 

4(b) shows the ROC curve during the testing process. This 

figure displays the ROC curves for the four categories of the 

multi-classification model and their corresponding AUC 

values, used to evaluate classification performance. The AUC 

values for all categories exceed 0.8, indicating that the model 

achieves overall good classification performance. Among 

them, DMG2 has the highest AUC (0.98) and the best 
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recognition performance, while DMG3 has the lowest (0.92). 

The gray dashed line represents the baseline for random 

predictions. 

Table 3 shows the overall accuracy, F1, recall, and precision 

of WSF-LANet in the test set. According to Table 3, the 

average accuracy of the predicted test dataset is as high as 

97.5%. In addition, to study the performance of WSF-LANet 

damage type discrimination, we compared it with four existing 

bridge damage detection algorithms. Overall, the experimental 

results of WSF-LANet on the Old ADA Bridge dataset 

outperform the other four methods. Specifically, compared 

with the semi-supervised learning method of MS-GAN [36], 

the ACC is improved by 11.08%; compared with the methods 

utilizing the physical domain or finite element analysis of 

PGDNN [37] and DT+TL [38], the ACC is improved by 11.01% 

and 0.2%, respectively. Compared to methods using CWT and 

AlexNet [39], the ACC improved by 2.89%. The excellent 

performance of WSF-LANet can be attributed to its three 

parallel feature extraction paths, which effectively capture the 

dynamic characteristics of bridge time-series signals, 

combined with the deep contextual and dynamic analysis 

module, enabling more efficient multi-scale feature extraction 

and dynamic analysis. 

 

 

 
 

Figure 4. (a) ACC change curve during training; (b) ROC curve of the testing process 

 

Table 3. The overall accuracy, F1, recall and precision of WSF-LANet in the test set 

 
Model ACC F1-score Recall Precision 

WSF-LANet 0.9750 0.9620 0.9700 0.9680 

MS-GAN 0.8642 — — — 

PGDNN 0.8649 — — — 

DT+TL 0.9730 — — — 

CWT+AlexNet 0 .9461 — — — 

 

 
 

Figure 5. The ACC prediction results for each sensor 
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Figure 6. Visualization of partial injury localization results (a) indicates the visualization status of DMG3; (b) indicates the 

visualization status of DMG2 

 

5.1.2 Damage localization performance 

In this study, to further validate the effectiveness of the 

proposed method in bridge damage localization tasks, an 

evaluation index system was designed to assess the 

localization capabilities for various damage locations. 

Accurate localization of damage locations can be expressed as 

the accuracy of damage prediction at each sensor location. The 

higher the average damage prediction accuracy at sensor 

locations, the higher the localization accuracy of the system. 

Figure 5 shows the ACC prediction results for each sensor, 

yielding an average prediction positioning accuracy of 96.82%. 

This demonstrates that WSF-LANet has a high positioning 

accuracy. Figure 6 shows some visualizations of damage 

localization results, where the damage location corresponds to 

the sensor location, and the damage category varies with color, 

clearly displaying the damage type at each damage location, 

thereby allowing for an intuitive observation of the location 

where the damage occurred. 

 

5.2 Ablation study 

 

To further validate the contribution of each component 

module in the proposed model to the overall performance, a 

series of ablation experiments were designed and conducted. 

The original model only had deep contextual and dynamic 

analysis modul; by gradually adding key modules, we 

observed changes in the model's performance in damage 

identification and localization tasks, thereby systematically 

analyzing the actual role of each module. 

As shown in Table 4, under the condition that the remaining 

training settings remain unchanged, the key indicators such as 

damage classification accuracy, macro F1-score, recall, and 

precision of each model on the main dataset are compared. 

 

Table 4. The accuracy of damage classification, macro F1 

score, recall and precision of each model on the main dataset 
 

Model ACC F1-score Recall Precision 

Baseline 0.8263 0.7520 0.8125 0.8440 

+QPDI 0.8960 0.9080 0.8750 0.8680 

+ESF 0.9250 0.9110 0.9255 0.9215 

+DWTA 0.9750 0.9620 0.9700 0.9680 
 

5.3 Generalizability of WSF-LANet 
 

To verify the generality and generalization ability of the 

proposed method, this paper further conducted transfer 

experiments on two other time series datasets. During the 

dataset experiment, the model structure remained unchanged, 

and only the input data was standardized and encoded 

according to the same preprocessing process. 

The results are shown in Table 5, where the proposed 

method still achieves excellent classification and localization 

performance on other datasets. In the 

HandMovementDirection dataset, our model achieved the 

highest ACC score. However, in the PenDigits dataset, TapNet 

achieved the highest score, but our dataset score still ranked 

second. In the classification task, the model achieved a high 

accuracy score, indicating that it still has strong discriminative 

ability in complex scenarios. This further verifies the stability 

and robustness of the model under different data distribution 

conditions. 

The results clearly demonstrate that the multi-source feature 

fusion and time series modeling strategy constructed in this 

paper is not only applicable to specific structural scenarios, but 

also has good transferability and can be extended to more 

practical bridge structural health monitoring tasks or other 

time series classification problems. 

Table 5. Accurate results achieved on other datasets 

 
Dataset 1NN-ED 1NN-DTW TapNet MF-Net Ours 

HandMovementDirection 0.279 0.306 0.378 0.500 0.586 

PenDigits 0.973 0.939 0.980 0.956 0.977 

 

 

5. CONCLUSION 

 

The three-path parallel feature extraction structure proposed 

in this study integrates time-frequency analysis, statistical 

descriptors for quantifying latent damage indicators, and 

frame-wise segmentation and extraction of spatiotemporal 

features. This multi-source, multi-scale information fusion 

strategy significantly enhances the model's ability to 

characterize different damage patterns. On the one hand, the 

DWTA path captures non-stationary changes in structural 

vibration signals, effectively addressing issues such as 

complex damage types and significant changes in frequency 
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characteristics. On the other hand, the QPDI path introduces 

the potential morphological information of the global signal, 

which helps enhance the model's understanding of the overall 

trend of the data. The ESF path strengthens the model's ability 

to model spatiotemporal dependencies and transient changes. 

These three features are efficiently fused in the “feature 

combination” module, significantly improving the 

discriminative ability of the final feature vector and laying a 

solid foundation for subsequent localization and classification 

tasks. After feature fusion, the model introduces a multi-head 

attention mechanism to construct a global feature relationship 

map for different features, capturing specific relationships 

between different channels. The LSTM network effectively 

models the dynamic dependencies between different time 

frames, further enhancing the temporal structure modeling of 

bridge vibration signals. The memory gating mechanism of 

LSTM helps the model capture signal trend changes within a 

long time window, improving sensitivity to damage 

occurrence time features, thereby enhancing the robustness 

and accuracy of bridge condition recognition. Additionally, 

this study innovatively adopts a one-hot encoding scheme to 

integrate multi-location, multi-category damage labels into a 

unified output matrix, enabling the model to simultaneously 

perform damage identification and localization in a single task. 

The performance and feasibility of the proposed method 

were validated using public datasets. The results show that the 

accuracy rate for bridge damage classification can reach 

97.5%, while the macro accuracy rate for bridge damage 

localization can reach 96.82%. Compared with various 

existing methods, this model demonstrates a significant 

advantage in terms of accuracy. Ablation experiments further 

confirm the positive contribution of each feature extraction 

pathway and key module to the overall performance of the 

model. Additionally, successful application on two additional 

publicly available time-series datasets validates the model's 

strong generalization capability and robustness. 

In summary, the model proposed in this paper fully 

integrates multi-source information and temporal 

characteristics of structural response signals, providing an 

efficient, accurate, and promising solution for intelligent 

damage identification and localization in bridge structural 

health monitoring. Future research can further explore the 

model's lightweight deployment, cross-structure 

transferability, and integration with actual online monitoring 

systems. 
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