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Human Activity Recognition (HAR) is crucial to intelligent smart home systems. In this 

research, we propose a novel skeleton-based method for recognizing human activities 

accurately. Gamma correction is applied as a preprocessing step to improve image quality. 

Then, we use a robust combination of Multiple Object Tracking (MOT) and graph-based 

segmentation techniques to extract precise human silhouettes from video sequences. This 

research also introduces a novel innovation in developing a 23-joint skeleton model that 

accurately identifies and tracks key body joints. A comprehensive set of features extracted 

from this skeleton data is derived, including relative joint angles, joint proximity measures, 

joint stability, and full body features, which are extracted using BRIEF, LATCH, and 

MSER. A fuzzy optimization technique is employed to find the most discriminative features 

to optimize feature selection. Finally, a Convolutional Neural Networks (CNN) classifier is 

trained on the optimized features to classify human activities accurately. Experimental 

results demonstrate the effectiveness of our approach, with ShakeFive2 achieving an 88% 

accuracy rate and BIT-Interaction achieving 94% on a benchmark dataset. This work 

contributes to advancing human activity understanding in various domains, such as 

surveillance, human-behavior interaction, healthcare, sports, and social robotics. 
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1. INTRODUCTION

HAR is a central problem in computer vision that has wide 

interests in health care, human-computer interaction [1], 

surveillance, and social robotics. Correct perception of human 

activities would allow systems to read social gestures, 

anticipate behavior, and achieve intuitive human-machine 

interaction. Nevertheless, HAR is a very difficult task because 

of the complexities in human behaviour, variation in pose, 

lighting conditions, and occlusion [2]. Current HAR 

approaches usually use handcrafted features or deep learning-

based methods. Moreover, handcrafted features may be 

sensitive to the pose and lighting variations. 

Information, particularly RGB images that the cameras [3] 

capture, multifaceted and varied [4], offers a chance to expose 

numerous hidden patterns of how people act in the setting of 

smart homes. Thus, based on this information and developing 

a specialized Skeleton model, the proposed study aims to 

increase the state of art in HAR and offer a more detailed and 

accurate way of understanding and engaging with human 

activities that are applicable in the context of smart homes. In 

turn, the main contribution of the proposed research is the 

enhancement of the creation of smart environment 

technologies through the enhancement of the capacity of HAR 

through a sophisticated and dedicated data analysis model. 

This paper aims not only to inspire the database of current 

HAR studies but also to create a foundation for developing 

more adaptive systems of smart home environments that 

would take into account the inhabitants' preferences in their 

occupancy patterns most efficiently. 

In order to overcome these issues, this paper suggests a new 

HAR framework that integrates pre-processing, silhouette 

extraction, feature extraction, and fuzzy optimization-based 

machine learning classification. Our method seeks to learn 

discriminative features, but with computational efficiency and 

invariance to changes in the image data. This research 

addresses some of these challenges by developing a novel 

approach combining advanced image processing techniques, 

innovative feature extraction methods, and powerful machine 

learning algorithms. Our proposed system consists of five key 

stages: 

(1) Pre-processing using gamma correction to enhance

video quality and handle varying illumination conditions. 

(2) Silhouette extraction employing both motion-oriented

tracking (MOT) and graph-based segmentation techniques. 

(3) Novel skeleton model and feature extraction include
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relative joint angles, joint proximity measures, and joint 

stability. 

(4) Full body Feature extraction combining BRIEF 

descriptors with a novel set of 23 key joint points. 

(5) Fuzzy optimization to refine extracted features. 

The paper is structured as follows: a review of the literature 

on the studies related to HIR is provided in Section II. Section 

III gives the HAR proposal scheme that is made up of pre-

processing phase, silhouette extraction, feature extraction 

phase, fuzzy optimization phase, and the classification phase. 

Section IV is devoted to experimental findings and 

assessments. Finally, section V presents the conclusion and 

recommends further studies. 

 

 

2. RELATED WORK 

 

This section provides an extensive literature review on both 

conventional and modern ML-based techniques for HIR 

recognition in smart environments. To make it easier for the 

reader to follow, we have broken down the literature review 

into two categories: Traditional machine learning approaches 

and Deep machine-learning methods. 

 

2.1 Traditional machine learning methods for HAR 

 

Traditional ML techniques have been extensively employed 

in human activity recognition, offering a foundation for 

understanding and addressing the complexities of social 

behavior analysis. One of the earliest and most influential 

methods was the Hidden Markov Model (HMM). HMMs were 

widely used for action recognition and gesture analysis, 

demonstrating the power of probabilistic models in capturing 

sequential dependencies in human motion. However, there 

were restrictions on using HMMs, such as the problems that 

occurred when modelling human interactions as they have 

variable patterns, while the HMM approaches depended on 

state-transition models. 

Support Vector Machines (SVMs) were another major 

contribution towards the field made by them. In generalization 

capabilities and handling high-dimensional feature space, 

SVM benefits have been identified when focusing on 

differentiating between various forms of human activity based 

on extracted features [5]. Despite that, SVMs were efficient, 

needed substantial preprocessing of input features, and could 

sometimes fail on real-world differences such as occlusions or 

variable lighting conditions [6]. Other emphasized machine 

learning techniques included Decision Trees and Random 

Forests that formed part of earlier strategies in human activity 

recognition. These ensemble methods provided better 

resistance to noise and outliers than individual decision trees, 

though they were most suitable for capturing human activity 

hierarchies. While Decision Trees were relatively easy to 

interpret the decision-making process, Random Forests gave 

better generality. However, both methods mainly suffered 

from poor generalization performance on new, unseen 

behaviors and were unsuitable for social scenarios. 

Naive Bayes classifiers were also included in the traditional 

machine-learning methods for human activity recognition. 

They were able to give accurate results that are easy to 

understand and apply in real-time situations. The Naive Bayes 

models assumed that each feature was independent, so it 

sometimes overfitted some problems, but it was still a good 

model for its simplicity. Working with large amounts of data 

was easy for them, but their approach was not as effective 

when the data was more detailed and could not be separated 

linearly [7]. 

SVM and KNN were also two mainstream approaches used 

in human activity recognition. As it was highlighted, KNN 

provides a greater liberty in choosing the number of 

neighbours k and the distance measures so that it could be 

adapted to operation on diverse data and contexts. It was 

favored by researchers and practitioners since it is easy to 

apply and implement. But the performance of KNN may 

strongly rely on the quality of data we use as samples, and it 

may lead to the discrepancy of the results when the same 

algorithm is executed repeatedly [8]. 

 

2.2 Advance machine learning methods for HAR  

 

Spatial Temporal Graph Convolutional Networks (ST-

GCN) introduced by Zahoor and Jalal [9], model the human 

skeleton as a graph, capturing both spatial and temporal 

dynamics for improved accuracy. Rahevar et al. [10] enhanced 

graph convolutions with attention mechanisms to dynamically 

weigh joints and frames based on their importance. 

Transformer-based models have recently gained traction [11], 

effectively modeling long-range temporal dependencies in 

skeleton sequences with self-attention mechanisms. Tayyab 

and Jalal [12] also demonstrated that fusing skeleton and RGB 

data modalities enhances recognition robustness, particularly 

in challenging environments such as occlusions or variable 

lighting. 

Challenges associated with the subject of human activity 

recognition have led to the emergence of new forms of 

machine learning. One such improvement is the use of the 

well-developed Gaussian Mixture Models (GMMs), which 

give a reasonable chance of separating these motion patterns 

based on the complexity of their distributions. It seems that 

GMMs were especially useful in tracking one more or less 

simultaneous movement and capturing the true character of 

human motion, making highlighting slight changes in 

behaviour possible [13]. However, GMMs were sensitive to 

initializations and often had issues with ‘mode-seeking’, 

especially in high-dimensional feature space. 

Kernel Fisher Discriminant Analysis (KFDA) and other 

Kernel-based methods have been used for human activity 

classification. It demonstrated that KFDA could distinguish 

between similar and different actions and build useful features 

from raw motion data for recognizing real PAM [14]. Since it 

wasn’t designed to process only linearly separable data, which 

was a perfect fit for capturing the complexity of human 

behavior. However, KFDA incorporated strict prior choices 

for the kernel functions and hyperparameters, which could be 

cumbersome. 

XGBoost, which has recently attracted much attention as a 

gradient-boosting technique, is acknowledged for its superior 

performance and understanding. Different machine learning 

activities, such as human activity recognition, have recorded 

high proficiency and sustainability by applying XGBoost [15]. 

This is particularly advantageous in dealing with big data and 

modelling higher-order interactions of variables as actions. 

Evaluation of XGBoost in HAD and its Applications: 

XGBoost has been used to demonstrate success in extracting 

the discriminant features of motion data and classifying 

complicated social actions [16]. Another great strength of 

using XGBoost is identifying feature importance scores that 

allow for interpretation. These scores give the idea as to which 
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of the features make the most crucial impact on the model, 

which would help the researcher explain the mechanisms 

behind human activity recognition. Such interpretability is 

particularly important in areas such as human-computer 

interaction since knowledge of how an AI system came to its 

particular decision might help to optimize the latter’s 

functioning. 

 

 

3. PROPOSED MODEL 

 

Our approach to human activity recognition includes five 

stages that help overcome crucial difficulties in the domain of 

social behavior analysis. Hence, we propose a novel system 

that performs several steps in recognising different human 

activities, including applying enhanced image processing 

algorithms, using sophisticated features extraction techniques, 

and employing state-of-the-art machine learning algorithms. A 

brief overview of the architecture of HAR has been provided 

in Figure 1. Subsections below elaborate on each of these 

layers in this HA recognition architecture. 

 

 
 

Figure 1. The architecture diagram of purposed system for 

HAR 

 

3.1 Data preprocessing 

 

To implement all the analytical and computational 

algorithms in the present work, all the video frames should be 

divided into different images. Gamma correction is then 

performed on these frames to minimize noise. This process 

blurs the background, smooths the image, and makes the 

human subject stand out more visibly. This step is significant 

for the accuracy and efficiency of the proposed system. 

Gamma correction is typically applied to images to begin to 

make the images appear more uniformly natural to the human 

eye [17]. Contrast sensitivity is nonlinear, which means that 

our ability to see changes in brightness is different in light and 

dark surfaces. Gamma correction helps correct the nonlinear 

contrast and gamma curves, making the image seem more 

natural. To do this, gamma correction applies a mathematical 

computation to alter each pixel’s brightness level. The 

adjustment quantity is regulated by a number referred to as the 

gamma value. Gamma’s value of greater than 1 makes the 

image darker, and where the value is less than 1 the image 

becomes brighter. With the help of gamma correction, the 

quality of the images can be enhanced, and the primary 

parameter determining the final image is easier to understand. 

The equation for gamma correction is given below, and the 

result is shown in Figure 2 and Eq. (1): 

 

𝑋out = 𝑋in
𝛾

 (1) 

 

A separate Gamma correction is applied to every video 

frame so the image appears natural. The extent of correction 

applied depends on the general brightness of scenes 

encountered in a video. This is because the adaptive approach 

ensures that bright and black portions of the image receive the 

right measure signal to get a better image that can be processed 

further. 

 

   
(a)                        (b)                         (c) 

 

Figure 2. Gamma correction is applied for reduce noise (a) 

fist-bump (b) explain (c) high five 

 

3.1.1 Silhouette extraction 

Silhouette extraction also plays an essential role in other 

computer vision problems such as object recognition, tracking, 

and segmentation. For instance, accurately extracting 

sufficient human silhouettes is considered a challenging task 

in feature extraction. Here, we are postulating how to pinpoint 

the shapes of people. Putting the silhouette in place is critically 

important to extracting and detecting the right features. 

 

3.1.2 Multiple Object Tracking (MOT) 

MOT is intended to track a set of objects in an image 

sequence. MOT is applied in various systems, including 

security, automated driving, and video analysis [18]. The main 

goal of MOT is to identify objects with high accuracy and 

maintain their identity while predicting their future position 

[19]. 
 

   
(a)                        (b)                         (c) 

 

Figure 3. Silhouette extraction results of MOT (a) fist-bump 

(b) explain (c) high five 

 

This process has some challenges, such as occlusions, 
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image variation, and frequently interacting objects. In order to 

handle these difficulties, MOT algorithms use different 

methods, e.g., data association, motion prediction, and object 

representation. The first is using the object tracking methods, 

which involve using an object detector to detect objects in each 

frame and then link these detections across frames to get 

tracks. The MOT results are depicted in Figure 3. 
 

3.2 Graph-based segmentation (GBS) 

 

GBS is a powerful image-processing technique that uses 

graph theory to divide image into meaningful regions [20]. 

The idea here is to represent each of the pixels in the image as 

a node in a graph, and the edges between nodes indicate pixel 

similarity. We seek to segment the image into distinct regions 

via the minimal total weight of edges that must be cut. This is 

especially useful for silhouette segmentation, where the goal 

is distinguishing the foreground object from the background. 

Graph partitioning can be applied to such a graph where the 

nodes are pixels and edges represent pixel similarities to 

segment precisely. 

The main advantage of graph-based segmentation lies in its 

flexibility in coping with complex image structures and 

varying color textures. Second, the segmentation process 

defines the weights of the edges based on similarities between 

the pixels. An algorithm like normalized cuts or spectral 

clustering is used to partition the constructed graph into 

disjoint regions. These algorithms aim to minimize the weights 

of the edges between segments so that the intersected segments 

are both meaningful and precise. This approach improves the 

general accuracy and efficiency of the segmentation process 

while providing better clarity of the segmented silhouette. 

 

Cut(𝐺, 𝐻) = ∑ 𝑤𝑒(𝑢, 𝑣)
𝑢∈𝐺,𝑣∈𝐻

 (2) 

 

Eq. (2) calculates the total weight of the edges that must be 

cut to separate the graph into two disjoint sets (G) and (H). (G) 

and (H) are two sets of nodes (pixels) in the graph. This 

notation means that (u) is a node in set (G) and (v) is a node in 

set (G). we(u, v) represents the weight of the edge between 

nodes (u) and (v). Figure 4 shows the result of graph-based 

segmentation.   
 

 
(a)                        (b)                         (c) 

 

Figure 4. Graph-based segmentation (a) fist-bump (b) 

explain (c) high five 
 

3.3 Extraction of feature 

 

This is a critical step in our pipeline, where we combine the 

Binary Robust Invariant Features (BRIEF) descriptor with a 

novel set of 23 key joint points features. This hybrid approach 

aims to capture both local texture information and global 

structural properties of human movements.  

3.3.1 Binary robust invariant features (BRIEF) 

BRIEF is a feature descriptor used in a computer vision 

technique for image analysis. It is a fast algorithm suitable for 

real-time use and optimized for speed. Compared with other 

descriptors such as SIFT and SURF, which use float-point 

numbers and much computation, BRIEF utilizes binary string 

to express the features of the image. This binary representation 

makes a quick calculation and matching using the Hamming 

distance, which we know is faster to compute than the 

Euclidean distance in other methods. This is done by 

performing simple intensity difference tests between a pair of 

pixels within a smoothed image patch and an outcome in a 

highly discriminative and compact descriptor popularly 

known as the BRIEF descriptor [12]. Another advantage of the 

BRIEF descriptor is insensitivity to photometric and 

geometric distortions, such as changes of illumination and 

view angle. This is especially the case where the algorithms' 

performance and the rate of computation matter, most notably 

in mobile and embedded systems. 

 

 
(a)                        (b)                         (c) 

 

Figure 5. BRIEF results (a) fist-bump (b) explain (c) high 

five 

 

BRIEF(𝑝) = ∑ 2𝑖−1

𝑛

𝑖=1

⋅ (𝐼(𝑝 + Δ𝑥𝑖) < 𝐼(𝑝 + Δ𝑦𝑖)) (3) 

 

In Eq. (3), BRIEF(p), (I)=Intensity of image at a given point 

(p), Δxi=First pixel pair, and Δyi=Second pixel pair is 

predefined. The end product is a set of binary numbers that can 

be translated into the BRIEF descriptor, as seen in Figure 5. 

BRIEF is a fast feature detector, but is sensitive to scale 

variations, rotation, and viewpoint changes. This can cause the 

system to struggle when objects are hidden or when the 

viewpoint changes a lot, resulting in some features being 

blocked. 

 

3.3.2 Learned arrangements of three patch codes (LATCH) 

LATCH has thus surfaced as the central enabler for HAR 

and behaviour analysis. Using LATCH for feature extraction, 

a reliable approach is built to precisely recognise complex 

movements and gestures in smart contexts. In addition to 

enhancing the analysis of data it also makes a major 

contribution to the optimization and accuracy of the behavioral 

observation systems in different environments. Incorporating 

LATCH in the design of image-based systems provides an 

improved solution, especially for HAR in smart home settings. 

In addition to enhancing the performance of measures of 

accuracy, this feature extraction approach also opens greater 

avenues for the development of behavior recognition systems 

and for understanding the ways in which people interact within 

smart homes, thus improving the general acceptance of these 

technologies as part of people’s daily lives. 
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Further, merging the application of image technologies with 

the feature extraction form of LATCH, offer a revolutionized 

approach in smart home-related studies. This is because 

breaking down human activities and behaviors into their 

essentials provides great room for changing the face of image 

applications in various fields. Integrating data analysis and 

LATCH-based feature extraction accelerates trends in 

advancing behavior recognition systems’ accuracy and 

robustness and paves the way for developing intelligent 

sensing solutions for the new generation that reflect the 

dynamic living environment requirements in contemporary 

society. 

 

𝐿(𝑓) = ∑ ∑ √||𝑓(𝑖) −  𝑓(𝑗)||
2

2
𝑛

𝑗=1

𝑛

𝑖=1
 (4) 

 

In Eq. (4), L(f) is the LATCH descriptor calculation, and f(j) 

and f(i) are representations of feature vectors of the i th and j 

th patch in the image, respectively. The function L(f) considers 

the distances between all pixel feature vector pairs in the 

patch; such distances provide invaluable information about the 

spatial context that is fundamental for feature extraction. 

 

ℎ(𝑓) =
1

𝑛
∑ 𝑓(𝑖)

𝑛

𝑖=1

 (5) 

 

The computation of the mean feature vector h(f) of an image 

patch is given in Eq. (5) h(f), which for instance, to total 

number of feature vectors inside the patch, is denoted by n. 

This equation aids in extracting representative descriptor by 

averaging the individual feature vectors so that we end up with 

salient features that encapsulate the characteristics of a patch 

for robust feature representation for further analysis and 

Results shown in Figure 6. 

 

 

(a)                        (b)                         (c) 

 

Figure 6. LATCH results (a) fist-bump (b) explain (c) high 

five 

 

LATCH offers improved robustness by incorporating 

texture and color information. Yet, it may not work well when 

the background is messy, as it becomes unclear which patches 

belong together or when there is not enough light, making it 

hard to tell apart the local textures. 

 

3.3.3 Maximally stable extremal regions (MSER) 

The entity can be accurately recognised so that smart homes 

and image technologies work seamlessly in the realm of 

recognizing human activities. In this work, we leverage 

advanced computer vision techniques to extract features from 

data streams using MSER as a means to discern complex 

human activities in the smart home scenario. Our study 

exploits MSER regions’ stability and distinctiveness to 

improve HAR system performance, encouraging the 

development of smarter and more responsive smart home 

environments. 

Utilizing MSER to extract salient features from data, the 

proposed methodology allows the characterization of different 

human activities in smart home contexts. Our approach 

attempts to capture meaningful patterns and dynamics 

associated with different activities (performed by occupants) 

by identifying stable extremal regions over readings. 

Additionally, the incorporation of MSER feature extraction 

into existing networks provides a unique framework for real 

time action recognition and rapid, context-consistent action 

elicitation in smart homes from human hand gestures and 

behaviors. 

 

𝑅(𝑝) =
{𝐸(𝐼{𝑝})}

{𝐸(𝐼{𝑝−1})}
 (6) 

 

The stability measure of the extremal region at time p is 

denoted by R(p) and can be defined in Eq. (6) as, R(p) = 

Intensity of extremal region at time p/Intensity of extremal 

region at time (p-1). This measure helps quantify and define 

the stability and importance of MSER regions within 

subsequence data frames. 

These features encapsulate the distinctive characteristics of 

extremal regions in data, providing valuable cues for HAR in 

smart home applications and results shown in Figure 7. 

 

 
(a)                        (b)                         (c) 

 

Figure 7. MSER results (a) fist-bump (b) explain (c) high 

five 

 

MSER excels at detecting stable regions but is sensitive to 

noise and illumination variations. In low-light conditions, 

when the light is low, MSER may not find stable regions and 

in cases of occlusion, the regions of interest can become 

divided or disappear, leading to inconsistency in extracting 

features. 

 

3.4 Skeleton model 

 

The skeletal geometry features are very useful when the 

information is obtained from the structure of skeletal [21] to 

determine human behavior and motion [22]. Algorithm 1 

demonstrate that the output of our proposed skeleton mode 

needs to be tophead (TH), neck, right-shoulder (RS), right-

elbow (RE), right-wrist (Rw), right-hand (Rh), Left-Shoulder 

(LS), Left-Elbow (LE), Left-Wrist (LW), Left-hand (Lh), Pelvis, 

Right-Hip, Right-Knee, Right-Ankle, Right-foot, Right-heel, 

Left-Hip. The qualities are the spatial arrangements and to the 

geometry of the most important points of the human skeleton 

such as locating joint, length of bones, R is used for right and 

L is used for left. A widely used approach to extract skeleton 
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geometry features is by calculating the Euclidean distances 

between pairs of skeleton joints. The results provide clues for 

human poses and movements by distance calculations of the 

joints in some combinations. 

 

𝑑𝑙𝑚 = √(𝑎𝑙 − 𝑎𝑚)2 + (𝑠𝑙 − 𝑠𝑚)2 + (𝑑𝑙 − 𝑑𝑚)2  (7) 

 

In Eq. (7), 𝑑𝑙𝑚 is indeed the Euclidean distance between the 

𝑙{𝑡ℎ}  and 𝑚{𝑡ℎ}joints of the skeleton. The coordinates of the 

𝑙{𝑡ℎ} joint are correctly denoted as (al, sl, dl), and the 

coordinates of the 𝑚{𝑡ℎ}  joint as (am, sm, dm). The formula 

calculates the distance in three dimensions by calculating the 

square root of the sum of the squares of the differences of the 

a, s and d coordinates. The skeleton geometry features can be 

used to create motion capture systems which generate a great 

deal of information about structural and movement properties 

of humans. In Figure 8, the results are shown: 

 
Algorithm 1: Novel SkeleTrack23 Algorithm for human 

activity recognition. 

Input: Human Silhouettes Segmented (S) 

Output: 23 key points of body 

 

Step 1: Extract Boundaries of Both Silhouettes 

L1= silhouette left boundary 

R1 = silhouette right boundary 

H = silhouette-height 

W = width of S 

B = bina-rize (S); 

BW = bw-boundaries(B); 

Object = detect-object (B, Bounding-box, Area); 

Step 2: For Outermost Pixels Boundaries of Both S to be Search  

for x= 1 to L1 

    for y = 1 to R1 

        Find (L1; R1) 

        Pixel - Top = [max-y, x]; 

        Pixel - Left = [y, min-x]; 

        Right - pixel = [y, max-x]; 

        Pixel - Left Bottom = [min-x, min-y]; 

        Right - pixel Bottom = [max-x, min-y]; 

    end 

end 

Step 3: Bottom, Left, Top, and Right Regions of Both Silhouettes 

[cols, rows] = size(Object); 

H = rows; 

W = cols; 

Top_half = floor(H/2); 

Region of Head = floor(Top/ 3);   

Region of Torso = half of Top - Region of Head; 

Step 4: Identify Hd and Neck 

Y-t = (H / 2); 

X-t = (W / 2); 

T_H = [Xt, Top_Pixel(2)]; 

Neck = [Xt, Top_Pixel(2) + (Head_Region / 2)]; 

Step 5: Identify Shoulders, Spine, and Pelvis 

R_S = [Xt + (W / 8), Neck(2) + (Torso_Region / 4)]; 

L_S = [Xt - (W / 8), Neck(2) + (Torso_Region / 4)]; 

S_T = [Xt, Neck(2)]; 

S_C = [Xt, Yt]; 

Pelvis = [Xt, (3 * Yt) / 2];   

Step 6: Identify Arms and Wrists 

R_E = [Xt + (W / 8), Neck(2) + (Torso_Region / 2)]; 

R_w = [Xt + (W / 8), Neck(2) + (3 * Torso_Region / 4)]; 

R_h = [Xt + (W / 8), Neck(2) + Torso_Region]; 

L_E = [Xt - (W / 8), Neck(2) + (Torso_Region / 2)]; 

L_W = [Xt - (W / 8), Neck(2) + (3 * Torso_Region / 4)]; 

L_H = [Xt - (W / 8), Neck(2) + Torso_Region]; 

Step 7: Identify Legs and Feet 

R_Hip = [Xt + (W / 8), (3 * H) / 4]; 

R_Knee = [Xt + (W / 8), (7 * H) / 8]; 

R_Ankle = Bottom_Right_Pixel; 

R_Foot = Bottom_Right_Pixel; 

R_Heel = [Bottom_Right_Pixel(1), Bottom_Right_Pixel(2) - (H / 

20)]; 

L_Hip = [Xt - (W / 8), (3 * H) / 4]; 

L _Knee = [Xt - (W / 8), (7 * H) / 8]; 

L _Ankle = Bottom_Left_Pixel; 

L _Foot = Bottom_Left_Pixel; 

L _Heel = [Bottom_Left_Pixel(1), Bottom_Left_Pixel(2) - (H / 

20)]; 

return 

 

 
(a)                        (b)                         (c) 

 

Figure 8. SkeleTrack23 results (a) fist-bump (b) explain (c) 

high five 

 

When analyzing human interaction recognition using a 

skeleton model of 23 joint points, three key feature extraction 

techniques stand out: Relative Joint Angles, Joints Proximity 

Measures, and Joints Stability. Each of these techniques offers 

unique insights into human movement and interaction, 

particularly in the context of computer vision. 

 

3.5 Relative joint angles 

 

Relative joint angles are obtained by finding the angles 

between adjoining joints of the skeleton model. For instance, 

the angle between the limb shoulder and limb elbow can 

establish a relation with arm movements during interaction. 

This feature is very important in modeling human motion 

because it reveals the motion of body parts in reference to 

other parts. Under computer vision, these angles can therefore 

be mined from video data by employing algorithms that tend 

to track joint position over time. Since these angles can be 

measured, a precise assessment of motion can be conducted, 

starting from reaching or throwing, which may help solve a 

problem of identifying interactions between people. 

In human pose estimation and modeling a human skeleton, 

describing the major joint points, for example, relative joint 

angles, is crucial to learning human movement patterns and 

recognizing actions. These relative joint angles are essential in 

understanding the spatial positioning of the various body 

segments with regards to other body segments to produce the 

movements under analysis. When using the 23 key joint points 

in the skeleton model, we can calculate these relative joint 

angles for the dynamic aspects of human movement and 

postures. In computing the relative joint angles, the analyst 

needs to think of two linked, succeeding joints joined by a 

bone piece on the skeletal Figure 9. One possible definition of 

the relative joint angle of two successive bones is to state it as 

the angle formed by the afroed escribed segments of the 

particular bones located at the particular joint. This angle gives 

the status of the positioning of body parts in relation to other 

parts thus assisting in the analysis of human gesticulation. 
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When these relative joint angles are systematically computed 

for all joint pairs in the described skeleton model you obtain a 

complete set of features that encodes the complex spatial 

interactions of the human body. 

 

 
 

Figure 9. SkeleTrack23 use for relative joint angle feature 

extraction 

 

Relative joint angles are determined using mathematical 

algorithms that are applied on trigonometric principles and 

measured geometrical angles. One of these approaches is to 

appear the dot product of the vectors – the representations of 

the bone segments associated with a given joint. By applying 

the dot products formula, one can calculate the cosine of the 

relative joint angle, making it easy to measure the angular 

displacement of adjacent body parts. Further, there are some 

computational methods like inverse trigonometry where 

coefficients are transformed into required angle measurements 

in terms of degrees and radians in order analyze the quantities 

of joint angles and movements of the skeletal model. 

In the following way where (θAB) is the angle between two 

joints A and B, the angle between them can be calculated by 

dot product of vectors constructed by two joints A and B dot 

product of vectors formed by these joints is as shown in Eq. 

(8): 

 

Angle cos(𝜃𝐴𝐵) =  
𝑣⃗𝐴. 𝑣⃗𝐵

|𝑣⃗𝐴||𝑣⃗𝐵|
 (8) 

 

where, 𝑣⃗𝐴 = 𝑥𝐴 − 𝑥𝑟𝑒𝑓 , 𝑦𝐴 − 𝑦𝑟𝑒𝑓 , 𝑧𝐴 − 𝑧𝑟𝑒𝑓 , 𝑣⃗𝐵 = 𝑥𝐵 −

𝑥𝑟𝑒𝑓 , 𝑦𝐵 − 𝑦𝑟𝑒𝑓, 𝑧𝐵 − 𝑧𝑟𝑒𝑓 . 

Relative joint angles technique is particularly useful in 

gesture recognition, allowing systems to identify actions like 

waving, pointing. For instance, during a high-five gesture, the 

relative angles between the shoulder, elbow, and wrist joints 

change significantly as they come together. 

Relative joint angles technique is particularly useful in 

gesture recognition, allowing systems to identify actions like 

waving, pointing. For instance, during a high-five gesture, the 

relative angles between the shoulder, elbow, and wrist joints 

change significantly as they come together. 

 

3.6 Joints proximity measures 

 

Spatial relationships between different joints in the skeleton 

model are characterized by joints proximity measures. It could 

include calculating distances between joints, or checking how 

close to each other joints are during a movement. For example, 

the recognition of such an interaction is highly reliant on the 

proximity of contacting hands towards each other in case of a 

handshake. Proximity measures can help improve gesture 

recognition through context as to joint configurations in 

computer vision systems. By studying joint distance changes 

during interactions, algorithms will have a better view of and 

be able to classify such actions as hugging or pushing. 

Spatial relationships between different joints in the skeleton 

are measured by joints proximity measures shown in Figure 

10. For example, you figure out how close joints are to each 

other when they’re moving. The Euclidean distance dij in Eq. 

(9) between joints i and j is defined as: 

 

𝑑𝑖𝑗 = √{(𝑤𝑖 − 𝑤𝑗)
2

+ (𝑒𝑖 − 𝑒𝑗)
2

+ (𝑟𝑖 − 𝑟𝑗)
2

} (9) 

 

where, (wi, ei, ri) and (wj, ej, rj) are the coordinates of joints i 

and j, respectively. 

Behavior recognizes like handshakes or hugs, proximity 

measures are needed. This measurement, for example, can 

detect the decrease in distance between the hands during a 

handshake, for instance. It’s important information because it 

helps you to interpret social cues like body language. 

 

 
 

Figure 10. SkeleTrack 23 use for joint proximity measure 

feature extraction 

 

3.7 Joints stability 

 

Joint stability is the ability of joints to keep their position 

and function during movement. Many factors affect stability, 

including muscle strength and joint integrity. In terms of 

human interaction recognition, joint stability analysis allows 

quantifying how one can regulate coordinated movement 

without compromising stability and control. We find that in 

dynamic interactions where many multiple joints are engaged 

simultaneously, this feature is critical to the solution speed. 

We show that via tracking joint movements over time, stability 

metrics can be derived from tracking joint movements over 

time in computer vision applications. Systems can use these 
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metrics to discover when two moving objects are stable, like 

walking together, or unstable, like stumbling or falling. 

The stability of a joint refers to the ability of a joint to 

remain in position effectively in motion. Factors influencing 

those include muscle strength and joint integrity. A way to 

quantify joint stability is through the stability index SI, defined 

in Eq. (10): 

 

𝑆𝐼 =
𝐹𝑚

𝐹𝑙

 (10) 

 

where, Fm is the force exerted by the muscles surrounding the 

joint, and Fl is the force applied by the ligaments at the joint. 

We assess how well people can move together without 

losing balance, that is, how stable they are, with stability 

analysis. For example, in dynamic interactions such as dancing 

and sports, high stability does imply almost perfect 

performance and low risk of injury. Stability metrics can be 

monitored to allow systems to provide feedback on movement 

efficiency in interactions. 

Another unique aspect is that, in combination with feature 

extraction techniques using skeleton model, relative joint 

angles can indicate angular relations among joints, proximity 

measures can express spatial compositions of joints, and 

stability measures can examine how well the joints stay in 

place under stresses. When combined, these features add to the 

capability of human interaction recognition systems without 

focusing on understanding body mechanics in various 

contexts. By integrating these techniques into computer vision 

applications, we achieve more accurate real-time gesture and 

social interaction interpretation. 

Our 23-joint skeleton model extends conventional skeleton 

models such as OpenPose (18 joints) and Kinect (25 joints) by 

introducing novel joint definitions focused on fine-grained 

hand and torso articulation. Table 1 below compares key 

features: 

 

Table 1. Compares key joint features for the skeleton model 

 

Model 
# 

Joints 

Focus 

Areas 
Advantages Limitations 

OpenPose 18 

Standard 

body 

joints 

Widely used, 

open source 

Limited hand 

detail 

Kinect v2 25 

Body, 

hands, 

feet 

joints 

Detailed 

tracking, 

real-time 

Requires 

special 

hardware 

Proposed 23 

Added 

hand 

wrist and 

heel 

Balances 

detail and 

efficiency 

Needs 

validation in 

dynamic 

backgrounds 

 

The proposed model targets robust HAR in smart home 

environments, balancing joint detail and computational 

feasibility, providing improved accuracy for interaction 

gestures such as handshakes and high-fives. 

 

3.8 Features optimization 

 

Efficient feature selection based on fuzzy optimization 

attracts attention towards various complex types of datasets. It 

uses fuzzy logic to quantify the evolution and overlap of 

feature importance, bringing more complexity to the 

evaluation than binary methods in traditional approaches. 

Selection by fuzzy optimization considers multitenancy, 

notably the importance of features, their potential redundancy 

with other features between which significant correlation 

persists, and frequency, to holistically identify the ideal set of 

features that yields enhanced class separation and elevated 

predictability. Consequently, it is highly advantageous in tasks 

that call for machine learning and pattern recognition, as it is 

pivotal to distinguish the relevant qualities from those that are 

redundant to construct successful models and make rational 

decisions. Fuzzy optimization enables the capture of valuable 

insights from datasets that are characterized by a high number 

of dimensions. Furthermore, its application improves the 

performance and interpretability of models, as demonstrated 

in Figure 11. 

 

 
 

Figure 11. Discrimination of features over the ShakeFive2 

dataset 

 

Fuzzy logic differs from traditional binary logic by allowing 

features partial membership in the set of relevant features. 

Each feature is assigned a membership grade 𝜇(𝑥𝑖) ∈ [0,1] 
reflecting the degree to which it is relevant for the task. 

Because of this flexibility, features can be chosen with 

different levels of importance, unlike the usual approach that 

only allows features to be either included or excluded. 

Fuzzy logic helps to select the best features by considering 

the following: 

 

3.8.1 Handling of uncertainty and redundancy 

Traditional feature selection methods may overlook the 

subtle interactions between features, especially when features 

are correlated or partially redundant. Fuzzy logic handles the 

uncertainty and redundancy by allowing for partial 

membership. 

 

3.8.2 Feature-class of separability: 

The membership grades μ(xi) are computed based on the 

separability of features with respect to the target activity 

classes. This ensures that features contributing to 

distinguishing between classes are given higher importance. 

 

3.8.3 Function of objective 

The fuzzy optimization technique optimizes an objective 

function in which membership degree indicating the relevance 

of the feature. This optimization process selects a subset of 

features that balances discriminative power while reducing 
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redundancy. 

This fuzzy optimization approach improves the robustness 

of feature selection by accounting for partially relevant 

features and reducing the risk of discarding useful features. As 

a consequence, it improves the accuracy of classification, 

mainly for complex and large datasets. 

 

𝐹(𝑋) = ∑  

𝑛

𝑖=1

𝑤𝑖 ⋅ 𝜇(𝑥𝑖) (11) 

 

In Eq. (11), F(X) is the fuzzy optimization function, which 

depends on the input set X having (n) elements. Each element 

xi is associated with a membership value μ(xi), which is the 

grade to which xi belongs to a particular fuzzy set. The 

function also uses weights wi to represent the importance or 

significance that must be given to each element in the 

optimization process. 

Figure 11 depicts the discrimination of features over the 

ShakeFive2 dataset, it shows how different characteristics or 

attributes within the dataset are being analyzed and 

distinguished. By examining the data closely, researchers are 

able to identify patterns, variations, or unique traits that help 

them understand and differentiate between these features. This 

analysis provides valuable insights and knowledge about the 

dataset, which can be used for further research or decision-

making in healthcare monitoring and analysis. 

 

 

4. EXPERIMENTAL SETUP AND RESULTS 

 

A short description of the datasets employed, the 

experiments conducted, and their outcomes have been 

provided. 

 

4.1 Description of dataset 

 

4.1.1 ShakeFive2 dataset 

The ShakeFive2 includes 25 participants (15 male, 10 

female) aged 20–45 performing eight dyadic activities such as 

handshake and high-five. Videos were recorded indoors under 

controlled lighting conditions using a fixed frontal camera at 

640×480 resolution and 30 FPS. The dataset contains 150 

clips, each approximately 10 seconds in length. ShakeFive2 

focuses on dyadic human activities in the dataset, sample 

shown in Figure 12. 

 

   
 

Figure 12. Sequences of the sample frame of ShakeFive2 

 

The dataset comprises 8 different modes of Action: 

Handshake, Fist bump, Hug, Pass object, High five, Rock-

paper-scissors, Thumbs up, and explaining. With this dataset 

under our examination, our study aims to discover intricate 

connections and the general patterns among these human 

communications.  

 

4.1.2 BIT-interaction dataset 

The BIT-Interaction consists of 30 participants (18 male, 12 

female), aged 18–50, performing eight interaction actions such 

as boxing and hugging. Videos were recorded in dynamic 

outdoor environments with varying backgrounds, lighting 

conditions, and partial occlusions, not in a lab setting with 

static backgrounds. The videos were captured at 640×480 

resolution and 30 FPS, totaling 200 clips, with each clip 

ranging from 8 to 15 seconds in length. These videos give 

examples of real people interacting with one another in 

multiple ways, i.e., shaking hands, hugging, kicking, patting, 

pushing, giving high-fives, being in a band, and boxing, 

sample shown in Figure 13. The total dataset is fairly large, 

consuming approximately 4.4 GB of storage. The video was 

shot with a very good camera, so that you can clearly see the 

interrelations between the people. The dataset was processed 

to find details required by our classification system, which is 

CNN-based. After that, we employed this modified dataset to 

evaluate the performance of our new approach. 

 

   
 

Figure 13. Sequences of the sample frame of BIT-interaction 

 
4.2 Experimental analysis 
 

All the computing and trials have been carried out on a 

laptop with Intel Core i7-9th generation, 9850H CPU @2.60 

GHz and a 64–bit Windows 11. 
 

4.2.1 Convolutional neural network 

We need human interaction recognition as a typical and 

more important task. Input data can figure out and classify 

different activities with CNN. Then, CNNs can look at features 

that are already extracted. Such data captures spatial and 

temporal patterns that provide chances to identify activities 

such as hug, punch, push, or other specified activities. CNNs 

can learn to recognize human activities with high accuracy and 

can be deployed in real time systems, e.g., fitness trackers and 

health care and sports analytics monitoring systems. Figure 14 

shows the architecture of human interaction recognition. 

We need human interaction recognition as a typical and 

more important task. Input data can figure out and classify 

different activities with CNN. Then, CNNs can look at features 

that are already extracted. Such data capture such spatial and 

temporal patterns that provide chances to identify activities 

such as hug, punch, push or other specified activities. CNNs 

can learn to recognize human activities with high accuracy and 

can be deployed in real time systems, e.g., fitness trackers and 

health care and sports analytics monitoring systems. Figure 14 

shows the architecture of human interaction recognition. 
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Figure 14. System architecture illustration of 1-D CNN 

 

4.2.2 Convolutional layers 

The CNN architecture is made up of three convolutional 

layers. CNNs are based on convolutional layers which control 

the perception of spatial hierarchies of features from input 

data. For HIR, the pre extracted features are fed directly to 

Convolutional layers for classification. The first convolutional 

layer uses 1×7 sized 32 filters, resulting in an output feature 

map of size 9900×552×32. This dimension is calculated with 

valid padding. The second convolutional layer has 64 filters of 

size 1x6 and outputs 9900x272x64. The third convolutional 

layer has 128 filters of size 1x5, so we have 9900×132×128 as 

output. We also want to mention that after each convolutional 

layer, we add activation functions ReLU and bias terms to 

improve model performance. 

 

𝐶𝑤{(𝑚+1)}(𝑥, 𝑦) = 𝑅𝑒𝐿𝑈(𝑖) (12) 

 

In Eq. (12), is the activation value of a neuron located at the 

position (x, y) of a feature map in a convolutional layer after 

convolutional layer in the CNN. We first need to compute i, 

which is a weighted sum of the previous layer’s inputs plus a 

bias term, and then we just multiply that with a frame drop 

probability to get this value. This process is made possible by 

the ReLU activation function, which brings much needed 

nonlinearity to the network. ReLU is essentially only looking 

at the input i it puts at 0 if u is smaller than zero and at u if u 

is positive, thus it only looks at values greater than zero. 

 

𝑅𝑒𝐿𝑈(𝑖) =  ∑ Ω [𝑥, 𝑑, (𝑦 − 1) +
{𝑤}
{𝑎=1}

 
𝑧+1

2
] 𝑊{𝑦}[𝑥,𝑑] + 𝑘{𝑑}

{𝑧}
  

(13) 

 

In Eq. (13), it computes in detail how the ReLU activation 

for a specific neuron in CNN is computed. This is a sum over 

some range of values that are probably different values of the 

previous channel (or feature) from which these vectors are 

derived. The notation Ω [𝑥, 𝑑, (𝑦 − 1) + 
𝑧+1

2
]  denotes 

accessing data from a multi-dimensional array or tensor, i.e. 

the inputs or the feature maps. The weight for each feature or 

channel is given by 𝑊{𝑦}[𝑥,𝑑] and the bias term 𝑘{𝑑}
{𝑧}

 multiplies 

all output. The network processed different inputs and applied 

its learned parameters to generate meaningful activation 

values, so the network learns complicated patterns and makes 

predictions. 

 

4.2.3 Pooling layers 

Down sampling of feature maps and generating information 

summaries are the main uses of pooling layers. It simplifies 

the following layers and saves computation. For each 

convolution layer, we down sample the feature maps with max 

pooling layer and reduce their size. Window is 1×2, draining 

1/2 on a spatial reduction of the feature vector axis get 

9900×277×32. Similar on to the second and third pooling 

layers use 1×2 max-pooling to give outputs of the size of 

9900×136×64 and 9900×66×128. 

 

𝑃𝐿{𝑞}(𝑥, 𝑦) = max (𝐶𝑣
{𝑞}(𝑥,((𝑦−1)𝑡(𝑎+𝑏)))

) (14) 

 

In Eq. (14), 𝐶𝑣 is the feature map pooling the feature map 

at position (i,j) in the context of a neural network. The area of 

input feature map being examined by pooling window and 

specific to that window is denoted by convolutional layers. 

This area selects the maximum value in this pooling operation, 

down sampling the feature map and shrinking its size. 

 

4.2.4 Fully connected layers 

The classification component of the CNN is the most 

important part of the Fully Connected Layers. The previously 

extracted features' inputs meet these layers and make decisions 

on learned representations. As a result, the CNN can capture 

intricate relationships among the features and the interaction 

classes. Then, the fully connected layers carry out matrix 

multiplications and nonlinear transformations to transform 

these pre extracted features to class probabilities or scores to 

exactly classify and recognise or recognize the human 

activities images. 

 

 

5. RESULTS 

 

The Adam optimizer was used to train CNN, batch size 64, 

initial learning rate 0.001 and cross-entropy loss function. The 

training was to last 50 epochs. To avoid overfitting, a dropout 

rate of 0.5 was used after fully connected layers. Data 
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augmentation such as random horizontal flips and small 

rotations as used to enhance robustness. The training was done 

on NVIDIA RTX 3060 GPU with 12GB RAM. 

In our research work, we have used embedded CNN as a 

classifier to test our novel approach. An experiment was 

conducted with great care and a lot of attention to detail and 

the data were thoroughly analyzed. In order to evaluate the 

performance of the classifier in a detailed manner, several 

metrics including accuracy, recall, and F1-score measures 

were used to obtain the overall accuracy of the classifier. The 

effectiveness evaluation of the classifier demonstrated that the 

CNN-based method is rather successful with the accuracy of 

88%. This fact demonstrates that the suggested approach can 

be used in the practical applications. The results of the 

ShakeFive2 dataset classification are presented in Table 2 

below and contain precision, recall, and F1-score, and are 

compared in Figure 15. 

 

Table 2. Performance of recall, precision, and f1 score over 

ShakeFive2 

 
Action Activities Precision F1-Score Recall 

High five 0.89 0.84 0.80 

Explain 0.94 0.89 0.85 

Hand shake 0.88 0.90 0.93 

Hug 0.76 0.83 0.91 

Rock paper sizer 0.82 0.82 0.82 

Fist bump 0.92 0.86 0.79 

Pass object 0.88 0.88 0.88 

Thumbs up 0.95 0.94 0.93 

Weighted Average 0.89 0.88 0.88 

Macro Average 0.88 0.87 0.86 

 

Figure 15 shows performance assessment of a classification 

model on ShakeFive2 dataset. 

 

 
 

Figure 15. Precision, recall, and F1 score for each class on 

ShakeFive2 dataset 

 

Table 3 provides the Intersection over Union (IoU) score for 

various classes of the ShakeFive2 Interaction dataset IoU is 

used very often to assess the qualities of the object detection 

models. A higher IoU means better localization accuracy thus 

the proposed method of using IoU has been proven to have 

better results. 

Table 3. Intersection over Union over ShakeFive2 

Interaction dataset 

 
Action Activities IoU 

High five 0.85 

Explain 0.91 

Hand shake 0.92 

Hug 0.87 

Rock paper sizer 0.82 

Fist bump 0.88 

Pass object 0.89 

Thumbs up 0.93 

 

Figure 16 shows that the confusion matrix offers the 

following quick breakdown in the classification analysis of a 

model on the ShakeFive2 and BIT-interaction datasets. It gives 

the total number of samples identified for each class, both the 

total number of samples identified consistently and the total 

number of samples misidentified. Figure 17 and Table 4 

shown training loss and accuracy curve over 50 epochs for the 

ShakeFive2 dataset. 

Figure 18 shown training loss and accuracy curve over 50 

epochs for the ShakeFive2 dataset. 

 

 
 

Figure 16. Confusion matrix for ShakeFive2 

 

 
 

Figure 17. Training loss curve over 50 epochs for the 

ShakeFive2 dataset, illustrating steady decrease in loss, 

indicating model convergence 
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Table 4. Results for accuracy and loss ShakeFive2 dataset 

 
Epoch Loss Accuracy 

1 1.2248 0.5065 

2 1.1747 0.5001 

4 1.2210 0.5355 

8 0.9523 0.6106 

16 0.6264 0.7767 

32 0.4021 0.8750 

40 0.3571 0.8869 

45 0.3368 0.8906 

50 0.3017 0.8834 

 

Table 5. Recall, precision, and F1-score over BIT -

Interaction dataset 

 
Action Activities Precision Recall F1-Score 

Shake_hand 0.97 0.92 0.95 

Hug 0.98 0.93 0.95 

Box 0.84 0.96 0.90 

Band  0.96 0.89 0.93 

Hifi  0.97 0.96 0.97 

Push  0.95 0.91 0.93 

pat 0.95 0.94 0.95 

kick 0.91 0.97 0.94 

Weighted Average 0.946 0.945 0.945 

Macro Average 0.947 0.941 0.943 

 

 
 

Figure 18. Training accuracy progression over 50 epochs for 

the ShakeFive2 dataset 

 

 
 

Figure 19. Precision, recall, and F1 score for each class on 

BIT interaction dataset 

 

 

The results of the ShakeFive2 dataset classification are 

presented in Table 2 and contain precision, recall, and F1-

score, and are compared in Figure 19. Table 5 shows the 

results over the BIT -Interaction dataset. Table 6 offers the IoU 

of the different classes of the BIT -Interaction dataset. IoU is 

employed rather frequently to evaluate the characteristics of 

object detection models. 

Figure 20 shows that the confusion matrix offers the 

following quick breakdown in the classification analysis of a 

model on the BIT-interaction datasets. Figures 21 and 22, and 

Table 7 show the training loss and accuracy curve over 50 

epochs for the ShakeFive2 dataset. 

 

Table 6. Intersection over union over ShakeFive2 Interaction 

dataset 

 
Action Activities IoU 

Shake_hand 0.90 

Hug 0.92 

Box 0.82 

Band  0.87 

Hifi  0.94 

Push  0.88 

pat 0.91 

kick 0.89 

Mean IoU 0.89 

 

 
 

Figure 20. Confusion matrix for BIT-Interaction dataset 

 

 
 

Figure 21. Training loss curve over 50 epochs for the BIT-

Interaction dataset, with loss reducing smoothly toward 0.2, 

indicating effective learning 
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Figure 22. Training accuracy progression over 50 epochs for 

the BIT-Interaction dataset, demonstrating an increase from 

about 60% to approximately 94% 

 

Table 7. Results for accuracy and loss BIT-Interaction 

dataset 

 
Epoch Loss Accuracy 

1 0.9434 0.6038 

2 0.9668 0.6121 

4 0.9189 0.6243 

8 0.8210 0.6866 

16 0.6294 0.7858 

32 0.4365 0.8707 

40 0.3883 0.8875 

45 0.3678 0.8925 

50 0.2017 0.9388 

 

Table 8. Comparative analysis with other state-of-the-art 

techniques over both datasets 

 

Methods 
BIT-Interaction  

Accuracy (%) 

ShakeFive2 

Accuracy (%) 

CNN [23] 84.63 - 

White stag Model [24]  87.50  - 

Two-stream [25] 90.63 - 

Co-LSTM [26]  92.88  - 

Deformable parts 

models [27] 

- 65% to 87% 

HOGHOFMBH [28] - 82% 

Proposed Recognition 

System 
94% 88% 

 

Table 8 shows the comparative analysis with other state-of-

the-art techniques over both datasets. 

Table 9 compares different components' performance 

(accuracy) in the proposed 23-joint skeleton model. During 

runtime analysis, the system’s performance was tested using 

an Intel i7 CPU and NVIDIA RTX 3060 GPU. The system 

completed inference in about 20 milliseconds per frame, 

making it possible to run at 30 frames per second, which is 

ideal for real-time usage in changing environments. The total 

time it takes to process a 10-second video (300 frames) is 

about 6 seconds. The lightweight 1-D CNN architecture and 

optimized feature extraction pipeline reduce computational 

overhead, making deployment feasible on edge devices 

common in smart homes. Future optimizations include model 

pruning and quantization to further improve efficiency.  

Table 9. Performance comparison of different components in the proposed model across both datasets: Accuracy and 

computational feasibility 

 

Experiments 
Pre 

processing 

Silhouette 

Extraction 

Feature 

Extraction 

Fuzzy 

Optimization 
CNN 

23-Joint 

Skeleton 

ShakeFive2 

Accuracy 

(%) 

BIT-

Interaction 

Acc (%) 

Inference 

Time 

(ms/frame) 

FPS 

Computation 

Time (10s 

video) 

Full Model ✓ ✓ ✓ ✓ ✓ ✓ 94.0 88.25 20 ms 
30 

FPS 
6 seconds 

Without 

Preprocessing 
✕ ✓ ✓ ✓ ✓ ✓ 87.4 85.7 25 ms 

28 

FPS 
7 seconds 

Without 

Silhouette 

Extraction 
✓ ✕ ✓ ✓ ✓ ✓ 85.9 82.5 22 ms 

29 

FPS 
6.5 seconds 

Without Feature 

Extraction 
✓ ✓ ✕ ✓ ✓ ✓ 88.2 84.8 23 ms 

28 

FPS 
6.8 seconds 

Without Fuzzy 

Optimization 
✓ ✓ ✓ ✕ ✓ ✓ 89.1 85.3 22 ms 

29 

FPS 
6.2 seconds 

Without 

Preprocessing + 

Feature 

Extraction 

✕ ✓ ✕ ✓ ✓ ✓ 82.6 77.5 28 ms 
26 

FPS 
7.5 seconds 

Without 

Preprocessing + 

Silhouette 

Extraction 

✕ ✕ ✓ ✓ ✓ ✓ 84.5 75.9 27 ms 
27 

FPS 
7 seconds 

With Kinect - 25 

Joints) 
✓ ✓ ✓ ✓ ✓ ✕ 88.2 94.1 21 ms 

30 

FPS 
6 seconds 

18-Joint Model - 

OpenPose) 
✓ ✓ ✓ ✓ ✓ ✕ 80.5 85.2 30 ms 

25 

FPS 
8 seconds 

 

Table 10. Statistical validation of model performance 
 

Dataset Accuracy (%) Std. Dev. p-value vs. Baseline 

ShakeFive2 88.2 1.5 0.007 

BIT-Interaction 94.1 1.2 0.004 
 

To assess statistical significance, we performed 5-fold 

cross-validation, reporting mean accuracy ± standard 

deviation. The proposed system achieved 88.2% ± 1.5% on 

ShakeFive2 and 94.1% ± 1.2% on BIT-Interaction. Paired t-

tests against baseline CNN models showed p-values < 0.01, 

indicating statistically significant improvements. 

Table 10 shows the mean accuracy, std, and p-values from 

paired t-tests comparing the proposed model to baseline CNN 

models. 
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6. CONCLUSION AND FUTURE WORK 

 

Our research introduces a robust framework for recognizing 

human interactions, integrating advanced techniques across 

multiple stages. Using a five-step methodology, we’ve 

significantly improved the accuracy and efficiency of 

identifying complex human interactions. First, gamma 

correction in the preprocessing stage enhanced image quality, 

providing a solid foundation. The silhouette extraction 

process, using Multi-Object Tracking and graph-based 

segmentation, precisely isolated human figures, crucial in 

crowded or dynamic settings. We combined the BRIEF 

descriptor with our novel 23 key joint point features for feature 

extraction, capturing essential spatial and temporal dynamics. 

Fuzzy optimization techniques added robustness, improving 

decision-making under uncertainty. Finally, applying CNN for 

classification, we achieved an impressive 88% accuracy. This 

multi-faceted approach not only advances human interaction 

recognition but also overlays the technique for future 

developments in computer vision.  

In future, emphasis will be laid on the privacy concerns and 

enhancement of the SkeleTrack23 model. Another equally 

noteworthy drawback that can be mentioned is that removing 

the background from the videos filmed with immobile cameras 

is proposed in the system. However, this study might not work 

if the background settings change from time to time within the 

data. Therefore, the system will be deployed to more general 

environmental conditions and data. Future work will be to 

handle dynamic backgrounds by incorporating adaptive 

background subtraction methods that are robust to lighting 

variations and camera motion. Temporal smoothing and 

attention mechanisms will be added to the SkeleTrack23 

model to enhance robustness to occlusions and partial 

visibility. We are focusing on solving the issue of dynamic 

backgrounds, which is essential for correcting the recognition 

of human activities in real environments. For this reason, we 

recommend using background subtraction and motion-based 

segmentation to separate the moving subjects from the busy 

environment. We also aim to use multi-modal sensor fusion by 

combining RGB video with depth sensors or IMUs, which 

should make the system more reliable when changing light and 

when objects are hidden. 

Real-time performance is another area we want to 

concentrate on. Even though the method performs well in real 

time, more improvements, such as model pruning and 

quantization, are needed to make it work well on edge devices 

with limited resources. 
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