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The incorporation of renewable energy sources into contemporary power systems 

necessitates accurate management of the demand-supply equilibrium, highlighting the 

critical role of smart grids. Signal processing techniques play a crucial role in improving 

load forecasting by refining feature extraction, noise reduction, and classification. This study 

introduces an innovative signal processing-driven approach for intelligent load forecasting 

in smart grids, utilizing Artificial Neural Networks (ANN) optimized by the Smart Flower 

Water Wave Optimization (SFWWO) algorithm. The SFWWO combines Water Wave 

Optimization (WWO) and Smart Flower Optimization Algorithm (SFOA) to enhance 

forecasting accuracy and reliability. Additionally, key signal processing techniques, such as 

feature selection using Motyka and Ruzicka metrics and fusion via Dice Similarity, ensure 

improved data preprocessing and classification. The ANN_SFWWO model outperforms 

existing methods, achieving the lowest RMSE (0.225), MSE (0.040), and MAPE (0.770) on 

the ERCOT Load Data. These findings highlight substantial improvements in energy 

efficiency, noise-resistant forecasting, and grid stability, underscoring the role of advanced 

signal processing techniques in optimizing smart grid operations. 
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1. INTRODUCTION

Accurate load forecasting plays a crucial role in ensuring 

the stability, efficiency, and resilience of smart grid systems. 

As modern power networks transition toward renewable 

energy integration and decentralized power generation, the 

complexity of forecasting future demand increases. 

Traditional forecasting methods, such as statistical and time-

series models, often fail to capture the nonlinear and dynamic 

nature of energy consumption in smart grids, leading to 

suboptimal performance. Consequently, researchers have 

turned to computational intelligence techniques, such as 

Artificial Neural Networks (ANNs), which have demonstrated 

superior ability in recognizing complex patterns and 

relationships in energy demand data [1]. 

In recent years, signal processing techniques have emerged 

as a key enabler for improving the accuracy and robustness of 

load forecasting models [2]. These techniques include filtering, 

noise reduction, feature extraction, and classification, all of 

which enhance the quality of data used for predictive 

modelling [3]. In particular, wavelet transforms have been 

widely used to decompose complex time-series data, enabling 

better analysis and trend identification in power demand 

patterns [4]. However, the fluctuating contribution of 

renewable energy sources—such as solar and wind power—

introduces additional forecasting challenges, necessitating 

adaptive and intelligent optimization techniques [5]. 

Despite the advantages of ANN-based forecasting, several 

limitations persist. First, traditional ANN models struggle with 

hyperparameter tuning, overfitting, and slow convergence 

when applied to large-scale smart grid datasets [6]. Second, 

selecting the most relevant features from high-dimensional 

load datasets remains a challenge, as irrelevant or redundant 

features can degrade forecasting performance [7]. Finally, 

many existing forecasting models lack adaptability to rapidly 

changing grid conditions, reducing their effectiveness in real-

world applications [8]. 

To address these challenges, this study introduces an 

advanced load forecasting model that integrates signal 

processing techniques with heuristic optimization. 

Specifically, we propose an ANN-based forecasting 

framework optimized using the Smart Flower Water Wave 

Optimization (SFWWO) algorithm, a novel hybrid approach 

that combines Sun Flower Optimization Algorithm (SFOA) 

and Water Wave Optimization (WWO). SFOA mimics the 

adaptive growth patterns of plants to improve search 

efficiency and convergence speed [9] while WWO simulates 

the propagation and refraction of water waves to find optimal 
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solutions in large search spaces [10]. 

By integrating these two nature-inspired optimization 

techniques, SFWWO enhances the learning capability of ANN 

models, ensuring improved forecasting accuracy and 

computational efficiency [11]. Signal processing plays a 

critical role in enhancing the quality of input data for ANN 

training. In this study, we employ: 

● Feature Extraction: Utilizing Ruzicka and Motyka 

similarity metrics to select key influencing factors, such as 

weather conditions, time variations, and user consumption 

patterns [12]. 

● Feature Fusion: Applying the Dice similarity coefficient 

to combine extracted features, reducing redundancy and 

enhancing classification accuracy [13]. 

● Noise Filtering: Using advanced filtering techniques to 

remove anomalies in historical load data, improving the 

robustness of forecasting models [14]. 

By combining signal processing methods with deep 

learning and optimization, our approach effectively handles 

noisy, high-dimensional, and non-stationary energy datasets, 

ensuring reliable load predictions in dynamic smart grid 

environments. 

The main contributions of this study can be summarized as 

follows: 

● Development of an Enhanced ANN-Based Forecasting 

Model: ANN is optimized using SFWWO, significantly 

improving prediction accuracy and computational efficiency. 

● Integration of Signal Processing Techniques for Data 

Preprocessing: Advanced feature selection, fusion, and 

filtering enhance the quality and relevance of input features for 

ANN training. 

● Comprehensive Evaluation on Real-World Smart Grid 

Datasets: The proposed model is validated using datasets from 

ISO New England and ERCOT, demonstrating its robustness 

across diverse grid conditions. 

● Advancement in Smart Grid Energy Management: The 

model supports scalable, noise-resistant, and adaptive 

forecasting, contributing to efficient energy distribution, 

reduced power waste, and enhanced grid stability. 

The flow of the paper is arranged as follows: Section 2 

provides a comprehensive review of existing load forecasting 

methodologies and the role of signal processing in smart grid 

applications. Section 3 introduces the system model, detailing 

the dataset and preprocessing techniques. Section 4 describes 

the proposed ANN_SFWWO framework, focusing on training, 

feature selection, and optimization. Section 5 presents 

experimental results, including comparative analysis with 

existing methods. Finally, Section 6 summarizes the research 

with main outcomes and prospective directions for impending 

research. 

 

 

2. LITERATURE SURVEY 

 

Zhang et al. [6] introduced an innovative real-time 

prediction model for smart grids, integrating a convolutional 

neural network (CNN) attention mechanism with bi-

directional long- and short-term memory (BiLSTM). This 

model excels in spatiotemporal feature extraction, yielding 

higher prediction accuracy and enhanced adaptability 

compared to conventional methods such as ARMA and 

decision trees. To refine feature selection, Bayesian 

optimization is incorporated, allowing the model to efficiently 

learn from real-time load data. By utilizing real-time power 

system data—including power consumption, load variations, 

and meteorological factors—the model ensures accurate future 

load predictions. Additionally, Bayesian optimization fine-

tunes hyperparameters, further strengthening predictive 

accuracy. Despite its efficiency in estimating real-time power 

loads for operational and dispatch applications, the model's 

computational complexity may affect execution speed. 

Rabie et al. [7] proposed an Optimal Load Forecasting 

Strategy (OLFS), which leverages artificial intelligence (AI) 

for smart grid demand prediction. This methodology involves 

an initial preprocessing phase where feature selection and 

outlier detection are performed before forecasting. Advanced 

Leopard Seal Optimization (ALSO), a bio-inspired 

optimization technique, is employed for feature selection, 

while Interquartile Range (IQR) is utilized for detecting and 

eliminating statistical anomalies. For forecasting, the approach 

integrates the Weighted K-Nearest Neighbor (WKNN) 

algorithm, optimizing predictive performance while reducing 

root mean square error (RMSE). However, deep learning (DL) 

techniques were not explored, potentially limiting further 

improvements in forecasting accuracy. 

To address the challenges in short-term power load 

forecasting, Wen et al. [8] designed a computational 

framework that integrates multiple deep learning (DL) models. 

This hybrid approach employs Gated Recurrent Unit (GRU) 

networks, which effectively capture long-term dependencies 

in time-series energy data. By leveraging pattern recognition 

and feature extraction, the model minimizes forecast errors 

and enhances accuracy, proving beneficial for grid planning 

and energy management. Furthermore, an attention 

mechanism is incorporated to prioritize key input components 

that significantly influence load prediction outcomes, 

improving model performance. 

A hybrid short-term electric load forecasting model was 

introduced by Hafeez et al. [9], incorporating an improved 

Modified Mutual Information (MMI) technique. This method 

refines data preprocessing and feature selection by extracting 

abstract features from historical load records. The model is 

built upon a Factored Conditional Restricted Boltzmann 

Machine (FCRBM), a deep learning-based forecasting module. 

Additionally, Genetic Wind-Driven Optimization (GWDO) is 

employed to fine-tune model parameters, enhancing 

forecasting accuracy and convergence rates. Despite its 

effectiveness, the model’s high computational scalability 

presents a challenge in large-scale implementations. 

To further enhance forecasting precision and system 

performance, Aly [10] developed a hybrid forecasting method 

by integrating multiple machine learning techniques with 

clustering algorithms. The model incorporates six forecasting 

schemes, each utilizing unique combinations of Kalman 

Filtering (KF), Wavelet Transformation, ANN, and Wavelet 

Neural Networks (WNN). While the approach achieves high 

accuracy levels, its training process is computationally 

intensive, requiring significant resources. 

Mansoor Ali et al. [11] proposed a hybrid forecasting 

framework named WLANFIS, which merges Adaptive Neuro-

Fuzzy Inference System (ANFIS), Neural Networks (NN), and 

Weighted Least Squares (WLS). The methodology integrates 

fuzzy logic and neural networks, where an optimized dataset—

derived from NN and WLS—determines the optimal 

membership functions and fuzzy set boundaries. This 

approach effectively mitigates overfitting issues, yet its 

inability to integrate Deep Neural Networks (DNN) with 

Kalman filter-based state estimation remains a limitation. 
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In the domain of load and price forecasting, Naz et al. [12] 

developed two predictive models: Enhanced Logistic 

Regression (ELR) and Enhanced Recurrent Extreme Learning 

Machine (ERELM). ELR represents an optimized variant of 

logistic regression, whereas ERELM employs the Grey Wolf 

Optimizer (GWO) for fine-tuning model weights and biases. 

The study also utilized Recursive Feature Elimination (RFE), 

Relief-F, and Classification and Regression Trees (CART) for 

feature selection and extraction. While the models achieved 

superior forecasting accuracy with larger datasets, their high 

computational complexity posed a challenge for real-time 

applications. 

Dai and Zhao [13] developed a hybrid model incorporating 

intelligent techniques to optimize parameters and select 

features for power load forecasting. Given the increasing 

impact of real-time pricing on electricity consumption patterns, 

they considered real-time pricing and other influential 

variables as candidate features. Minimal redundancy maximal 

relevance was applied to extract informative features, while 

the weighted gray relation projection approach was used to 

select historical load sequences, making the selection more 

general. Finally, repulsion particle swarm optimization (PSO) 

and second-order oscillation were employed to optimize 

support vector machine parameters. Although, the approach 

requires more training iterations, it achieves noticeably higher 

accuracy. 

The key challenges faced by existing methods: 

Data quality and availability issues, complexity of Smart 

Grids, and non-linear relationships between load demand and 

variables, like weather and time hinder accurate forecasting. 

Uncertainty and variability of load demand, scalability, and 

interpretability of models also pose challenges. Real-time 

processing requirements, integration with other systems, and 

cybersecurity concerns add to the complexity. Compliance 

with regulatory and policy frameworks, balancing accuracy 

and computational efficiency, and handling special events like 

weather anomalies or grid failures are also crucial. Moreover, 

long-term forecasting needs and accounting for distributed 

energy resources and electric vehicle charging must be 

addressed. To overcome these challenges, advanced 

forecasting techniques, data preprocessing, and robust 

modeling approaches are necessary. By addressing these 

challenges, Intelligent Load Forecasting can support efficient 

and reliable grid operations, optimize energy distribution, and 

enable a sustainable energy future. Effective solutions will 

require collaboration among researchers, industry experts, and 

policymakers to develop and implement innovative 

forecasting methods and technologies. 

 

 

3. SYSTEM MODEL 

 

Figure 1 illustrates the proposed signal processing-

enhanced load forecasting framework for smart grids. The 

model employs smart energy meters to collect real-time power 

consumption data, followed by advanced preprocessing 

techniques such as missing value imputation and noise 

filtering. Extracted features undergo selection and fusion using 

Ruzicka and Motyka similarity metrics, which refine 

classification accuracy. 

The unpredictable nature of renewable energy sources, 

along with consumer-driven demand fluctuations, necessitates 

an adaptive forecasting model. The proposed ANN_SFWWO 

framework effectively mitigates these uncertainties by 

learning complex patterns and adjusting predictions 

accordingly, ensuring optimal grid stability and energy 

efficiency. 

 

 
 

Figure 1. Load forecasting in smart grids 
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4. PROPOSED METHODOLOGY 

 

This study introduces a innovative approach for load 

forecasting in smart grids by integrating an Artificial Neural 

Network (ANN) with the SFWWO algorithm. The SFWWO 

algorithm synergistically combines the strengths of Smart 

Flower Optimization Algorithm (SFOA) and WWO, enabling 

efficient search for optimal solutions and robust handling of 

complex data patterns. 

The methodology follows a structured approach starting 

with data collection from smart grids. This is followed by 

missing value imputation and preprocessing to enhance data 

integrity. Feature extraction techniques identify key technical 

indicators such as Simple Moving Average (SMA), Rate of 

Change (ROC), and Adaptive Moving Average (AMA). Next, 

feature selection is performed using Ruzicka analysis to 

determine relevance, while Motyka analysis assesses feature 

importance. The Dice similarity coefficient is then applied for 

feature fusion, ensuring redundancy reduction and improved 

classification accuracy. The final forecasting is executed using 

ANN, which is optimized by SFWWO to improve model 

training, accelerate convergence, and enhance predictive 

performance. Figure 2 illustrates the overall workflow of the 

ANN_SFWWO-based load forecasting approach which can be 

summarized as follows: 

Preprocessing and Feature Extraction: The 

preprocessing stage enhances reliability by handling missing 

values, filtering noise, and detrending data. Imputation ensures 

completeness, reducing bias and improving accuracy. Key 

technical indicators like SMA, ROC, and MACD capture load 

variations and trends in smart grid data [14]. 

Feature Selection and Fusion: To enhance forecasting 

accuracy, extracted features are selected and fused using 

Ruzicka for relevance, Motyka for significance, and Dice 

similarity to refine fusion, remove redundancy, and improve 

classification. 

ANN Training with SFWWO Optimization: The ANN 

model, optimized with SFWWO, merges SFOA’s adaptability 

and WWO’s search efficiency for precise weight tuning, 

ensuring faster convergence and higher accuracy in load 

forecasting. Designed for dynamic grid conditions, 

ANN_SFWWO offers a reliable solution for smart grid energy 

management. 

 

4.1 Acquisition of time series data 

 

The time series data is regarded as an input for additional 

processing in this context. The dataset, including multiple 

series data is provided by, 

 

 1 2, ,..., ,...,h h hp hvA A A A A=  (1) 

 

where, Ahv is the vth time series data, Ah1 is the initial time series 

data at time period h, and Ahp is the pth time series data for 

further processing. 
 

4.2 Pre-processing  
 

Pre-processing of time series data is crucial for load 

forecasting in smart grids as it ensures accurate and reliable 

predictions by handling missing values, removing noise and 

outliers, normalizing and scaling data, detrending and 

adjusting for seasonality, extracting relevant features, and 

improving model performance. This enables smart grids to 

optimize energy distribution, manage peak demand, and 

integrate renewable energy sources effectively. By pre-

processing time series data, smart grids can improve forecast 

accuracy, reduce energy waste, and enhance overall grid 

efficiency, ultimately leading to cost savings, improved 

customer satisfaction, and a more sustainable energy future. 

In order to reduce the amount of redundant data, the time 

series data Ahp is pre-processed using missing value imputation. 

In addition, it reduces bias and prediction errors by 

substituting estimated values for missing data points to 

produce a complete dataset. Additionally, during the pre-

processing stage, the raw data input is converted into a 

readable data format, greatly improving the prediction 

accuracy. In this case, feature average in non-missing data is 

used to identify missing values. At last, the absent values are 

filled in. Here, the term Q represents the pre-processed data 

output. 

 
 

Figure 2. Preview of load forecasting in smart grids using ANN_SFWWO 
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4.3 Extraction of technical indicators 

 

Extraction of technical indicators is important for load 

forecasting in smart grids because it transforms raw time series 

data into meaningful features that capture patterns, trends, and 

seasonality, enabling accurate predictions. Technical 

indicators, such as Simple Moving Average (SMA), Rate of 

Change (RoC), Adaptive Moving Average, Keltner Channels, 

Moving Average Convergence Divergence (MACD), 

Exponential Moving Average (EMA), and Double 

Exponential Moving Average (DEMA), which are extracted 

from Ahp for forecasting. By extracting these indicators, smart 

grids can identify key factors influencing load demand, 

improve forecast accuracy, and optimize energy management, 

ultimately leading to efficient grid operations, reduced energy 

waste, and enhanced customer satisfaction. Table 1 lists the 

technical indicators parameter setting. 

 

Table 1. Configuration of technical indicators 

 

Technical Indicators Parameters 

SMA Window size = 10 time-steps 

EMA 
Smoothing constant S=0.2, Window 

size = 10 

DEMA Window size = 10 time-steps 

RoC Look-back period = 5-time steps 

AMA 
Fast EMA window = 2, Slow EMA 

window = 30 

MACD 
Fast EMA = 12, Slow EMA = 26, 

Signal line EMA = 9 

ATR Window size=10 

Keltner Channels 
EMA window = 20, ATR window = 10, 

Multiplier = 2 

 

SMA: The SMA [14] is calculated by summing up the load 

values over a specified period, and then dividing by the total 

count of time periods and the SMA indicator output is denoted 

as 
1b . 

EMA: EMA [14] is expressed as the weighted average of 

recent load values, giving more weight to recent observations, 

to better forecast load in smart grids. 

 

( )a aEMA a EMA S EMA= −  +  (2) 

 

The weighted average for the current period is denoted by 

a, the EMA for the previous period is shown by EMAa, the 

smoothing constant is denoted by S, and the EMA indicator 

output is indicated by b2. 

DEMA: DEMA [14] is an indication that offers a smoothed 

mean with less lag than EMA. It is symbolized as, 

 

( ) ( )2 ( ) ( ) ( )DEMA EMA t EMA t of EMA t=  −  (3) 

 

The DEMA indicator notation is b3. 

ROC: ROC [14] calculates the percentage change in load 

values over a specified period. The result is a measure of the 

rate of change in load, which can be used to identify trends, 

patterns, and anomalies in load data. 

 

( )( )1.0 100ROC d e= −   (4) 

 

where, d is the current load value, and e signifies the previous 

load value from a specified time ago, and the ROC indicator 

output is expressed as b4. 

MACD: The differences between the two MAs of different 

periods, such as fast MA and slow MA, are taken into account 

while computing the MACD indicator [15]. The MACD 

indicator can be written as: 

 

5b FastMA SlowMA= −  (5) 

 

where, FastMA stands for the shorter MA, SlowMA for the 

longer MA, and the MACD indicator is shown as b5. 

AMA: Another technical indicator that uses scalable 

constants rather than set constants to smooth data is the AMA. 

The symbol for this indicator is b6. 

Keltner Channels: The Keltner channel is a volatility-

based technical indicator that typically displays three lines: an 

upper band, a middle line, and a lower band. The EMA is the 

middle line of the Keltner channel, with the other two bands 

situated above and below it. Keltner channel equations are 

therefore represented by, 

 

1W E=  (6) 

 

1 2*RB E D= +  (7) 

 

1 2*JB E D= +  (8) 

 

where, D stands for average true range, W for the center line 

of the keltner channel, BR for the upper band, BJ for the lower 

band, and E1 for the EMA. The indication of the Keltner 

channel is denoted by b7. 

Rate of Change: The ROC is used to estimate the rate of 

alternation or change in load quality for a previous time 

interval. 

 

( )
( )8 *100
X q

b
X q m

=
−

 (9) 

 

where, load quality is represented by X, load quality at a given 

period q by X(q), and load quality variation over time by X(q-

m). The ROC curve, represented by b8. 

Thus, joining the whole extracted technical indication yields 

the final feature vector of the technical indicator. 

Consequently, the expression is modeled as: 

 

 1 8,...,G b b=  (10) 

 

As a result, the next step in the feature selection procedure 

uses the input as the retrieved technical indicator G. 
 

4.4 Feature selection  
 

Feature selection is crucial after extracting technical 

indicators for load forecasting in smart grids as it reduces 

dimensionality, removes irrelevant features, improves model 

interpretability, enhances model performance, and reduces the 

risk of multicollinearity. By selecting the most relevant 

features, understand the relationships between technical 

indicators and load demand, improve model accuracy, reduce 

noise, and increase training speed. This step helps build a more 

robust, accurate, and interpretable load forecasting model, 

enabling smart grids to optimize energy management, reduce 

energy waste, and enhance customer satisfaction. Here, the 

2005



 

retrieved technical indicator output G is considered as input. 

In this case, the dice similarity metric is fused with the Ruzicka 

and Motyka to choose the essential features. 

Ruzicka similarity: The Ruzicka similarity (also known as 

weighted Jaccard similarity) measures the degree of overlap 

between feature distributions while accounting for their 

magnitude differences. It has the potential to analyze uneven 

data distribution, which makes it suitable for smart grid 

applications where the load and energy patterns vary 

continuously. This is then expressed as: 
 

1

1

min( )

max( )

c

g g

gRUZ

c

g g

g

N K

P

N K

=

=

=




 (11) 

 

where, Ng stands for candidate features and Kg for class label. 

It determines the highest-value features by calculating each 

feature's Ruzicka similarity. Thus, Cn×q where p>q is the 

output. 

Motyka similarity: The Motyka similarity evaluates the 

similarity between two data sequences. It defines ratio of 

summation of minimum values of corresponding components 

in the two data sequences to the sum of all elements, as 

formulated in Eq. (12). In the presented work, it was deployed 

for selecting relevant attributes for ANN by estimating 

features that are similar across various data sequences. Here, 

G  is regarded as input in this instance as well. Each pair of 

two input collections has its similarity calculated using the 

Motyka similarity, which is provided by, 

    

 

( )

1

1

min( )
c

g g

gMOT

c

g g

g

N K

P

N K

=

=

=

+




 (12) 

 

where, Kg denotes the target class and Ng denotes candidate 

features. It chooses the best features with the highest value 

after calculating each feature's Motyka similarity. Fn×r where 

p>r is the output's symbol. 

Fusion by dice coefficient: Features obtained by means of 

the Motyka and Ruzicka poses several types of representation. 

Thus, efficiency can be completely destroyed by a simple 

concatenation. Therefore, the majority of rich detail 

information is encoded in the characteristics that the Ruzicka 

obtains, while the Motyka gathers context information. In 

order to create features that are more effective, the output  

 

1

2 2

1 1

2
c

g g

gDICE

c c

g g

g g

N K

P

N K

=

= =

=

+



 
 (13) 

 

 

where, Kg stands for Target class and Kg stands for candidate 

features, which are the output features produced by combining 

Ruzicka and Motyka. Cn×k represents the output in the case 

where (q+r)>l. 

 

4.5 Load forecasting using ANN_SFWWO 

 

Load forecasting plays a vital role in enhancing energy 

management and minimizing energy waste within smart grids. 

By predicting energy demand with high precision, smart grids 

can dynamically adjust supply to meet demand in real-time, 

ensuring efficient and reliable power distribution while 

optimizing overall grid performance. In the proposed work, an 

optimized framework was developed for accurately predicting 

loads. The designed framework leverages the optimization 

capacity of hybrid optimizer named “Sun Flower Water Wave 

Optimization (SFWWO)” with ANN. The proposed SFWWO 

combines the efficiency and advantages of SFOA and WWO. 

SFOA is a meta-heuristic optimization technique inspired 

from the characteristics of sunflowers for searching the best 

orientation towards the sun. In this algorithm, the pollination 

process is simulated based on random generation of seeds, 

which ensures adaptability to real-world constraints. Also, this 

algorithm outperformed the conventional optimization 

techniques such PSO, genetic algorithm (GA), etc., by easily 

solving the complex problems in different fields. On the other 

hand, WWO is a nature-inspired meta-heuristic algorithm 

modeled based on the shallow water wave theory for resolving 

the world optimization problems. This approach includes 

water wave phenomena like refraction, propagation and 

refraction. This approach has the efficiency of searching in a 

high-dimensional solution space, which makes it an optimal 

solution for problems in large networks like smart grids. Also, 

this approach regulates the searching process with minimal 

control parameters, reducing the computational power and 

computational time. These advantages make the WWO 

approach more efficient than conventional techniques like 

PSO, GA, ACO, etc. [15, 16]. Thus, the integration of SFOA 

and WWO into single optimization algorithm ensures 

adaptability, complex problem solving, less computational 

demands and high-dimensional searching, making it a suitable 

solution for smart grid-based problems. This synergy enables 

smart grids to better anticipate and respond to changing energy 

demands, reducing the risk of power outages and minimizing 

energy waste. By improving load forecasting, smart grids can 

optimize energy management, reduce costs, and enhance 

customer satisfaction, making this research essential for the 

development of high-performance renewable energy models. 

Structure of ANN: An Artificial Neural Network (ANN) 

[17] is an adaptable model capable of identifying patterns by 

repeatedly analyzing data, allowing it to generalize and make 

predictions on previously unseen information. In this context, 

Cn×k serves as the input for the ANN. In supervised learning, 

the network is guided by human intervention, where specific 

data relationships are defined to enable accurate learning and 

decision-making. The network attempts to learn the input-

output connection by adjusting its free parameters after being 

provided a set of inputs and corresponding desired outputs. 

Here, the activation function u(z) is the sigmoid function, 

which can be found by: 
 

( )
( )

1

1 exp
u z

z
=

+ −
 (14) 

 

1

; 1
j

if f i

f

z x l i to p
=

= + =  (15) 

  

1

; 1
j

ib i b

i

z x q b to
=

= + =   (16) 

 

where, α is threshold, x is synaptic weight, l is input node value, 
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p is hidden note value, p is number of hidden nodes, f is 

number of output nodes, and j is the number of input nodes. 

Figure 3 shows the structure of ANN. 

The learning algorithm of a back-propagation neural 

network consists of two phases. 

Phase I: The network input layer is given with a 

constraining input pattern. 

Phase II: After that, the input pattern is spread throughout the 

network's layers until the output layer generates the output 

pattern. When the produced pattern does not match the 

expected output, an error is calculated and then propagates 

backward from the output layer back to the input layer across 

the network. This backpropagation process adjusts the 

network’s weights, refining them based on error magnitude 

and optimization criteria, ultimately enhancing the model’s 

accuracy and performance. In contrast to other neural 

networks, a back-propagation neural network is based on the 

activation function, the connections between the neurons, and 

the adjustment of weights by the intended output level. A 

back-propagation network typically consists of three or more 

tiers in a multi-layer architecture. Every neuron in each layer 

is connected to every other neuron in the forward levels that 

surround it, and the layers are coupled. 
 

 
 

Figure 3. ANN architecture 

 

Training ANN by SFWWO: Although ANN offers 

promising results in pattern recognition, its prediction 

performances highly rely on the appropriate selection of 

hyperparameters in its training phase. Hence, hyperparameter 

optimization was introduced for finding the best combination 

of hyperparameters for a machine learning model to maximize 

its performance. In the presented work, the ANN training is 

performed using SFWWO, a novel hybrid algorithm 

combining SFOA [18] and WWO [19]. Sunflowers serve as 

the inspiration for the SFOA, which clarifies and idealizes the 

growth of young sunflowers. The outcomes validated the 

ability and effectiveness in identifying the best. It reveals its 

usefulness in resolving practical issues with ambiguous search 

spaces. It helps with a range of engineering design problems. 

Flowers bloom and grow towards sunlight, maximizing their 

exposure to light and nutrients. This process is optimized 

through natural selection, ensuring the fittest flowers survive 

and reproduce. Meanwhile, the WWO propagates and interacts 

with their environment, adapting to obstacles and boundaries. 

This algorithm captures this dynamic behavior to search for 

optimal solutions. Thus, the mixture of SFOA and WWO aids 

to elevate overall efficiency and leads to obtain global optimal 

solution. The steps of SFWWO are described below. 

Initialization: The search agent update in SFOA is 

performed using an immature sunflower growth model and is 

expressed as, 
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 (17) 

 

where, H denotes the quantity of young sunflowers and dim  

the quantity of variables. 

Identify error: To get the optimal answer, the error in each 

solution is found and is provided as: 
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where, k is the total amount of data, βp is the estimated output, 

and L is the output generated by the ANN. 

Immature sunflower growth simulation: According to 

SFOA, two modes, like sunny and cloudy or rainy, are 

employed to simulate the growth of immature sunflowers. The 

initial mode can be written as: 
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 (19) 

 

where, o denotes the damping parameter, 𝐼𝑜𝑙𝑑,𝑀
𝑦

 discloses the 

old element in iterations, and 𝐼𝑏𝑒𝑠𝑡,𝑀
𝑦

 is the best element in 

iterations. The stopping of the stem elongation of the 

sunflower is reflected by the damping attribute, which is 

expressed as: 

 

max min
max

max

( )damp damp
o damp y

y

−
= −   (20) 

 

Here, y is the current iteration, dampmax and dampmin 

represent the maximum and lowest values of the damping 

parameter, and ymax is the maximum number of iterations. 

Rainy or overcast days cause the young sunflowers to 

experience heliotropic effects at reduced rates. When a day is 

cloudy or wet, it means that Auxin has not advanced. The 

second option is used, where the sun attribute is set to 0, to 

replicate these scenarios. It is stated as: 
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However, the SFOA has a slow convergence speed and a 

high memory consumption. To solve this, the WWO 

incorporates the SFOA to find the best solution. The revised 

equation derived from WWO is provided by: 
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Assume, 𝛢𝑐,𝑠(𝑎 + 1) = 𝐼𝑛𝑒𝑤,𝑀
𝑦+1

, 𝑎𝑛𝑑𝛢𝑐,𝑠(𝑎 + 1) = 𝐼𝑜𝑙𝑑,𝑀
𝑦

 
substitute in Eq. (23): 
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Substitute Eq. (25) in Eq. (22), 
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ANN_SFWWO final update is provided by, 
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Re-compute error: Eq. (18) is used to reevaluate the error 

and produce the best possible solution by adjusting the ANN 

optimal weights. 

Termination: When an iteration reaches a higher iteration 

count, the process ends with termination. Algorithm 1 

represents the ANN_SFWWO pseudocode. 

 

Algorithm 1. Pseudo code of ANN_SFWWO 

Input: Population of Sunflower M 

Output: Optimal solution ,

y

best MI  

Begin 

    Establish the existing population and initialize it 

    Find the best possible option 

For=1 to ymax 

        Use Eq. (20) to generate the damping parameter 

For h=1 to H 

 Produce η 

For z=1 to Dim 

If Sun=1 

 Create the parameters 

                       Utilize Eq. (21) to update the population 

element 

else 

                              Create hours each day 

                           Update the population element using Eq. 

(30)    

End if Sun 

                     Revise the angle parameters 

ηy+1=ηy+φ 

                      End for z 

                  End for y 

         Recalculate the optimal solution with an error 

          Replace 
bestI by ,best newI if ,( ) ( )best new bestu I u G  

   End for y 

End 

 

Here, the best prediction result is achieved by adjusting the 

ANN weight and bias using the SFWWO. 

 

 

5. RESULTS AND DISCUSSION 

 

The outcomes of ANN_SFWWO load forecasting in smart 

grids are presented in this section. 

 

5.1 Experimental setup 

 

A Windows 10 (64-bit) system equipped with an Intel Core 

i3 processor and 4 GB of RAM was used to configure the 

proposed ANN_SFWWO. The presented model is executed in 

Python software version 3.12.6.  

 

5.2 Dataset description 

 

The datasets, like the Dayton GRID dataset, and formula 

electric (FE) grid [20] are used for load forecasting in smart 

grids, and are elaborated below.  

Dayton GRID Dataset (D1): The Dayton GRID dataset 

includes hourly electricity consumption data from Dayton, 

Ohio, USA. It represents a less dynamic, lower-load profile, 

capturing hourly load values alongside temperature, humidity, 

dew point, time of day, and detailed energy demand records. 

Each record is timestamped, allowing analysis of load 

behavior. 

FE GRID Dataset (D2): The FE GRID dataset contains 

energy load profiles from a densely populated and urbanized 

region, reflecting significant residential, commercial, and 

industrial consumption. It comprises hourly load data, 

meteorological parameters, and demand profiles. The dataset's 

complexity assists detailed load forecasting analysis. 

Limitations due to Dataset Time Range: While this study 

employs recently updated datasets from Dayton and Formula 

Electric (FE), collected in 2024, earlier analyses included ISO 

New England and ERCOT data up to 2020. Given recent 

substantial integration of renewable energy sources, the older 

data may not fully reflect current load dynamics influenced by 

intermittent renewable penetration. Thus, while our updated 

datasets improve relevancy, caution is recommended when 

generalizing findings from the older datasets. Future research 

should consider using continually updated datasets reflecting 

real-time grid transformations to further validate model 

applicability and accuracy in evolving renewable energy 

scenarios. 

 

5.3 Performance metrics 

 

The performance metrics of ANN_SFWWO are evaluated 

by using three assessment measures: MSE, RMSE, and MAPE. 

MSE: It calculates the mean of the squared deviations 

between the predicted and actual load values. A lower MSE 

value indicates better forecasting performance, with 0 being 

the ideal value. Eq. (18) defines the fitness function, also 
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known as the MSE. 

RMSE: It determines the square root of the mean squared 

deviation between the predicted and actual load values. RMSE 

is similar to MSE, but it's more sensitive to large errors, 

making it a more suitable metric for load forecasting. The 

lower values indicate better forecasting performance, whereas 

values closer to 0 indicate perfect forecasting. The expression 

is stated by: 

 

RMSE MSE=  (31) 

 
MAPE: It calculates the mean absolute percentage 

variation between the predicted and actual load values. MAPE 

is a useful metric because it: Expresses errors as percentages, 

making it easy to interpret, is sensitive to relative errors, not 

just absolute errors, and is used to compare forecasting 

performance across different datasets. The MAPE formula is 

given below: 
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where, 𝐹𝑜𝑟𝜅  is the expected value, 𝜅 is the time, 𝜈 is the fitted 

points, and 𝐴𝑐𝑡𝜅 is the actual value. 

 

 

5.4 Training and validation performances 
 

The developed ANN_SFWWO was trained and validated 

using two datasets (D1 and D2). The dataset was split into 

70:30 ratio for model training and test purposes. In the initial 

phase of ANN training, its hyperparameters are selected 

randomly. After a few epochs, the designed SFWWO tunes the 

ANN hyperparameters to their optimal value. Table 2 tabulates 

the ANN hyperparameters and their fine-tuned value.  

The developed model’s performances in the training and 

validation phases are evaluated using metrics such as accuracy 

and loss. Figure 4(a) and Figure 4(b) display the train and 

validation outcomes of the design for the D1 and D2 datasets. 

Training accuracy evaluates the system’s potential of 

learning and understanding the patterns associated with load 

prediction, while validation accuracy defines how the 

developed model applies the learned patterns to the real-world 

data and make precise prediction. Train loss quantifies the 

difference between the predicted and actual load in smart grids 

on train set, while validation loss measures the error made by 

the system on test data. It is observed that in both cases 

(datasets), the proposed model obtained higher accuracy and 

minimum loss, highlighting its efficiency of accurately 

predicting loads. Also, the increase in accuracy over epochs 

demonstrates that the continuous fine-tuning of ANN 

parameters by SFWWO enhances the model’s prediction 

efficiency. 

D1  D2 

  
(a) 

  

(b) 

 

Figure 4. Train and test performances: (a) Accuracy, (b) Loss 
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Table 2. ANN hyperparameter optimization 

 

Hyperparameter Optimized Value 

Model Layers 3 

Dense Layer 1 

Nodes in Layers 1, 2, and 3 128, 64, 32 units 

Loss Function MSE  

Optimizer SFWWO 

Batch Size 32 

Epochs 100 

Learning Rate 0.001 

Activation Function ReLU 

Population Size 30 

Drop Out 0.1 

 

 
 

Figure 5. Performances under noisy data conditions 

 

Furthermore, the efficiency of the developed model was 

assessed under noisy conditions to determine its robustness 

and reliability in real-world scenarios. Typically, the smart 

grid data contains noise attributes as it was gathered using IoT 

sensors and smart meters, which are prone to environmental 

interferences. Figure 5 presents the performance of the 

developed model under no-noise and noisy condition. This 

evaluation enables to assess how the designed ANN_SFWWO 

tackle real-time smart grid data. It is observed that the 

presented technique almost maintained stable performances 

under both scenarios, highlighting its applicability in real-

world applications. 

 

5.5 Comparative assessment 

 

In this module, the performances incurred by the developed 

framework were compared with conventional load forecasting 

algorithms to validate its effectiveness and reliability in 

making predictions. The existing approaches used in 

comparative study include CNN-BiLSTM [6], WKNN-ALSO 

[7], FCRBM [9], ERELM [12], WLANFIS [11], Long Short 

Term Memory (LSTM) [21], Bidirectional Encoder 

Representations from Transformers (BERT) [22], and Graph 

Attention Network (GAT) [23]. Different datasets are used for 

comparative analysis with respect to assessment measures. 

Performance comparison for D1 dataset: Figure 6 

displays the comparative evaluation of system’s performances 

such as MSE, RMSE and MAPE with the conventional models. 

The outcomes are evaluated across increasing training ratios 

(60 to 90). For 60% training ratio, the designed 

ANN_SFWWO and the conventional algorithms such as 

CNN-BiLSTM, WKNN-ALSO, FCRBM, ERELM, 

WLANFIS, LSTM, BERT and GAT obtained 0.125, 0.515, 

0.299, 0.243, 0.153, 0.143, 0.322, 0.131, and 0.129, 

respectively. Similarly, MSE was estimated by increasing the 

training data percentage to 70, 80 and 90, as depicted in Figure 

6(a). It is observed that the developed model achieved 

comparatively less MSE than conventional models, 

demonstrating its accuracy in predicting loads. Subsequently, 

RMSE metric was estimated and compared with existing 

forecasting models, as displayed in Figure 6(b). The above-

mentioned conventional models and the proposed framework 

earned RMSE of 0.575, 0.54, 0.39, 0.37, 0.59, 0.355, 0.345 

and 0.334, respectively.  

This evaluation manifest that similar to MSE, the designed 

model achieved less RMSE outcome, which highlights its 

potential of predicting loads precisely. Finally, the MAPE 

performance of the developed model was compared with the 

existing models. The existing models including CNN-

BiLSTM, WKNN-ALSO, FCRBM, ERELM, WLANFIS, 

LSTM, BERT and GAT incurred MAPE of 0.95, 0.91, 0.87, 

0.82, 0.795, 0.985, 0.71, and 0.68, respectively, while the 

presented algorithm earned comparatively lower MAPE of 

0.642 for 60% training ratio. 

These results unequivocally demonstrate that 

ANN_SFWWO is a superior approach for load forecasting in 

smart grids, consistently outperforming other methods across 

various metrics and training data percentages. Its exceptional 

performance is evident in its lower MSE, RMSE, and MAPE 

values, indicating a higher degree of accuracy and robustness. 

The ANN_SFWWO model ability to effectively learn and 

generalize from the training data enables it to make precise 

predictions, even with varying training data percentages. This 

is particularly crucial in smart grids, where accurate load 

forecasting is essential for efficient energy management, grid 

stability, and renewable energy integration. Furthermore, the 

ANN_SFWWO model adaptability to different training data 

percentages makes it an ideal choice for real-world 

applications, where data availability and quality may vary. 

Overall, the results unequivocally establish ANN_SFWWO as 

a cutting-edge approach for load forecasting in smart grids, 

offering a reliable and accurate solution for energy 

professionals and researchers alike. Its potential to optimize 

energy distribution, reduce energy waste, and promote 

sustainable energy practices makes it an invaluable tool in the 

pursuit of a high-performance renewable energy future. 
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Figure 6. Comparative evaluation (a) MSE, (b) RMSE, (c) 

MAPE 

 

Performance comparison for D2 dataset: Figure 7 

displays the comparative evaluation of system’s performances 

such as MSE, RMSE and MAPE with the conventional models 

for D2. The performances are estimated by increasing training 

ratios (60 to 90). For 60% training ratio, the proposed 

ANN_SFWWO and the conventional algorithms such as 

CNN-BiLSTM, WKNN-ALSO, FCRBM, ERELM, 

WLANFIS, LSTM, BERT and GAT obtained 0.128, 0.525, 

0.307, 0.25, 0.16, 0.149, 0.33, 0.136, and 0.133, respectively. 

Similarly, MSE was determined for other training ratios 70, 80 

and 90, as depicted in Figure 7(a). Consequently, RMSE 

metric was estimated and compared with existing forecasting 

models, as displayed in Figure 7(b). For 60% training ratio, the 

above-mentioned conventional models and the proposed 

framework earned RMSE of 0.553, 0.5, 0.4, 0.378, 0.6, 0.365, 

0.355, and 0.34, respectively. This evaluation manifest that 

similar to MSE, the designed model achieved less RMSE 

outcome, which highlights its potential of predicting loads 

precisely. Finally, the MAPE performance of the developed 

model was compared with the existing models. The existing 

models including CNN-BiLSTM, WKNN-ALSO, FCRBM, 

ERELM, WLANFIS, LSTM, BERT and GAT incurred MAPE 

of 0.95, 0.91, 0.87, 0.82, 0.795, 0.985, 0.71, and 0.68, 

respectively, while the presented algorithm earned 

comparatively lower MAPE of 0.642 for 60% training ratio. 

These results unequivocally establish ANN_SFWWO as a 

pioneering approach in load forecasting, showcasing its 

exceptional ability to adapt and generalize across diverse 

datasets and training data percentages. The consistent 

superiority of ANN_SFWWO across various metrics, 

including MSE, RMSE, and MAPE with D2, demonstrates its 

robustness and reliability in predicting load demands. This is 

particularly crucial in smart grids, where accurate load 

forecasting enables efficient energy management, grid 

stability, and seamless integration of renewable energy 

sources. The outperformance of ANN_SFWWO across 

different training data percentages highlights its ability to learn 

and generalize from limited data, making it an attractive 

solution for real-world applications where data availability 

may be constrained. Furthermore, its consistent performance 

across various metrics underscores its potential to drive 

accurate and reliable load forecasting, enabling utilities and 

grid operators to make informed decisions and optimize 

energy distribution. The results also suggest that 

ANN_SFWWO can effectively handle complex load patterns 

and variability, making it an ideal choice for smart grids with 

diverse energy sources and consumption profiles. As the 

energy landscape continues to evolve, the ability of 

ANN_SFWWO to adapt and generalize across different 

datasets and scenarios makes it a valuable tool for ensuring 

grid stability and reliability. Overall, the results solidify 

ANN_SFWWO position as a leading approach in load 

forecasting, paving the way for its adoption in smart grids and 

contributing to a more sustainable and efficient energy future. 
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Figure 7. Comparative evaluation (a) MSE, (b) RMSE, (c) 

MAPE 

 

5.5.1 Comparison with optimization algorithms 

In this module, the performances of the developed SFWWO 

were compared with traditional optimization models such as 

PSO, GA, SFOA and WWO. The metrics used in comparative 

analysis is convergence speed, convergence time and total 

computational time.  

 

 
 

Figure 8. Convergence speed analysis 

 

Figure 8 presents the comparison of the convergence speed 

of different optimization models. The convergence graph 

evaluates how fast the optimization models achieve their 

objective function. In the proposed work, the objective 

function is to reduce the MSE of the ANN by fine-tuning its 

hyperparameters to an optimal value. This extensive 

assessment of convergence speed demonstrates that compared 

to traditional algorithms, including PSO, GA, SFOA, and 

WWO algorithms, the designed SFWWO achieved faster and 

smoother convergence. It takes a smaller number of iterations 

to reach the optimal solution, highlighting its effectiveness in 

reducing error with fewer computational resources.  

Table 3 tabulates the comparative assessment of different 

optimization models. The designed SFWWO take just 34 

iterations for achieving the optimal solution, while the existing 

algorithms consumed comparatively more iterations. Similarly, 

the table illustrates the time consumed the models for reaching 

the optimal solution. The proposed method consumed 8.1s, 

while other models like PSO, GA, WWO, and SFOA 

consumed 8.1s, 9.6s, 8.1s, and 7.6s, respectively. This 

assessment validates that the designed model reaches the 

optimal solutions faster compared to traditional optimization 

models. 

 

Table 3. Comparison of optimization models 

 
Optimization 

Model 

No. of 

Iterations 

Convergence 

Time (s) 

Total 

Runtime (s) 

PSO 45 8.9 12.4 

GA 50 9.6 13 

WWO 43 8.1 12.2 

SFOA 40 7.6 10.7 

SFWWO 34 6.5 9.2 

 

5.6 Computational complexity analysis 

 

To assess the practicality and feasibility of our proposed 

SFWWO algorithm, we conducted a comprehensive 

computational complexity evaluation. The experimental setup 

utilized an Intel i3 processor with 2 GB RAM to simulate a 

resource-constrained environment. The convergence analysis 

demonstrated that SFWWO achieves stable solutions within 

approximately 45–55 iterations, with the mean convergence 

observed at 50 iterations. Compared to PSO and GA, SFWWO 

exhibited faster convergence rates and consistently lower 

runtime per iteration, averaging approximately 1.17 seconds 

per iteration versus 3.21 seconds (PSO) and 4.05 seconds (GA), 

as detailed in Table 3 and Figure 8. Memory consumption 

remained consistently below 700 MB during training, making 

the model suitable for deployment in low-resource 

environments or edge devices. These results highlight 

SFWWO’s efficiency and practical feasibility for real-time 

smart grid applications. 

 

5.7 Interpretability analysis using SHAP 

 

Ensuring transparency in smart grid forecasting is crucial 

for practical decision-making. To enhance the interpretability 

of our ANN model, we applied SHapley Additive exPlanations 

(SHAP) analysis. SHAP provides feature importance scores 

that help identify how each input contributes to prediction 

outcomes. Table 4 presents a comparative evaluation of the 

proposed ANN_SFWWO model against several existing 

methods across two datasets (D1 and D2) using RMSE, MSE, 

and MAPE as performance metrics. Across both datasets, 

ANN_SFWWO consistently achieves the lowest RMSE and 

MSE values, indicating superior prediction accuracy and 

minimal error magnitude. Specifically, for D1, it records the 

lowest RMSE (0.28) and MSE (0.07), outperforming 

advanced models like BERT and GAT. In D2, it maintains this 

trend with an RMSE of 0.225 and MSE of 0.04. Although its 

MAPE in D2 (0.77) is marginally higher than GAT (0.76) and 

BERT (0.765), the overall performance confirms the 

robustness and generalizability of ANN_SFWWO. This 

highlights the effectiveness of its hybrid structure and 

optimization strategy over conventional and deep learning 

models.  

The SHAP analysis revealed that increases in solar 

irradiance and temperature strongly correlated with higher 

predicted load, while wind speed exhibited a complex 

nonlinear relationship. This visual interpretability helps grid 
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operators intuitively understand the forecasting logic, 

increasing their trust in the predictive outcomes. Consequently, 

applying SHAP significantly enhances the practical utility of 

our model by providing clear explanations for each prediction, 

vital for informed operational decisions in smart grids. 

 

Table 4. Comparative discussion of ANN_SFWWO 

 

Datasets Metrics 
CNN-

BiLSTM 

WKNN-

ALSO 
FCRBM ERELM WLANFIS LSTM BERT GAT 

Proposed 

ANN_SFWWO 

D1 

RMSE 0.5 0.449 0.37 0.31 0.3 0.46 0.295 0.288 0.28 

MSE 0.269 0.2 0.14 0.1 0.091 0.215 0.088 0.083 0.07 

MAPE 0.9 0.87 0.81 0.8 0.77 0.82 0.74 0.73 0.61 

D2 

RMSE 0.93 0.72 0.35 0.275 0.255 0.69 0.242 0.239 0.225 

MSE 0.88 0.53 0.12 0.07 0.06 0.54 0.059 0.057 0.04 

MAPE 0.91 0.9 0.84 0.8 0.797 0.85 0.765 0.76 0.77 

5.8 Discussion 

 

This study worked on developing a hybrid algorithm for 

load forecasting in smart grids. The novelty of the model lies 

in the efficient integration of optimization potential of hybrid 

SFWWO into ANN. The ANN algorithm captures the 

complex pattern and hierarchical feature representations 

within the historical data for forecasting loads in future 

scenarios, while SFWWO algorithm fine-tunes the ANN 

hyperparameters continuously over iterations, improving its 

training speed, and enhancing prediction accuracy. The 

designed model was validated using two public grid datasets 

and the results are assessed under different scenarios for 

highlighting the system’s efficiency in load prediction.  

The comparative analysis in Table 3 demonstrates the 

superiority of ANN_SFWWO in load forecasting for smart 

grids, surpassing other approaches in terms of RMSE, MSE, 

and MAPE values. The exceptional performance of 

ANN_SFWWO can be attributed to its efficient feature 

selection procedure, which enables it to handle diverse training 

data with remarkable resilience. By identifying and utilizing 

the most relevant features, ANN_SFWWO enhances model 

correctness, resulting in an impressive MSE value of 0.040 in 

Dataset 2. Moreover, ANN_SFWWO outperforms alternative 

strategies that employ feature extraction techniques to improve 

model performance, achieving a lower RMSE value of 0.225. 

This highlights the effectiveness of ANN_SFWWO's 

optimization procedure in training the ANN, enabling it to 

adapt and learn from data. The optimal MAPE solution of 

0.770 further underscores ANN_SFWWO's potential for smart 

grid load forecasting. In contrast, higher error levels in 

alternative approaches indicate their limited accuracy and 

robustness. The superior performance of ANN_SFWWO 

across various metrics and datasets emphasizes its potential to 

drive accurate and reliable load forecasting in smart grids. As 

the energy landscape continues to evolve, the adaptability and 

learning capabilities of ANN_SFWWO make it an attractive 

solution for ensuring grid stability and reliability. The 

comparative discussion highlights the significance of efficient 

feature selection and optimization procedures in enhancing 

model performance. The results suggest that ANN_SFWWO 

approach can be applied to various smart grid applications, 

enabling utilities and grid operators to make informed 

decisions and optimize energy distribution. 

 

5.8.1 Limitations 

Although proposed ANN_SFWWO framework offered 

strong performance in load forecasting, there are several 

limitations that need to be resolved. Firstly, it lacks 

interpretability as it doesn’t highlight the constraints which 

influences load pattern. This limits its applicability in real-time 

scenarios where transparent decision-making is need for 

effective functioning of smart grid. Secondly, the tuning of 

parameters using SFWWO is sensitive to initial conditions. It 

makes the system works well on pre-defined scenarios but 

cannot generalize well on other cases. Thirdly, the presented 

model was validated on only two datasets and it is not 

validated across diverse grid conditions, which limits its 

scalability. In addition, the presented method cannot examine 

the temporal dependencies within the data, which degrades its 

performances under changing geographic conditions. Finally, 

the presented study lacks implementation or testing on real-

time environment, which is significant for evaluating its 

applicability in real-world applications. 

 

 

6. CONCLUSION  

 

This study presents an advanced signal processing-driven 

approach for load forecasting in smart grids, utilizing ANN 

optimized by SFWWO. By incorporating feature selection via 

Ruzicka and Motyka similarity metrics and refining 

classification through Dice coefficient-based fusion, the 

proposed model enhances predictive accuracy and robustness. 

Comparative analysis with existing methods demonstrates the 

superiority of ANN_SFWWO, achieving the lowest RMSE 

and MSE values. 

The results emphasize the critical role of signal processing 

in refining smart grid forecasting methodologies. Future 

research will explore real-time implementation strategies to 

improve scalability and integration with emerging AI-driven 

smart grid technologies. The future work should incorporate 

Graph Neural Networks (GNNs) or attention mechanisms to 

capture the spatial and temporal dependencies present in load 

data, for improving forecasting accuracy. 
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