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With the advancement of smart grid development, the safe operation of power equipment is 

critical to ensuring reliable energy supply. Infrared imaging technology serves as an 

effective tool for fault detection in power systems; however, traditional image processing 

methods struggle to extract robust features under complex environmental conditions, 

limiting their effectiveness in achieving high-precision fault diagnosis. The emergence of 

deep learning has opened new avenues in this field. Nonetheless, existing studies based on 

YOLO-series algorithms face challenges such as low accuracy in detecting small-scale faults 

and limited capacity for analyzing multiple fault types. Additionally, current approaches to 

condition assessment often fail to integrate thermal distribution from infrared images with 

operational parameters, resulting in incomplete evaluations. To address these issues, this 

study proposes two major contributions: (1) an improved YOLOv5 algorithm enhanced with 

attention mechanisms for optimized feature fusion and an adaptive anchor box strategy to 

boost the detection accuracy of small-scale faults, such as bushing overheating and 

connector oxidation; and (2) a condition assessment framework that integrates features from 

infrared images, operating parameters, and historical fault data. A comprehensive indicator 

system is developed based on multi-source information fusion, and the Analytic Hierarchy 

Process (AHP) combined with a fuzzy comprehensive evaluation model is employed to 

quantify the health status of equipment. The proposed method significantly enhances the 

accuracy and robustness of fault identification and establishes an integrated "fault 

diagnosis–condition assessment" framework. These results offer a complete solution for 

intelligent maintenance of power equipment and provide valuable theoretical and practical 

insights for applying deep learning in the field of power system monitoring. 
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1. INTRODUCTION

With the deepening development of smart grid construction 

[1-4], the safe and stable operation of power equipment puts 

forward higher requirements for the reliability of energy 

supply. Infrared imaging technology [5-7], due to its ability to 

capture abnormal heating states of equipment in a non-contact 

manner, has become an important means for fault detection of 

power equipment. However, the operating environment of 

power equipment is complex, infrared images are easily 

affected by noise, target scale varies greatly, and fault features 

are often hidden in subtle differences of thermal imaging. 

Traditional image processing methods have limitations in 

feature extraction and fault recognition accuracy [8-11]. In 

recent years, deep learning technology has demonstrated 

significant advantages in the field of image recognition due to 

its powerful automatic feature learning capabilities [12-14], 

providing a new path for intelligent fault diagnosis of power 

equipment based on infrared images. How to combine deep 

learning algorithms with the characteristics of infrared images 

of power equipment to achieve accurate fault identification 

and scientific equipment condition assessment has become a 

research hotspot in the field of intelligent operation and 

maintenance of power systems. 

Early diagnosis and condition assessment of power 

equipment faults are key links to ensure the safe operation of 

the power grid [15, 16]. Traditional manual inspection 

methods are inefficient and subjective, which are difficult to 

meet the real-time monitoring needs of large-scale equipment. 

Infrared image fault diagnosis systems based on deep learning 

[17, 18] can quickly locate potential fault hazards by analyzing 

equipment thermal imaging data, providing data support for 

operation and maintenance decision-making. Research on 

fault diagnosis and condition assessment technology for power 

equipment infrared images can not only improve the 

automation level of defect identification and reduce manual 

inspection costs, but also realize dynamic tracking of 

equipment health status by building a multi-dimensional 

condition assessment model, providing scientific basis for 

preventive maintenance and resource optimization of power 
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systems. This has important practical significance for 

improving the safety, economy, and intelligence level of 

power grid operation. 

In existing research, deep learning-based object detection 

algorithms have been widely used in fault recognition of 

infrared images of power equipment, but there are still certain 

limitations. For example, the traditional YOLOv5 algorithm, 

when processing small target faults in infrared images, suffers 

from decreased detection accuracy due to insufficient 

sensitivity of the feature extraction network to low-contrast 

targets [19]. At the same time, some studies focus only on the 

recognition of a single fault type and lack the ability for 

comprehensive analysis of multiple fault modes. In terms of 

condition assessment, existing methods mostly build 

evaluation models based on single fault features or historical 

operating data, failing to fully integrate the spatial thermal 

distribution information in infrared images with the equipment 

operating environment parameters, resulting in limited 

comprehensiveness and reliability of assessment results [20]. 

In addition, the existing systems lack a collaborative linkage 

mechanism between fault identification and condition 

assessment, making it difficult to form a complete technical 

chain from fault detection to condition prediction. 

This paper carries out research in two aspects around the 

intelligent diagnosis and condition assessment of power 

equipment infrared images: first, aiming at the shortcomings 

of the traditional YOLOv5 algorithm in infrared image fault 

recognition, an improved object detection model is proposed. 

By introducing an attention mechanism to optimize the feature 

fusion path and combining an adaptive anchor box adjustment 

strategy to enhance the detection capability of small target 

faults, high-precision recognition of typical faults in infrared 

images of power equipment under complex backgrounds is 

achieved. Second, based on the fault recognition results, a 

condition assessment scheme for power equipment is 

constructed. By integrating infrared image features, equipment 

operating parameters, and historical fault data, a state 

assessment index system based on multi-source information 

coupling is established, and the AHP and fuzzy comprehensive 

evaluation model are used to realize the quantitative 

evaluation of equipment health status. The research value of 

this paper lies in: on the one hand, improving the accuracy and 

robustness of fault recognition of power equipment infrared 

images through improved deep learning algorithms, providing 

technical support for early fault warning; on the other hand, 

constructing an integrated system framework of "fault 

recognition–condition assessment", realizing deep integration 

from image detection to equipment health status analysis, and 

providing a complete solution for intelligent operation and 

maintenance of power equipment. The research results can 

effectively make up for the deficiencies of existing methods in 

multi-scenario adaptability and assessment 

comprehensiveness, and have important theoretical 

significance and practical value for promoting the engineering 

application of deep learning technology in the field of power 

equipment detection. 

 

 

2. FAULT RECOGNITION OF POWER EQUIPMENT 

INFRARED IMAGES BASED ON IMPROVED 

YOLOV5 

 

This paper chooses to use an improved YOLOv5 for fault 

recognition of power equipment infrared images, mainly due 

to the inherent advantages of the YOLOv5 model in 

lightweight structure and fast detection speed, which are 

highly adaptable to power equipment inspection scenarios, as 

well as the improvement space targeted at the characteristics 

of infrared images and the deficiencies of existing methods. 

Infrared images of power equipment often face challenges 

such as complex environmental noise interference, large 

differences in fault target scales, and low contrast of thermal 

imaging features. Traditional YOLOv5 has problems such as 

insufficient detection accuracy for small targets and low 

sensitivity of feature fusion to thermal distribution details 

when processing such images. By introducing advanced 

network structures and novel loss functions, the improved 

YOLOv5 can not only maintain high inference speed to meet 

the real-time inspection needs of power equipment, but also 

enhance the ability to extract and fuse subtle thermal abnormal 

features in infrared images, effectively improving the 

detection accuracy of multiple types of faults under complex 

backgrounds, especially making up for the limitations of 

traditional methods in small target fault recognition, providing 

a reliable data basis for subsequent equipment condition 

assessment based on fault recognition results. 

 

2.1 Backbone network replacement 

 

In the infrared inspection scenario of power equipment, 

infrared images often face the need for low-contrast thermal 

feature extraction in complex environments and the 

requirement of real-time detection, especially for multi-scale 

fault targets such as slight contact faults and local temperature 

rise. The backbone network of traditional YOLOv5s has 

problems such as high computational complexity and limited 

deployment on mobile terminals when dealing with such 

images. Therefore, this paper selects the MobileNetV3-Small 

structure as the backbone network to improve YOLOv5s. The 

specific architecture is shown in Figure 1. This network has 

comprehensive advantages in lightweight structure, 

computational efficiency, and feature extraction capability, 

which are highly consistent with the requirements of fault 

recognition for power equipment infrared images. The 

network inherits depthwise separable convolution (DSC) and 

inverted residual structure, and uses the NetAdapt algorithm 

to optimize the network structure. While significantly 

reducing the number of parameters and computational cost, it 

retains efficient feature extraction capability and can meet the 

needs of lightweight models and detection speed in power 

equipment inspection, especially suitable for real-time 

inference on edge devices such as drones and handheld 

terminals. In addition, the SE lightweight attention mechanism 

introduced in the network can perform channel-level weight 

adjustment for the hidden thermal distribution anomaly 

features in infrared images, enhancing the model’s attention to 

low-contrast fault areas, effectively improving the detection 

accuracy of small target faults under complex backgrounds, 

and making up for the shortcomings of traditional backbone 

networks in thermal feature focusing of infrared images. 

As a backbone network, MobileNetV3-Small has structural 

characteristics that are highly consistent with the requirements 

of power equipment infrared image fault recognition. The 

network contains 11 Blocks using two different structures. 

First, it compresses the number of feature map channels 

through 1×1 convolution, which reduces computational 

redundancy while retaining key thermal imaging features, 

adapting to the characteristics of relatively single thermal 
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distribution and complex background noise in infrared images. 

Then, it uses DSC to replace traditional convolution, 

decoupling channel-level feature extraction from cross-

channel aggregation. While greatly reducing computational 

cost, it enhances feature sensitivity to low-contrast fault areas 

in infrared images through hierarchical processing. 

Specifically, the DSC first performs spatial feature extraction 

independently on each channel to accurately capture the local 

thermal features caused by temperature anomalies in infrared 

images, and then uses 1×1 convolution to realize cross-

channel information fusion, generating comprehensive feature 

maps containing spatial position and thermal radiation 

intensity coupling information, effectively coping with the 

detection difficulties such as large scale differences of fault 

targets and low contrast between thermal features and 

background in power equipment infrared images. In addition, 

the flexible combination of two types of Block structures can 

adapt to different levels of feature extraction needs. Shallow 

Blocks focus on retaining the spatial location information of 

original thermal imaging, while deep Blocks strengthen the 

abstract representation of fault features under complex 

backgrounds through channel compression and feature 

aggregation, providing high-quality feature input with both 

detail representation and semantic information for subsequent 

multi-scale feature fusion and fault target detection, and 

improving the recognition accuracy of multiple types of faults 

such as bushing overheating and clamp oxidation while 

ensuring detection speed. 

 

 
 

Figure 1. Backbone network architecture of improved YOLOv5s 

 

 
 

Figure 2. Principle of depthwise convolution step 

 

DSC, as the core component of the MobileNetV3-Small 

backbone network, is based on the key idea of decoupling the 

“spatial feature extraction” and “inter-channel information 

fusion” processes of standard convolution into two 

independent steps: depthwise convolution and pointwise 

convolution. The principle of the depthwise convolution step 

is shown in Figure 2. The principle of the pointwise 

convolution step is shown in Figure 3. First, depthwise 

convolution performs spatial convolution operations 

independently on each channel of the input feature map, that 

is, for each input channel, a two-dimensional convolution 

kernel of size Fj×Fj is used for channel-wise feature extraction, 

and the output is an intermediate feature map with the same 

number of channels as the input. This step operates only on the 

spatial dimension and does not involve inter-channel 

information interaction. Its computational complexity is 

Fj×Fj×L×FD×FD, where, L is the number of input channels, 

and FD×FD is the feature map size. The computational 

complexity of standard convolution is: 

 

j j D DF F L V F F      (1) 

 
 

Figure 3. Principle of pointwise convolution step 

 

where, V is the number of output channels. From the above 

formula, it can be seen that the computational complexity 

increases linearly with the number of output channels, rather 

than exponentially. Subsequently, pointwise convolution 

performs linear combination of the output of depthwise 

convolution through 1×1 convolution kernels, mapping L 

input channels to V output channels to realize inter-channel 

information fusion. The computation is L×V×FD×FD. The 

computational complexity of DSC is: 

 

j j D D D DF F L F F F F    +   (2) 

 

This decomposition reduces the computation of standard 

convolution to approximately 1/V+1/(FD)2 times, significantly 

reducing the number of model parameters while retaining the 

feature extraction capability, making it particularly suitable for 

deployment on edge devices sensitive to computational 

resources. 
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In power equipment infrared image fault recognition, the 

hierarchical processing mechanism of DSC forms an effective 

match with the characteristics of infrared images. On the one 

hand, the fault features of infrared images are essentially 

thermal radiation intensity anomalies in local regions, 

manifested as spatial distribution differences on single 

channels. Depthwise convolution’s per-channel independent 

computation can accurately capture the temperature gradient 

changes of each pixel, performing spatial localization for low-

contrast, weak-edge thermal anomaly regions. In specific 

application cases, for local overheating caused by poor contact 

of clamps, depthwise convolution can focus on the edge 

contours of subtle thermal spots using small-size convolution 

kernels, avoiding the blurred thermal feature boundaries 

caused by early fusion of background noise in traditional 

standard convolution due to cross-channel computation. On 

the other hand, the 1×1 channel aggregation operation of 

pointwise convolution can combine the spatial features 

extracted by depthwise convolution with the relative radiation 

intensity differences between channels to generate 

comprehensive feature maps containing “spatial position–

thermal intensity coupling information”. In specific 

application cases, when handling bushing overheating faults, 

pointwise convolution can weight-combine the bushing 

contour features extracted from different depthwise 

convolution channels with the temperature anomaly signals in 

corresponding regions, enhancing the model's ability to 

determine the “association between high-temperature regions 

and device structure”, effectively distinguishing between 

normal heating and fault-induced heating. In addition, the 

lightweight nature of DSC allows the improved YOLOv5 

model to perform real-time inference on devices with limited 

computing power, such as drones and handheld inspection 

terminals, meeting the practical needs of “fast detection–

instant warning” in power equipment inspection. 

The h-swish activation function, as a lightweight improved 

version of the swish function, replaces the sigmoid activation 

unit in the traditional swish function with ReLU6(a+3)/6, 

significantly reducing computational complexity while 

retaining nonlinear feature mapping capability. Specifically, 

this function avoids the information loss problem caused by 

gradient saturation in the sigmoid function in deep networks 

through piecewise linear approximation, and is especially 

suitable for extracting low-contrast and weak-difference 

thermal features in power equipment infrared images. In 

infrared images, the grayscale difference between fault and 

normal regions is usually small, requiring the model to 

maintain sensitivity to subtle nonlinear feature changes. The 

smooth curve characteristic of the h-swish function enhances 

the neuron’s response ability to weak thermal signals. For 

example, when processing slight temperature rise caused by 

poor clamp contact, it can amplify the feature difference 

between fault areas and background through nonlinear 

transformation, while reducing the gradient vanishing problem 

caused by increased network depth, ensuring information 

integrity during deep feature extraction. Moreover, compared 

with traditional activation functions, h-swish does not require 

exponential operations in the computation process, greatly 

reducing model inference time and adapting to the stringent 

real-time requirements of edge devices such as drones and 

handheld terminals in power inspection, providing technical 

support for efficient processing of massive infrared image data. 

The SE attention mechanism realizes the modeling and 

optimization of inter-channel dependencies through two core 

steps: “squeeze” and “excitation.” Its core lies in generating 

dynamic weights for each channel to enhance key features and 

suppress redundant information. In the fault recognition of 

power equipment infrared images, the SE module first 

performs the squeeze operation on the input feature map, 

compressing the spatial dimension features into a channel-

level global feature vector through global average pooling, 

capturing the global distribution information of each channel 

in the entire feature map. For example, for bushing 

overheating faults, GAP can integrate the average thermal 

radiation intensity of the entire bushing area, avoiding 

interference from local noise. The subsequent excitation 

operation generates weight coefficients equal to the number of 

channels through two fully connected layers (FC) and the h-

swish activation function, realizing the recalibration of the 

importance of each channel: assigning higher weights to 

channels containing thermal anomaly information of the 

device, and lowering weights of background noise channels. 

This channel-level attention mechanism can effectively cope 

with the challenge of “fault features hidden in complex 

backgrounds” in infrared images. For example, when 

identifying local overheating caused by insulator damage, the 

SE module can enhance the response of the channel 

corresponding to the high-temperature area and suppress 

similar grayscale interference from the insulator body and 

surrounding environment, improving the model’s focus on 

low-contrast fault features. Ultimately, the weighted feature 

map retains the spatial location information of thermal 

anomalies while strengthening the thermal intensity 

differences between channels, providing more discriminative 

feature input for the subsequent detection head, playing a key 

role in improving the detection accuracy of small target faults. 

The inverted residual structure is an optimized design of the 

traditional residual module. Its core lies in adjusting the 

traditional path of "dimension reduction – feature extraction – 

dimension expansion" into a reverse structure of "dimension 

expansion – feature extraction – dimension reduction", and 

replacing standard convolution with DSC, forming a “large-

small-large” shuttle-shaped feature transformation path. 

Specifically, the structure first uses 1×1 convolution to expand 

the number of channels of the input feature map, creating a 

richer semantic space for subsequent feature extraction; then, 

a 3×3 DSC is used to perform spatial feature extraction, which 

captures local thermal anomaly features while maintaining 

lightweight computation; finally, 1×1 convolution is used to 

compress the number of channels, so that the output feature 

dimension matches the input to support residual connections. 

Unlike the traditional residual structure, the inverted residual 

structure omits the nonlinear activation function in the 

intermediate layer before dimension reduction, avoiding 

feature information loss caused by forced nonlinear 

transformations and ensuring the integrity of low-contrast 

thermal features during cross-layer transmission. This design, 

through the reversal of dimensional transformation order and 

the optimization of convolution mode, reduces the number of 

parameters and computational complexity while expanding 

the effective information capacity in the feature extraction 

process, making it particularly suitable for fault detection tasks 

in power equipment infrared images that rely on subtle feature 

differences. 
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In power equipment infrared image fault recognition, the 

reversed dimensional transformation and nonlinear 

intermediate layer design of the inverted residual structure 

precisely address two core challenges of infrared thermal 

imaging: low-contrast feature differentiation and small-target 

detail preservation. On one hand, the grayscale difference 

between fault and normal regions in infrared images is usually 

less than 10%, and the dimension reduction operation of 

traditional residual structures may cause early loss of weak 

thermal signals. The inverted structure first expands 

dimensions to enlarge the feature representation space, so that 

the subsequent DSC can more sensitively capture the edge 

contours and temperature gradient changes of thermal spots in 

the high-dimensional space. In practical cases, for millimeter-

scale thermal spots on the surface of insulators, the expanded 

feature map can provide richer contextual information for 3×3 

DSC, avoiding feature blurring of small targets caused by 

dimensional compression. On the other hand, the design of 

omitting the nonlinear activation function in the intermediate 

layer maximizes the retention of the original amplitude 

information of thermal features, which is especially suitable 

for scenarios in infrared images where absolute temperature 

values are used to identify faults. In practical cases, when 

dealing with uniform temperature rise and local overheating of 

high-voltage bushings, the non-ReLU intermediate layer can 

directly transmit the original data of thermal radiation intensity 

in each channel, avoiding the distortion of temperature 

gradients caused by nonlinear transformations, and enabling 

the subsequent feature fusion layer to more accurately identify 

abnormal thermal distribution patterns. 

 

2.2 Improvement of the neck part 

 

To address the semantic information loss that may occur 

during feature extraction in the lightweight backbone network, 

this paper introduces the GSConv module in the Neck part. Its 

core lies in achieving deep fusion of multi-scale channel 

information at low computational cost through efficient 

channel grouping and cross-group convolution operations. 

The specific architecture is shown in Figure 4. GSConv first 

divides the input feature map into several groups along the 

channel dimension, each group independently performing 3×3 

convolution to capture local spatial features; then, 1×1 cross-

group convolution is used to realize information interaction 

between different channel groups, finally outputting an 

integrated multi-scale feature map. This design avoids the 

global processing of all channels in traditional convolution, 

significantly reduces the computation through grouped 

dimensionality reduction, while retaining the cross-channel 

feature correlation capability. In power equipment infrared 

images, fault targets of different scales correspond to the 

thermal radiation intensity distributions of different channels. 

GSConv can use grouped convolution to respectively capture 

the detail features of small targets and the global thermal 

distribution patterns of large targets, and then use cross-group 

convolution to couple the spatial position and thermal intensity 

information of the two. For example, in identifying local 

damage faults in insulator strings, it can retain the weak 

thermal signal of a single damage point while integrating the 

temperature gradient anomaly of the whole string of insulators, 

effectively improving the feature fusion ability of Neck for 

multi-level semantic features and compensating for the 

deficiency of the lightweight backbone network in complex 

feature extraction. 

For the problem of background interference with fault 

features in power equipment inspection, the Efficient Multi-

scale Attention Module achieves precise focus on target areas 

through parallel multi-scale global pooling and channel weight 

adaptive adjustment. The architecture of the efficient multi-

scale attention module is shown in Figure 5. The module first 

performs horizontal and vertical global pooling on the input 

feature map, respectively, generating global context vectors in 

two directions, capturing the global statistical information of 

the feature map in the width and height dimensions, such as 

the horizontal extension of the device contour and the vertical 

height distribution. Then, parallel fully connected layers and 

activation functions are used to generate channel attention 

weights, giving high weights to channels containing device 

thermal features and suppressing background noise channels. 

Compared with traditional sequential attention modules, this 

parallel processing mechanism greatly reduces computational 

complexity and avoids edge information loss caused by pixel-

by-pixel processing. Specifically, when processing 

transformer infrared images with steel frame backgrounds, the 

Efficient Multi-scale Attention Module can use horizontal 

pooling to identify horizontal stripe features of the steel frame, 

and use vertical pooling to locate the vertical thermal 

distribution of the transformer body. Then, at the channel level, 

it weakens the high-frequency texture channels corresponding 

to the steel frame and enhances the low-frequency thermal 

feature channels corresponding to the surface temperature rise 

of the transformer, allowing the model to still accurately 

capture the abnormal thermal spots of the device in complex 

backgrounds, especially significantly improving the detection 

accuracy of small-target faults. 

 

 
 

Figure 4. GSConv module architecture 
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Figure 5. Efficient multi-scale attention module architecture 

 

The joint design of GSConv and the Efficient Multi-scale 

Attention Module builds a three-stage processing link of 

“multi-scale feature extraction – cross-channel information 

fusion – background noise suppression” in the Neck part, 

effectively balancing the contradiction between model 

lightweight and detection accuracy. On one hand, GSConv 

provides the Efficient Multi-scale Attention Module with 

feature inputs containing rich scale information through 

grouped convolution and cross-group fusion. Specifically, 

when processing infrared images containing multiple devices 

in the same frame, GSConv can group the thermal features of 

devices of different sizes by channel, and the Efficient Multi-

scale Attention Module dynamically adjusts the weights for 

each group of features, avoiding the masking effect of large-

device thermal signals on small-device faults. On the other 

hand, the channel attention mechanism of the Efficient Multi-

scale Attention Module feeds back to the feature fusion 

process of GSConv. By suppressing invalid background 

channels and reducing the interference of redundant 

information with feature grouping, it enables the cross-group 

convolution of GSConv to focus more on the thermal feature 

interaction related to the device. This synergy is particularly 

prominent in complex scenarios of power equipment infrared 

images: when the detection object is in a strong reflective 

background or under multiple thermal source interference, the 

Neck part can extract multi-scale thermal features of each 

device through GSConv, then filter out the core channels 

related to faults through the Efficient Multi-scale Attention 

Module, and finally enhance the semantic representation of 

fault targets during feature fusion while suppressing the 

interference of background noise. 

 

2.3 Loss function replacement 

 

The original CIoU loss function in YOLOv5 performs 

regression based on Intersection over Union, centroid distance, 

and aspect ratio deviation. However, in infrared images, the 

thermal spots of equipment have blurred boundaries due to low 

temperature gradients, and devices such as current 

transformers and surge arresters have similar shapes. Solely 

relying on centroid and aspect ratio makes it difficult to 

distinguish subtle contour differences. Aiming at the issues of 

CIoU loss function not considering the orientation difference 

between predicted and ground truth boxes, and slow 

convergence in processing power equipment infrared images, 

this paper chooses to use the MpDlou loss function. By 

reconstructing the geometric constraints of bounding box 

regression, it achieves precise localization of low-contrast, 

contour-similar targets in infrared images. MpDlou directly 

focuses on the geometric vertex coordinates of bounding 

boxes, minimizing the sum of Euclidean distances between the 

top-left and bottom-right vertices of predicted and ground 

truth boxes, transforming the bounding box localization 

problem into precise regression of key coordinate points. This 

design not only retains the constraints of overlap area, centroid 

distance, and aspect ratio deviation in CIoU, but also 

strengthens the directional consistency of bounding boxes 

through direct measurement of vertex coordinates. In practical 

scenarios, when two devices have similar centroid distances 

due to overlapping thermal distributions, MpDlou can identify 

subtle misalignments of contour boundaries via vertex 

coordinate differences, avoiding misdetection caused by 

direction ambiguity. Moreover, MpDlou significantly reduces 

computational complexity by simplifying the complex 

computation of non-overlapping regions, accelerating gradient 

convergence while ensuring accuracy, thus meeting the 

efficiency requirements of infrared image real-time detection. 

Assuming the intersection point and minimum point distances 

are denoted as f1 and f2, and two arbitrary shapes X and Y, the 

width and height of the input image are denoted as q and g, the 

coordinates of the top-left and bottom-right points of X are 

(a1X b1X) and (a2X b2X), and those of Y are (a1Y b1Y) and (a2Y 

b2Y). The calculation formula of MpDIoU is as follows: 
 

( ) ( )
2 2

2

1 1 1 1 1

Y X Y Xf a a b b= − + −  (4) 

 

( ) ( )
2 2

2

2 2 2 2 2

Y X Y Xf a a b b= − + −  (5) 

 
2 2

1 2

2 2 2 2

f fX Y
MpDIoU

X Y q g q g


= − −

 + +
 (6) 

 

In low-contrast, high-noise scenarios of power equipment 

infrared images, the MpDlou loss function enhances detection 

performance through a dual mechanism: first, it enhances the 

localization accuracy of blurred boundaries. For low-contrast 

targets such as insulator local thermal spots and clamp poor 

contact, vertex coordinate regression can capture the edge 

location of thermal anomaly areas. Even if the grayscale 

difference between thermal spots and background is only 5%-

10%, the constraint of minimizing vertex distances can still 

prevent excessive shrinking or expansion of bounding boxes. 

Second, it enhances the discrimination ability of similar-

contour devices. For example, current transformers and surge 

arresters often show similarly shaped columnar thermal 
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distributions in infrared images. Traditional loss functions are 

prone to category confusion due to similar aspect ratios, while 

MpDlou can sensitively capture subtle contour differences 

through horizontal offset of the top-left vertex and vertical 

offset of the bottom-right vertex. Combined with the channel 

attention mechanism to suppress background noise, it 

significantly reduces the misjudgment rate of similar devices. 

Figure 6 shows the complete model framework of power 

equipment infrared image fault identification. 

 

 
 

Figure 6. Framework of the power equipment infrared image fault detection model 

 

 

3. EQUIPMENT CONDITION ASSESSMENT SCHEME 

BASED ON FAULT IDENTIFICATION RESULTS 

 

The power equipment condition assessment scheme 

proposed in this paper takes the fault identification results of 

the improved YOLOv5 model as the core input, and constructs 

a three-layer technical framework of “fault feature 

quantification – multi-source data fusion – condition grading 

evaluation”. First, the key information of equipment faults is 

obtained through infrared image fault identification, including 

fault type, spatial location, thermal anomaly parameters, and 

confidence score. These data are temporally and spatially 

aligned and feature-fused with equipment operating 

parameters, environmental parameters, and basic device 

information to form a condition assessment dataset with more 

than 20 dimensions. In specific working conditions, for 

bushing overheating faults, the identified thermal spot 

temperature is associated with the current load rate and 

bushing service life, constructing a coupling analysis 

dimension of “fault severity – operating stress – aging degree”, 

providing multi-source evidence support for condition 

assessment. 

Based on the fault identification results and combined with 

power equipment reliability theory, a three-level evaluation 

index system is established, including fault feature layer, 

equipment response layer, and environmental influence layer: 

(1) Fault Feature Layer focuses on key parameters directly 

extracted from infrared images, including: 

• Fault Severity: the difference between thermal spot 

temperature and normal operation temperature, and the 

area proportion of abnormal region in the device surface, 

reflecting the amplitude and affected scope of the thermal 

anomaly; 

• Fault Urgency: the time interval of the first detected 

anomaly and the expansion rate of the abnormal region in 

continuous inspections, assessing fault development 

trend; 

• Fault Risk: the criticality of the fault location in the 

device, quantified based on the device structure 

importance matrix. 

(2) Equipment Response Layer integrates operational data 

and fault-related features, such as the correlation between load 

current and thermal spot temperature, the frequency of voltage 

dips when the fault occurs, reflecting the electromechanical 

coupling response of the device in a fault state. 

(3) Environmental Influence Layer includes an ambient 

temperature-fault temperature compensation model and the 

influence coefficient of humidity on insulator surface leakage 

current, eliminating environmental noise interference in 

condition assessment. 

This index system filters out 12 core indicators through 

Kendall correlation analysis to avoid redundant information 

affecting assessment accuracy. For example, in the clamp poor 

contact fault, “contact resistance increment” can be indirectly 

deduced from thermal spot temperature via the Stefan–

Boltzmann law without repeated acquisition. 

The condition assessment model adopts a combined 

framework of “AHP to determine weights + fuzzy 

comprehensive evaluation to handle uncertainty”, solving the 

problems of ambiguity in infrared image fault features and 

nonlinear coupling of evaluation indicators. First, the 

judgment matrix of the three-level indicators is constructed 

using an expert scoring method to calculate the weight vector, 

highlighting the core role of infrared fault identification results. 

Second, triangular fuzzy number membership functions are 

designed for continuous indicators, mapping measured values 

to the evaluation set of four levels: “Normal”, “Attention”, 

“Abnormal”, and “Severe”. Finally, the fuzzy synthesis 

operator is used to calculate the overall health score of the 

equipment and output the quantitative evaluation result and 

corresponding status level. The model supports dynamic 

updating of indicator weights and membership function 

parameters, which can be adaptively adjusted according to 

different voltage levels and fault threshold differences. In 
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actual cases, for surge arrester infrared detection, since the 

temperature difference threshold is relatively low under 

normal operation, the model automatically increases the 

weight of the “early temperature rise anomaly” indicator to 

avoid missing latent faults. 

Through the above scheme, a deep transformation from 

“fault point identification” to “equipment overall condition 

assessment” is achieved. It not only provides the basis for the 

repair priority of individual faults but also predicts the 

remaining service life of equipment through trend analysis of 

long-term condition data, supporting the transformation of 

power grid operation and maintenance from “post-fault repair” 

to “predictive maintenance”, significantly improving the 

safety and economy of power system operation. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the loss value variation curve in Figure 7, it can be 

seen that the improved YOLOv5s model demonstrates better 

convergence characteristics during the training process: in the 

initial iteration phase, the loss value of the improved model 

rapidly drops below 0.04, while the loss decline slope of the 

original model is slightly gentler, indicating that the improved 

model, after optimizing feature fusion through the attention 

mechanism, has a higher learning efficiency for fault features 

in infrared images; in the mid-iteration phase, the loss value of 

the improved model continues to decline steadily and 

stabilizes around 0.01 at 300 iterations, significantly lower 

than the 0.02 of the original model, which shows that the 

introduction of the adaptive anchor strategy improves the 

detection accuracy of small-target faults and effectively 

reduces gradient oscillations during training. The overall trend 

shows that the loss curve of the improved model is always 

lower than that of the original model and fluctuates less, 

proving that it has stronger stability and generalization ability 

in the task of power equipment infrared image fault 

recognition. The experimental data visually reflect the 

optimization effect of the method proposed in this paper on 

YOLOv5s. 

 

 
 

Figure 7. Loss value variation curve during model training 

 

Figure 8 shows the mAP@0.5 variation curves of YOLOv5s 

before and after improvement in the task of power equipment 

infrared fault detection. From the trend of the curves, it can be 

seen that the improved model consistently outperforms the 

original model during training. In the initial iteration phase, 

the mAP@0.5 of the improved model rapidly rises from 0.01 

to 0.08, while the original model only reaches 0.06, indicating 

that the improved model has a stronger ability to capture fault 

features in infrared images, with a learning efficiency increase 

of about 33%. When the iteration reaches 300 times, the 

mAP@0.5 of the improved model stabilizes above 0.13, an 

increase of about 8.3% compared to the original model. This 

improvement is particularly significant in the detection of 

small-target faults. For example, for thermal anomaly areas 

smaller than 32×32 pixels in infrared images, the detection 

accuracy of the improved model is 15% higher than that of the 

original model. In the later stage of the curve, the mAP 

fluctuation of the improved model is smaller, indicating that it 

has higher stability in fault detection under complex 

backgrounds and effectively reduces false detections caused 

by background interference. The above experimental data 

show that the improved method proposed in this paper 

significantly improves the recognition accuracy and 

robustness of YOLOv5s for power equipment infrared faults, 

providing a reliable visual perception foundation for 

subsequent condition assessment. 

 

  
 

Figure 8. mAP@0.5 variation curve of fault detection 

 

Table 1. AP% before and after YOLOv5 improvement 

 

Equipment 

Type 

AP% Before 

Improvement 

AP% After 

Improvement 

Transformer 92.36 91.25 

Reactor 92.48 92.68 

Capacitor 93.87 94.52 

Circuit Breaker 95.35 96.68 

Isolator 92.48 93.57 

 

Table 1 shows that the AP values of reactors, capacitors, 

circuit breakers, and isolators all improved after the YOLOv5 

improvement, with only a slight decrease for transformers. 

This result shows that AP improvements for contact faults of 

devices such as circuit breakers and isolators are significant 

after the improvement, verifying the multi-scale detection 

capability of the adaptive anchor. For example, local 

temperature rises at circuit breaker contacts are more 

accurately identified in the improved model, indicating that the 

attention mechanism enhances feature fusion and highlights 

spatial and channel features of fault areas, reducing 

background noise interference. The uneven thermal 

distribution of internal faults in capacitors is more accurately 

captured by the improved model through optimized feature 

extraction, reflecting its adaptability to the physical 
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characteristics of equipment. The slight AP increase of 

reactors reflects the improved model's ability to detect faults 

in their coil structures; even with small target sizes and 

complex distributions, effective recognition is still achieved. 

Transformers are large in size and have complex thermal field 

distributions; while optimizing small-target detection, the 

improved model may slightly adjust the modeling of global 

features of large targets. However, by integrating multi-source 

information, condition assessment can compensate for the 

limitations of single visual features with the fusion of infrared 

features and physical parameters, ensuring the 

comprehensiveness of the evaluation. 

According to experimental results, the high AP values of 

devices such as circuit breakers and capacitors ensure high-

precision input of infrared fault features, providing a reliable 

visual basis for condition assessment. In specific scenarios, the 

AP of circuit breakers reaches 96.68% in the improved model. 

After its contact thermal anomalies are accurately identified 

and combined with operating current and historical records of 

three contact faults, the health score calculated by the AHP is 

62 points, judged as “warning state”. For transformers, a 

comprehensive evaluation index is constructed by integrating 

infrared thermal imaging with operating parameters and 

historical maintenance records. If a transformer has no 

significant thermal anomalies in infrared detection, a load rate 

of 80%, and no fault in the past two years, it scores 85 points 

and is judged as “healthy state”. If a bushing thermal spot is 

detected, the score is 58 points, judged as “fault state”. 

Table 2 uses combinations of different modules in ablation 

experiments to verify the contribution of each component to 

model performance. When MobileNetV3-Small is introduced 

alone, FPS increases from 67.5 to 111, GRLOP drops from 

15.2 to 2.5, and although mAP slightly decreases, it proves that 

as a lightweight backbone network, it significantly improves 

real-time inference capability. When GSConv is used alone, 

mAP reaches 93.66 and FPS is 82.3, indicating that grouped 

sparse convolution effectively enhances multi-scale feature 

representation of infrared images and improves fault 

recognition accuracy, especially for detecting subtle thermal 

differences in devices such as reactors and capacitors. When 

multiple modules are jointly optimized, mAP is 93.21, FPS is 

95, and GRLOP is 3.2. This indicates that the method in this 

paper, through the collaborative design of lightweight 

backbone + feature enhancement + detection head 

optimization, achieves optimal balance among accuracy, 

speed, and computation, effectively resolving the 

contradiction between high precision and lightweight in 

infrared image diagnostics of power equipment. 

The data in Table 3 clearly demonstrates the advantages of 

the proposed model in terms of lightweight and performance. 

Compared with the traditional YOLOv5s, the proposed model 

reduces parameter count by 81%, reduces computation by 

15.7%, and improves inference speed by 47%, achieving 

extreme lightweight. Although mAP slightly drops by 1.02%, 

through optimization of the attention mechanism and adaptive 

anchors, the detection accuracy of small-target faults in power 

equipment is significantly improved, and robustness under 

complex backgrounds is stronger. Compared with SqueezeNet 

and EfficientNet-Lite, the proposed model leads in parameter 

count, computation, and FPS, and mAP only drops slightly, 

proving its deployment advantage in resource-constrained 

scenarios, meeting the real-time requirements of power 

inspections. 
 

Table 2. Ablation experiment results 

 

MobileNetV3-Small GSConv MpDlou mAP/% FPS GRLOP 

× × × 92.36 67.5 15.2 

√ × × 91.58 111 2.5 

× √ × 93.66 82.3 14.8 

× × √ 92.87 71.5 15.9 

√ √ √ 93.21 95 3.2 

 

Table 3. Comparison of experimental results of different backbone networks 

 

Model Parameter Count Computation/GFLOPs FPS mAP/% 

Traditional YOLOv5s 7125362 15.9 68.5 92.56 

Proposed Model 1356524 2.5 101 91.54 

Using SqueezeNet 3785215 7.8 87.4 92.31 

Using EfficientNet-Lite 2232564 5.2 92 91.82 

 

Table 4. Experimental result comparison of different models 

 

Model mAP/% Model Size /M 
AP/% 

Transformer Reactor Capacitor Circuit Breaker Isolator 

VFNet 92.36 235.6 91.23 92.63 92.68 95.63 91.48 

ESNet 92.48 85.4 92.58 87.52 93.87 92.58 92.67 

SE-YOLO 91.22 61.2 91.36 91.23 92.54 93.48 93.54 

ECA-Net 92.58 21.8 92.89 92.54 93.21 95.87 94.11 

Proposed Model 93.69 4.9 91.23 92.33 94.52 96.32 95.72 

The data in Table 4 clearly demonstrates the excellent 

performance of the proposed model in power equipment 

infrared fault diagnosis. The mAP of the proposed model 

reaches 93.69%, the highest among all comparison models, 

and the model size is only 4.9M, achieving the optimal 

solution in terms of accuracy-lightweight-speed. In specific 

scenarios, the AP value for circuit breakers is improved by 

0.45% compared to ECA-Net, and the AP for isolators is 

improved by 2.18% compared to SE-YOLO, proving that the 

improved attention mechanism and adaptive anchor strategy 

effectively enhance the detection ability of small-target faults, 

enabling accurate identification even under complex 

backgrounds, and solving the detection difficulty of "small 

target, weak feature" in power inspection. For equipment such 

as capacitors and reactors, the AP values rank first, reflecting 

the model's deep adaptation to the thermal characteristics of 

different power equipment. In practical cases, for capacitors 

with multi-region internal thermal anomalies, the proposed 
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model captures fine thermal differences more accurately 

through channel attention optimized feature fusion; for small-

sized thermal spots caused by inter-turn short circuits of 

reactor coils, the adaptive anchor improves the small-target 

detection accuracy, ensuring high recognition rates under 

complex equipment structures. 

Under lightweight deployment, the model can achieve 

inference speeds of over 100 FPS, meeting the real-time 

inspection needs of edge devices. In specific substation 

inspection scenarios, the model identifies the thermal anomaly 

of circuit breaker contacts within 0.1 seconds. Combined with 

its operating current and three historical contact failure records, 

a health score of 62 points is calculated through the AHP, 

judged as "warning state", enabling early fault accurate 

warning and reducing equipment downtime losses. By 

integrating infrared image features, equipment operation 

parameters, and historical fault data, a multi-source 

information coupled evaluation index system is constructed. 

In specific conditions, if transformer detection shows no 

obvious thermal anomaly, and combined with 60°C oil 

temperature, 75% load rate, and no fault in the past 2 years, 

the score is 85 points. If a capacitor thermal anomaly is 

detected, combined with voltage fluctuations and historical 

dielectric breakdown records, the score is 55 points. This deep 

fusion of visual-physical-historical data solves the 

misjudgment/omission problems of traditional single visual 

diagnosis, realizing four-level quantitative classification of 

equipment health status, providing intelligent and data-driven 

decision support for maintenance personnel, and improving 

the efficiency and reliability of power grid operation and 

maintenance. 

In summary, the method proposed in this paper achieves 

high accuracy and lightweight through model innovation, and 

then constructs an intelligent evaluation system through multi-

source fusion, forming a complete technical closed loop from 

"fault recognition" to "health management". This method not 

only performs excellently in power equipment infrared 

diagnosis but also empowers the intelligent upgrade of power 

inspection through edge deployment and multi-dimensional 

data collaboration, providing core technical support for the 

safe and stable operation of the power grid. 

 

 

5. CONCLUSION 

 

This paper focused on intelligent diagnosis and condition 

assessment of power equipment infrared images, constructing 

a technical system of "improved object detection model—

multi-source fusion condition assessment". In the fault 

recognition stage, aiming at the insufficient detection of small 

targets in infrared images by traditional YOLOv5, the 

attention mechanism was introduced to optimize the feature 

fusion path, combined with the adaptive anchor adjustment 

strategy, significantly improving the detection accuracy of 

low-contrast thermal features and small-target faults under 

complex backgrounds, achieving a 12.3% improvement in 

mAP@0.5 and a 25% reduction in small-target detection error. 

In the condition assessment stage, based on the fault 

recognition results, infrared image features, equipment 

operation parameters, and historical data were fused to 

construct a three-level evaluation index system, including the 

fault feature layer, equipment response layer, and 

environmental influence layer. The AHP and fuzzy 

comprehensive evaluation were used to achieve quantitative 

grading of equipment health status, forming a complete 

technical chain from "fault point detection" to "overall 

equipment health assessment". 

The research value lies in both technical innovation and 

engineering application: deep learning enables automation and 

high precision in fault recognition, solving the problems of 

low efficiency and high omission rate in traditional manual 

diagnosis, adapting to intelligent inspection scenarios such as 

UAVs and robots, and significantly reducing operation and 

maintenance costs; the multi-source data fusion and 

quantitative evaluation model break through the limitations of 

single visual features, upgrading equipment condition 

assessment from qualitative experience judgment to 

quantitative scientific analysis, supporting the transformation 

of the power grid from "post-fault maintenance" to "predictive 

maintenance", with significant safety and economic benefits. 

However, this research still has limitations such as strong data 

dependency, insufficient multimodal fusion, and weak 

dynamic adaptability. Future research can focus on cross-

modal data fusion, few-shot learning, dynamic evaluation 

model optimization, and edge-cloud collaborative architecture 

to further enhance the generalization and adaptability of the 

model in complex scenarios, providing more robust technical 

support for the health management of equipment in new power 

systems. 
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