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The integration of Massive MIMO, OFDM, and NOMA technologies represents a 

powerful solution for next-generation wireless communication networks. However, these 

systems face significant challenges, including accurate channel estimation under low 

Signal-to-Noise Ratio (SNR) conditions, slow convergence and limited adaptability of 

conventional algorithms such as LMS and NLMS, inter-user interference, and the 

complexity of modeling frequency-selective fading in large-scale antenna arrays. This 

study proposes an adaptive channel estimation framework based on the Minimum Error 

Entropy (MEE) criterion. Unlike traditional methods that rely on second-order statistics, 

the MEE approach utilizes higher-order statistics, making it more effective in modeling 

non-Gaussian and impulsive noise commonly encountered in real-world communication 

channels. The adaptive nature of the filter also allows it to respond dynamically to time-

varying channel conditions. Simulation results demonstrate that the proposed MEE-based 

estimator achieves a remarkably low Mean Squared Error (MSE) of approximately 

2 ∗ 10−4  and an average Bit Error Rate (BER) of around 9 ∗ 10−4 , outperforming

conventional estimators in both accuracy and robustness. The simulation results show that 

Leveraging Kernel Density Estimation (KDE) for improved error modeling and coefficient 

adaptation, the proposed method offers a scalable and efficient solution for reliable 

channel estimation in Massive MIMO-OFDM-NOMA systems. These results highlight the 

potential of the proposed framework to significantly enhance spectral efficiency and 

communication reliability in future 5G/6G wireless networks. 
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1. INTRODUCTION

The transformation in wireless communication 

infrastructure throughout recent decades evolved from voice-

based systems to multi-server data-oriented solutions which 

maintain multiple application services. Channel estimation 

stands as the essential factor for wireless network adaptiveness 

because it swiftly determines the current state of 

communication channels [1, 2]. During implementation of 

precoding methods and resource distribution techniques signal 

detection and beamforming operate through data operations as 

a fundamental tool. The implementation of signal detection 

through beamforming operations demands both data 

processing with precoding methods and coherent signal 

detection and beamforming distribution resources. Current 

broadband systems require precise wireless channel 

measurements due to their necessity to operate in dynamic 

areas with doppler speed variations as well as multiple path 

interferences. The estimation of wireless channels functions as 

the essential fundamental for contemporary physical layer 

wireless systems per [3]. 

The significance of proper channel estimation reaches a 

crucial point in current advanced technologies including 

Massive MIMO (Multiple-Input Multiple-Output) and 

Orthogonal Frequency Division Multiplexing (OFDM) 

because these systems serve as essential enablers for 5G 

networks and beyond. The base station of Massive MIMO 

systems uses multiple antennas in an array configuration for 

simultaneous user service which enables spatial multiplexing 

benefits and better power efficiency [4, 5]. Implementing 

OFDM results in channel robustness because it divides 

wideband bandwidth into separate orthogonal subcarriers. 

These technologies present individual implementation 

obstacles when operated together. The accurate and efficient 

estimation of numerous unknown channel coefficients 

becomes essential because Massive MIMO channels operate 

at high dimensions while OFDM systems have frequency 

selective properties. The difficulty of the resulting estimation 

task increases alongside antenna quantity and user density, as 

well as the necessity of rapid channel adaptation. Massive 

MIMO-OFDM systems require effective channel estimation 

techniques that scale efficiently while ensuring reliable 

performance, as these techniques enable the full exploitation 

of spatial multiplexing and frequency diversity gains [6, 7]. 

For instance, in a typical urban deployment with 128 antennas 

at the base station and 32 active users, the number of unknown 

channel coefficients to be estimated per OFDM symbol can 

exceed 4000. This scale introduces high computational 
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demands and limits the applicability of conventional 

estimators. 

Research progress has brought many benefits to the field yet 

various gaps exist that restrict Massive MIMO-OFDM system 

scalability and practical performance. The standard LS and 

MMSE channel estimators require orthogonal pilot sequences 

and simplified propagation environments according to 

research [8]. Limited time-frequency resources and high user 

density together with pilot contamination create challenges for 

these assumptions because orthogonality cannot be maintained. 

When NOMA enters the field, it introduces significant 

complexity to channel estimation since users sharing time-

frequency resources leads to complicated interference patterns 

between users as well as between estimation and detection 

processes which mainly occurs in two forms: Inter-user 

Interference and Cross-interference between the channel 

estimation and signal detection processes. Inter-user 

interference occurs when signals from different users 

transmitted on the same or nearby frequency subchannels 

interfere with each other. Due to the uncertainty in the 

allocation of pilot resources and their sharing in the time-

frequency space, this interference causes the signals to overlap, 

making them difficult to separate and reducing the quality of 

channel estimation. In particular, in situations where the 

number of users and antennas is large, the cross-interference 

between users increases rapidly and has adverse effects on the 

estimation accuracy and signal detection efficiency. In 

addition, cross-interference between channel estimation and 

signal detection is also problematic. In this case, the sharing of 

pilot and data resources causes the channel estimation 

processes, which are usually designed based on pilot signals, 

to be affected by the data signals of other users and their 

performance is impaired. This creates nonlinear and non-

Gaussian interference, which is challenging to model and 

compensate for, especially in NOMA systems where users 

with different signal strength levels operate simultaneously. 

Numerous existing research fails to investigate the collective 

performance impacts of Massive MIMO, OFDM and NOMA 

in these situations [9]. 

Therefore, this study specifically focuses on developing an 

efficient channel estimation framework tailored for Massive 

MIMO-OFDM systems integrated with NOMA, with the key 

objectives of improving estimation accuracy and enhancing 

robustness against noise and interference under realistic multi-

user scenarios. The presented research evaluates the current 

gaps then introduces a specialized channel estimation solution 

for Massive MIMO-OFDM systems. This work introduces 

unique value by analyzing extensive antenna networks 

together with frequency-dependent connectivity and the 

additional technical challenges caused by NOMA. This 

research aims to improve the accuracy of channel estimation 

and enable the use of fewer pilot signals, while ensuring the 

scalability and future expansion capability of the system. This 

paper develops a new detection and estimation method which 

utilizes system structural information to enhance performance 

levels under available channel and interference scenarios. 

The proposed channel estimation method uses an adaptive 

filter together with the Minimum Error Entropy algorithm in 

Massive MIMO-OFDM systems. The filter coefficients get 

updated through system operation with the MEE algorithm. 

The MEE algorithm stands apart from traditional LMS and 

NLMS methods because it minimizes error estimation entropy 

beyond the MSE criteria to incorporate statistical information 

of higher order. Improved resistance to noise and external 

interferences occurs when implementing this technique. MEE 

surpasses the classical LMS and RLS techniques because it 

uses error entropy measurement which provides complete 

coverage of error distribution moments. The MEE-based 

technique enables faster convergence together with lower 

MSE and superior Bit Error Rate (BER) results in channel 

estimation. LMS and NLMS algorithms achieve inferior 

performance compared to MEE which shows exceptional 

results especially under low Signal-to-Noise Ratio conditions 

for accurate channel estimation. This proposed method 

delivers accurate estimates to Massive MIMO-NOMA 

systems and strengthens performance stability under 

conditions of environmental noise making it an appealing 

solution for future deployments. 

This research puts forward three main contributions which 

include: 

• The researchers proposed MEE-based adaptive 

filtering for channel estimation while offering LMS and 

NLMS as typical MSE-based alternatives. 

• The estimation system benefits from error 

distribution estimation done through Kernel Density 

Estimation (KDE) that allows accurate and dependable 

channel estimation across different environmental scenarios. 

• The proposed method excels in different noise 

environments as well as low SNR regimes where traditional 

methods fail because they only handle Gaussian noise. 

• The research develops and tests a practical Massive 

MIMO-NOMA-OFDM system by using realistic parameters 

for multipath components along with specific subcarrier 

configurations and diverse power levels for different users. 

• Performance evaluation tests will measure channel 

estimation accuracy and Bit Error Rate for the proposed 

approach and baseline standards using various SNR conditions. 

The remainder of this paper is organized as follows: Section 

II presents a detailed system model of the Massive MIMO-

OFDM-NOMA configuration. Section III outlines the 

proposed channel estimation and signal detection 

methodology. A thorough performance assessment and 

simulation outcomes are provided in Section IV to confirm the 

efficacy of the suggested strategy. Finally, Section V 

concludes the paper with a summary of findings and potential 

directions for future research. 

 

 

2. RELATED WORK  
 

• Rapudu et al. [10] they addressed challenges in wireless 

communication at millimeter-wave (mmWave) 

frequencies, where signal propagation is significantly 

hindered by obstructions. To improve transmission 

reliability, they proposed combining multiple 

reconfigurable intelligent surfaces (multi-RISs) with 

Massive MIMO systems. However, this approach leads to 

complex channels that traditional channel estimation (CE) 

methods struggle with. Machine learning (ML)-based CE 

techniques have shown promise in these scenarios. The 

authors introduced a novel ML framework, DnCNN-GRU, 

combining a denoising convolutional neural network and 

gated recurrent unit for accurate uplink channel 

estimation. Evaluations showed the DnCNN-GRU 

outperformed conventional methods, achieving near-

optimal accuracy. 

• Xu et al. [11], they introduced StructNet-CE, an online 

learning framework for real-time channel estimation in 
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MIMO-OFDM systems. In contrast to conventional 

techniques, StructNet-CE operates using only over-the-air 

reference signals (RS), performing slot-by-slot estimation 

without prior channel state information. It leverages 

structural features of MIMO-OFDM systems, such as 

repetitive modulation patterns and symbol classification 

robustness, transforming the channel estimation task into 

symbol detection. This enables accurate channel learning 

even with sparse RS configurations in 5G and 5G-

Advanced systems. Experimental results showed 

significant performance improvements, with mean square 

error (MSE) reductions of up to 95.54%, highlighting the 

framework’s potential for next-gen wireless networks. 

• Alqahtani et al. [12] highlighted the importance of 

accurate channel estimation (CE) for wireless network 

performance and proposed the MIMO-OFDM-5G-CS-

AGAN (Conditional Self-Attention Generative 

Adversarial Network), a deep learning-based CE 

framework designed for 5G systems that accounts for 

multipath channels and Doppler effects. The proposed 

methodology, at its core enables robust, low-error CE. 

Evaluation results show significant improvements, 

reducing bit and symbol error rates by up to 13.4% and 

11.23%, respectively. 

• Khan et al. [13], researched wireless channel estimation 

in MIMO-OFDM systems through developing a method 

to handle accurate channel state information (CSI) 

requirements for maximum performance. The authors 

implemented a data-aided channel estimation (DACE) 

method as a spectral efficiency optimization technique 

while minimizing resource consumption. The estimation 

technique uses pilot symbols together with multiple 

detected data symbols serving as virtual pilots to reduce 

training sequence requirements. The proposed algorithm 

demonstrated superior performance than conventional 

least squares (LS) and linear minimum mean square error 

(LMMSE) systems through enhanced mean square error 

(MSE) and Bit Error Rate (BER). 

• Meenalakshmi et al. [14], presented a MIMO-OFDM 

system channel estimation framework by uniting CNNs 

with polar coding techniques for 5G networks. The 

system achieves better reliability and error resilience and 

data throughput through its integration of polar encoding 

and decoding mechanisms. The core component CNN-

CENet operates as a CNN-based channel estimation 

module which addresses interference and noise issues that 

occur during challenging 5G transmissions. Research 

results demonstrated how CNN-CENet delivered superior 

performance than standard LS and MMSE techniques 

through its achievement of a minimized mean square error 

(MSE) which surpassed LS by 95.6% and surpassed 

MMSE by 59.7%. The system proved to offer better Bit 

Error Rate (BER) performance through changing mobile 

conditions. 

• Li et al. [15] investigated the drawbacks of OFDM 

systems that cause inter-subcarrier interference especially 

when pilots are decreased in number or cyclic prefixes are 

shortened. Researchers developed SCBiGNet as a deep 

learning solution which integrates the channel estimation 

part of SNN alongside a CNN and BiGRU structure for 

signal detection purposes to address these problems. The 

combined architecture utilizes two distinct methods to 

reduce nonlinear signal distortions while transmission 

takes place. Simulation data indicated that SCBiGNet 

excelled against existing approaches as it yielded 

substantial Bit Error Rate (BER) improvement between 

0.2 dB to 9 dB under different operational conditions. 

• Yang et al. [16], they analyzed MIMO-OFDM system 

channel estimation through a complete analysis of 

information geometry approach (IGA). Researchers 

established equivalence between all auxiliary manifold 

second-order natural parameters and fixed-point 

convergence of first-order natural parameters. The 

discovery of equivalent second-order natural parameters 

across all auxiliary manifolds and fixed-point 

convergence among first-order natural parameters 

enabled researchers to create an effective information 

geometry approach (EIGA) specifically designed for 

Massive MIMO-OFDM systems which could be 

implemented using fast Fourier transform (FFT) 

operations. The authors demonstrated the convergence 

conditions along with proof that EIGA delivers near-

optimal channel performance while reducing 

computational needs and showing rapid convergence 

through simulation results. 

• Nandi et al. [17] developed a machine learning method to 

estimate channels in MIMO-OFDM systems for reducing 

ISI interference and improving detection accuracy. The 

researchers adopted an Elman recurrent neural network 

(E-RNN) system to conduct channel estimation 

operations because it brings greater scalability and 

adaptability. E-RNN demonstrated substantial 

performance improvements by delivering low PAPR 

value together with reduced BER rate along with 

enhanced capacity channel and low MSE outcome. 

During 40 training epochs the E-RNN generated a PAPR 

of 0.1272. The E-RNN produced superior results 

compared to other neural network-based estimators when 

dealing with complex environments. 

• Kwon et al. [18] presented CAMPNet and MSResNet as 

deep learning-based channel estimators that improve 

accuracy through multiscale representation of channel 

characteristics. CAMPNet operates by applying parallel 

multiscale features followed by convolutional attention 

operations yet MSResNet connects frequency domain 

data across scales through multiscale convolutional layers. 

Under challenging frequency scenarios combined with 

changing Doppler shifts the two models demonstrate 

consistent high performance levels. Experimental tests 

proved that CAMPNet and MSResNet surpassed 

conventional techniques through their performance which 

led to a 48.98% decrease in Mean Squared Error (MSE) 

at high Signal-to-Noise Ratio (SNR) conditions and 

exhibited better practical wireless resilience and 

generalizing capability. 

• Alayu et al. [19] introduces ATLMS Algorithm by 

authors for channel estimation when NOMA and OFDM 

operate together. The main goal consists of reducing Bit 

Error Rate (BER) and Mean Square Error (MSE) with the 

objective of improving system capacity along with user 

accessibility. The research methodology consists of 

creating basic LMS estimation algorithms and developing 

ATLMS as a novel technique to be evaluated with 

extensive simulation results. The newly proposed 

ATLMS system together with its variants shows notable 

improvements in MSE results by producing reduced error 

values than standard LMS methods do. The BER analysis 

shows that ATLMS provides superior performance to 
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LMS by delivering better error rate performance for both 

close and distant users hence improving the NOMA-

OFDM system performance overall. 

• Nayak et al. [20], they developed the Variable Forgetting 

Factor Recursive Least Squares (VFFRLS) algorithm to 

estimate MIMO-NOMA system channels. The research 

team aims to tackle channel impairments by 

implementing VFFRLS because this algorithm 

demonstrates better performance and faster convergence 

than traditional RLS. The algorithm conducts virtual 

experiments that measure MSE and BER performance of 

both VFFRLS and RLS algorithms. According to 

simulation trials VFFRLS demonstrates the best ability to 

minimize mean square errors among adaptive algorithms 

while proving its accurate parameter estimation 

performance at multiple Signal-to-Noise Ratio points.   

This paper investigates MIMO-OFDM by combining both 

advanced methods of Multiple Input Multiple Output (MIMO) 

and Orthogonal Frequency Division Multiplexing (OFDM). 

MIMO technology delivers better data rates through its 

communication nodes equipped with multiple antennas which 

manage radio frequency interference and increase the 

transmission coverage area. Despite being split into multiple 

orthogonal subcarrier channels by OFDM the system retains 

excellent protection against fading along with interference 

issues. The transmission of data and reliability together with 

spectral efficiency enhance through implementing MIMO-

OFDM systems in channels with challenging conditions. 

 

 

3. METHODOLOGY  
 

This section presents the adaptive channel estimation 

method for Massive MIMO-OFDM-NOMA systems. The 

approach is based on employing the Minimum Error Entropy 

(MEE) algorithm in adaptive filters to estimate the 

communication channel in Massive MIMO scenarios. The 

following subsections provide a detailed explanation of the 

proposed method. 

 

3.1 Massive MIMO-NOMA system model 

 

Paper titles should be written in upper-case and lower-case 

We consider a single-cell Massive MIMO system comprising 

𝑁𝑡  transmit antennas arranged in a Uniform Linear Array 

(ULA) at the Base Station (BS), and K single-antenna users, 

where 𝑁𝑡 ≫ 𝐾 , as depicted in Figure 1 [21], Orthogonal 

Frequency Division Multiplexing (OFDM) is used for 

modulation across 𝑁𝑠 subcarriers. 

To implement the NOMA scheme, the system architecture 

shown in Figure 2 is adopted. By assigning different power 

levels to their signals, NOMA can serve several users 

concurrently inside a single cell, improving spectral efficiency. 

Signals intended for each user are assigned different power 

levels such that they can be separated at the receiver using 

power-domain multiplexing. In a general NOMA system, a BS 

serves MM users, all equipped with single antennas. The BS 

transmits signals to users through superposition coding over 

shared time-frequency resources. Figure 2 illustrates a SISO-

NOMA system with two users. Initially, the system model is 

formulated under the Single Input Single Output (SISO) 

configuration, where the signal relationships are represented 

in vector form. Subsequently, the analysis is extended to the 

Multiple Input Multiple Output (MIMO) case, where the 

corresponding equations are reformulated using matrix 

representations in MIMO systems. 

 

 
 

Figure 1. Massive MIMO system 

 

 
 

Figure 2. SISO-NOMA system 

 

As illustrated in Figure 2, the system includes two users, 

labeled User1 and User2. The transmit power of User1 is lower 

than that of User2. Extending this scenario to MM users, the 

transmitted signal at the base station (BS) can be expressed as 

follows:  

 

𝑥 =  ∑ √𝑝𝑘  𝑠𝑘 .

𝑀

𝑘=1

 𝐸{|𝑠𝑘|2} = 1 (1) 

 

In this expression, 𝑝𝑘 denotes the power allocated to the k-

th user, and 𝑠𝑘 represents the transmitted signal for that user. 

The channel gain between the transmitter and the k-th user (for 

1 ≤ 𝑘 ≤ 𝑀) is denoted by ℎ𝑘. In this study, assuming channel 

estimation is done leveraging an adaptive filter, the estimated 

channel corresponding to ℎ𝑘is represented by ℎ̂𝑘. Accordingly, 

in a channel estimation system, the actual channel can be 

modeled as ℎ𝑘 = ℎ̂𝑘 + 𝑒, where 𝑒 denotes the estimation error. 

Assuming that the estimated channels are ordered as follows: 

 

|ℎ̂1|
2

>  |ℎ̂2|
2

> ⋯ > |ℎ̂𝑀|
2
 (2) 

 

It follows that greater transmission power is allocated to 

users with weaker channel gains. This implies that the power 

allocation across users is arranged as 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑀 . The 

total power of the system is then computed according to the 

following relation: 

 

𝑃𝑡 = ∑ 𝑝𝑘

𝑀

𝑘=1
 (3) 

 

The received signal at user k is: 

 

𝒴𝑘 = ℎ𝑘𝑥 +  𝑛𝑘 (4) 

 

Substituting (1) into (4), we get: 
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𝒴𝑘 = ℎ𝑘  ∑ √𝑝𝑗

𝑀

𝑗=1

 𝑠𝑗 + 𝑛𝑘 (5) 

 

To extend the SISO-NOMA system to a MIMO-NOMA 

framework, consider the configuration illustrated in Figure 3. 

This system comprises M users and a base station (BS), 

equipped with M antennas at both the transmitter and the 

receiver sides. Here, it is assumed that each user transmits at 

an identical data rate R. 

In this system, when the signals transmitted by all K users 

simultaneously arrive at the BS, the received signal can be 

expressed as: 

Y = HX +  𝑁 (6) 

 

where, 
 

𝑋 = [𝑥1. … . 𝑥𝑘]𝑇 (7) 

 

where, X represents the transmitted signal vector from users, 

H is the channel matrix, and N is an additive Gaussian noise 

vector. We assume that the BS has knowledge of the channel 

matrix H, whereas users do not. The BS uses a multi-user 

detector (MUD) to recover the users’ signals, as illustrated in 

Figure 3. 

 

 
 

Figure 3. Uplink MIMO-NOMA system scenario with M users 

 

 
 

Figure 4. Channel estimation in massive MIMO-OFDM-NOMA diagram 

 

3.2 Channel gain computation for proposed massive 

MIMO 

 

In a Massive MIMO model with m subcarriers, the received 

signal at the m-th subcarrier, 𝑦̅𝑚 ∈ ℂ1×𝐿, is expressed as: 
 

𝑦̅𝑚 = ℎ𝑚𝑋 + 𝑛𝑚 (8) 

 

where, L denotes the data length, and 𝑋 ∈ ℂ𝑁𝑡×𝐿 represents the 

transmitted data matrix. The vector 𝑛𝑚 ∈ ℂ1×𝐿corresponds to 

the additive white Gaussian noise (AWGN) associated with 

the m-th subcarrier. The gain vector for m-th subcarrier, ℎ𝑚 ∈
ℂ1×𝑁𝑡 , is modeled as the sum of multipath components, given 

by: 
 

ℎ𝑚 = √
𝑁𝑡

𝑃
∑ 𝛼𝑝

𝑃

𝑝=1

𝑒−𝑗2𝜋𝜏𝑝𝑓𝑠
𝑚
𝑀  𝑎(∅𝑝) (9) 

 

where, P is the number of multipath components, 𝛼𝑝  is the 

complex path gain, 𝑓𝑠 is the sampling rate, 𝜏𝑝 is the delay, and 

𝑎(∅)is the steering vector, defined as: 

𝑎(∅) =
1

√𝑁𝑡

[1. 𝑒−𝑗
2𝜋𝑑

𝜆
sin 𝜙. ….  𝑒−𝑗

2𝜋𝑑
𝜆

(𝑁𝑡−1) sin 𝜙]
𝑇

 (10) 

 

where, 𝜆  is the signal wavelength and ∅𝑝  represents the 

direction of arrival (DOA) for the p-th path. The goal of 

channel estimation is to obtain ℎ𝑚̂ , from which the 

transmitted signal 𝑥  can be estimated as 𝑥̂ , allowing for 

computation of BER and MSE. 

 

3.3 MEE-Based channel estimation for massive MIMO-

OFDM-NOMA 

 

Adaptive filtering is employed for channel estimation in this 

study. Adaptive filters are particularly useful in scenarios 

where system parameters or signal characteristics vary over 

time, necessitating real-time adjustments to maintain optimal 

performance. Unlike fixed-parameter FIR and IIR filters, 

which assume predetermined system dynamics, adaptive 

filters adjust their coefficients dynamically to compensate for 

unpredictable changes and uncertainties in the signal 

environment. In practical applications, lack of prior 

knowledge and the presence of non-stationary signals often 
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require filters capable of self-adjustment. Adaptive filters 

achieve this by learning from the input-output relationship 

over time. The proposed MEE-based adaptive filter 

continuously updates its coefficients to adapt to changes in 

signal and system parameters. Figure 4 presents the general 

schematic of the suggested channel estimate approach for 

Massive MIMO-OFDM-NOMA systems; the following 

sections provide a detailed explanation of each block. 

 

3.3.1 OFDM modulation 

Orthogonal Frequency Division Multiplexing (OFDM) is a 

multicarrier modulation technique that mitigates inter-symbol 

interference (ISI) by dividing a wideband channel into several 

narrowband orthogonal subcarriers. This technique is 

particularly effective in multipath fading environments and is 

efficiently implemented through the Fast Fourier Transform 

(FFT) and Inverse FFT (IFFT), along with the insertion of a 

cyclic prefix (CP). In massive MIMO systems, which utilize 

tens to hundreds of antennas at the base station, the integration 

of OFDM with multiple-input multiple-output (MIMO) 

techniques, enables the exploitation of spatial diversity and 

enhances spectral efficiency. 

 

3.3.2 AWGN channel modeling 

In this study, the Additive White Gaussian Noise (AWGN) 

channel is employed to model noise within the proposed 

communication system. In this model, the transmitted signal 

𝑥(𝑡) is corrupted by a stochastic noise process 𝑛(𝑡) . In an 

AWGN communication system, where the transmitted signal 

is attenuated during propagation through the channel, the 

received signal in the time domain is expressed as: 

 

𝑦(𝑡) =  𝛼𝑥(𝑡) + 𝑛(𝑡) (11) 

 

where, 𝛼  denotes the attenuation coefficient, 𝑥(𝑡)  is the 

modulated input signal, and 𝑦(𝑡) represents the received 

signal. Physically, the noise may originate from various 

sources such as electronic components, receiver amplifiers, or 

interference encountered during transmission. When the noise 

is predominantly generated by electronic components and 

amplifiers in the receiver, it can be characterized as thermal 

noise. 

 

3.3.3 Adaptive channel estimation model 

In a communication system, the channel estimation problem 

can be formulated as a system identification task, where the 

objective is to determine the channel characteristics based on 

a set of known input and output signals. As previously 

discussed, a communication system can be modeled as follows: 

 

𝑦(𝑡) = ℎ𝑥(𝑡) + 𝑛(𝑡) (12) 

 

where, 𝑥  is the known input signal to the communication 

channel, ℎ represents the channel coefficients to be estimated, 

𝑛  denotes the additive noise, and 𝑦  is the observed output 

signal, which depends on both the input and the channel 

characteristics. Based on this model, an adaptive system for 

channel estimation is illustrated in Figure 5. In this structure, 

the input signal 𝑥 is passed through the channel (modeled as 

multiplication with h) and combined with noise to produce the 

channel output 𝑦. This output serves as the desired signal d(t) 

for the adaptive filter. The primary goal is to estimate the 

channel coefficients ℎ̂ using the adaptive filtering process. If 

the output of the adaptive filter is denoted by 𝑦̂ , then the 

estimation error signal e(t) is defined as the difference between 

the actual channel output 𝑦 and the filter output 𝑦̂. The aim of 

the adaptive system is to minimize this error, ideally driving it 

to zero. In such a case, 𝑦̂ would converge to 𝑦, implying that 

the adaptive filter coefficients W converge to the actual 

channel coefficients h. Through iterative updates at each step, 

the adaptive filter continuously refines its coefficients. 

Ultimately, the filter weights W provide an estimate ℎ̂ of the 

channel coefficients. The filter is thus configured to ensure 

that ℎ̂ closely approximates ℎ , achieving accurate channel 

identification. 

 

 
 

Figure 5. Adaptive channel estimation 

 

Several algorithms exist for updating the adaptive filter 

coefficients. In this work, the Minimum Error Entropy (MEE) 

algorithm is employed for channel estimation in a Massive 

MIMO-OFDM-NOMA system. In the MEE algorithm, filter 

weights are updated to minimize the error entropy, as detailed 

in the following subsection. 

 

3.3.4 Minimum Error Entropy (MEE) algorithm 

Entropy is a scalar quantity that reflects the mean amount of 

data in a particular distribution. Information is regarded as an 

optimality metric. While lowering the Mean Squared Error 

(MSE) simply lowers the second-order moment of the error, 

minimizing the error entropy minimizes the entire distribution 

of error moments [22, 23]. Therefore, entropy can serve as an 

information-theoretic criterion, replacing MSE in adaptive 

systems. In this work, Rényi entropy is employed, which 

generalizes the notion of entropy; Shannon entropy is a special 

case of Rényi entropy when 𝛼 = 1. The Rényi entropy of the 

error e of order α is defined as: 

 

𝐻𝛼(𝑒) =
1

1 − 𝛼
log ∫ 𝑓𝛼 (𝑒) 𝑑𝑒 (13) 

 

where, f(e) denotes the probability density function (PDF) of 

the error variable. The PDF of the error is considered 

impulsive. In this work, we focus on Rényi entropy of order 

𝛼 = 2, expressed as: 

 

𝐻2(𝑒) = − log ∫ 𝑓2 (𝑒) 𝑑𝑒 (14) 

 
As indicated in Eqs. (13) and (14), computation of entropy 

requires estimation of the error’s PDF. The Parzen window 

method is utilized to calculate the PDF based on received data 

samples:
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𝑓(𝑒) =
1

𝑁
∑ 𝑘𝜎

𝑁

𝑖=1

(𝑒 − 𝑒(𝑖)) (15) 

 

where, 𝑘(𝑒)  denotes the kernel function, 𝜎  represents the 

kernel bandwidth, and {e(1), e(2), …, e(N)} are the error 

samples. For mathematical simplicity, we adopt a Gaussian 

kernel with symmetric radial variance 𝜎2  as the kernel 

function. Consequently, the second-order Rényi entropy for 

the error samples can be reformulated as: 

 

𝐻̂2(𝑒) = − log ∫ (
1

𝑁
∑ 𝐺𝜎(𝑒 − 𝑒(𝑖))

𝑁

𝑖=1

)

2

𝑑𝑒
+∞

−∞

 

𝐻̂2(𝑒) = 

− log
1

𝑁2 ∫ (∑ ∑ 𝐺𝜎(𝑒 − 𝑒(𝑗))𝐺𝜎(𝑒 − 𝑒(𝑖))

𝑁

𝑗=1

𝑁

𝑖=1

) 𝑑𝑒
+∞

−∞

 

𝐻̂2(𝑒) = 

− log
1

𝑁2
(∑ ∑ ∫ 𝐺𝜎(𝑒 − 𝑒(𝑗))𝐺𝜎(𝑒 − 𝑒(𝑖))𝑑𝑒

+∞

−∞

𝑁

𝑗=1

𝑁

𝑖=1

) 

(16) 

 

𝐻̂2(𝑒) = − log (
1

𝑁2
∑ ∑ 𝐺𝜎√2(𝑒(𝑗) − 𝑒(𝑖))

𝑁

𝑗=1

𝑁

𝑖=1

) (17) 

 

In this work, 𝐺𝜎(. ) denotes a Gaussian kernel. The 

Information Potential (IP), which is the expression inside the 

logarithm, is provided by: 

 

𝑉̂2(𝑒) =
1

𝑁2
∑ ∑ 𝐺𝜎√2(𝑒(𝑗) − 𝑒(𝑖))

𝑁

𝑗=1

𝑁

𝑖=1

 (18) 

 

Thus, the entropy expression can be rewritten as: 

 

𝐻̂2(𝑒) = − log (𝑉̂2(𝑒)) (19) 

 

As the logarithm is a monotonic function, increasing the 

information potential is the same as decreasing entropy, as 

stated in Eq. (19). Consequently, the following is an 

expression for the cost function J(e) for the MEE metric: 

 

𝐽MEE(𝑒) =  𝑉(𝑒)w  
max  (20) 

 

As shown in Eq. (21), in an online learning scenario, the 

information potential can be efficiently approximated using 

the Stochastic Information Gradient (SIG). To create a 

stochastic gradient version, the outer summation is eliminated 

and the summation is limited to the most recent C samples at 

time n: 

 

𝑉̂2(𝑒(𝑛)) ≈
1

𝐶
∑ 𝐺𝜎√2(𝑒(𝑛) − 𝑒(𝑖))

𝑛−1

𝑖=𝑛−𝐶

 (21) 

 

To reduce the error entropy, an adaptive filter's weights can 

be modified using the MEE-SIG algorithm in the manner 

described below: 

 

𝑊[𝑛 + 1] = 𝑊[𝑛] + 𝜇. ∇𝑉(𝑒(𝑛)) (22) 

 

where, the gradient is given by: 

∇𝑉(𝑒(𝑛)) =
1

2𝜎2𝐶
∑ 𝐺𝜎√2(𝑒(𝑛) − 𝑒(𝑖))

𝑛−1

𝑖=𝑛−𝐶

{𝑒(𝑛)

− 𝑒(𝑖)}{𝑋(𝑛) − 𝑋(𝑖)} 

(23) 

 

where, μ represents the step size in the MEE-SIG algorithm. 

 

3.3.5 Kernel Density Estimation 

Kernel Density Estimation (KDE) is a non-parametric 

technique used for estimating the probability density function 

(PDF) of a random variable. Unlike parametric methods that 

assume a specific functional form for the underlying 

distribution, KDE constructs the PDF directly from the 

observed data samples, making it particularly useful for 

modeling complex or non-Gaussian noise distributions, which 

are often encountered in real-world communication channels. 

For a given set of N error samples {e(1), e(2), …, e(N)}, the 

KDE for the error e is formally defined as: 

 

𝑓(𝑒) =
1

𝑁𝜎
∑ 𝐾

𝑁

𝑖=1

(
𝑒 − 𝑒(𝑖)

𝜎
) (24) 

 

where, 𝐾(⋅) represents the kernel function, and 𝜎 is the kernel 

bandwidth (also known as the smoothing parameter). The 

kernel function, which is typically a symmetric, non-negative 

function that integrates to one, determines the shape of the 

contribution of each data point to the overall PDF estimate. A 

common choice for the kernel function, and the one adopted 

in this study for mathematical simplicity, is the Gaussian 

kernel, given by: 

 

𝐾(𝑥) =
1

√2𝜋
𝑒−

1
2

𝑥2
 (25) 

 

The bandwidth 𝜎 plays a crucial role in the smoothness of 

the estimated PDF. A smaller 𝜎 results in a more spiky and 

less smooth estimate, potentially overfitting the data, while a 

larger 𝜎  leads to a smoother but possibly over-smoothed 

estimate, potentially obscuring important features of the 

distribution. The optimal selection of 𝜎 is critical for accurate 

PDF estimation. 

In the context of the Minimum Error Entropy (MEE) 

algorithm, KDE is fundamental for estimating the error's PDF, 

which is required for the computation of Rényi entropy. By 

providing a robust estimate of the error distribution, KDE 

enables the MEE algorithm to leverage higher-order statistical 

information beyond just the second-order moments, thereby 

enhancing its performance in non-Gaussian and impulsive 

noise environments. This capability is key to the improved 

accuracy and robustness demonstrated by the proposed MEE-

based channel estimator in Massive MIMO-OFDM-NOMA 

systems. 

 

3.3.6 The OFDM demodulation process 

After estimating the channel coefficients, the signal that has 

passed through the channel is processed by the OFDM 

demodulator, which performs inverse demodulation to 

reconstruct the originally transmitted message. Based on the 

reconstructed message and the transmitted signal, 

performance metrics such as Mean Squared Error (MSE) and 

Bit Error Rate (BER) are computed to evaluate the 

effectiveness of the proposed method. 
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4. EXPERIMENTAL RESULTS  

 

This section presents the simulation results to demonstrate 

the effectiveness of the proposed technique. To this end, a 

Massive MIMO-NOMA communication system is modeled, 

in which Orthogonal Frequency Division Multiplexing 

(OFDM) is employed for signal transmission over the wireless 

channel. The system is configured with the following 

parameters: number of subcarriers Ns=16, number of 

multipath components P=6, sampling frequency fs= 15khz, 

modulation order M=4, message length L=600, and Signal-to-

Noise Ratio values snr_range = [0,5,10,15,20]. Table 1 

summarizes the simulation parameters used in the proposed 

model.  

 

Table 1. Simulation parameters 

 
Parameter Symbol Value 

Number of subcarriers Ns 16 

Number of multipath P 6 

Frequency of sampling fs 15Khz 

Modulation order M 4 

Message length L 600 

SNR range SNR_range [0,5,10,15,20] 

 

To evaluate the performance of channel estimation in the 

proposed model, two metrics are used: Mean Square Error 

(MSE) and Bit Error Rate (BER). If the actual channel gain is 

denoted by ℎ, and the estimated channel gain by ℎ̂, then the 

MSE is computed using Eq. (26): 

 

𝑀𝑆𝐸 =
1

𝑚
∑(ℎ − ℎ̂)

2
 (26) 

 

where, m represents the number of channel coefficients. 

Additionally, the BER is defined as the ratio of the number of 

incorrectly detected bits to the total number of transmitted bits, 

as shown in Eq. (27): 

 

𝐵𝐸𝑅 =  
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑒𝑑 𝑏𝑖𝑡𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠)
=  

∑ (𝑆𝑖 − 𝑆𝑖̂)
𝑁
𝑖=1

𝑁
 (27) 

 

where, 𝑆  denotes the transmitted message, 𝑆̂ is the detected 

message, and 𝑁 represents the length of message.  

 

4.1 Evaluation of the convergence curve of the proposed 

MEE algorithm 

 

Figure 6 illustrates the convergence behavior of the 

proposed Minimum Error Entropy (MEE)-based algorithm in 

comparison with conventional channel estimation algorithms 

such as Least Mean Square (LMS) and Normalized LMS 

(NLMS), which are based on the MSE criterion. As shown, the 

MEE algorithm converges more rapidly to a steady-state value 

than LMS and NLMS. For instance, during the initial iterations 

(fewer than 100), the MSE of the MEE algorithm decreases 

significantly faster, whereas LMS and NLMS require more 

iterations to reach their final values. This improvement is 

attributed to the use of the Minimum Error Entropy criterion, 

which incorporates higher-order statistical information, 

resulting in reduced coefficient fluctuations and faster 

convergence to optimal values. For example, at iteration 100, 

the MSE of the MEE algorithm is approximately 10−3 , 

whereas LMS and NLMS still exhibit higher values around 

10−2. 

 
 

Figure 6. Convergence curves of LMS, NLMS, and the 

proposed MEE channel estimation algorithms 

 

4.2 Performance evaluation of the proposed MEE 

algorithm in terms of mean square error 

 

Figure 7 evaluates the channel estimation performance 

under different SNR levels. The proposed MEE method is 

compared with several conventional techniques, like Least 

Mean Square (LMS), Least Square (LS), Normalized LMS 

(NLMS), Arctangent LMS (ATLMS) [19], and Variable 

Forgetting Factor Recursive Least Square (VFFRLS) [20]. It 

is evident that the proposed MEE algorithm consistently 

achieves lower MSE values across all SNR levels compared to 

the benchmark methods. For instance, at an SNR of 10 dB, the 

MSE for the MEE algorithm is approximately 5.6 ∗ 10−5 , 

whereas the MSE for VFFRLS is around 8 ∗ 10−3 , for 

ATLMS around 2.2 ∗ 10−3 , and for NLMS approximately 

1.2 ∗ 10−4. 
 

 
 

Figure 7. MSE comparison under various SNR levels 

 

4.3 Performance evaluation of the proposed MEE 

algorithm in terms of Bit Error Rate 

 

The Bit Error Rate (BER) analysis of different models 

occurs at various Signal-to-Noise Ratio levels according to 

Figure 8. Through its implementation the proposed MEE 

algorithm leads to substantial BER reduction which allows 
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better reconstruction of received signals. When the SNR 

reaches 10 dB the Bit Error Rate (BER) of MEE stands at 

6.6* 10−5  while VFFRLS reaches 1.2 ∗ 10−1  and ATLMS 

measures 2 ∗ 10−1  and NLMS shows 9.4 ∗ 10−5 . The BER 

for MEE at 0 dB SNR stands at 3.4 ∗ 10−3 whereas VFFRLS 

reaches 3.5 ∗ 10−1 and ATLMS achieves 1 and NLMS gets 

3.5 ∗ 10−3. The proposed method demonstrates better signal 

quality enhancement alongside lower Bit Error Rates which 

are essential elements for fast and impaired communication 

channels. 

 

 
 

Figure 8. BER comparison under various SNR levels 

 

4.4 Evaluate the average performance of the proposed 

compared to other channel estimation techniques 

 

Figures 9 and 10 compare the average performance of the 

proposed method with several conventional channel 

estimation algorithms in terms of the MSE and BER metrics. 

Across all SNR values the proposed MEE-based approach 

demonstrates better stability and consistency than other 

techniques particularly VFFRLS ATLMS and NLMS. The 

MEE algorithm maintains an average MSE of 2 ∗ 10−4across 

all SNR levels whereas VFFRLS shows 2.5 ∗ 10−3  and 

ATLMS shows 8 ∗ 10−3  and NLMS displays 4 ∗ 10−4 

average MSE. Across all SNR levels the MEE algorithm 

reaches approximately 9 ∗ 10−4  average BER which 

outperforms VFFRLS which has 1.62 ∗ 10−1  and ATLMS 

with 1.952 ∗ 10−1  and NLMS uses 1 ∗ 10−3  BER. The 

suggested MEE-based method obtains highly precise channel 

estimation performance which leads to substantial Bit Error 

Rate reduction. 

The analysis proves the MEE algorithm enhances signal 

precision and system dependability when used for adaptive 

filter coefficient adjustment in Massive MIMO-OFDM 

channel estimation. The proposed method both reaches 

convergence speed faster while maintaining lower error rates 

across all SNR ranges which indicates its excellence in harsh 

communication conditions. The proposed MEE-based channel 

estimation technique proves itself as an efficient solution for 

improving estimation quality in Massive MIMO-NOMA 

systems.

 
 

  

Figure 9. Comparison of average MSE between the proposed 

method and other channel estimation techniques 

Figure 10. Comparison of average BER between the 

proposed method and other channel estimation techniques 

 

 

5. CONCLUSIONS  

 

The research presents an innovative adaptive channel 

estimation approach for Massive MIMO-OFDM-NOMA 

systems that depends on the Minimum Error Entropy (MEE) 

algorithm. Higher-order statistical data from estimation error 

distributions enables the MEE approach to boost channel 

estimation accuracy and robustness especially when Signal-to-

Noise Ratio (SNR) levels are low. The MEE algorithm 

outperforms traditional estimation methods according to 

comparative studies because it decreases MSE and BER rates 

under multiple noise conditions. The proposed method 

achieves its effectiveness through multiple simulated 

experiments. The mean square error (MSE) reaches lower 

levels during channel estimation when using this method over 

regular techniques. The MEE algorithm shows effective 

results according to simulation data which surpass traditional 

algorithms Least Mean Squares (LMS) and Normalized LMS 

(NLMS) when measuring convergence performance. The 

MEE algorithm demonstrates stable channel estimation ability 

with an average Mean Squared Error value of 2 ∗ 10−4  for 

various Signal-to-Noise Ratio testing conditions. The 

proposed method demonstrates outstanding performance in 

signal reliability through an average Bit Error Rate (BER) 

measurement of 9 ∗ 10−4 that spans across all SNR settings.  
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