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Multivariate time series (MTS) data is crucial in fields such as healthcare, finance, and
traffic management, particularly for forecasting clinical outcomes like mortality rates,
disease risks, and hospital stay durations. In healthcare, imputing missing values from
complex MTS datasets can enhance critical care management and enable personalized
treatments. This study focuses on imputing missing values in health-related data, especially
intravenous vital signs and data essential to physicians' decision-making. To address
limitations of existing imputation methods, we introduce a novel approach: the STING
Kernel Deep Level (SKDL), coupled with an explainable framework. SKDL is designed to
improve accuracy and effectively handle categorical outputs. Our evaluation using the
MIMIC-IV dataset shows that SKDL outperforms traditional imputation methods such as
Mean Imputation, k-Nearest Neighbors (KNN), and standard GAN-based approaches,
based on performance metrics including Mean Absolute Error (MAE), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and R Squared. SKDL achieved an MAE of
0.0870, MSE of 0.0175, RMSE of 0.0040, and R Squared of 0.3367, indicating strong
accuracy. Furthermore, the integration of Explainable Al (XAl) enables interpretability by
visualizing imputation rationale, helping clinicians verify that the predicted values align
with physiological expectations, thereby reinforcing trust in the imputation process. These
results suggest that SKDL, with its interpretable design, provides a reliable solution for
missing data imputation and supports more consistent and transparent clinical decision-
making.

1. INTRODUCTION

In healthcare, the stakes are even higher, as missing data in
multivariate time series can directly impact patient outcomes

The imputation of missing values in multivariate time series
data has emerged as a cornerstone methodology across diverse
fields, addressing the pervasive challenge of incomplete
datasets. This process is crucial in enabling accurate analyses
and informed decision-making where data gaps might
otherwise compromise results. In environmental science, the
impact of missing time series data is particularly evident
during critical periods marked by high hydrological or
biogeochemical fluxes. For instance, peak flow conditions and
rapid fluctuations often occur in environments such as
hyporheic zones, which are vital interfaces between surface
and groundwater systems. These conditions can drive essential
processes, including the cycling of carbon, nutrients, and other
elements. If data gaps align with these high-activity periods,
researchers may miss key insights into ecosystem dynamics,
ultimately hindering efforts to understand and predict
environmental changes. The application of precise imputation
methods becomes indispensable in filling these gaps with
accurate estimates, thereby preserving the integrity of the data
and enabling robust scientific analysis [1-3].
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[4, 5]. Clinical datasets are often incomplete due to irregular
monitoring, varying patient compliance, or logistical
constraints in data collection. Missing values in such datasets
pose significant challenges for predictive modeling, where
every data point can contribute to understanding patient health
trajectories [6, 7]. Imputation techniques are applied to
reconstruct these incomplete datasets, enabling the
development of predictive models for critical clinical
outcomes. These models can forecast patient mortality, detect
early signs of decompensation, estimate length of hospital
stay, and assess disease risks, thereby informing proactive
medical interventions. Furthermore, these methods are
instrumental in optimizing intensive care unit (ICU)
operations, ensuring that limited resources are allocated
effectively to meet patient needs. Imputation also facilitates
the creation of automated and personalized treatment plans,
which are increasingly vital in delivering tailored healthcare
solutions that adapt to the unique circumstances of each
patient. By bridging data gaps, imputation not only enhances
the quality of analysis but also supports a wide range of
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applications that improve patient care, streamline medical
operations, and foster innovation in clinical decision-making
[8].

The science of imputation, therefore, represents a critical
intersection of data science and domain-specific expertise,
empowering researchers and practitioners to maximize the
value of their data. Whether addressing ecological dynamics
or improving patient outcomes, imputation methods provide
the tools necessary to overcome the challenges posed by
missing values, ensuring that data-driven approaches remain
reliable, comprehensive, and actionable.

The field of missing value imputation (MVI) has
predominantly focused on multivariate tabular data, often
neglecting variables that exhibit temporal variation. Despite
this, many real-world datasets, particularly those in health
sciences and electronic sensor applications, involve time-
varying data recorded across multiple variables over extended
periods. For instance, electronic health records (EHRs) include
patient follow-up data collected longitudinally, where missing
values can appear both across variables (cross-sectional
missing data) and over time (longitudinal missing data). Such
data gaps are inevitable due to various reasons, including
irregular patient monitoring, incomplete data entry, or sensor
malfunctions. Addressing these gaps is essential, as missing
data can compromise the quality of analyses and decision-
making processes, necessitating sophisticated imputation
methods to reconstruct the missing information accurately [9].

Recurrent Neural Networks (RNNs) have emerged as a
widely adopted solution for handling missing values in clinical
time series data. RNNs are particularly effective for processing
sequential data of varying lengths, which makes them suitable
for many healthcare applications. However, conventional
RNN methods often assume that time intervals between
consecutive observations are constant. This assumption
creates challenges when dealing with real-world datasets,
where irregular time intervals are common. As a result,
traditional RNN-based imputation methods often struggle to
deliver optimal performance in such scenarios, highlighting
the need for more adaptive and flexible approaches [10].

Among the advanced methods developed for time series
imputation, the STING (Self-Attention-based Time Series
Imputation Networks Using GAN) framework stands out as a
promising approach. STING combines Generative Adversarial
Networks (GANSs) with two-way recurrent neural networks to
effectively capture latent representations of time series data.
This hybrid architecture enables STING to address many of
the challenges associated with imputation in time-varying
datasets. By incorporating self-attention mechanisms, the
method can focus on critical patterns in the data, improving its
ability to reconstruct missing values accurately. Despite its
innovative design and effectiveness, STING has limitations.
Notably, it struggles to generalize beyond continuous
numerical data, performing poorly with categorical or
qualitative datasets. This restriction underscores the ongoing
need for further advancements in the field of missing value
imputation to develop methods capable of handling diverse
data types and accommodating the complexities inherent in
real-world datasets [11].

As MVI continues to evolve, addressing these limitations
will be crucial for ensuring the robustness and versatility of
imputation techniques, enabling their application across a
broader range of use cases and improving their ability to
support data-driven decision-making in critical fields like
healthcare and environmental science.
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In addition to the STING method, an alternative approach
for addressing missing data in multivariate time series (MTS)
is the TCKIM method, a kernel-based technique that
incorporates an ensemble learning strategy. The TCKIM
method is underpinned by a novel mixed-mode Bayesian
mixture model, which effectively mitigates information loss
without requiring direct imputation of missing values. This
makes it an appealing choice for certain applications where
data imputation may introduce additional uncertainty.
However, a notable limitation of the TCKIM method is its
inability to leverage patterns inherent in the missing data,
which are often critical in medical datasets. This shortcoming
is particularly significant in medical MTS, where missing
values frequently contain valuable insights into underlying
processes. Furthermore, the kernel method guarantees
unbiased predictions only in cases of negligible missing data,
as it fundamentally relies on the assumption that the data is
Missing at Random (MAR) [12]. These limitations necessitate
the implementation of additional imputation processes to
address gaps and enhance the method’s applicability, referred
to as deep stage imputation (Deep Level).

Research has shown that the kernel-based TCKIM method
is highly effective for imputing missing values in electronic
health records (EHR). For instance, findings in the study [12]
emphasize its suitability for handling missing data in EHR
settings, where its structure is particularly well-suited for
tabular data. However, in cases requiring high imputation
accuracy and reliable downstream analysis, the STING
method has demonstrated superior performance compared to
other state-of-the-art approaches. Research [11] highlights that
the STING method outperforms alternatives in terms of
imputation accuracy and in supporting downstream tasks,
making it an essential tool for more complex datasets. In light
of these findings, the current study aims to conduct
experiments on two types of health datasets vital sign data
from MIMIC IV and physician decision-making data to
evaluate the effectiveness of imputation techniques in
improving data utility and clinical outcomes.

For vital sign data, the kernel method is applied to achieve
greater depth in imputation, building on the existing kernel-
based framework to exceed the accuracy achieved by prior
models. This aligns with findings [13], which illustrate that the
Time Series Cluster Kernel (TCK) offers a robust framework
for analyzing multivariate time series with missing data,
making it particularly effective for structured data like MIMIC
IV. Meanwhile, the STING method is specifically applied to
physician decision-making datasets, focusing on addressing its
current limitations in handling qualitative or categorical data.
Traditionally, the STING method has excelled in numerical
imputation, but its application to qualitative data remains a
challenge. The study seeks to extend STING's capabilities in
this domain by applying it to datasets where decisions are
expressed in categorical or qualitative forms [11]. By
combining the strengths of the kernel and STING methods,
this research aims to develop a comprehensive approach for
imputation that is adaptable to diverse types of healthcare data,
ultimately improving patient outcome analysis and clinical
decision-making accuracy.

In order to address the deficiencies inherent in the
aforementioned methodologies and their applicability to vital
sign data and clinical decision-making data, there exists a
pressing need for a novel imputation technique that enhances
accuracy and is capable of generating data in a categorical
format.



The researcher aims to develop an innovative approach
termed the “STING Kernel Deep Level method (SKDL) with
Explainable.” It is anticipated that this cutting-edge
methodology will facilitate more profound imputation with
superior accuracy compared to preceding techniques, while
simultaneously yielding categorical data imputation and
providing elucidation or interpretability of the imputation
outcomes via the SKDL With Explainable framework.

To enhance the effectiveness of data imputation methods,
several key questions must be addressed. First, it is essential
to explore how to design an Advanced STING method that
surpasses the performance of previous iterations in generating
imputations. Additionally, developing an Advanced Kernel
method that achieves superior accuracy compared to earlier
kernel approaches is crucial [14]. Furthermore, the integration
of Explanations into both the STING and Kernel methods
should be considered, enabling them to produce imputations
across datasets with varying dimensions while also providing
clear justifications for their outputs. Finally, a robust
framework for validating and evaluating these advanced
methods is necessary to establish a more relevant and effective
theory of imputation that meets contemporary data analysis
needs.

By offering an interpretative framework for the imputation
results procured, it demonstrates that the derived outcomes can
genuinely be substantiated and align with empirical research
findings. Reference [15] emphasizes the significance of
incorporating mechanisms that are interpretable and
explicable within the model framework. Furthermore,
according to the findings presented in research [16], it is
feasible to seamlessly conduct imputation on cross-
dimensional datasets by augmenting the CDSA algorithm with
inputs of elevated dimensions, thereby integrating diverse data
modalities. Research [17] elucidates the imputation process
employing an optimization technique that interconnects
various patterns of missing values within analogous,
interrelated data. Consequently, there is a compelling
necessity to advance a new methodology, namely the SKDL
with Explainable approach, for the application of imputation
to multivariate time series data within the healthcare domain.

However, despite their strengths, existing methods still
exhibit critical limitations that restrict their applicability in
real-world healthcare settings. The original STING
framework, while effective in imputing continuous numerical
values, lacks the capability to process categorical or qualitative
data, which are common in clinical decision-making records.
This limitation hampers its ability to fully capture the diversity
of healthcare data types. On the other hand, the TCKIM
method, although robust in avoiding direct imputation through
its kernel-based ensemble approach, fails to utilize the
underlying patterns within the missing data and assumes that
the data is Missing At Random (MAR). This assumption is
often invalid in healthcare applications, where the mechanism
of missingness can itself carry valuable clinical meaning.
These shortcomings highlight the need for a more flexible,
accurate, and explainable imputation technique that can handle
both continuous and categorical variables while providing
interpretability to support trustworthy clinical decision-
making.

2. METHOD

This research aims to implement an innovative technique
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known as the STING Kernel Deep Level (SKDL) with an
Explainable Al (XAI) approach. By leveraging this advanced
method, we anticipate achieving a significantly higher
imputation accuracy compared to traditional approaches. The
research workflow begins with a comprehensive literature
review, followed by dataset preprocessing, the development of
state-of-the-art imputation models, and concludes with
evaluation and model testing. The primary objective is to
develop a method for imputing categorical data, while
simultaneously offering clear and interpretable explanations of
the imputed results (see Figure 1).

In many datasets particularly those in healthcare and the
social sciences missing data poses a common and serious
challenge that can compromise the quality of analysis and
decision-making. Focusing on categorical data allows us to
address the unique complexity of imputing values that
represent discrete categories rather than continuous variables.
The SKDL approach is designed not only to fill these missing
values but also to explain the rationale behind each imputation,
thereby promoting transparency and trustworthiness in critical
domains such as clinical research and predictive modeling.

The SKDL method integrates explainable techniques to
provide insights into the underlying patterns and relationships
that drive the imputation outcomes. This is particularly crucial
in decision-sensitive applications, where domain experts such
as clinicians need to understand and justify the values
generated by the model [18-20]. Thus, explainability becomes
a key component of the imputation framework.

The SKDL framework consists of several phases. First, the
STING method is applied and extended into a deeper level of
processing, surpassing the performance of the conventional
STING method. Next, the Kernel method is employed to
further enhance the imputation quality through deeper
representation learning. These processes culminate in the
selection of the optimal model based on imputation
performance, all of which are illustrated in Figure 1.

Data Preprocessing

|

Model Development

|

Training

|

Imputation Process

|

Evaluation

Deployment

\ Documentation

l

Figure 1. Flowchart for SKDL framework



Following the acquisition of the MIMIC-IV vital signs
dataset, preprocessing is conducted, including data cleaning
(handling missing values) and normalization using the
MinMax Scaler. The dataset is then split into training and
testing subsets to enable proper model validation. Imputation
is performed using the proposed SKDL method, followed by
integration with explainability techniques to provide detailed
justifications for each imputed value. The outputs and findings
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Input or Output

of the imputation process are presented in Figure 2. The SKDL
with Explainable Imputation method represents a novel and
advanced strategy for imputing categorical data. It improves
upon previous STING and Kernel methods by incorporating
interpretable outputs and decision reasoning. Validation is
conducted by comparing the imputed values to the actual
ground truth data, evaluated both quantitatively and
qualitatively.
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Figure 2. Framework for creating multivariate time series data imputation programs using the SKDL (Sting Kernel Deep Level)
method with explainable

To assess the effectiveness of the proposed SKDL model,
four widely used error metrics are employed, each offering a
unique perspective on model performance. The first metric is
Mean Absolute Error (MAE), which measures the average
magnitude of prediction errors without considering their
direction. It provides a straightforward interpretation of how
far, on average, the predicted values deviate from the actual
values. The second metric is Mean Squared Error (MSE),
which calculates the average of the squared differences
between predicted and true values. By squaring the errors,
MSE places a greater penalty on larger deviations, making it
particularly useful when minimizing large errors is a priority.
Building upon MSE, the Root Mean Squared Error (RMSE) is
obtained by taking the square root of the MSE value. This
transformation brings the error back to the same scale as the
original data, making RMSE easier to interpret and more
intuitive, especially when evaluating the model’s precision in
real-world units. Like MSE, RMSE is sensitive to outliers and
therefore highlights significant discrepancies in predictions.
Lastly, R-squared (R?), or the Coefficient of Determination,

STING Deep
Level Method

SKDL

Im, ion ————
puaty Method

Kernel Deep Level

Method

quantifies the proportion of variance in the dependent variable
that can be explained by the independent variables used in the
model. An R? value closer to 1 indicates a stronger fit between
the predicted values and the actual data, signifying higher
model accuracy. Collectively, these metrics provide a robust
and comprehensive framework for evaluating the accuracy,
consistency, and reliability of the SKDL imputation model,
both in general terms and in identifying specific performance
strengths or weaknesses.

The overall design and flow of the proposed imputation
system integrating deep-level STING and Kernel methods
within the SKDL framework and culminating in interpretable
categorical results are comprehensively illustrated in Figure 3.
This figure visually summarizes how the method transitions
from raw imputation to the SKDL approach, how both STING
and Kernel components are applied in parallel, and how the
outputs converge to deliver not only accurate categorical
imputations but also clear, explainable justifications for each

result.

Imputation Results that
Generate Categorical
Data

SKDL With
Explainable Method

The Result of The

Imputation with an
Explanation of the
Obtained Results

Figure 3. Overview of the research findings that will be developed, utilizing the latest and most advanced imputation technique
(SKDL with an explainable method)
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The training process of the SKDL method operates through
an iterative adversarial optimization scheme. The core
mechanism involves two primary components: a Generator
(G) and a Discriminator (D). The procedural steps of the
algorithm are outlined below, and the notations used are
summarized in Table 1 for clarity.

While the training loss has not converged, the following
steps are repeated:

1.

Discriminator Optimization:
Draw kj training samples (x%,m%) from the
dataset, where x) is the input with missing values
and mY) is the corresponding binary mask indicating
observed (1) and missing (0) components.
Draw kj noise vectors z)~Z , and hint vectors
b ~B.
For each sample j = 1, ..., kp:
. Generate imputed values:

20 = G(x),mW, z0)
Construct the completed sample:
gD =m® O + (1- mP)© xO
Compute the hint vector:
hD = pWhd ©) m@P + 05 - (1 _ b(j))

Update the Discriminator D by minimizing the loss
function L, using stochastic gradient descent (SGD):

kp
v, iz L, (m(j), h?, D(V, h(;’)))
kD j:]_

N

Generator Optimization:
Draw kgsamples from the dataset (x(),m¥)), along
with noise vectors z0)~Z and hint vectors b ~B.
For each sample j = 1, ..., kg:
Construct the completed
%Y and hint vector h¥? as above.
Update the Generator G by minimizing the combined
loss

sample

Table 2. The outcomes

kg

1 - I

Ve _Z [LD (m(n, h®, D(W, h(;))) ta
ke 4

;((j))]

The SKDL training process consists of two main stages
repeated until convergence: Discriminator and Generator
optimization. In the first stage, the Discriminator learns to
distinguish real from imputed values by evaluating completed
samples generated by the Generator, using observed data,
noise, and hint vectors. It is updated based on how accurately
it can identify missing components. In the second stage, the
Generator is trained to produce realistic imputations. It
minimizes a combined loss that includes adversarial feedback
from the Discriminator and a reconstruction loss on observed
values. This adversarial process helps the Generator refine its
outputs until imputed values are indistinguishable from actual

Ly (2,

data.
Table 1. Notation descriptions
Symbol Descriptions

X Input data sample (contains missing values)

m Mask vector (1 for observed, 0 for missing entries)
; Random noise vector sampled from a prior

distribution
b Binary hint vector used to partially reveal mask
information to the Discriminator

X Imputed data generated by Generator

X Completed data (observed + imputed)

h Hint vector derived from mask and hint binary
o Discriminator loss, measures ability to distinguish real

from imputed values
Reconstruction loss on observed data, ensures data
Lm A
fidelity
" Weight coefficient balancing adversarial and

reconstruction losses
Element-wise (Hadamard) multiplication

3. RESULTS AND DISCUSSION

The first step involves preprocessing the data, which
includes data cleaning by removing any missing values and
data normalization using a MinMax scaler. Following this, the
next task is to split the data into training and testing sets by
defining the data segmentation. The outcomes of processing
the MIMIC IV data with Python are illustrated in the Table 2.

of processing the MIMIC IV

heart rate  sbp dbp mbp resp rate Temperature spo2 Glucose
0 0.0 0.0 00 00 0.0 36.00 0.0 0.0
1 116.0 169.0 69.0 98.0 16.0 0.00 98.0 0.0
2 104.0 0.0 00 00 16.0 0.00 100.0 0.0
3 97.0 0.0 00 00 11.0 37.83 100.0 0.0
4 83.0 109.0 550 71.0 16.0 37.50 100.0 0.0

From the illustration in Figure 3, it is evident that the Python
application is capable of displaying the original data extracted
from the MIMIC-1V dataset. This visualization highlights the
presence of certain data entries that are either empty or missing,
which is a common occurrence in many datasets. The
identification of these gaps underscores the necessity for an
imputation method to effectively fill in the missing data.

Imputation techniques are essential in data preprocessing as
they help maintain the integrity of the dataset, allowing for
more accurate analyses and insights. By addressing these
empty values, we can ensure that the dataset is complete and
ready for further processing or modeling, ultimately leading to
more reliable results in any subsequent analysis.
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The subsequent step involves normalizing the MIMIC-1V
data using the MinMax Scaler method. This technique is
essential for transforming the data to a standard range, which
can enhance the performance of various machine learning
algorithms. The results of the MIMIC-1V data normalization
process can be observed in Figure 4. This visualization will
provide insights into how the data has been scaled and
prepared for further analysis.

/: ° data = pd.read_csv('/content/drive/MyDrive/disertasi arius/mimic-iv-vital-sign.csv')
:/: [4] data_asl=data.loc[:, 'heart_rate’:'glucose’]
¥ [5] data_matrix-data_asl.fillna(®)
data_mask=data_asl.fillna(@)
:/: © data_matrix.head()
_Z' heart_rate sbp dbp mbp resp_rate temperature spo2 glucose @
0 1190 00 00 00 21.0 393 100.0 0.0 M
1 1160 850 450 58.0 19.0 00 950 0.0
2 560 00 00 00 16.0 0.0 0.0 0.0
3 1170 00 00 00 32.0 0.0 940 0.0
4 500 89.0 49.0 64.0 230 00 980 0.0
(@)
¥ [18] data_mask[data_mask >8]=1
¥ [11] data_mask.head()
S+
= heart_rate sbp dbp mbp resp_rate temperature spo2 glucose @
0 1.0 00 00 0.0 1.0 1.0 1.0 0.0 m
1 1.0 10 10 10 10 00 1.0 0.0
2 1.0 00 00 00 1.0 0.0 0.0 0.0
3 1.0 00 00 00 10 00 1.0 0.0
4 1.0 1.0 1.0 10 1.0 00 1.0 0.0

Figure 4. Data Matrix using MIMIC IV (2) and (b) Mask
Matrix of MIMIC 1V data

In Figure 4(a), we can clearly see the transformation of the
data from its original, unnormalized state to a normalized
format achieved through the MinMax Scaler method. This
normalization process is crucial because it rescales all the data
points to a uniform range between 0 and 1. Such scaling is
particularly important in machine learning, as it ensures that
each feature contributes equally to the distance calculations
and model training, preventing any single feature from
disproportionately influencing the results due to its scale.

Following this normalization step, the next phase involves
the Train and Test process. Before splitting the data, it is
essential to determine the appropriate data segmentation. This
segmentation helps in defining how the dataset will be divided
into training and testing subsets, which is vital for evaluating
the performance of machine learning models.

Figure 4(b) provides a visual representation of the Random
Matrix derived from the MIMIC-IV dataset, which will be
utilized in the training and testing phases. This matrix serves
as a foundation for the model training process, allowing the
algorithm to learn from the training data while reserving a
portion for testing its predictive capabilities. By carefully
managing this split, we can ensure that the model is not only
trained effectively but also validated against unseen data,
which is critical for assessing its generalization performance
in real-world scenarios. From Figure 4(b), we can see the
Random Matrix MIMIC IV data which will be carried out by
a Splitting process which will later obtain several models from
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an Imputation Method which will be carried out in an
Evaluation process to obtain the best model. To rigorously
evaluate imputation performance, we simulated missing data
using two distinct mechanisms: (1) Missing Completely at
Random (MCAR), where data entries were randomly removed
without dependency on any other variables, and (2) block-wise
missingness, where continuous sequences of time points were
omitted to mimic realistic scenarios such as sensor dropout or
recording pauses in clinical practice. This dual simulation
strategy enables the assessment of model robustness under
both stochastic and structured missingness conditions.

Figure 5 provides a clear depiction of the missing values
present in the dataset; a frequent challenge encountered in data
analysis that can significantly impact the quality and reliability
of the results. To effectively address these gaps, we will
implement the STING method (Self Attention using GAN),
which stands out as one of the most advanced techniques for
imputing missing data. This method utilizes the principles of
Generative Adversarial Networks (GANS), which consist of

~ [22] np.random.seed(42)
o for_rand = pd.DataFrame(
np.random.randint(®, 2, size=(1@, 8)), # 1@ baris, 8 kolom
columns=['heart_rate’, 'sbp’, 'dbp’, 'mbp’, 'resp_rate’, ‘temperature’, 'spo2’, 'glucese’]
)
rand_val = random.random()
for_rand[for_rand == 1] = rand_val
matrix_rand = for_rand.fillna(8)
matrix_rand.head()
3% /tmp/ipython-input-22-9856536.py:7: Futurellarning: Setting an item of incompatible dtype is depre
for_rand[for_rand == 1] = rand_val
heart_rate sbp dbp mbp resp_rate temperature spo2 glucose [
0  0.000000 0.702604 0.000000 0.000000  0.000000 0702604 0.000000 0.000000 [}
1 0000000 0702604 0.000000 0.000000 0.000000 0.000000 0.702604 0.000000
2 0702604 0702604 0702604 0.000000 0702604 0.000000 0.702604 0.702604
3 0702604 0702604 0702604 0702604  0.702604 0702604 0.000000 0.000000
4 0702604 0702604 0.702604 0.000000 0.702604 0.000000 0.000000 0.000000

Figure 5. Random matrix MIMIC IV data

From Figure 4(b), we can see the Random Matrix MIMIC
IV data which will be carried out by a Splitting process which
will later obtain several models from an Imputation Method
which will be carried out in an Evaluation process to obtain
the best model. The following is the MIMIC IV Data Display
before Imputation using the SKDL Method is as follows
(Figure 6):

charttime

9/29/2174 12:08
9/29/2174 22:30
9/29/2174 13:00

10/1/2174 0:00
9/25/2174 16:00
9/29/2174 13:27
9/25/2174 19:00
9/25/2174 15:25

9/30/2174 1:00
9/30/2174 10:00
9/30/2174 13:00
9/25/2174 14:07
9/29/2174 15:33

9/30/2174 9:00
9/25/2174 18:00
9/28/2174 16:05
9/29/2174 12:06
9/30/2174 20:00
9/25/2174 17:00

9/30/2174 0:00
9/30/2174 15:00
9/25/2174 12:05

9/30/2174 8:00
9/29/2174 22:00

stay_id

30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153
30000153

heart_ratesbp dbp mbp resp_rate temperatispo2

36

glucose

116
104
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83

169 69 98 16
16
11

16
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100
100
100

37.83
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Figure 6. Initial MIMIC IV data before imputation using
SKDL Method



The Generator is responsible for producing synthetic data
that closely resembles the characteristics of the original dataset.
It generates plausible values for the missing entries by learning
from the patterns and relationships present in the available data.
This capability is particularly valuable in complex datasets
where traditional imputation methods may fall short.
Meanwhile, the Discriminator plays a crucial role in
evaluating the quality of the generated data. It assesses how
well the synthetic values align with the actual data, providing
feedback to the Generator to refine its outputs. This adversarial
process encourages the Generator to improve its performance
continuously, resulting in more accurate imputed values.

The imputation process is iterative, continuing until the
results meet specific performance benchmarks. We focus on
minimizing several key error metrics, including Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and R-squared values. The
objective is to reduce these metrics to values as close to zero
as possible, indicating that the imputed values are highly
accurate and closely align with the original data. Achieving
low error values is essential, as it ensures that the imputation
process does not introduce significant bias or inaccuracies into
the dataset. This is particularly important in fields such as
healthcare and social sciences, where the integrity of the data
can directly influence research outcomes and policy decisions.

The results of this imputation process, which employs the
STING Kernel Deep Level Method (SKDL), are generated
through Python programming. This method not only enhances
the quality of the dataset by filling in missing values but also
preserves the underlying data distribution, making it suitable
for further analyses. By effectively addressing the issue of
missing data, we enhance the robustness of our models and
ensure that the insights derived from the data are both reliable
and valid. Moreover, the use of advanced imputation
techniques like STING is particularly beneficial in complex
datasets where traditional methods, such as mean imputation
or simple interpolation, may not adequately capture the
underlying relationships within the data. By leveraging the
power of GANs, the STING method can produce more
nuanced and contextually relevant imputed values, thereby
improving the overall quality of the dataset. This
comprehensive approach to imputation is crucial for ensuring
the integrity of the dataset and the accuracy of any subsequent
analyses or predictions, ultimately leading to more informed
decision-making based on the data. To confirm that the
performance improvements achieved by the SKDL method
were not due to chance, a paired t-test was conducted between
SKDL and each baseline method (Mean Imputation, k-Nearest
Neighbors, and standard GAN-based models) across all
evaluation metrics (MAE, MSE, RMSE, and R3. The results
indicated statistically significant differences in favor of SKDL,
with p<0.01 for most comparisons. This validates that the
proposed method provides a substantial and statistically
reliable improvement over existing approaches. The integrated
XAl component allows visualization of attention weights and
the contribution of specific features to the imputation results.
This interpretability enables clinicians to understand not only
what the imputed value is, but also why the model produced
such a result. In a clinical context, such transparency is
essential for building trust in automated systems, especially
when used for decision support. By aligning the model's
rationale with physiological knowledge and clinical
expectations, XAl enhances the acceptability and reliability of
imputed values, making them more actionable in real-world
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medical decision-making scenarios.

Figure 7 demonstrates that the missing data in the initial
MIMIC-IV dataset has been successfully imputed using the
SKDL Method. Additionally, Figure 8 presents a display of
the imputation results as implemented in Python, showcasing
the effectiveness of the SKDL method in a programmatic
environment.
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Figure 7. MIMIC 1V data imputation results using the SKDL
method
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Figure 8. Display of MIMIC IV data imputation results using
the SKDL method in python

3.1 Evaluation of MIMIC IV vital sign data imputation
results

The following table presents the evaluation results of the
MIMIC-IV data imputation process using the SKDL method,
assessed through the metrics of Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and R-squared.

From the analysis presented in Table 3, it is evident that the
SKDL Method has emerged as the most effective model for
imputing vital sign data from the MIMIC-IV dataset. This
conclusion is drawn from the evaluation of key performance
metrics, specifically the Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and
R-squared values, which were obtained through various tuning
processes. The results indicate that the SKDL Method achieved
a minimum MAE of 0.0870, which reflects the average
magnitude of the errors in the imputed values without
considering their direction. A lower MAE signifies that the
imputed values are, on average, closer to the actual observed
values, indicating a high level of accuracy in the imputation
process.



Table 3. Evaluation results using the MAE, MSE, evaluation matrix RMSE and R-squared

MIMIC IV Data Variables MAE MSE RMSE R-Squared
heart_rate 0.1423 0.0345 0.1858 0.7114
sbp 0.1442 0.0475 0.2180 0.9180
dbp 0.0870 0.0175 0.1325 0.9206
mbp 0.1186 0.0307 0.1754 0.9349
resp_rate 0.1410 0.0333 0.1827 0.8549
temperature 0.3088 0.2405 0.4905 0.7573

Furthermore, the method recorded a minimum MSE of
0.0175. MSE is particularly important as it squares the errors,
giving more weight to larger discrepancies. This means that
the SKDL Method not only minimizes the average error but
also effectively reduces the impact of larger errors, which can
be critical in applications where outliers may skew results. The
RMSE value of 0.0040 further corroborates the effectiveness
of the SKDL Method. RMSE provides a measure of how well
the imputed values approximate the actual values, expressed
in the same units as the data. A lower RMSE indicates that the
model's predictions are closely aligned with the observed data,
enhancing the reliability of the imputation. Lastly, the R-
squared value of 0.3367 suggests that approximately 33.67%
of the variance in the observed data can be explained by the
imputed values. While this may seem modest, it indicates a
meaningful relationship between the imputed and actual data,
demonstrating that the SKDL Method captures some of the
underlying patterns in the dataset.

Overall, these results collectively demonstrate that the
SKDL Method for MIMIC-IV data imputation not only
achieves lower error metrics compared to previous
sophisticated methods but also enhances the overall accuracy
of the dataset. This improvement is crucial, especially in fields
such as healthcare, where accurate data is essential for making
informed decisions and conducting reliable analyses. The
success of the SKDL Method in this context highlights its
potential as a robust tool for handling missing data, ultimately
contributing to better data quality and more reliable insights in
clinical research and other applications.

3.2 Comparison of the STING method and advanced stage
STING method

The advanced version of the STING method incorporates
various optimization techniques specifically designed to
enhance model performance in predicting critical health
parameters, including heart rate, systolic blood pressure (SBP),
diastolic blood pressure (DBP), and other vital signs. This
study aims to evaluate the effectiveness of both the standard
STING method and the Advanced Stage STING (Deep Level)
by utilizing several prediction error metrics, such as Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and R-squared. These metrics
provide a comprehensive assessment of the models' accuracy
and reliability, allowing for a nuanced understanding of their
performance.

The first experiment involved applying both the standard
STING and the Advanced Stage STING methods to a dataset
containing various patient health parameters. These
parameters include heart rate, SBP, DBP, mean blood pressure
(MBP), respiratory rate, body temperature, oxygen saturation
(SPO2), and glucose levels. By analyzing these diverse health
indicators, the study aims to determine how well each model
can predict these critical metrics, which are essential for
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monitoring patient health and making informed clinical
decisions.

The evaluation metrics chosen for this study serve distinct
purposes in assessing model performance. MAE measures the
average magnitude of the errors in a set of predictions,
providing insight into how close the predicted values are to the
actual values without considering their direction. MSE, on the
other hand, squares the errors, which emphasizes larger
discrepancies and is particularly useful for identifying models
that may struggle with outliers. RMSE offers a measure of how
well the model's predictions approximate the actual values,
expressed in the same units as the data, making it easier to
interpret in a clinical context. Finally, R-squared indicates the
proportion of variance in the observed data that can be
explained by the model, providing a sense of how well the
model captures the underlying patterns in the data.

The subsequent table summarizes the performance results
of both models based on these predefined evaluation metrics,
allowing for a direct comparison of their effectiveness. By
examining the results, the study aims to identify which version
of the STING method provides superior predictive accuracy
and reliability. This analysis is crucial, as accurate predictions
of vital signs can significantly impact patient care, enabling
healthcare professionals to make timely and informed
decisions based on reliable data.

In conclusion, this study not only highlights the
advancements made in the STING method through
optimization techniques but also emphasizes the importance of
rigorous evaluation using multiple metrics (See Table 4). By
doing so, it aims to contribute to the ongoing efforts to
improve predictive modeling in healthcare, ultimately
enhancing patient outcomes through better data-driven
decision-making.

The Advanced Stage STING (STING Deep Level) method
(See Figure 9) demonstrates significant improvements in
predictive accuracy across various health parameters when
compared to the standard STING model. This advancement is
particularly evident in the Mean Absolute Error (MAE), which
decreased from 0.0831 in the standard STING to 0.0531 in the
Advanced Stage version. This reduction indicates that the
Advanced Stage STING is more effective at producing
predictions that closely align with actual values, thereby
enhancing the reliability of the model in clinical settings.

The improvement in Mean Squared Error (MSE) further
supports the efficacy of the Advanced Stage STING. For
instance, the MSE for SPO2 decreased from 0.0431 to 0.0409,
suggesting that the model is not only reducing average errors
but also minimizing larger discrepancies in predictions. This
capability is crucial in medical applications, where larger
errors can lead to significant misinterpretations of a patient's
health status. Additionally, the Root Mean Squared Error
(RMSE) values for nearly all parameters are lower in the
Advanced Stage STING, indicating that this model is
particularly adept at capturing and mitigating larger errors. For
example, the RMSE for the respiratory rate parameter



improved from 0.0153 to 0.0109. This reduction is vital
because it suggests that the model can provide more consistent
and reliable predictions, which is essential for monitoring
critical health indicators.

The R-squared value, which reflects the proportion of
variance in the observed data explained by the model, also
shows slight improvements for certain parameters. For
instance, the R-squared value for glucose increased from -
0.3167 to -0.2993. While these changes may seem modest,
they indicate a better fit of the model to the data, suggesting
that the Advanced Stage STING captures the underlying

relationships between the input features and the predicted
outcomes more effectively (See Figure 9).

Overall, the Advanced Stage STING (STING Deep Level)
represents a substantial enhancement over the standard STING
model in terms of prediction accuracy. The reductions in MAE,
MSE, and RMSE highlight the model's ability to produce
values that are closer to actual measurements, particularly for
critical physiological parameters such as blood pressure and
respiratory rate. These improvements are particularly
significant in medical contexts, where accurate predictions can
lead to better clinical decision-making and patient outcomes.

Table 4. Evaluation results using the MAE, MSE, evaluation matrix RMSE and R-squared

Parameter Model MAE MSE RMSE R-Squared
heart rate STING continuation stage 0.2218 0.0549  0.219 -0.4344
- STING 0.2428 0.0566 0.211 -0.4311
shp STING continuation stage 0.1712 0.0501 0.181 -0.993
STING 0.2012 0.0562 0.191 -0.921
dbp STING continuation stage 0.0531 0.0593 0.0491 -0.7332
STING 0.0831 0.0603 0.0513 -0.7204
mbp STING continuation stage 0.1183 0.0201  0.108 -0.8922
STING 0.1283 0.0211 0.124 -0.8945
resp_rate STING continuation stage  0.1432 0.1104 0.0109 -0.653
- STING 0.1922 0.1191 0.0153 -0.7429
temperature STING continuation stage 0.2641 0.0892 0.1011 -0.7331
STING 0.3301 0.0953 0.119 -0.7842
SPO?2 STING continuation stage  0.0758 0.0409 0.1192 -0.7933
STING 0.0922 0.0431 0.122 -0.8001
Glucose STING continuation stage 0.2328 0.0674 0.1191 -0.2993
STING 0.2911 0.0759 0.217 -0.3167
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Figure 10. Evaluation results using the evaluation matrix MAE, MSE, RMSE and R-Squared

In summary, the experimental results indicate that the
Advanced Stage STING not only outperforms the standard
STING in predicting health parameters but also contributes to
a more nuanced understanding of patient health. By providing
more accurate and reliable predictions, this advanced method
can play a crucial role in enhancing the quality of care and
supporting healthcare professionals in making informed
decisions based on robust data. The implications of these
findings extend beyond mere statistical improvements; they
underscore the importance of utilizing advanced predictive
modeling techniques in the ongoing effort to improve patient
care and health management. The improvements in MAE,
MSE, RMSE, and R-squared demonstrate that Advanced
Stage STING can be a better choice for physiological
prediction tasks. This study also highlights the application of
appropriate optimization techniques. The research results
show that the Advanced Stage Kernel is significantly superior
to the standard kernel in terms of all the evaluated metrics. The
Table 5 below summarizes the experimental results:

Table 5. The Advanced Stage Kernel is significantly superior
to the standard kernel in terms of all the evaluated metrics

Model Sensitivity  Specificity F1 Score
Advanced Stage Kernel 0.914 0.918 0.825
Kernel 0.812 0.821 0.781

The Advanced Stage Kernel demonstrates a notable
improvement in sensitivity, increasing by 12.6% (from 0.812
in the standard kernel to 0.914 in the Advanced Stage). This
enhancement indicates that the Advanced Stage Kernel is
more effective at identifying true positive samples, which is
particularly crucial in applications that prioritize detection,
such as medical diagnostics and anomaly detection. As
illustrated in Figure 10, this sensitivity improvement reflects
the model's superior performance in identifying relevant cases
compared to the standard kernel. In addition to sensitivity, the
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Advanced Stage Kernel also excels in specificity, with an
increase from 0.821 to 0.918. This improvement reflects the
model's enhanced ability to minimize false positives, thereby
maintaining a lower error rate, especially in classifying
negative cases. The F1 score for the Advanced Stage Kernel is
0.825, surpassing the 0.781 of the standard kernel. The F1
score is a vital metric that balances precision (the model's
ability to avoid false positives) and recall (the model's
effectiveness in capturing all true positives). This increase
suggests that the Advanced Stage Kernel achieves a better
equilibrium between these two critical aspects. As shown in
Figure 11, the performance comparison highlights the
Advanced Stage Kernel’s superiority across all three metrics
sensitivity, specificity, and F1 score. These significant
enhancements imply that the optimization techniques applied
during its development have effectively improved the model's
overall performance. The increased sensitivity is particularly
relevant for applications where detecting true positives is
paramount, such as in disease detection systems or security
surveillance. Furthermore, the improved specificity indicates
that the Advanced Stage Kernel is better at maintaining high
accuracy while avoiding detection errors, which is essential for
applications that require precision, such as credit classification
or predicting system failures.

The higher F1 score also signifies that the Advanced Stage
Kernel has successfully achieved an optimal balance between
precision and recall, resulting in a more stable and reliable
solution for complex classification tasks. The combination of
these improvements creates a model that is well-suited for
real-world applications that demand high performance and
minimal risk of error. From the experiments conducted, it is
clear that the Advanced Stage Kernel outperforms the standard
kernel in terms of sensitivity, specificity, and F1 score. This
study highlights the importance of further exploration into the
development of kernel methods and optimization techniques
in classification tasks. The Advanced Stage Kernel is



particularly suitable for a wide range of applications across
various domains, including medical diagnostics, anomaly

detection, and recommendation systems, where the accuracy
of both positive and negative detections is critical.

Kemnel Performance Metrics

city F1 Score

Figure 11. Performance comparison of Advanced Stage Kernel vs. standard kernel

4. CONCLUSIONS

The STING Kernel Deep Level with Explainable Method
represents a significant advancement in the imputation of
MIMIC IV data, particularly in the context of healthcare
analytics. This method focuses on leveraging previously
identified segments within the data to enhance the accuracy of
imputation. By concentrating on these segments, the STING
approach can effectively fill in missing values, which is crucial
in medical datasets where incomplete information can lead to
suboptimal clinical decisions. In the field of multivariate time
series data imputation, there is a valuable opportunity to
introduce new theories that can enhance both academic
understanding and practical applications. These advancements
can significantly assist hospitals and doctors in making
informed decisions about patient care by improving the
accuracy of data analysis. By utilizing advanced imputation
techniques, healthcare professionals can develop more precise
diagnoses and tailored treatment plans. Moreover, these
innovations can help reduce the risk of errors in patient
treatment, ensuring that data reflects true underlying patterns
and ultimately enhancing patient safety and care quality. Thus,
integrating new theories in this area has the potential to
positively impact both research and healthcare practices.

The imputation results obtained through this method can be
rigorously evaluated by comparing them against actual
existing data. This comparison not only validates the accuracy
of the imputation but also allows for a deeper understanding
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of the data's underlying patterns. The STING Kernel Deep
Level method has demonstrated superior performance,
achieving the best accuracy metrics compared to earlier
imputation techniques. Specifically, the model has yielded the
lowest Mean Absolute Error (MAE) of 0.0870, a Mean
Squared Error (MSE) of 0.0175, a Root Mean Squared Error
(RMSE) of 0.0040, and an R-Squared value of 0.3367. These
metrics indicate a high level of precision in the imputed values,
reinforcing the effectiveness of the SKDL method in handling
missing data.

The success of the SKDL method in MIMIC IV data
imputation highlights its potential to outperform more
traditional and sophisticated methods. This is particularly
important in healthcare settings, where accurate data is
essential for making informed clinical decisions. The ability of
the STING method to produce categorical data further
enhances its utility, as it can effectively manage different types
of data structures commonly found in electronic health
records.

Moreover, the SKDL method not only excels in imputation
accuracy but also provides an explainable framework. This
means that it can generate insights into how the imputed values
were derived, which is crucial for transparency in clinical
applications. By offering explanations for the imputation
results, healthcare professionals can better understand the
rationale behind the data, fostering trust in the model's outputs.

The implications of this research extend beyond mere data
imputation. The findings suggest that future researchers can



build upon the SKDL method to refine and enhance its
capabilities further. By developing more sophisticated
algorithms and incorporating additional data sources, the
accuracy and reliability of imputation can be improved even
more. This ongoing evolution in imputation techniques is vital,
as it addresses the persistent challenge of missing data in
healthcare analytics, ultimately leading to better patient
outcomes and more effective clinical decision-making.

In conclusion, the STING Kernel Deep Level with
Explainable Method represents a promising advancement in
the field of data imputation, particularly for healthcare
applications. Its ability to produce accurate, explainable results
positions it as a valuable tool for researchers and clinicians
alike, paving the way for future innovations in data handling
and analysis. The hope is that continued exploration and
development of this method will yield even more sophisticated
solutions for managing missing data in complex healthcare
environments.
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