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Polypharmacy, exacerbated by aging populations and global health crises, underscores the
need for accurate drug-drug interaction (DDI) prediction. This review article offers a
thorough analysis of the latest advancements in machine learning (ML) models for
predicting DDIs. The review zeroes in on the progress made since 2020, a notable period
characterized by a significant increase in both the volume of drug-related datasets and the
sophistication of deep learning (DL) techniques. We meticulously examine various dataset
sources pivotal in the development of these models and delve into the methodologies
employed for featurizing molecular structures and biological data. The article further
explores a range of DL models and graph neural networks, assessing their efficacy in the
accurate prediction of DDIs. Through a comparative analysis, we elucidate the strengths,
limitations, and potential challenges faced by these models. Crucially, the review
underscores the necessity of incorporating comprehensive clinical and biochemical factors
to augment the real-world applicability and accuracy of DDI predictions. This
comprehensive overview not only sheds light on the current state of DDI predictive
modeling but also paves the way for future research directions, emphasizing the need for
more advanced, adaptable models in the dynamic landscape of polypharmacy and drug

interactions.

1. INTRODUCTION

Drugs are chemical substances capable of inducing
biological effects when introduced into a living organism,
traditionally derived from medicinal plants and increasingly
synthesized through organic chemistry [1, 2]. Advances in
pharmaceutical science have led to the creation of
comprehensive databases supporting research into drug
mechanisms and interactions [3, 4]. A prime example is
DrugBank [3], which lists 15,451 drug entries, including
approved small molecule drugs, biologics, nutraceuticals, and
experimental drugs. In clinical treatment, managing diseases
often requires multiple drugs [5], as combination therapies
generally yield higher success rates than monotherapies [6].
For instance, drug cocktails like  doxorubicin,
cyclophosphamide, vincristine, and prednisone are standard in
cancer chemotherapy [7], while co-administration of anti-
tuberculosis drugs enhances efficacy and delays resistance [8].

Nevertheless, the possibility of harmful drug-drug
interactions (DDIs) rises with the number of medications given
to a patient [9]. According to the study [10], for example, more
than one-third of elderly Americans frequently take five or
more medications or supplements, and 15% are at high risk of
developing serious DDIs. DDIs include interactions with food,
metabolites, endogenous chemicalsand diagnostic agents in
addition to interactions between therapeutic medications [11].
They can change the nature, intensity, duration, side effects,
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and toxicity of drugs by either amplifying (synergistic action)
or decreasing (antagonistic action) their efficacy [12].
Reactions resulting from DDIs can be advantageous, negligible,
or detrimental [13]. In drug safety, these dangerous DDIs are
the main emphasis.

Comprehending the pharmacological actions of each drug in
a combination therapy is crucial for optimizing therapeutic
efficacy while minimizing adverse reactions [14]. The
importance of drug—drug interactions expands even more when
aging is considered because the elderly take more than one
medication at a time. An investigation performed in 2019 by
The Health Insurance Review and Assessment Service (HIRA)
found 41.8% of seniors ages 65 and older, who were seen in
outpatient clinics, were given five or more prescriptions 14.4%
were given 10 or more [15]. The data used in the study was
based on the Korean National Health Insurance (NHI).
Following the COVID-19 pandemic, the necessity of DDIs has
been underscored, particularly for COVID-19 infected
individuals with underlying medical comorbidities who are
recurrently on multiple drugs. Due to the difficulties triggered
by DDI prediction, an increase in computational approaches
has been observed to flourish in recent years with revived
interest in ML approaches and these methodologies. The one
that garnered the most attention was called DeepDDI, the baby
of the group as a computational model, being the first of its kind
to use DL techniques to predict the possibility of the deadliest
hyperport in DDI with any two of the thousand vis-a-vis drugs
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were to be combined which produces an array of permutations,
most deadly [16]. This innovation lead to a brand new era in
DDI precision, leading to many new extremely complicated
ML models that utilizes much higher bandwidths of data not
only new sources but also that are analysed even closer using
far more deeper and complicated learning techniques.

The rapid progress in this field makes it a perfect time to
complete a comprehensive survey of these modern DL models.
Firstly, takes a look at the various dataset sources used by these
models, and explains how this data is highly varied and detailed
and is not just one type of DDI, which helps the predictions to
be more accurate. The second aspect to be considered concerns
the featurization approaches of model input data. It
demonstrates the ways adopted to process and integrate
molecular structures and graphs coding DDIs or biological

knowledge into the models. Thirdly, the review will ascertain
the methodologies used in utilizing those ML models in
predicting DDIs, and the effectiveness of such methodologies
in predicting DDIs, as illustrated in Figure 1.

This review demonstrates forthcoming research prospects in
DDl predictions. Furthermore, the document includes various
gaps that interested researchers can cover in order to advance
in this field. Particularly, the paper clearly indicates areas that
need to be considered so as there could be a perfect and right
DDI predictions, which are basically to increase on the
accuracy, reliability and convenience of the DDI predictions
towards pharmaceutical and clinical areas. Taking an all-
inclusive perspective, the purpose of this review is to guide
future research and development of DDI prediction.
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Figure 1. Overview pipeline of DDI prediction based on drug features and deep learning models

2. DATA SOURCE

Direct DDI avenues a vast array of influences, some of
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which include-but not limited to—chemical substructures,
biological targets, enzymatic actions not merely binary
relationships. Existing datasets in this field are rich



repositories of drug-related data, encompassing diverse
aspects such as the drugs’ mechanisms of action, intricate
protein structures, and the wide-ranging effects in
pharmacogenomics. Due to the volume of data available
researchers are now able to not only able to predict interactions
from probable to impossible but also predict the complexity of
the interactions that occur, which in turn allows them to begin
to understand why those interactions are happening. We
examine a variety of important chemical databases in the area
as well as some bioinformatics database. Table 1 presents
these databases in a logical manner and provides thorough
descriptions that are helpful in DDI prediction. With the field
of DDA evolving and its constant pacing, this table acts as a
reference point to show the many different traits and functions
that each database has to offer and allows researchers to pick
and choose their own tools for their specific research needs.

Table 1. Comprehensive overview of key databases utilized
in drug-drug interaction prediction [17]

Database Pub. Num. of Num. of Drug-
Year Drugs Related Pairs
KEGG [18] 1995 11,147 324,183 DDIs
DrugBank [3] 2006 1,706 191,808 DDIs
SIDER [19] 2008 1,430 139,756 drug-side
effect pairs
TW([)ZSOI]D ES 2012 645 4,649,441 DDIs
OFFSIDES 2012 1332 18,842 drug-event
[20] ’ associations
BI(?;HAP 2018 1,332 41,520 DDIs
2.1 KEGG

The database of KEGG is essential when examining the
uses and capabilities of biological systems because of the large
molecular datasets with high-throughput techniques and
genome sequencing. Containing 16 individual sources, this
detailed database is categorized into the domains of systems,
health, chemical, and genomic information. Notable
components, including KEGG DRUG and KEGG
PATHWAY, are included. This component of the database
focuses on KEGG DRUG, which is an aggregation of
databases with broad data on approved drugs, drugs in
development, and similar substances. The pharmaceuticals are
arranged according to their chemical structures. A distinct
drug number is used to carefully catalog each drug entry,
which is then enhanced with KEGG’s exclusive annotations,
including information on drug metabolism. As a result, a
thorough compilation of 1,925 authorized medications and
their vast network of interactions is produced, encompassing a
total of 324,183 interactions and 11,147 medications.

2.2 DrugBank

DrugBank, an openly accessible online resource, aggregates
a wealth of information on drugs, their targets, mechanisms,
and interactions. Launched with its first version (1.0) in 2006,
the database has evolved to its current iteration, version 5.1.9,
as of 2022. Presently, DrugBank boasts a comprehensive
catalog of 14,944 drug entries. This includes 2,729 approved
small molecule drugs and 1,564 approved biologics, such as
allergenics and proteins, in addition to more than 6,713 drugs
in the experimental phase, including those in discovery.
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DrugBank’s ability to predict the kind of drug interaction
between two drugs—identified by their SMILES sequences—
across multiple categories, including binary, multi-class, and
multi-label classifications, is one of its primary features. Drug-
Bank, a popular tool for comparative research, has version
5.1.4 with 1,706 drugs and 191,808 drug pairs that are
categorized into 86 distinct DDI kinds.

2.3 SIDER

A comprehensive view of the effects and possible negative
reactions of commercially accessible pharmaceuticals is
provided by The Side Effect Resource, a database that
compiles a wealth of information on these drugs’ side effects.
This database can predict potential adverse effects by
analyzing the chemical compositions, binding fingerprints,
and other pertinent chemical properties of drug candidates. It
also incorporates side effect information with other chemical
biology resources, greatly improving pharmacological and
medical research. This resource’s most recent version, 4.1,
includes information on 1,430 medications, 5,868 different
side effects, and 139,756 potential drug-side effect
combinations.

2.4 TWOSIDES

The TWOSIDES database is an extensive database created
to monitor polypharmacy side effects resulting from more
complicated drug combinations or drug pairings. This
database contains information on 1,301 unique adverse events
and 868,221 associations encompassing 59,220 medication
pairings. With 3,782,910 significant associations—
associations where the combined drug combination shows a
greater score for side-effect association—it stands out in
particular. This score is calculated using the proportional
reporting ratio (PRR). TWOSIDES particularly offers
information on 645 medicines and the side effects resulting
from 63,473 unique drug combinations. When examining two
medications, distinguished by their SMILES sequences in this
database, the main goal is to precisely forecast every possible
adverse effect; this method is known as multi-label
classification.

2.5 OFFSIDES

The database of OFFSIDES is an extensive collection
featuring 438,801 off-label side effects involving 10,097
adverse events and 1,332 drugs. In this context, ‘off-label’
refers to side effects not documented on the official drug labels
approved by the FDA, symbolizing the US Food and Drug
Administration, as opposed to ‘on-label’ effects, which are
documented. On average, an FDA drug label includes
information about 69 on-label adverse events. In contrast, for
every drug, OFFSIDES records an average of 329 high-
confidence off-label adverse occurrences. Additionally,
OFFSIDES successfully identifies 38.8% of the drug-event
associations, amounting to 18,842 associations, which were
initially recorded in the SIDER database from adverse event
reports.

2.6 BIOSNAP

The BIOSNAP dataset is an expansive collection that
aggregates a wide array of interactions among FDA -approved



drugs, formulated through the construction of a biological
network. In this network, each node symbolizes a distinct drug,
while the edges depict the interactions between these drugs.
Specifically, this dataset includes 41,520 labeled DDIs and
encompasses 1,322 FDA-approved drugs. These DDIs are
meticulously extracted and compiled from a variety of sources,
including detailed drug labels and a range of scientific
publications, providing a rich and comprehensive resource for
understanding the complex interplay between different
pharmaceutical compounds.

3. MOLECULAR REPRESENTATION

Molecular representation is critical in many drug-related
tasks, with its importance particularly arising in the DDI
prediction. An example of this would be the example of
Tranylcypromine, which is a substance known for its function
as an inhibitor of the monoamine oxidase enzyme [22]. When
it comes to using medication to deal with mood or anxiety
disorders a good way to approach this problem is with using
Tranylcypromine, which can clear the way for a nonselective,
irreversible antidepressant and anxiolytic agent.

There are many different ways to represent a drug molecule,
and one of them, is through SMILES notation [23]. An
investigation by experimental and computative accounts
showed a summary and systematic layout of the arrangement
of molecules which scientist employ to view and dissect a
compound easily and not in great detail, as demonstrated in
Figure 2. The choice of molecular representation is a
significant issue, as this is the basis of how the computational
techniques especially DL models operate towards the
prediction of DDIs also whether it be smiles notation or some
other way. The precision of DDI predictions increases and in
addition we learn more about to gain more understanding of
pharmacological effects, from the DDI given, Molecular
representation is important in aspect of its accuracy, to give
additional information.

3.1 SMILES sequence

SMILES, the Simplified Molecular Input Line Entry

System, is one of the most useful tools in chemical computing,
and is used by every chemist involved with computer
information. SMILES strings are character strings that can
describe complex chemical structures. Each atom in the
SMILES string is represented by a unique ASCII symbol.
SMILES strings contain very special symbols for
stereochemistry, chemical bonds, and branching patterns.

The fantastic ability of SMILES strings is being able to turn
any intricate chemical in the world into a simplified, tree
shaped figure that’s easy to understand. The transformation of
the molecular information is done by following a tree pattern
where it is done longitudinal-first neighbor. A series of
characters are going to take as the last result. Models based on
DL can provide a well-rounded approach to handling differing
measures to the sequence of data that is introduced in given
output [24, 25]. Working together, they use what they know to
interpret the SMILES Strings into consumable information in
the same way that humans read a string of text.

With their compactness, memory efficiency, and ease in
searchability, there are many advantages to using sequence-
based representations. Since they are so compressed, they
don’t waste valuable space in memory while conserving space.
They are great for encoding molecular structures because they
are so great at being triggered by words in a sentence. SMILES
representations can also allow for the translation of chemical
context from SMILES sequences, using Mol2Vec and FCS,
which are techniques that are built to be able to understand the
chemical relationship within the molecule, similar to how NLP
have strategies to help with the translation of context [26, 27].
In summary, the remarkable and highly adaptable
representation via the SMILES sequences make the entré& into
the utilization of DL models for the foreseeing of the drug
connections and several other chemical tasks and outcomes.

3.2 2D graph

Molecular representations utilize graph-based structures to
make use of the most updated pharmacological compounds
that will be very helpful and will be able to be produced by
two-dimensional molecular graphs that month RDKit is a
computer program that allows a SMILES string to be turned
into its 2-D structure.
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Following that, each node is given a set of atomic features
that was established according to the node’s particular atomic
number. Each node in a molecule’s graph has a starting 78-
dimensional feature vector consisting of a variety of atomic
attributes such as its atomic symbol, implicit value and
aromaticity, neighbor atoms, neighbor hydrogens, and also
mean values. As a result, we are left with the molecular graph
representation, like the one for tranyl-cypromine, which is
made up of edge features, atom numbers, and atomic features.
It is possible to extract important structural information from
the molecular graph thanks to this representation. 2D GNN
models often leverage message passing neural networks
(MPNN), a classic approach for encoding graph-based
methods. Since 2D graphs are commonly stored as adjacency
matrices, 2D GNNs facilitate efficient and accurate property
combination between adjacent atoms or chemical bonds.
Furthermore, they optimize weights during the message-
passing procedure. Graph-based representations are
advantageous in their ability to extract structural information
through graph convolutional operations compared to
sequence-based methods. These operations allow for the
updating and optimization of bond weights within message-
passing networks, enhancing their utility in various
computational chemistry tasks.

3.3 3D graph

While 2D molecular graphs effectively capture structural
connectivity among atoms, they fall short in representing
spatial configurations crucial for understanding real-world
drug interactions. The 3D graph representation addresses this
limitation by incorporating the spatial coordinates of atoms
within a molecule, enabling a more precise depiction of its
geometry and conformation. This is especially important for
modeling inter-molecular interactions such as ligand-receptor
binding, where three-dimensional shape, orientation, and
atomic distances determine binding affinity and biological
activity. Applications of 3D graphs include the generation of
conformer ensembles and the accurate prediction of molecular
properties like binding energy, reactivity, or selectivity [28,
29]. By including features such as atomic coordinates, bond
angles, and torsional geometry, 3D graph-based models
provide richer information and enable deep learning
architectures—such as 3D graph neural networks—to learn
spatial dependencies that are critical in drug—target or drug—
drug interaction prediction.

3.4 Drug-drug interaction network

DDIs are a multifaceted area of research that combines
information from areas including biology, chemistry, and
other information about drugs to measure the likelihood of
interaction between two drugs. A way to take apart the very
complex web of DDIs is to create a DDI network. This
network is an outline of certain drug molecules and can give a
clear account of the possibilities of chemical linkage between
them. By doing this we will have a better understand of how
the drugs are designed to interact.

Within the context of the DDI prediction task, the problem
is often cast as a missing link prediction problem. Drugs are
cast as nodes, and the established interactions as the edges
connecting them. By putting drugs into a state that allows a
predictive model to be created, what’s done is to change drugs
into feature vectors. In order to do this, we consider its
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interaction profiles that have been gotten from interactions
known. The use of this representation allows for the building
of models that can determine potential DDI occurrences,
giving a better look into the very complex interaction of drugs
and allowing for better choice-making with regards to drugs.

3.5 Heterogeneous graphs

A repository of extensive information represents a
hetergenous graph (HetG) that contains structured relations
among diverse types of nodes and unstructured contents
related to each node [30]. Hitting the genetic switch proves to
have some merit in predicting DDI’s. HetGs signals the
function of cancer related gene pairs and is a notable player in
determining successes.

When talking about DDIs the format of a typical HetG
sometimes looks like a graph, it is usually denoted as G = (V,
E, OV, RE), where V is the set of nodes, E is the set of links,
OV is the set of object types and RE is the set of relation types.
Moreover, each node within this HetG is imbued with
heterogeneous content, such as attributes and properties. The
graph encodes relationships between several pairs of entities.
Among those considered are a drug and the protein that it
targets, a drug and the side effects that it elicits, and a drug and
the diseases that it treats. To illustrate, consider a biological
heterogeneous graph centered around a drug like Fulvestrant.
The reassignment of the bar that come in diverse paint
illustrates the many solutions and arrow mean the direction of
it and it can help for me the view of shift the framework by
graping a itself containing more information.

3.6 Knowledge graphs

Knowledge graphs (KGs) have emerged as a valuable
resource in the realm of drug discovery, garnering attention
from both the academic community and various sectors within
the field [31]. KGs offer a structured representation of human
knowledge, and their application has proven beneficial in the
drug discovery domain. The extraction of high-order semantic
characteristics that enhance the estimate of DDIs is made
possible by these KGs, which allow the smooth integration of
various entity kinds and association interactions among
biological entities.

A knowledge graph typically takes the form of G = (V, E,
F), where E represents the set of entities, R denotes the set of
relations, and F encompasses the set of facts. Facts within the
KG are expressed as triples (h, r, t) F, where h and t are entities
connected by relation r. Entities are depicted as nodes, each
characterized by distinct colors and alphabets, representing
real-world biological objects such as drugs, targets, and side-
effects. Relationships (edges) illustrate the connections
between entities, and they incorporate semantic descriptions,
encompassing types and properties with well-defined
meanings, including associations like Drug-Disease, Drug-
Target Gene, and Drug Brite.

As an illustration of its practical application, KGs have
played a pivotal role in addressing challenges posed by the
COVID-19 pandemic [32, 33]. Notably, there exist several
knowledge graphs tailored to various facets of the drug
discovery procedure, such as Clinical Knowledge Graph,
DRKG, OpenBioLink, PharmKG, BioKG, and Hetionet.
While providing a brief overview, it’s worth noting that a
comprehensive review of these KGs goes outside the limits of
what the work covers, and interested readers are encouraged



to explore devoted reviews on the subject [34].

4. BIOLOGICAL INFORMATION

Utilizing a feature vector that captures the molecular
makeup of a drug has proven effective in predicting DDIs with
considerable accuracy. However, integrating
additional ’biological information’ could further refine these
predictions and enhance their interpretability. For instance, in
models forecasting DDIs, various biological elements have
been employed alongside molecular characteristics. These
include drug target proteins in DDIMDL [35] and MDF-SA-
DDI [36], DDI networks in DPDDI [37] and deepMDDI [38],
and biological/drug knowledge graphs in MUFFIN [39],
SumGNN [40], and BioDKG-DDI [41]. Other aspects like
gene ontology terms in Lee et al.’s model [42], and gene
expression signatures in DeSIDE-DDI have also been
considered. Key proteins like cytochromes P450 or drug target
proteins are crucial in influencing DDIs. The drug target
information for a medication is represented in a binary format
within a vector, where ‘1’ signifies a drug target protein, and
‘0’ a non-target. Analyzing these binary vectors for two drugs
can hint at potential interactions; a similarity in the vectors
suggests a high likelihood of DDI, as both drugs may interact
with the same protein target, influencing each other’s drug-
target interaction.

To enhance DDI prediction, graph neural networks (GNN5s)
have been employed in a novel manner, differing from the
earlier-discussed molecular structure representation (using
nodes and edges in a graph to represent atoms and bonds of a
drug). In terms of biological data, the nodes and edges in a
GNN signify drugs and their interactions, respectively, turning
the GNN framework into a DDI network. A prime example is
DPDDI [37], which utilizes a graph convolutional network
(GCN) to gather and modify information from connected
neighboring drugs (represented as nodes and edges,
respectively). Applying a GCN to multiple drugs creates a
latent feature vector for each drug (node), which serves as
input for a ML model to predict DDIs. Incorporating
additional biological data like genetic, protein, and/or
chemical interactions, along with gene ontology [43], can
reveal more varied DDI impacts.

Integrating both molecular and biological characteristics
has notably enhanced DDI prediction performance compared
to using only molecular structures. DDIMDL [35], a DDI
prediction model, uses four different drug features: drug
targets, relevant enzymes (mainly cytochromes P450),
pathways (including those with drug targets), and molecular
structures. To determine the impact of each feature on DDI
prediction, various model versions were created, each utilizing
different feature combinations. The version relying solely on
molecular structure surpassed those based on drug targets,
enzymes, or pathways in terms of accuracy. However, models
that combined target and enzyme features with molecular data
showed even better prediction accuracy. The advantages of

using biological features were also confirmed by Lee et al. [42].

Their model, which merged three similarity profiles for two
drugs, encompassing molecular structures, target genes, and
gene ontology terms, yielded higher classification accuracy
than those using only structural similarity profiles.

Beyond GNNs, various models for embedding knowledge
graphs have been applied to distill essential semantic features
from these graphs. A knowledge graph typically consists of
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nodes formatted as triplets (h, r, t), where ‘h’ and ‘t’ denote the
head and tail entities, respectively, and ‘r’ indicates their
interconnecting relationship. These relationships can vary
widely within a single knowledge graph. For instance, DRKG
is a widely-used knowledge graph in developing DDI
prediction models, offering insights into the connections
between diverse entities such as drugs, diseases, biological
processes, and side effects. To leverage all this drug-related
information for DDI prediction, it’s crucial first to translate the
entities and their multifaceted semantic relationships in
DRKG into a more manageable, low-dimensional format
using suitable knowledge graph embedding models.

One such model is 3WDDI [44], which utilizes embedding
vectors derived from DRKG. This process employs ComplEx
[45], a model known for its semantic similarity-based
approach to knowledge graph embedding. The embeddings are
then fed into a downstream model. This model uses the
embeddings to predict the probability that a pair of drugs will
have a DDI by calculating the probability.

Despite these advances, limitations remain in biological
information integration, particularly concerning the scarcity
and imbalance of biological data—especially for rare drug
targets or newly approved compounds. Incomplete
annotations for certain proteins or pathways can hinder
generalization across datasets and limit the applicability of
models in real-world settings. Furthermore, biological data is
often heterogeneous and noisy, posing challenges for direct
incorporation. To mitigate these limitations, recent studies
have proposed hybrid fusion approaches that combine
biological and chemical features in a unified framework. For
instance, models like Bio-JOIE and DeepDDS explore joint
embeddings of molecular graphs and biological knowledge
graphs to enhance robustness. Other works have introduced
attention-based fusion strategies and graph-level contrastive
learning to reconcile discrepancies between heterogeneous
sources. These hybrid methodologies represent a promising
direction for future research, aiming to balance
informativeness, interpretability, and data availability across
multiple biological domains.

5. DEEP LEARNING MODELS

This rapidly advancing subject has seen a vast number of
techniques used as proven by the timetable of results found in
Table 2. The table has shown the range of techniques being
used as well as their chronological order which can correspond
to the date of publication. A comprehensive overview of deep
and graph learning techniques that have been developed
recently is shown in the table below. In the table, we see that
each model has its unique characteristics in a set of columns,
i.e., model name, the types of input, the representation method,
the architectural frameworks, the classification tasks.

Beginning in 2021 with SumGNN the path has been paved
for a variety of new techniques, GNNs with knowledge
graph/subgraph representations and attention mechanism, and
GCN on molecular graph with contrastive learning. There are
a lot of unique methods like MIRACLE and SSI-DDI that are
binary classing amongst themselves from SMILES data down
to molecular substructures, and others such as AAEs using
knowledge graphs with adversarial autoencoders. This trend
shows a greater change in this field of work and the way more
compound and diverse data representations and also more
intricate and multifaceted architectural strategies. Entering



2022, we observe a growing diversification of models and
approaches. GNNs on Molecular Graphs such as GNN-DDI,
and MFFGNN with multi-type features, continue trending.
The increasing complexity of these models can be observed by
DeepDrug that introduces a RGCN architecture. Furthermore,
this year shows the increasing range of the field, with models
employing drug features, biomedical networks, and directed
graphs.

In 2023, the trend towards more intricate models continues
with DSN-DDI and DGNN-DDI, among others, embracing
dual-view encoders and directed MPNNs. This not only
reflects the ongoing refinement of existing methodologies but
also the introduction of novel approaches to tackle the
complexity of DDI prediction. Each model’s contribution to
the field is further delineated by their unique approaches to
data representation and processing architecture, be it through
attention mechanisms, contrastive learning, or capsule
networks.

In our comprehensive analysis, we conducted a detailed
comparison of various new deep and graph learning models,

focusing on their capabilities in binary, multi-label
classification, and multi-class tasks for DDI predictions. This
comparison, as presented in Tables 3 and 4, evaluates the
performance of different models under the binary
classification task on two benchmark datasets: DrugBank and
TWOSIDES. The evaluation metrics employed to assess the
effectiveness of these models include the Area Under the
Precision-Recall Curve (AUPRC), Accuracy (ACC), Area
Under the Receiver Operating Characteristic (AUROC), and
F1-score. These metrics were calculated using a 5-fold cross-
validation approach to ensure robustness and reliability in our
assessment. Notably, higher values in these metrics correlate
with superior predictive performance. An important aspect of
our comparison is the recognition that despite the fact that
different models may divide training and test data differently,
the evaluation remains statistically meaningful. This is
because each model’s performance is appraised under
consistent, rigorous criteria, providing a fair and
comprehensive comparison.

Table 2. Summary of DDI prediction models

Model Input Architecture Representation Classification
SumGNN (2021) [40] SMILES/Drug ID GNN + attention Knowledge Multi-class/multi-label
graph/subgraph
MIRACLE (2021) [46] SMILES GEN 1+e fn‘:in;;asnve Molecular graph Binary
SSI-DDI (2021) [47] SMILES GAT + attention Substructure Binary
AAEs (2021) [48] Drug ID Adversarial autoencoders Knowledge graph Binary
GNN-DDI (2022) [49] SMILES GAT Molecular graph Binary
MFFGNN (2022) [50] SMILESg;;ﬁOI“UIar GNN + BiGRU Multi-type feature Binary
GCN + Linear .
GCNMK (2022) [51] Drug ID transformation DDI graph + drug features Binary
DeepDrug (2022) [52] SMILES RGCN Molecular graph Binary/multi-class/label
LR-GNN (2022) [53] Drug ID GCN Biomedical network Binary
DANN-DDI (2022) [54] Drug ID SDNE + attention Biomedical network Binary
DGAT-DDI (2022) [55] Directed graph GAT Source/target encoding Binary
GMPNN (2022) [56] SMILES Gated MPNN Molecular graph Binary
STNN-DDI (2022) [57] SMILES Encoder + decoder Substructure Binary
DeepMDDI (2022) [38] Drug ID RGCyefg‘cfe"rder i Sub-networks Multi-label
RotatE + network . .
RANEDDI (2022) [58] Drug ID embedding DDI network Binary/multi-class
DeSIDE-DDI (2022) [59] Fingerprints DNN Gene expressions Multi-class
SA-DDI (2022) [60] SMILES D-MPNN Substructure Binary
MSAN (2022) [61] SMILES TraFSfomer'hke Substructure Binary
ramework
. Knowledge . .
LaGAT (2022) [62] Drug ID Link-aware GAT graph/subgraph Binary/multi-class
Molormer (2022) [63] 2D structures Attention + Siamese Molecular graph spatial Binary
network structure
MDDI-SCL (2022) [36] Drug ID Attention ! Contrastive Drug features Multi-class
earning
DeeperGCN + Feature .
R2-DDI (2022) [64] SMILES refinement Molecular graph Binary
BioDKG-DDI (2022) [41] SMILES Attention + DNN Multiple drug features Binary
AMDE (2022) [65] SMILES MPAN + Transformer Sequence + atomic graph Binary
DDKG (2022) [66] SMILES/Drug ID Encoder-decoder GCN + Knowledge graph Binary

3DGT-DDI (2022) [67]

3D structures

3D GNN + text attention

Dual-view encoder +

Molecular graph +
position information

Binary/multi-class

DSN-DDI (2023) [29] Molecular graph decoder Substructure Binary
Directed MPNN + Molecular graph + .
DGNN-DDI (2023) [68] SMILES substructure attention substructure Multi-class
KG2ECapsule (2023) [68] Drug ID GCN + Capsule Knowledge graph Multi-label
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Table 3. Performance metrics for DrugBank dataset (in %)

Method and Year AUPRC (%) ACC (%) AUROC (%) F1-score (%)
DANN-DDI [54] 2022 97.09 99.62 97.63 96.92
DGAT-DDI [55] 2022 94.3 88.6 95.1 88.4
RANEDDI [58] 2022 98.94 - 98.98 95.62

AMDE [65] 2022 - 97.63 99.01 97.60

SSI-DDI [47] 2021 98.14 94.47 98.38 -

MFFGNN [50] 2022 96.81 - 95.39 92.54
DeepDrug [52] 2022 98.0 - - 94.0

GMPNN [56] 2022 - 95.30 98.46 -

SA-DDI [60] 2022 - 96.23 98.80 96.29

MSAN [61] 2022 - 97.00 99.27 97.04

R2-DDI [64] 2022 - 98.15 99.70 98.16
3DGT-DDI [67] 2022 - - 97.0 -

DSN-DDI [29] 2023 - 96.94 99.47 96.93
MIRACLE [46] 2021 92.34 - 95.51 83.60
BioDKG-DDI [42] 2022 - 93.70 98.30 93.90

Table 4. Performance metrics for TWOSIDES dataset (in %)

Method and Year ?‘g,)c AI(J:/{(S)C Fl(:/i())re
SSI-DDI [47] 2021 78.20 85.85 79.81
DeepDrug [52] 2021 - - 84.0
GMPNN [56] 2022 82.83 90.07 84.08
SA-DDI [60] 2022 87.45 93.17 88.35
R2-DDI [64] 2022 86.15 91.49 87.31
DSN-DDI [65] 2023 98.83 99.90 98.83

In our observations, particularly on the DrugBank dataset,
we noted standout performances by RANEDDI (AUPRC =
98.94%) and KGNN (AUPRC = 98.92%), both of which are
network-based methods. These models achieved the highest
and second-highest AUPRC performance, respectively,
surpassing those of chemical structure-based and hybrid
methods. The success of RANEDDI and KGNN can be
attributed to their ability to effectively utilize multi-relational
information inherent in DDI networks or knowledge graphs.
In contrast, graph embedding procedures, such as DeepDDI,
GraRep, DeepWalk, and substructure-based methods such as
CASTER primarily leverage similar chemical structural
information or drug characteristics.

It’s also important to note that R2-DDI performed better in
terms of both AUROC and F1-score, while DANN-DDI had
the highest ACC result of 0.9962, surpassing all other models.

On the TWOSIDES dataset, the recently published
chemical structure-based model DSN-DDI showed
remarkable results, outshining other baseline models across all
evaluation metrics. Specifically, it achieved an ACC of 0.9883,
an AUROC of 0.9990, and an F1-score of 0.9883, indicating
its robustness and accuracy in DDI prediction. Another
interesting insight derived from the comparative studies is that
the network-based approaches, such as DANN-DDI and
RANE-DDI, have performance comparable with the chemical
structure-based methods (e.g. R2-DDI). In the mean-time, for
the binary classification task, the hybrid methods still perform
steadily on DrugBank. The value of different methods to
predict DDI seems promising, which signifies the ease of
selecting suitable models in the dataset that can relate to the
task.

In an endeavor to design the multi-class performance
evaluating methods. The work we had presented here in this
comprehensive analysis deals with the multi-class
performance metric, which will mainly enable to investigate
various types of DL and graph learning models by taking the
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benchmark datasets such as DrugBank and TWOSIDES
datasets has been intensively evaluated, as depicted in Tables
5 and 6.

Provided in these tables is a thorough comparison of the
effectiveness of the models in relation to multiple key
evaluation metrics. The experiments lead us to conclude that
KG2ECapsule and SumGNN ranked as the first two best
models with consistent peak performances regardless of which
metric we evaluated. They have demonstrated their
extraordinary capability in tackling complicated classification
tasks.

KG2ECapsule shows significant improvements over the
best baseline models on the DrugBank dataset in particular. It
showed an enhancement 0f 2.71% in PR-AUC, 1.03% in ACC,
2.8% in ROC-AUC, and 2% in F1 score. The reason for this
increase in accuracy is due to KG2ECapsule being able to
accurately model the triplets and include the connections that
are present in the edges into the embedding algorithm. This
demonstrates a more discriminate and effective method for
integrating and employing KG information.

However, for the TWOSIDES dataset, SumGNN has
showed better improvement by at least 2.45% and 2.82% in
PR-AUC and ROC-AUC respectively compared to other
methods. It is strongly suggested by this that SUmGNN must
be giving thought to the subgraphs that they are using since
they are being so successful. The fact that it is able to exploit
these outside information looks like to give it a step ahead
against many other models. Moreover, in terms of KG based
approaches such as KG-DDI and KGNN, as a comparison,
SumGNN and KG2ECapsule are both superior even though
the comparison of both methods is only single, while
KG2ECapsule and SumGNN consistently are both higher than
any other on two datasets. This observation really drives the
point home: just using KGEmbed and neighborhood sampling
might not be that great an idea to sufficiently leverage KG
information for DDI prediction. This implies the requirement
for more sophisticated techniques that can handle the complex
structures and relationships inherent in KGs in a more
comprehensive manner.

In addition, network-based techniques, with all three
different approaches, had better performances in the multi-
class problem. Evidence of these trends may mean the
architectural and computational strategies in certain network-
based models could have a high performance on multi-class
DDI prediction tasks, because DDI prediction is a complex
task involving many aspects of information. This knowledge
presents a promising research direction where network-based



models can be extrapolated and used to potentially redefine
how accurate we can be and how fast we can do predictions
for DDI.

Table 5. Multi-class performance metrics for DrugBank
dataset (in %)

Mean Macro Macro Macro
Method Year Accuracy Precision Recall F1 (%)
(%) (%) (%) i
SSI-DDI [47]
2021 89.65 87.63 93.21 89.93
GMPNN [56]
2022 94.85 93.46 97.25 94.95
SA-DDI [60]
2022 95.65 94.72 97.46 95.73
Molormer [63]
2022 96.67 94.19 92.70 93.11
MDDI-SCL [36]
2022 93.78 88.04 87.67 87.55
DGNN-DDI[68] g6 gq 9472 9788  96.16
2023
MUFFIN [39]
2021 - 96.48 94.95 -
KGNN [69] 2020 85.87 79.47 86.02 79.45
KG2Ecapsule
(70] 2023 88.58 80.50 88.82 81.45

Table 6. Multi-class performance metrics for TWOSIDES
dataset (in %)

Method and Year PR-AUC (%) ROC-AUC (%)

KGNN [69] 2020 65.84 89.48
SkipGNN [71] 2020 90.90 92.04
SumGNN [40] 2021 93.35 94.86
MUFFIN [39] 2021 70.33 91.60

In reviewing the progression of deep learning and graph-
based models for drug—drug interaction (DDI) prediction from
2021 onward, several key trends and performance patterns
emerge. Firstly, network-based models, particularly those
leveraging knowledge graphs and biomedical networks—such
as RANEDDI, DANN-DDI, and KGNN-—demonstrate
superior performance in metrics like AUPRC and AUROC.
These models excel due to their ability to capture complex,
multi-relational patterns inherent in drug interaction networks,
as opposed to relying solely on chemical structure or
sequence-level data. For example, RANEDDI achieved the
highest AUPRC on the DrugBank dataset (98.94%), while
DANN-DDI recorded the highest accuracy (99.62%),
showcasing the power of embedding techniques and attention
mechanisms when applied to relational data. In contrast,
structure-based methods using SMILES strings and molecular
graphs—such as GMPNN, DeepDrug, and DSN-DDI—have
also shown competitive performance, particularly in binary
and multi-class classification, thanks to the incorporation of
message-passing neural networks (MPNNs), graph
convolutional networks (GCNs), and attention modules that
enable more expressive molecular feature learning. Hybrid
approaches like MFFGNN and DGNN-DDI, which integrate
multi-type features from both chemical and relational domains,
offer balanced effectiveness across metrics and task types.
Another trend is the increasing use of attention mechanisms,
contrastive learning, and transformer-like architectures, which
enhance the interpretability and generalization of models.
Moreover, the recent inclusion of 3D structural information in
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models such as 3DGT-DDI highlights a growing recognition
of spatial configuration’s role in accurate DDI prediction.
Overall, the diversity in input types (SMILES, drug IDs,
graphs), architectural complexity (from GCNs to capsule
networks), and task orientation (binary, multi-class, multi-
label) reflects a maturing field, where model choice is often
dictated by the specific DDI task, dataset characteristics, and
desired performance trade-offs. The following tables offer a
detailed breakdown and comparison of these models across
different metrics, datasets, and classification types.

6. CONCLUSION

This review has comprehensively examined the evolving
landscape of drug-drug interaction (DDI) prediction from the
pre-2020 era through to 2023, focusing on four core aspects:
data sources, molecular representation, biological information,
and deep learning (DL) models. The analysis of data sources
highlights the increasing availability and diversity of datasets
used in DDI prediction, reflecting a broader and richer basis
for model development. In the domain of molecular
representation, we observe persistent challenges in accurately
capturing molecular structures, which can negatively impact
the performance of predictive models when foundational
inputs are insufficient or misrepresented.

The integration of biological information has notably
enriched predictive capabilities by providing deeper insights
into underlying pharmacological and biochemical processes—
many of which remain only partially understood. This
biological context is essential for enhancing model precision
and clinical relevance. Deep learning models, particularly the
application of advanced architectures such as GNNs and
knowledge graph embeddings, have demonstrated strong
potential in modeling complex DDI mechanisms and continue
to drive innovation in the field. Recent trends point toward
using DL to derive more expressive and informative molecular
and biological features.

Looking forward, two key directions deserve focused
attention. First, improving the interpretability of predictive
models is crucial for clinical adoption, as black-box models
may hinder trust and decision-making in healthcare settings.
Incorporating explainable Al techniques and visual analytics
can bridge this gap. Second, there is a pressing need to
establish standardized benchmarking protocols and datasets
for DDI prediction. Such benchmarks would facilitate
consistent evaluation, reproducibility, and fair comparisons
among models, thereby accelerating progress and fostering
collaboration across research communities.
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