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Polypharmacy, exacerbated by aging populations and global health crises, underscores the 

need for accurate drug-drug interaction (DDI) prediction. This review article offers a 

thorough analysis of the latest advancements in machine learning (ML) models for 

predicting DDIs. The review zeroes in on the progress made since 2020, a notable period 

characterized by a significant increase in both the volume of drug-related datasets and the 

sophistication of deep learning (DL) techniques. We meticulously examine various dataset 

sources pivotal in the development of these models and delve into the methodologies 

employed for featurizing molecular structures and biological data. The article further 

explores a range of DL models and graph neural networks, assessing their efficacy in the 

accurate prediction of DDIs. Through a comparative analysis, we elucidate the strengths, 

limitations, and potential challenges faced by these models. Crucially, the review 

underscores the necessity of incorporating comprehensive clinical and biochemical factors 

to augment the real-world applicability and accuracy of DDI predictions. This 

comprehensive overview not only sheds light on the current state of DDI predictive 

modeling but also paves the way for future research directions, emphasizing the need for 

more advanced, adaptable models in the dynamic landscape of polypharmacy and drug 

interactions. 
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1. INTRODUCTION

Drugs are chemical substances capable of inducing 

biological effects when introduced into a living organism, 

traditionally derived from medicinal plants and increasingly 

synthesized through organic chemistry [1, 2]. Advances in 

pharmaceutical science have led to the creation of 

comprehensive databases supporting research into drug 

mechanisms and interactions [3, 4]. A prime example is 

DrugBank [3], which lists 15,451 drug entries, including 

approved small molecule drugs, biologics, nutraceuticals, and 

experimental drugs. In clinical treatment, managing diseases 

often requires multiple drugs [5], as combination therapies 

generally yield higher success rates than monotherapies [6]. 

For instance, drug cocktails like doxorubicin, 

cyclophosphamide, vincristine, and prednisone are standard in 

cancer chemotherapy [7], while co-administration of anti-

tuberculosis drugs enhances efficacy and delays resistance [8]. 

Nevertheless, the possibility of harmful drug-drug 

interactions (DDIs) rises with the number of medications given 

to a patient [9]. According to the study [10], for example, more 

than one-third of elderly Americans frequently take five or 

more medications or supplements, and 15% are at high risk of 

developing serious DDIs. DDIs include interactions with food, 

metabolites, endogenous chemicalsand diagnostic agents in 

addition to interactions between therapeutic medications [11]. 

They can change the nature, intensity, duration, side effects, 

and toxicity of drugs by either amplifying (synergistic action) 

or decreasing (antagonistic action) their efficacy [12]. 

Reactions resulting from DDIs can be advantageous, negligible, 

or detrimental [13]. In drug safety, these dangerous DDIs are 

the main emphasis. 

Comprehending the pharmacological actions of each drug in 

a combination therapy is crucial for optimizing therapeutic 

efficacy while minimizing adverse reactions [14]. The 

importance of drug–drug interactions expands even more when 

aging is considered because the elderly take more than one 

medication at a time. An investigation performed in 2019 by 

The Health Insurance Review and Assessment Service (HIRA) 

found 41.8% of seniors ages 65 and older, who were seen in 

outpatient clinics, were given five or more prescriptions 14.4% 

were given 10 or more [15]. The data used in the study was 

based on the Korean National Health Insurance (NHI). 

Following the COVID-19 pandemic, the necessity of DDIs has 

been underscored, particularly for COVID-19 infected 

individuals with underlying medical comorbidities who are 

recurrently on multiple drugs. Due to the difficulties triggered 

by DDI prediction, an increase in computational approaches 

has been observed to flourish in recent years with revived 

interest in ML approaches and these methodologies. The one 

that garnered the most attention was called DeepDDI, the baby 

of the group as a computational model, being the first of its kind 

to use DL techniques to predict the possibility of the deadliest 

hyperport in DDI with any two of the thousand vis-a-vis drugs 
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were to be combined which produces an array of permutations, 

most deadly [16]. This innovation lead to a brand new era in 

DDI precision, leading to many new extremely complicated 

ML models that utilizes much higher bandwidths of data not 

only new sources but also that are analysed even closer using 

far more deeper and complicated learning techniques. 

The rapid progress in this field makes it a perfect time to 

complete a comprehensive survey of these modern DL models. 

Firstly, takes a look at the various dataset sources used by these 

models, and explains how this data is highly varied and detailed 

and is not just one type of DDI, which helps the predictions to 

be more accurate. The second aspect to be considered concerns 

the featurization approaches of model input data. It 

demonstrates the ways adopted to process and integrate 

molecular structures and graphs coding DDIs or biological 

knowledge into the models. Thirdly, the review will ascertain 

the methodologies used in utilizing those ML models in 

predicting DDIs, and the effectiveness of such methodologies 

in predicting DDIs, as illustrated in Figure 1.  

This review demonstrates forthcoming research prospects in 

DDI predictions. Furthermore, the document includes various 

gaps that interested researchers can cover in order to advance 

in this field. Particularly, the paper clearly indicates areas that 

need to be considered so as there could be a perfect and right 

DDI predictions, which are basically to increase on the 

accuracy, reliability and convenience of the DDI predictions 

towards pharmaceutical and clinical areas. Taking an all-

inclusive perspective, the purpose of this review is to guide 

future research and development of DDI prediction. 

 

 
 

Figure 1. Overview pipeline of DDI prediction based on drug features and deep learning models 

 

 

2. DATA SOURCE 

 
Direct DDI avenues a vast array of influences, some of 

which include–but not limited to–chemical substructures, 

biological targets, enzymatic actions not merely binary 

relationships. Existing datasets in this field are rich 
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repositories of drug-related data, encompassing diverse 

aspects such as the drugs’ mechanisms of action, intricate 

protein structures, and the wide-ranging effects in 

pharmacogenomics. Due to the volume of data available 

researchers are now able to not only able to predict interactions 

from probable to impossible but also predict the complexity of 

the interactions that occur, which in turn allows them to begin 

to understand why those interactions are happening. We 

examine a variety of important chemical databases in the area 

as well as some bioinformatics database. Table 1 presents 

these databases in a logical manner and provides thorough 

descriptions that are helpful in DDI prediction. With the field 

of DDA evolving and its constant pacing, this table acts as a 

reference point to show the many different traits and functions 

that each database has to offer and allows researchers to pick 

and choose their own tools for their specific research needs. 

 

Table 1. Comprehensive overview of key databases utilized 

in drug-drug interaction prediction [17] 

 

Database 
Pub. 

Year 

Num. of 

Drugs 

Num. of Drug-

Related Pairs 

KEGG [18] 1995 11,147 324,183 DDIs 

DrugBank [3] 2006 1,706 191,808 DDIs 

SIDER [19] 2008 1,430 
139,756 drug-side 

effect pairs 

TWOSIDES 

[20] 
2012 645 4,649,441 DDIs 

OFFSIDES 

[20] 
2012 1,332 

18,842 drug-event 

associations 

BIOSNAP 

[21] 
2018 1,332 41,520 DDIs 

 

2.1 KEGG 

 

The database of KEGG is essential when examining the 

uses and capabilities of biological systems because of the large 

molecular datasets with high-throughput techniques and 

genome sequencing. Containing 16 individual sources, this 

detailed database is categorized into the domains of systems, 

health, chemical, and genomic information. Notable 

components, including KEGG DRUG and KEGG 

PATHWAY, are included. This component of the database 

focuses on KEGG DRUG, which is an aggregation of 

databases with broad data on approved drugs, drugs in 

development, and similar substances. The pharmaceuticals are 

arranged according to their chemical structures. A distinct 

drug number is used to carefully catalog each drug entry, 

which is then enhanced with KEGG’s exclusive annotations, 

including information on drug metabolism. As a result, a 

thorough compilation of 1,925 authorized medications and 

their vast network of interactions is produced, encompassing a 

total of 324,183 interactions and 11,147 medications. 

 

2.2 DrugBank 

 

DrugBank, an openly accessible online resource, aggregates 

a wealth of information on drugs, their targets, mechanisms, 

and interactions. Launched with its first version (1.0) in 2006, 

the database has evolved to its current iteration, version 5.1.9, 

as of 2022. Presently, DrugBank boasts a comprehensive 

catalog of 14,944 drug entries. This includes 2,729 approved 

small molecule drugs and 1,564 approved biologics, such as 

allergenics and proteins, in addition to more than 6,713 drugs 

in the experimental phase, including those in discovery. 

DrugBank’s ability to predict the kind of drug interaction 

between two drugs—identified by their SMILES sequences—

across multiple categories, including binary, multi-class, and 

multi-label classifications, is one of its primary features. Drug-

Bank, a popular tool for comparative research, has version 

5.1.4 with 1,706 drugs and 191,808 drug pairs that are 

categorized into 86 distinct DDI kinds. 

 

2.3 SIDER 

 

A comprehensive view of the effects and possible negative 

reactions of commercially accessible pharmaceuticals is 

provided by The Side Effect Resource, a database that 

compiles a wealth of information on these drugs’ side effects. 

This database can predict potential adverse effects by 

analyzing the chemical compositions, binding fingerprints, 

and other pertinent chemical properties of drug candidates. It 

also incorporates side effect information with other chemical 

biology resources, greatly improving pharmacological and 

medical research. This resource’s most recent version, 4.1, 

includes information on 1,430 medications, 5,868 different 

side effects, and 139,756 potential drug-side effect 

combinations. 

 

2.4 TWOSIDES 

 

The TWOSIDES database is an extensive database created 

to monitor polypharmacy side effects resulting from more 

complicated drug combinations or drug pairings. This 

database contains information on 1,301 unique adverse events 

and 868,221 associations encompassing 59,220 medication 

pairings. With 3,782,910 significant associations—

associations where the combined drug combination shows a 

greater score for side-effect association—it stands out in 

particular. This score is calculated using the proportional 

reporting ratio (PRR). TWOSIDES particularly offers 

information on 645 medicines and the side effects resulting 

from 63,473 unique drug combinations. When examining two 

medications, distinguished by their SMILES sequences in this 

database, the main goal is to precisely forecast every possible 

adverse effect; this method is known as multi-label 

classification. 

 

2.5 OFFSIDES 

 

The database of OFFSIDES is an extensive collection 

featuring 438,801 off-label side effects involving 10,097 

adverse events and 1,332 drugs. In this context, ‘off-label’ 

refers to side effects not documented on the official drug labels 

approved by the FDA, symbolizing the US Food and Drug 

Administration, as opposed to ‘on-label’ effects, which are 

documented. On average, an FDA drug label includes 

information about 69 on-label adverse events. In contrast, for 

every drug, OFFSIDES records an average of 329 high-

confidence off-label adverse occurrences. Additionally, 

OFFSIDES successfully identifies 38.8% of the drug-event 

associations, amounting to 18,842 associations, which were 

initially recorded in the SIDER database from adverse event 

reports. 

 

2.6 BIOSNAP 

 

The BIOSNAP dataset is an expansive collection that 

aggregates a wide array of interactions among FDA-approved 
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drugs, formulated through the construction of a biological 

network. In this network, each node symbolizes a distinct drug, 

while the edges depict the interactions between these drugs. 

Specifically, this dataset includes 41,520 labeled DDIs and 

encompasses 1,322 FDA-approved drugs. These DDIs are 

meticulously extracted and compiled from a variety of sources, 

including detailed drug labels and a range of scientific 

publications, providing a rich and comprehensive resource for 

understanding the complex interplay between different 

pharmaceutical compounds. 

 

 

3. MOLECULAR REPRESENTATION 

 

Molecular representation is critical in many drug-related 

tasks, with its importance particularly arising in the DDI 

prediction. An example of this would be the example of 

Tranylcypromine, which is a substance known for its function 

as an inhibitor of the monoamine oxidase enzyme [22]. When 

it comes to using medication to deal with mood or anxiety 

disorders a good way to approach this problem is with using 

Tranylcypromine, which can clear the way for a nonselective, 

irreversible antidepressant and anxiolytic agent. 

There are many different ways to represent a drug molecule, 

and one of them, is through SMILES notation [23]. An 

investigation by experimental and computative accounts 

showed a summary and systematic layout of the arrangement 

of molecules which scientist employ to view and dissect a 

compound easily and not in great detail, as demonstrated in 

Figure 2. The choice of molecular representation is a 

significant issue, as this is the basis of how the computational 

techniques especially DL models operate towards the 

prediction of DDIs also whether it be smiles notation or some 

other way. The precision of DDI predictions increases and in 

addition we learn more about to gain more understanding of 

pharmacological effects, from the DDI given, Molecular 

representation is important in aspect of its accuracy, to give 

additional information. 

 

3.1 SMILES sequence 

 

SMILES, the Simplified Molecular Input Line Entry 

System, is one of the most useful tools in chemical computing, 

and is used by every chemist involved with computer 

information. SMILES strings are character strings that can 

describe complex chemical structures. Each atom in the 

SMILES string is represented by a unique ASCII symbol. 

SMILES strings contain very special symbols for 

stereochemistry, chemical bonds, and branching patterns. 

The fantastic ability of SMILES strings is being able to turn 

any intricate chemical in the world into a simplified, tree 

shaped figure that’s easy to understand. The transformation of 

the molecular information is done by following a tree pattern 

where it is done longitudinal-first neighbor. A series of 

characters are going to take as the last result. Models based on 

DL can provide a well-rounded approach to handling differing 

measures to the sequence of data that is introduced in given 

output [24, 25]. Working together, they use what they know to 

interpret the SMILES Strings into consumable information in 

the same way that humans read a string of text. 

With their compactness, memory efficiency, and ease in 

searchability, there are many advantages to using sequence-

based representations. Since they are so compressed, they 

don’t waste valuable space in memory while conserving space. 

They are great for encoding molecular structures because they 

are so great at being triggered by words in a sentence. SMILES 

representations can also allow for the translation of chemical 

context from SMILES sequences, using Mol2Vec and FCS, 

which are techniques that are built to be able to understand the 

chemical relationship within the molecule, similar to how NLP 

have strategies to help with the translation of context [26, 27]. 

In summary, the remarkable and highly adaptable 

representation via the SMILES sequences make the entrée into 

the utilization of DL models for the foreseeing of the drug 

connections and several other chemical tasks and outcomes. 

 

3.2 2D graph 

 

Molecular representations utilize graph-based structures to 

make use of the most updated pharmacological compounds 

that will be very helpful and will be able to be produced by 

two-dimensional molecular graphs that month RDKit is a 

computer program that allows a SMILES string to be turned 

into its 2-D structure. 

 

 
 

Figure 2. Different representations of a drug molecule including fingerprint, graph, SMILES, InChI, and 3D electrostatic 

potential 
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Following that, each node is given a set of atomic features 

that was established according to the node’s particular atomic 

number. Each node in a molecule’s graph has a starting 78-

dimensional feature vector consisting of a variety of atomic 

attributes such as its atomic symbol, implicit value and 

aromaticity, neighbor atoms, neighbor hydrogens, and also 

mean values. As a result, we are left with the molecular graph 

representation, like the one for tranyl-cypromine, which is 

made up of edge features, atom numbers, and atomic features. 

It is possible to extract important structural information from 

the molecular graph thanks to this representation. 2D GNN 

models often leverage message passing neural networks 

(MPNN), a classic approach for encoding graph-based 

methods. Since 2D graphs are commonly stored as adjacency 

matrices, 2D GNNs facilitate efficient and accurate property 

combination between adjacent atoms or chemical bonds. 

Furthermore, they optimize weights during the message-

passing procedure. Graph-based representations are 

advantageous in their ability to extract structural information 

through graph convolutional operations compared to 

sequence-based methods. These operations allow for the 

updating and optimization of bond weights within message-

passing networks, enhancing their utility in various 

computational chemistry tasks. 

 

3.3 3D graph 

 

While 2D molecular graphs effectively capture structural 

connectivity among atoms, they fall short in representing 

spatial configurations crucial for understanding real-world 

drug interactions. The 3D graph representation addresses this 

limitation by incorporating the spatial coordinates of atoms 

within a molecule, enabling a more precise depiction of its 

geometry and conformation. This is especially important for 

modeling inter-molecular interactions such as ligand-receptor 

binding, where three-dimensional shape, orientation, and 

atomic distances determine binding affinity and biological 

activity. Applications of 3D graphs include the generation of 

conformer ensembles and the accurate prediction of molecular 

properties like binding energy, reactivity, or selectivity [28, 

29]. By including features such as atomic coordinates, bond 

angles, and torsional geometry, 3D graph-based models 

provide richer information and enable deep learning 

architectures—such as 3D graph neural networks—to learn 

spatial dependencies that are critical in drug–target or drug–

drug interaction prediction. 

 

3.4 Drug-drug interaction network 

 

DDIs are a multifaceted area of research that combines 

information from areas including biology, chemistry, and 

other information about drugs to measure the likelihood of 

interaction between two drugs. A way to take apart the very 

complex web of DDIs is to create a DDI network. This 

network is an outline of certain drug molecules and can give a 

clear account of the possibilities of chemical linkage between 

them. By doing this we will have a better understand of how 

the drugs are designed to interact. 

Within the context of the DDI prediction task, the problem 

is often cast as a missing link prediction problem. Drugs are 

cast as nodes, and the established interactions as the edges 

connecting them. By putting drugs into a state that allows a 

predictive model to be created, what’s done is to change drugs 

into feature vectors. In order to do this, we consider its 

interaction profiles that have been gotten from interactions 

known. The use of this representation allows for the building 

of models that can determine potential DDI occurrences, 

giving a better look into the very complex interaction of drugs 

and allowing for better choice-making with regards to drugs. 

 

3.5 Heterogeneous graphs 

 

A repository of extensive information represents a 

hetergenous graph (HetG) that contains structured relations 

among diverse types of nodes and unstructured contents 

related to each node [30]. Hitting the genetic switch proves to 

have some merit in predicting DDI’s. HetGs signals the 

function of cancer related gene pairs and is a notable player in 

determining successes. 

When talking about DDIs the format of a typical HetG 

sometimes looks like a graph, it is usually denoted as G = (V, 

E, OV, RE), where V is the set of nodes, E is the set of links, 

OV is the set of object types and RE is the set of relation types. 

Moreover, each node within this HetG is imbued with 

heterogeneous content, such as attributes and properties. The 

graph encodes relationships between several pairs of entities. 

Among those considered are a drug and the protein that it 

targets, a drug and the side effects that it elicits, and a drug and 

the diseases that it treats. To illustrate, consider a biological 

heterogeneous graph centered around a drug like Fulvestrant. 

The reassignment of the bar that come in diverse paint 

illustrates the many solutions and arrow mean the direction of 

it and it can help for me the view of shift the framework by 

graping a itself containing more information. 

 

3.6 Knowledge graphs 

 

Knowledge graphs (KGs) have emerged as a valuable 

resource in the realm of drug discovery, garnering attention 

from both the academic community and various sectors within 

the field [31]. KGs offer a structured representation of human 

knowledge, and their application has proven beneficial in the 

drug discovery domain. The extraction of high-order semantic 

characteristics that enhance the estimate of DDIs is made 

possible by these KGs, which allow the smooth integration of 

various entity kinds and association interactions among 

biological entities. 

A knowledge graph typically takes the form of G = (V, E, 

F), where E represents the set of entities, R denotes the set of 

relations, and F encompasses the set of facts. Facts within the 

KG are expressed as triples (h, r, t) F, where h and t are entities 

connected by relation r. Entities are depicted as nodes, each 

characterized by distinct colors and alphabets, representing 

real-world biological objects such as drugs, targets, and side-

effects. Relationships (edges) illustrate the connections 

between entities, and they incorporate semantic descriptions, 

encompassing types and properties with well-defined 

meanings, including associations like Drug-Disease, Drug-

Target Gene, and Drug Brite. 

As an illustration of its practical application, KGs have 

played a pivotal role in addressing challenges posed by the 

COVID-19 pandemic [32, 33]. Notably, there exist several 

knowledge graphs tailored to various facets of the drug 

discovery procedure, such as Clinical Knowledge Graph, 

DRKG, OpenBioLink, PharmKG, BioKG, and Hetionet. 

While providing a brief overview, it’s worth noting that a 

comprehensive review of these KGs goes outside the limits of 

what the work covers, and interested readers are encouraged 
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to explore devoted reviews on the subject [34]. 

 

 

4. BIOLOGICAL INFORMATION 

 

Utilizing a feature vector that captures the molecular 

makeup of a drug has proven effective in predicting DDIs with 

considerable accuracy. However, integrating 

additional ’biological information’ could further refine these 

predictions and enhance their interpretability. For instance, in 

models forecasting DDIs, various biological elements have 

been employed alongside molecular characteristics. These 

include drug target proteins in DDIMDL [35] and MDF-SA-

DDI [36], DDI networks in DPDDI [37] and deepMDDI [38], 

and biological/drug knowledge graphs in MUFFIN [39], 

SumGNN [40], and BioDKG-DDI [41]. Other aspects like 

gene ontology terms in Lee et al.’s model [42], and gene 

expression signatures in DeSIDE-DDI have also been 

considered. Key proteins like cytochromes P450 or drug target 

proteins are crucial in influencing DDIs. The drug target 

information for a medication is represented in a binary format 

within a vector, where ‘1’ signifies a drug target protein, and 

‘0’ a non-target. Analyzing these binary vectors for two drugs 

can hint at potential interactions; a similarity in the vectors 

suggests a high likelihood of DDI, as both drugs may interact 

with the same protein target, influencing each other’s drug-

target interaction. 

To enhance DDI prediction, graph neural networks (GNNs) 

have been employed in a novel manner, differing from the 

earlier-discussed molecular structure representation (using 

nodes and edges in a graph to represent atoms and bonds of a 

drug). In terms of biological data, the nodes and edges in a 

GNN signify drugs and their interactions, respectively, turning 

the GNN framework into a DDI network. A prime example is 

DPDDI [37], which utilizes a graph convolutional network 

(GCN) to gather and modify information from connected 

neighboring drugs (represented as nodes and edges, 

respectively). Applying a GCN to multiple drugs creates a 

latent feature vector for each drug (node), which serves as 

input for a ML model to predict DDIs. Incorporating 

additional biological data like genetic, protein, and/or 

chemical interactions, along with gene ontology [43], can 

reveal more varied DDI impacts. 

Integrating both molecular and biological characteristics 

has notably enhanced DDI prediction performance compared 

to using only molecular structures. DDIMDL [35], a DDI 

prediction model, uses four different drug features: drug 

targets, relevant enzymes (mainly cytochromes P450), 

pathways (including those with drug targets), and molecular 

structures. To determine the impact of each feature on DDI 

prediction, various model versions were created, each utilizing 

different feature combinations. The version relying solely on 

molecular structure surpassed those based on drug targets, 

enzymes, or pathways in terms of accuracy. However, models 

that combined target and enzyme features with molecular data 

showed even better prediction accuracy. The advantages of 

using biological features were also confirmed by Lee et al. [42]. 

Their model, which merged three similarity profiles for two 

drugs, encompassing molecular structures, target genes, and 

gene ontology terms, yielded higher classification accuracy 

than those using only structural similarity profiles. 

Beyond GNNs, various models for embedding knowledge 

graphs have been applied to distill essential semantic features 

from these graphs. A knowledge graph typically consists of 

nodes formatted as triplets (h, r, t), where ‘h’ and ‘t’ denote the 

head and tail entities, respectively, and ‘r’ indicates their 

interconnecting relationship. These relationships can vary 

widely within a single knowledge graph. For instance, DRKG 

is a widely-used knowledge graph in developing DDI 

prediction models, offering insights into the connections 

between diverse entities such as drugs, diseases, biological 

processes, and side effects. To leverage all this drug-related 

information for DDI prediction, it’s crucial first to translate the 

entities and their multifaceted semantic relationships in 

DRKG into a more manageable, low-dimensional format 

using suitable knowledge graph embedding models. 

One such model is 3WDDI [44], which utilizes embedding 

vectors derived from DRKG. This process employs ComplEx 

[45], a model known for its semantic similarity-based 

approach to knowledge graph embedding. The embeddings are 

then fed into a downstream model. This model uses the 

embeddings to predict the probability that a pair of drugs will 

have a DDI by calculating the probability. 

Despite these advances, limitations remain in biological 

information integration, particularly concerning the scarcity 

and imbalance of biological data—especially for rare drug 

targets or newly approved compounds. Incomplete 

annotations for certain proteins or pathways can hinder 

generalization across datasets and limit the applicability of 

models in real-world settings. Furthermore, biological data is 

often heterogeneous and noisy, posing challenges for direct 

incorporation. To mitigate these limitations, recent studies 

have proposed hybrid fusion approaches that combine 

biological and chemical features in a unified framework. For 

instance, models like Bio-JOIE and DeepDDS explore joint 

embeddings of molecular graphs and biological knowledge 

graphs to enhance robustness. Other works have introduced 

attention-based fusion strategies and graph-level contrastive 

learning to reconcile discrepancies between heterogeneous 

sources. These hybrid methodologies represent a promising 

direction for future research, aiming to balance 

informativeness, interpretability, and data availability across 

multiple biological domains. 

 

 

5. DEEP LEARNING MODELS 

 

This rapidly advancing subject has seen a vast number of 

techniques used as proven by the timetable of results found in 

Table 2. The table has shown the range of techniques being 

used as well as their chronological order which can correspond 

to the date of publication. A comprehensive overview of deep 

and graph learning techniques that have been developed 

recently is shown in the table below. In the table, we see that 

each model has its unique characteristics in a set of columns, 

i.e., model name, the types of input, the representation method, 

the architectural frameworks, the classification tasks. 

Beginning in 2021 with SumGNN the path has been paved 

for a variety of new techniques, GNNs with knowledge 

graph/subgraph representations and attention mechanism, and 

GCN on molecular graph with contrastive learning. There are 

a lot of unique methods like MIRACLE and SSI-DDI that are 

binary classing amongst themselves from SMILES data down 

to molecular substructures, and others such as AAEs using 

knowledge graphs with adversarial autoencoders. This trend 

shows a greater change in this field of work and the way more 

compound and diverse data representations and also more 

intricate and multifaceted architectural strategies. Entering 
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2022, we observe a growing diversification of models and 

approaches. GNNs on Molecular Graphs such as GNN-DDI, 

and MFFGNN with multi-type features, continue trending. 

The increasing complexity of these models can be observed by 

DeepDrug that introduces a RGCN architecture. Furthermore, 

this year shows the increasing range of the field, with models 

employing drug features, biomedical networks, and directed 

graphs. 

In 2023, the trend towards more intricate models continues 

with DSN-DDI and DGNN-DDI, among others, embracing 

dual-view encoders and directed MPNNs. This not only 

reflects the ongoing refinement of existing methodologies but 

also the introduction of novel approaches to tackle the 

complexity of DDI prediction. Each model’s contribution to 

the field is further delineated by their unique approaches to 

data representation and processing architecture, be it through 

attention mechanisms, contrastive learning, or capsule 

networks. 

In our comprehensive analysis, we conducted a detailed 

comparison of various new deep and graph learning models, 

focusing on their capabilities in binary, multi-label 

classification, and multi-class tasks for DDI predictions. This 

comparison, as presented in Tables 3 and 4, evaluates the 

performance of different models under the binary 

classification task on two benchmark datasets: DrugBank and 

TWOSIDES. The evaluation metrics employed to assess the 

effectiveness of these models include the Area Under the 

Precision-Recall Curve (AUPRC), Accuracy (ACC), Area 

Under the Receiver Operating Characteristic (AUROC), and 

F1-score. These metrics were calculated using a 5-fold cross-

validation approach to ensure robustness and reliability in our 

assessment. Notably, higher values in these metrics correlate 

with superior predictive performance. An important aspect of 

our comparison is the recognition that despite the fact that 

different models may divide training and test data differently, 

the evaluation remains statistically meaningful. This is 

because each model’s performance is appraised under 

consistent, rigorous criteria, providing a fair and 

comprehensive comparison. 

 

Table 2. Summary of DDI prediction models 

 
Model Input Architecture Representation Classification 

SumGNN (2021) [40] SMILES/Drug ID GNN + attention 
Knowledge 

graph/subgraph 
Multi-class/multi-label 

MIRACLE (2021) [46] SMILES 
GCN + Contrastive 

learning 
Molecular graph Binary 

SSI-DDI (2021) [47] SMILES GAT + attention Substructure Binary 

AAEs (2021) [48] Drug ID Adversarial autoencoders Knowledge graph Binary 

GNN-DDI (2022) [49] SMILES GAT Molecular graph Binary 

MFFGNN (2022) [50] 
SMILES + molecular 

graph 
GNN + BiGRU Multi-type feature Binary 

GCNMK (2022) [51] Drug ID 
GCN + Linear 

transformation 
DDI graph + drug features Binary 

DeepDrug (2022) [52] SMILES RGCN Molecular graph Binary/multi-class/label 

LR-GNN (2022) [53] Drug ID GCN Biomedical network Binary 

DANN-DDI (2022) [54] Drug ID SDNE + attention Biomedical network Binary 

DGAT-DDI (2022) [55] Directed graph GAT Source/target encoding Binary 

GMPNN (2022) [56] SMILES Gated MPNN Molecular graph Binary 

STNN-DDI (2022) [57]  SMILES Encoder + decoder Substructure Binary 

DeepMDDI (2022) [38] Drug ID 
RGCN Encoder + 

decoder 
Sub-networks Multi-label 

RANEDDI (2022) [58] Drug ID 
RotatE + network 

embedding 
DDI network Binary/multi-class 

DeSIDE-DDI (2022) [59] Fingerprints DNN Gene expressions Multi-class 

SA-DDI (2022) [60] SMILES D-MPNN Substructure Binary 

MSAN (2022) [61] SMILES 
Transformer-like 

framework 
Substructure Binary 

LaGAT (2022) [62] Drug ID Link-aware GAT 
Knowledge 

graph/subgraph 
Binary/multi-class 

Molormer (2022) [63] 2D structures 
Attention + Siamese 

network 

Molecular graph spatial 

structure 
Binary 

MDDI-SCL (2022) [36] Drug ID 
Attention + Contrastive 

learning 
Drug features Multi-class 

R2-DDI (2022) [64] SMILES 
DeeperGCN + Feature 

refinement 
Molecular graph Binary 

BioDKG-DDI (2022) [41] SMILES Attention + DNN Multiple drug features Binary 

AMDE (2022) [65] SMILES MPAN + Transformer Sequence + atomic graph Binary 

DDKG (2022) [66] SMILES/Drug ID Encoder-decoder GCN + Knowledge graph Binary 

3DGT-DDI (2022) [67] 3D structures 3D GNN + text attention 
Molecular graph + 

position information 
Binary/multi-class 

DSN-DDI (2023) [29] Molecular graph 
Dual-view encoder + 

decoder 
Substructure Binary 

DGNN-DDI (2023) [68] SMILES 
Directed MPNN + 

substructure attention 

Molecular graph + 

substructure 
Multi-class 

KG2ECapsule (2023) [68] Drug ID GCN + Capsule Knowledge graph Multi-label 

 

 

1659



 

Table 3. Performance metrics for DrugBank dataset (in %) 

 
Method and Year AUPRC (%) ACC (%) AUROC (%) F1-score (%) 

DANN-DDI [54] 2022 97.09 99.62 97.63 96.92 

DGAT-DDI [55] 2022 94.3 88.6 95.1 88.4 

RANEDDI [58] 2022 98.94 – 98.98 95.62 

AMDE [65] 2022 – 97.63 99.01 97.60 

SSI-DDI [47] 2021 98.14 94.47 98.38 – 

MFFGNN [50] 2022 96.81 – 95.39 92.54 

DeepDrug [52] 2022 98.0 – – 94.0 

GMPNN [56] 2022 – 95.30 98.46 – 

SA-DDI [60] 2022 – 96.23 98.80 96.29 

MSAN [61] 2022 – 97.00 99.27 97.04 

R2-DDI [64] 2022 – 98.15 99.70 98.16 

3DGT-DDI [67] 2022 – – 97.0 – 

DSN-DDI [29] 2023 – 96.94 99.47 96.93 

MIRACLE [46] 2021 92.34 – 95.51 83.60 

BioDKG-DDI [42] 2022 – 93.70 98.30 93.90 

Table 4. Performance metrics for TWOSIDES dataset (in %) 

 

Method and Year 
ACC 

(%) 

AUROC 

(%) 

F1-score 

(%) 

SSI-DDI [47] 2021 78.20 85.85 79.81 

DeepDrug [52] 2021 – – 84.0 

GMPNN [56] 2022 82.83 90.07 84.08 

SA-DDI [60] 2022 87.45 93.17 88.35 

R2-DDI [64] 2022 86.15 91.49 87.31 

DSN-DDI [65] 2023 98.83 99.90 98.83 

 

In our observations, particularly on the DrugBank dataset, 

we noted standout performances by RANEDDI (AUPRC = 

98.94%) and KGNN (AUPRC = 98.92%), both of which are 

network-based methods. These models achieved the highest 

and second-highest AUPRC performance, respectively, 

surpassing those of chemical structure-based and hybrid 

methods. The success of RANEDDI and KGNN can be 

attributed to their ability to effectively utilize multi-relational 

information inherent in DDI networks or knowledge graphs. 

In contrast, graph embedding procedures, such as DeepDDI, 

GraRep, DeepWalk, and substructure-based methods such as 

CASTER primarily leverage similar chemical structural 

information or drug characteristics. 

It’s also important to note that R2-DDI performed better in 

terms of both AUROC and F1-score, while DANN-DDI had 

the highest ACC result of 0.9962, surpassing all other models. 

On the TWOSIDES dataset, the recently published 

chemical structure-based model DSN-DDI showed 

remarkable results, outshining other baseline models across all 

evaluation metrics. Specifically, it achieved an ACC of 0.9883, 

an AUROC of 0.9990, and an F1-score of 0.9883, indicating 

its robustness and accuracy in DDI prediction. Another 

interesting insight derived from the comparative studies is that 

the network-based approaches, such as DANN-DDI and 

RANE-DDI, have performance comparable with the chemical 

structure-based methods (e.g. R2-DDI). In the mean-time, for 

the binary classification task, the hybrid methods still perform 

steadily on DrugBank. The value of different methods to 

predict DDI seems promising, which signifies the ease of 

selecting suitable models in the dataset that can relate to the 

task. 

In an endeavor to design the multi-class performance 

evaluating methods. The work we had presented here in this 

comprehensive analysis deals with the multi-class 

performance metric, which will mainly enable to investigate 

various types of DL and graph learning models by taking the 

benchmark datasets such as DrugBank and TWOSIDES 

datasets has been intensively evaluated, as depicted in Tables 

5 and 6. 

Provided in these tables is a thorough comparison of the 

effectiveness of the models in relation to multiple key 

evaluation metrics. The experiments lead us to conclude that 

KG2ECapsule and SumGNN ranked as the first two best 

models with consistent peak performances regardless of which 

metric we evaluated. They have demonstrated their 

extraordinary capability in tackling complicated classification 

tasks. 

KG2ECapsule shows significant improvements over the 

best baseline models on the DrugBank dataset in particular. It 

showed an enhancement of 2.71% in PR-AUC, 1.03% in ACC, 

2.8% in ROC–AUC, and 2% in F1 score. The reason for this 

increase in accuracy is due to KG2ECapsule being able to 

accurately model the triplets and include the connections that 

are present in the edges into the embedding algorithm. This 

demonstrates a more discriminate and effective method for 

integrating and employing KG information. 

However, for the TWOSIDES dataset, SumGNN has 

showed better improvement by at least 2.45% and 2.82% in 

PR-AUC and ROC-AUC respectively compared to other 

methods. It is strongly suggested by this that SumGNN must 

be giving thought to the subgraphs that they are using since 

they are being so successful. The fact that it is able to exploit 

these outside information looks like to give it a step ahead 

against many other models. Moreover, in terms of KG based 

approaches such as KG-DDI and KGNN, as a comparison, 

SumGNN and KG2ECapsule are both superior even though 

the comparison of both methods is only single, while 

KG2ECapsule and SumGNN consistently are both higher than 

any other on two datasets. This observation really drives the 

point home: just using KGEmbed and neighborhood sampling 

might not be that great an idea to sufficiently leverage KG 

information for DDI prediction. This implies the requirement 

for more sophisticated techniques that can handle the complex 

structures and relationships inherent in KGs in a more 

comprehensive manner. 

In addition, network-based techniques, with all three 

different approaches, had better performances in the multi-

class problem. Evidence of these trends may mean the 

architectural and computational strategies in certain network-

based models could have a high performance on multi-class 

DDI prediction tasks, because DDI prediction is a complex 

task involving many aspects of information. This knowledge 

presents a promising research direction where network-based 

1660



 

models can be extrapolated and used to potentially redefine 

how accurate we can be and how fast we can do predictions 

for DDI. 

 

Table 5. Multi-class performance metrics for DrugBank 

dataset (in %) 

 

Method Year 

Mean 

Accuracy 

(%) 

Macro 

Precision 

(%) 

Macro 

Recall 

(%) 

Macro 

F1 (%) 

SSI-DDI [47] 

2021 
89.65 87.63 93.21 89.93 

GMPNN [56] 

2022 
94.85 93.46 97.25 94.95 

SA-DDI [60] 

2022 
95.65 94.72 97.46 95.73 

Molormer [63] 

2022 
96.67 94.19 92.70 93.11 

MDDI-SCL [36] 

2022 
93.78 88.04 87.67 87.55 

DGNN-DDI [68] 

2023 
96.09 94.72 97.88 96.16 

MUFFIN [39] 

2021 
– 96.48 94.95 – 

KGNN [69] 2020 85.87 79.47 86.02 79.45 

KG2Ecapsule 

[70] 2023 
88.58 80.50 88.82 81.45 

 

Table 6. Multi-class performance metrics for TWOSIDES 

dataset (in %) 

 
Method and Year PR-AUC (%) ROC–AUC (%) 

KGNN [69] 2020 65.84 89.48 

SkipGNN [71] 2020 90.90 92.04 

SumGNN [40] 2021 93.35 94.86 

MUFFIN [39] 2021 70.33 91.60 

 

In reviewing the progression of deep learning and graph-

based models for drug–drug interaction (DDI) prediction from 

2021 onward, several key trends and performance patterns 

emerge. Firstly, network-based models, particularly those 

leveraging knowledge graphs and biomedical networks—such 

as RANEDDI, DANN-DDI, and KGNN—demonstrate 

superior performance in metrics like AUPRC and AUROC. 

These models excel due to their ability to capture complex, 

multi-relational patterns inherent in drug interaction networks, 

as opposed to relying solely on chemical structure or 

sequence-level data. For example, RANEDDI achieved the 

highest AUPRC on the DrugBank dataset (98.94%), while 

DANN-DDI recorded the highest accuracy (99.62%), 

showcasing the power of embedding techniques and attention 

mechanisms when applied to relational data. In contrast, 

structure-based methods using SMILES strings and molecular 

graphs—such as GMPNN, DeepDrug, and DSN-DDI—have 

also shown competitive performance, particularly in binary 

and multi-class classification, thanks to the incorporation of 

message-passing neural networks (MPNNs), graph 

convolutional networks (GCNs), and attention modules that 

enable more expressive molecular feature learning. Hybrid 

approaches like MFFGNN and DGNN-DDI, which integrate 

multi-type features from both chemical and relational domains, 

offer balanced effectiveness across metrics and task types. 

Another trend is the increasing use of attention mechanisms, 

contrastive learning, and transformer-like architectures, which 

enhance the interpretability and generalization of models. 

Moreover, the recent inclusion of 3D structural information in 

models such as 3DGT-DDI highlights a growing recognition 

of spatial configuration’s role in accurate DDI prediction. 

Overall, the diversity in input types (SMILES, drug IDs, 

graphs), architectural complexity (from GCNs to capsule 

networks), and task orientation (binary, multi-class, multi-

label) reflects a maturing field, where model choice is often 

dictated by the specific DDI task, dataset characteristics, and 

desired performance trade-offs. The following tables offer a 

detailed breakdown and comparison of these models across 

different metrics, datasets, and classification types. 

 

 

6. CONCLUSION 

 

This review has comprehensively examined the evolving 

landscape of drug-drug interaction (DDI) prediction from the 

pre-2020 era through to 2023, focusing on four core aspects: 

data sources, molecular representation, biological information, 

and deep learning (DL) models. The analysis of data sources 

highlights the increasing availability and diversity of datasets 

used in DDI prediction, reflecting a broader and richer basis 

for model development. In the domain of molecular 

representation, we observe persistent challenges in accurately 

capturing molecular structures, which can negatively impact 

the performance of predictive models when foundational 

inputs are insufficient or misrepresented. 

The integration of biological information has notably 

enriched predictive capabilities by providing deeper insights 

into underlying pharmacological and biochemical processes—

many of which remain only partially understood. This 

biological context is essential for enhancing model precision 

and clinical relevance. Deep learning models, particularly the 

application of advanced architectures such as GNNs and 

knowledge graph embeddings, have demonstrated strong 

potential in modeling complex DDI mechanisms and continue 

to drive innovation in the field. Recent trends point toward 

using DL to derive more expressive and informative molecular 

and biological features. 

Looking forward, two key directions deserve focused 

attention. First, improving the interpretability of predictive 

models is crucial for clinical adoption, as black-box models 

may hinder trust and decision-making in healthcare settings. 

Incorporating explainable AI techniques and visual analytics 

can bridge this gap. Second, there is a pressing need to 

establish standardized benchmarking protocols and datasets 

for DDI prediction. Such benchmarks would facilitate 

consistent evaluation, reproducibility, and fair comparisons 

among models, thereby accelerating progress and fostering 

collaboration across research communities. 
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