
An Intelligent Steganographic Scheme Using Video Frame Neighborhoods

Fayez Khazalah1* , Hesham Al-Rawashdeh2 , Nashat Al Bdour2 , Ayman M. Mansour2

1 Department of Information Systems, College of Information Technology, Al al-Bayt University, Mafraq 25113, Jordan
2 Department of Computer and Communication Engineering, College of Engineering, Tafila Technical University, Tafila

66110, Jordan

Corresponding Author Email: fayez@aabu.edu.jo

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300612 ABSTRACT

Received: 8 May 2025

Revised: 11 June 2025

Accepted: 23 June 2025

Available online: 30 June 2025

This paper describes a method for steganographic security of information based on video.

Using videos allows for hiding more secret data. The method is based on dividing the video

into an ordered sequence of video frames and analyzing groups of video frames to select

pixels in each video file, into which secret bits are embedded. Video frame analysis is

performed by determining the difference between adjacent video frames and forming an

array of numbers that determines the magnitude of the difference for the code of each pixel.

By using a threshold processing, we can identify pixels where more secret bits can be hidden

compared to the LSB algorithm. Based on the analysis of adjacent video frames and the

application of threshold processing, templates are formed according to which secret

information is embedded in the video. Traditional steganographic methods, such as LSB

substitution, face challenges related to limited embedding capacity and vulnerability to

common signal processing attacks. These drawbacks restrict their effectiveness in practical,

high-security data hiding scenarios. To overcome these limitations, we propose an

intelligent video steganography technique based on interframe pixel differences and

adaptive thresholding. By identifying regions with significant temporal variation, the

method selectively embeds multiple secret bits using a threshold-guided LSB approach.

Additionally, a dynamic duplication mechanism across color channels is employed to

improve redundancy and robustness without compromising visual quality. Experimental

results show a notable increase in both embedding capacity and resistance to compression

and noise, outperforming traditional LSB-based techniques.

Keywords:

container templates, image, steganography,

thresholding, video frames, video frame

analysis

1. INTRODUCTION

In the modern world, modern means of communication and

computing technologies are being rapidly introduced on a

global scale. This entails the need to exchange large amounts

of information. In this regard, specialists pay special attention

to the high-quality protection of transmitted information from

various types of threats. One of the approaches to

implementing information protection is the use of

steganographic systems, which are based on hiding secret

information in information containers, presented in the form

of files of various formats (graphic, audio, text files, etc.).

One of the main challenges is to increase the volume of

embedded information without noticeable distortion of the

container. In such situations, large volumes of hidden

information require containers that also contain large volumes

of information. The volume of the container must be many

times greater than the volume of the secret information being

introduced. Among all possible containers of large volumes of

information, videos can be used. Unlike other containers, in

addition to the Least Significant Bit (LSB) method [1-3], other

steganographic methods [2-6] can be implemented in such a

container. This is due to the fact that video contains dynamic

changes in the visual picture, unlike containers that contain

stationary, time-invariant information. It is more difficult to

detect visual deviations from the original video in dynamically

changing visual images. This is especially true if such a video

is not formed by a stationary video camera, in which visual

changes are observed practically throughout the entire visual

field. This allows the use of dynamically changing sections of

a video to embed secret information into them using

combinations of various steganographic methods based on the

use of images as containers [1-3, 7, 8]. In addition, processing

groups of images containing approximately the same visual

content allows the use of additional methods aimed at

processing several images to select pixels in each video frame,

into the codes of which secret bits are embedded without

significant changes in the visual picture of the video. This

approach allows for a significant increase in the volume of

embedded information with high resistance to enemy attacks.

2. RELATED WORK

The main goal of video-based steganography is to embed

secret bits into video graphics files by replacing the original

bits in the pixel codes without visible distortion. The earliest

and simplest method of steganography based on containers

Ingénierie des Systèmes d’Information
Vol. 30, No. 6, June, 2025, pp. 1535-1544

Journal homepage: http://iieta.org/journals/isi

1535

https://orcid.org/0000-0002-7448-156X
https://orcid.org/0009-0007-8268-4926
https://orcid.org/0000-0003-0334-5226
https://orcid.org/0000-0001-7086-1613
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300612&domain=pdf

represented by graphic files is the LSB replacement method

[1-3]. Its main drawback is that the size of the embedded

message is limited by the container size. In addition, the LSB

method can lead to a violation of the integrity of the graphic

files of the containers. To improve the quality of

steganographic protection, several methods have been

developed at present time. In works [4-6], a detailed review

and comparative analysis of existing video-based methods

were conducted. The study [9] describes a combined method

of steganographic protection based on K-means and the LSB

function. However, the need to form clusters can lead to false

results on the receiving side because the initial choice of initial

values may be unsuccessful.

Steganographic methods that use color content have been

proposed [10]. Color space conversion was used, which may

result in false elements or loss of information. RGB analysis

and transformation for steganographic concealment were

presented in study [11]. However, transformation and random

embedding do not fully increase the volume of the embedded

information. Another combined method of steganographic

protection is based on the use of LSB and the DCT algorithm

[12]. A lossless compression algorithm was used here, which

also limits the amount of embedded secret information.

Steganographic security methods that use BCH codes [13,

14] and Hamming codes [15] have been proposed. However,

these methods are not sufficiently resistant to attacks.

In study [16], video frames were analyzed, and suitable

secret bits for embedding were selected. This method does not

use all video frames to hide secret bits, which limits the

amount of information that can be embedded in the video.

Compressed videos occupy less space, and secret bits are

embedded during or after compression [17]. This method can

lead to different problems and errors for different codecs.

MPEG formats are most often used to hide information [18].

The main methods used for embedding information in the

MPEG-2 format are embedding at the coefficient level,

embedding at the bit plane level, and embedding owing to the

energy difference between coefficients [19]. The study [17]

describes a method for embedding audio data into files

represented by the AVI video format. Secret data are

embedded into the information part, considering repeating

blocks in the container structure. This approach does not

always yield the desired result because the number of

repeating blocks for different videos can be limited, which

often limits the amount of embedded information.

Video format files are divided into a sequence of video

frames, for which steganography methods are applied to.

However, most methods do not use a detailed analysis of

groups of adjacent video frames to select the pixels into which

the secret bits are embedded in their codes.

3. PROBLEM FORMULATIONS

The goal of this research is to increase the volume of

information embedded in containers represented by a video

format file by using additional processing of two adjacent

video frames to select pixels that have a difference greater than

a given threshold value. The division of color byte codes into

threshold layers also allows solving the problem, in addition

to increasing the volume of embedded information and

increasing resistance to enemy attacks owing to the possibility

of duplicating embedded information.

The methodology adopted in this study is grounded in the

intelligent exploitation of temporal changes between video

frames to enable content-adaptive steganographic embedding.

Initially, the video is divided into discrete frames, which are

grouped in overlapping pairs to facilitate interframe difference

computation. This approach is particularly effective for video

sequences captured by stationary cameras, where minimal

motion results in limited pixel-level differences. Conversely,

for videos recorded by moving cameras or scenes with

dynamic content, the interframe differences are more

widespread, offering greater embedding opportunities.

Each pair of adjacent frames is processed to calculate the

pixel-wise differences across the full 24-bit RGB space. These

differences are separated into red, green, and blue byte-level

components to enable finer control during subsequent

processing. To enhance both security and embedding

efficiency, thresholding is applied to each color byte array.

This selective filtering allows the system to ignore minor

changes that are unlikely to be perceptually significant and

instead focus on pixels with notable differences. The threshold

values can be tuned to match the visual properties of a specific

video, ensuring an optimal balance between payload capacity

and invisibility.

Templates are generated based on the thresholded

differences, identifying the spatial locations within the frames

where data can be hidden. These templates vary from frame to

frame and color to color, providing a high degree of

adaptability and security for users. In the embedding phase,

secret bits are inserted into the least significant bits of the

selected pixel bytes according to a hierarchical scheme,

wherein more bits are embedded in pixels with larger

differences. This variable-depth embedding minimizes the

distortion in flat regions while maximizing the capacity in

visually active areas. Furthermore, by duplicating the

embedded data across different frames or color channels using

diverse templates, the system enhances resilience against

signal degradation or intentional attacks. Experimental results

confirm that this methodology significantly increases the

amount of secret data that can be embedded while maintaining

imperceptibility and robustness across diverse video types.

The algorithm proposed in this study is a steganographic

embedding technique that utilizes threshold-based interframe

difference analysis to increase the payload capacity of video

containers while maintaining visual imperceptibility. The

process begins by decomposing the input video into an ordered

sequence of individual frames, where each frame is treated as

a static image composed of pixels represented by 24-bit RGB

values. The core idea is to analyze pairs of adjacent video

frames to compute pixel-wise differences between them.

These differences are calculated by subtracting the

corresponding pixel values of one frame from the next, and the

resulting difference values are considered in their absolute

form.

Next, the RGB values of the differing pixels are separated

into their individual color components—red, green, and

blue—resulting in three arrays of pixel byte differences. A

thresholding process is then applied to each array. Only pixels

whose color channel differences exceed a predefined threshold

(e.g., 50, 100, or 200) are selected for embedding. This step is

crucial for ensuring that only visually significant changes are

utilized, thereby reducing the chance of noticeable distortion.

For each color channel in a given frame, a corresponding

binary mask or "template" is generated to indicate which

pixels are eligible for embedding the secret information. In

these templates, pixels with zero values indicate no embedding,

1536

whereas non-zero values identify locations for hiding secret

bits. The number of bits embedded in each selected pixel is

dynamically determined based on the magnitude of the

interframe difference; higher differences allow embedding of

more bits, up to four in some cases. Embedding is performed

in the LSBs of the pixel color byte, maintaining the visual

integrity of the video. This stepwise process is repeated for all

frame pairs in the video, producing a robust and high-capacity

steganographic system.

4. THE PROPOSED METHOD

We propose a method for embedding secret bits inside video

stream frames based on interframe difference analysis and

threshold processing. The method of hiding a message in a

video is based on splitting a video file into a sequence of video

frames, each of which is an image. Video frames can be

identical (if there are no moving objects or dynamically

changing processes in the video) or can differ in the states of

pixels that have the same location in the image. Adjacent video

frames are of particular interest, as they can coincide in any

video if the frame rate is very high.

If messages are hidden in adjacent video frames, visual

differences may be observed in adjacent video frames and the

entire video. For videos not obtained from stationary cameras,

differences in adjacent video frames are almost always present.

However, identical adjacent video frames are often found in

videos obtained from stationary video cameras. Moreover, the

number of different pixels in adjacent video frames is much

lower than that in videos obtained from nonfixed video

cameras. This approach is based on determining the difference

in video frames [20, 21].

Examples of video frames for stationary and nonstationary

video cameras are shown in Figure 1. It shows video frames in

which pixels that changed their state and underwent threshold

processing in accordance with the specified thresholds (45 and

150) in the next video frame are highlighted in red. The red

rectangular frame highlights areas with different values of the

difference thresholds in two adjacent video frames. Because

the maximum value for each byte of an RGB image is 255, the

differences are recorded in the range of 0–255. Differences in

pixel codes can be recorded in both individual color bytes and

the overall pixel code, the maximum value of which for an

RGB image is 16777215. The difference in pixel codes

between two images can be either negative or positive. As a

rule, such quantities are taken as absolute values with a

positive sign.

Figure 1. Examples of video frames obtained from stationary and non-stationary video cameras

Using the difference in the pixel codes of adjacent video

frames, an algorithm for hiding a secret message in a video is

proposed, which consists of the following steps:

(1) The video is split into a sequence of frames.

(2) The difference in the codes of the pixels with the same

coordinates in adjacent video frames is determined. To

determine the difference, video frames from the initial

video are used.

(3) The codes of the pixels in which the presence of

differences is determined are divided into three color

bytes: R, G, and B.

(4) Threshold processing is applied to the values of the codes

of each byte of pixels greater than 0 in absolute value. The

threshold value in the range from 0 to 255 is set, and the

bytes of those pixels whose codes exceed the threshold

value are selected.

(5) In accordance with the allocated pixels for the bytes of

each color, templates with allocated pixels are formed.

Each template is an image the size of a video frame with

black pixels (code 0), into whose codes the bits of the

secret message are not embedded, and with pixels of a

different color (code greater than 0), into whose codes the

bits of the secret message are embedded. For each video

frame, three templates are generated: R-template, G-

template, and B-template. These patterns are used to

embed secret bits into the bytes encoding the colors red,

green, and blue, respectively.

(6) For each selected pixel, the code value is analyzed to

determine the difference between two adjacent video

frames. The number of least significant bits in the color

byte into which the secret bits are embedded is determined

based on the magnitude of the difference.

(7) In accordance with the selected templates and the results

of the analysis of the difference values, the bits of the

secret message are implemented.

Videos can be generated using a stationary camera or a

camera mounted on a moving object. Moving objects can be

human hands, cars, aircraft, or other objects. If it is necessary

to embed a large volume of information, the most effective

container is a video consisting of many containers, which are

images of the same format and size. For the proposed method,

the volume of the embedded image can be increased using a

video obtained from a nonstationary video camera.

In the first step, the video, which is used as a steganographic

container, is broken down into an ordered sequence of video

frames (images), in which the color and brightness

1537

characteristics of each pixel are encoded using a code formed

by three bytes.

In the second step of the algorithm, two adjacent video

frames are grouped such that every second video frame of the

previous group is the first video frame of the next group. The

result is a multitude of groups:

𝑉 = {(𝑓1, 𝑓2), (𝑓2, 𝑓3), … , (𝑓𝑖−1, 𝑓𝑖), … , (𝑓𝑛−1, 𝑓𝑛)},

Giving a set of arrays of numbers that are the result of

comparing two numbers of adjacent video frames 𝑓𝑖−1 and 𝑓𝑖.

Using the comparison (subtraction) operation on arrays of

numbers (images) in each group are formed a set of arrays of

numbers:

𝑅 = {(𝑟1,2), (𝑟2,3), … , (𝑟𝑖−1,𝑖), … , (𝑟𝑛−1,𝑛)},

where, 𝑟𝑖−1,𝑖 = 𝑟𝑖−1 − 𝑟𝑖.

This expression considers the entire three-byte code of each

pixel. Examples of the obtained arrays of numbers for a

sequence of three video frames are shown in Figure 2.

Figure 2. Examples of forming arrays of numbers as a result of comparing adjacent video frames

In Figure 2, the obtained arrays 𝑟1,2 and 𝑟2,3 are presented in

the form of a surface on which positive and negative peaks are

present. For videos generated from a nonstationary video

camera, such peaks are present over almost the entire surface.

The second example shows fewer peaks than the first. They

are present only in pixels that indicate dynamic changes. For

ease of implementation of the algorithm, all obtained values

are considered positive.

Values greater than 0 are determined, and the codes of the

corresponding pixels are divided into three bytes, forming red,

green, and blue colors. Three arrays are formed from the

received bytes 𝑅𝑅, 𝑅𝐺 and 𝑅𝐵 as following:

{

𝑅𝑅 = {𝑟1,2
𝑅 , 𝑟2,3

𝑅 , … , 𝑟𝑖−1,𝑖
𝑅 , … , 𝑟𝑛−1,𝑛

𝑅 }

𝑅𝐺 = {𝑟1,2
𝐺 , 𝑟2,3

𝐺 , … , 𝑟𝑖−1,𝑖
𝐺 , … , 𝑟𝑛−1,𝑛

𝐺 }

𝑅𝐵 = {𝑟1,2
𝐵 , 𝑟2,3

𝐵 , … , 𝑟𝑖−1,𝑖
𝐵 , … , 𝑟𝑛−1,𝑛

𝐵 }

These arrays define the differences in the corresponding

three-color bytes. Examples of such arrays are presented in

Figure 3. As shown, for each of the three arrays obtained by

comparing two adjacent video frames, there are differences.

For example, the difference between the bytes that make up

the red color may be 0, while for the bytes that make up the

green or blue color, the difference may be different from 0. For

the presented example (Figure 3), all three obtained surfaces

for the arrays 𝑟𝑖−1,𝑖
𝑅 , 𝑟𝑖−1,𝑖

𝐺 and 𝑟𝑖−1,𝑖
𝐵 have differences. In some

areas, such differences are significant.

To hide secret bits more reliably, a fourth stage of the

algorithm is implemented, in which threshold processing is

applied to each generated array, which reduces the number of

pixels indicating the presence of a difference between adjacent

video frames. Examples of all three arrays formed after

applying threshold processing are shown in Figure 4.

Threshold values of 50, 100, and 200 were used. All obtained

values are presented in absolute value as positive numbers.

Figure 3. Examples of arrays of numbers obtained as a result

of splitting into three color bytes and comparing adjacent

video frames

1538

Figure 4. Generated arrays after using threshold processing with values of 50, 100 and 200 for the video frames shown in Figure

3

In the fifth stage of the algorithm, templates are formed,

based on which pixels are selected in the following video

frames for embedding secret bits into their codes (Figure 5). In

addition, a selection of pixels is made into the codes of which

a different number of secret bits can be embedded (sixth stage

of the algorithm).

For example, one can set conditions that if the bytecode

does not exceed the value of 50 but is greater than 0, then one

secret bit can be embedded in the least significant bit of this

code, and if the code exceeds the threshold of 50 but is less

than 100, then the secret bits can be embedded in the two least

significant bits of the byte of the corresponding pixel, etc.

Thus, the number of secret bits embedded in the bytecode of

each pixel depends on the magnitude of the difference in the

codes of the corresponding pixels in two adjacent video

frames. The threshold values for each video can be

individually selected to avoid disrupting the visual differences

in the video.

The final stage (Stage 7) involves the introduction of secret

bits into the pixel codes of each video frame, considering the

obtained templates. At this stage, the sequence of enumerating

pixels for each template is set, and the sequence of

enumerating templates and bytes for the image of each video

frame is also set. There are different sets of sequences for

selecting the codes of the selected pixels. The simplest method

is to sequentially embed secret bits according to patterns

obtained by analyzing the red, green, and blue bytes.

If, after applying threshold processing, several templates are

formed for each color byte (Figure 4), then these templates are

also considered when forming the sequence of pixel iteration.

The sequence of pixel code selection is often specified in

advance and can be generated using a special program or

device.

1539

Figure 5. Generated templates according to the examples

presented in Figure 4

Experimental studies were conducted for different bit

sequences, the bits of which were embedded in the least

significant bits of the pixel codes in containers, and the bits

were embedded in different numbers of least significant bits of

the selected pixel codes. Sequences consisting of all zeros or

all ones, as well as bit sequences generated by a pseudo-

random number generator, were used as hidden bit sequences.

An example of such an approach without thresholding is

shown in Figure 6. It shows the same video frames with secret

bits embedded in the lower 0, 1, 2, 3, and 4 bits. In this case,

no significant visual differences are observed in the steady

state when implemented in one least significant bit.

Differences are also observed when embedding the bits of the

bit sequence into the least significant bits of each color file,

starting with the first least significant bit. Moreover, such

differences are visually noticeable regardless of which bit

sequence is implemented.

Using thresholding allows us to generate more templates for

each video frame. For each video frame, templates of different

shapes are formed, which depend on the structure of two

adjacent video frames. In accordance with the templates

obtained, pixels are selected, into the bytes of which a different

number of secret bits are embedded. An example on secret bits

embedding after thresholding is given in Figure 7.

Figure 7 shows different combinations of pixel selections

that are used to further hide different numbers of secret bits.

For a threshold of 50, video frames are presented in which two

secret bits are embedded in the 4th and 5th least significant

bits of the selected pixels. The results of embedding five secret

bits into the pixel codes selected after applying thresholds of

100 and 200 are shown below. The bottom image of the video

frame shows the results of combining the number of embedded

secret pixels for different thresholds. For the first two least

significant bits, two secret bits are embedded at a threshold of

50; for the third least significant bit, secret bits are embedded

at a threshold of 100; and for the fourth least significant bit, at

a threshold of 200. The examples provided do not show any

significant visual differences when the videos are viewed.

This approach slightly complicates the process of

introducing the secret bits. In this case, a large number of key

templates are formed, which requires a large amount of

memory to store them. For each video and each pair of video

frames, its own key templates are generated. The receiving

side must contain either the original videos or pre-formed

templates. The proposed steganographic embedding

methodology using interframe differences is summarized in

Figure 8.

To objectively support the claim of minimal visual

distortion when embedding secret bits, we evaluated the visual

quality of the stego videos using standard metrics, including

the Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index Measure (SSIM). Across all tested threshold

values (50, 100, and 200), the PSNR consistently exceeded 40

dB, with average values of 42.3, 41.8, and 40.7 dB,

respectively. Corresponding SSIM scores were above 0.95,

indicating a high degree of structural similarity between the

original and stego frames. These quantitative results confirm

that our threshold-based embedding approach preserves visual

fidelity effectively, validating the subjective observations

illustrated in Figure 7.

To select appropriate threshold values for interframe

difference processing, we conducted extensive empirical

evaluations across various video types with different motion

characteristics. The chosen thresholds of 50, 100, and 200

represent low, medium, and high sensitivity levels,

respectively, for detecting pixel differences between adjacent

frames. These thresholds enable adaptive selection of pixels

based on the magnitude of changes, balancing embedding

capacity and visual imperceptibility.

A lower threshold such as 50 allows embedding in a larger

number of pixels, increasing the payload capacity but

potentially introducing more visible distortion. Conversely, a

higher threshold like 200 restricts embedding to pixels with

more significant differences, preserving visual quality but

reducing capacity. Our experiments consistently showed that

all three thresholds maintain high perceptual quality,

supported by PSNR values exceeding 40 dB and SSIM values

above 0.98, indicating minimal visible differences compared

to the original video.

Specifically, for a threshold of 50, the average PSNR was

approximately 42.31 dB with an SSIM of 0.985, confirming

excellent visual fidelity. Thresholds of 100 and 200 produced

slightly lower but still strong results, with PSNR values of

41.85 dB and 40.67 dB and SSIM values of 0.983 and 0.980,

respectively. These results demonstrate an effective trade-off

managed by the threshold values, ensuring both high

embedding capacity and low perceptibility.

To enhance reproducibility, we have included a detailed

pseudocode for the template generation algorithm in the

supplementary materials.

1540

Figure 6. Examples of embedding secret bits into video frames of a video sequence without threshold processing

Figure 7. An example of embedding secret bits into video frame images after applying threshold processing

1541

Figure 8. Proposed steganographic embedding methodology

using interframe differences

The proposed steganographic method operates primarily on

uncompressed video frames, making it inherently compatible

with widely used video codecs such as H.264 and HEVC,

which perform compression after frame processing. However,

embedding secret information directly into compressed video

streams poses significant challenges due to compression

artifacts and lossy encoding that can degrade or distort hidden

data. To ensure robustness, the method can be adapted to

embed data either before compression or by exploiting codec-

specific features, although this requires additional complexity

and careful synchronization.

Real-time performance is another critical factor,

particularly for deployment scenarios involving live streaming,

IoT devices, and edge computing platforms with limited

processing power and memory resources. The interframe

difference analysis and template generation steps introduce

computational overhead that may affect frame rate (fps) and

latency. For resource-constrained devices, this can limit

practical applicability unless optimizations are applied.

To address these challenges, several strategies can be

considered: hardware acceleration using GPUs or FPGAs to

offload intensive computations; algorithmic optimizations to

reduce complexity by limiting analysis to key frames or

regions of interest; and lightweight compression of templates

can reduce memory footprint. Such adaptations are essential

for real-world applications where low latency and efficient

resource utilization are paramount.

The memory requirements for storing multiple key

templates generated for each video frame have been estimated

for a standard 720p video at 30 frames per second. Template

storage demands approximately 5 MB per minute of video,

primarily due to maintaining binary masks for each color

channel across overlapping frame pairs. To reduce this

overhead, compression techniques such as run-length

encoding or block-based compression can be employed to

significantly decrease storage size without compromising

accuracy. Furthermore, optimization strategies similar to those

discussed in the study [17] may be applied to further minimize

memory usage. Future work will focus on implementing these

approaches to improve the efficiency and practicality of the

proposed method in real-world applications.

5. EXPERIMENTAL RESULTS

To assess the performance, reliability, and adaptability of

the proposed steganographic embedding methodology, a

comprehensive set of experiments was conducted under

various real-world video conditions. These experiments were

designed to validate the effectiveness of the system across

different motion dynamics, frame characteristics, and noise

levels.

The experimental evaluation focused on five distinct test

scenarios, each representing a unique context in which the

embedding algorithm could be applied. The objective was to

determine how the methodology performs in terms of

embedding capacity, bit extraction accuracy, and visual

fidelity, measured by the PSNR. Additionally, the experiments

investigated the robustness of the system under noise injection

and compression artifacts.

Figure 9. Evaluation and testing workflow for the proposed

steganographic method

Figure 9 shows the evaluation and testing workflow for the

proposed steganographic method.

The scenarios tested include the following:

Scenario 1: Stationary Camera with Minimal Motion

A video was captured using a stationary surveillance camera

in a low-activity environment, such as an empty corridor. This

1542

setup allowed us to evaluate the performance of the algorithm

under limited interframe changes. The embedding was

configured to use thresholds of 50, 100, and 200, with up to

two bits embedded per byte.

Scenario 2: Moving Camera with Moderate Scene

Change

This scenario simulated a handheld recording inside a

building by introducing moderate motion and changing

backgrounds. Thresholds of 30, 100, and 180 were used,

allowing up to three bits per byte. Adaptive bit-depth

embedding was applied based on the magnitude of the

interframe differences.

Scenario 3: High-Dynamic Scene (Traffic or Crowd)

A video from a crowded street was used to test the limits of

the algorithm under heavy motion and frequent pixel changes.

Lower thresholds (20, 50, 100) and redundancy through

duplicated templates enabled high-capacity embedding, with

up to 4 bits per byte.

Scenario 4: Low-Resolution Compressed Video

This test involved a 240p compressed video containing

visible encoding artifacts. High thresholds (60, 120, 200) and

error-detection via CRC were employed to mitigate the impact

of compression.

Scenario 5: Bit-Recovery Robustness Evaluation

In this scenario, the system was tested under noisy and

degraded conditions. Random bit sequences were embedded

and extracted after applying Gaussian noise (σ = 5). The

embedding depth ranged from 1 to 4 bits based on the pixel

difference magnitude.

We summarize the experimental outcomes of these

scenarios in Table 1. These results demonstrate that the

proposed method achieves a good trade-off between the

payload capacity and visual quality. In low-motion scenes

(Scenario 1), the algorithm preserves visual integrity with

minimal distortion, while still allowing efficient data

embedding. In high-motion environments (Scenario 3), the

system maximizes the capacity with acceptable visual

degradation. The bit recovery test (Scenario 5) confirmed the

robustness of the system against mild distortion and

compression, achieving over 95% accuracy even in noisy

environments.

Table 1. Summary of experimental results across different

video scenarios

Scenario
Capacity

(bits/frame)

Accuracy

(%)

PSNR

(dB)
BER

1 ~3,200 96.5% 48.7 —

2 ~6,700 94.1% 44.3 —

3 ~11,200 90.8% 39.2 —

4 ~2,500 89.4% 41.8 —

5 ~7,800 95.2% 42.6 4.8%

To validate the enhanced resistance of the proposed

steganographic scheme against common attacks, we

performed evaluations using well-known steganalysis tools,

including StegExpose and CNN-based detectors. The

threshold-based pixel selection mechanism significantly

reduces statistical anomalies in the video frames, whereas the

duplication of embedded information across different

templates increases redundancy, making detection by

conventional steganalysis methods more difficult. Our

experimental results show that the detection accuracy of

StegExpose dropped by approximately 15% compared to

baseline LSB methods, and the CNN-based detectors showed

a lower confidence level in identifying embedded data. These

results align with similar findings reported in a previous study

[14], confirming that adaptive embedding combined with

redundancy substantially improves robustness against

steganalysis. This supports the claim that our method achieves

superior security and resistance to both passive and active

attacks.

6. CONCLUSIONS

This study explores a method for steganographic

concealment of information in a container represented by a

video file. The use of videos has made it possible to increase

the volume of classified information. Determining the

difference between images of adjacent video frames, as well

as using threshold processing, allows for increasing the

volume of embedded secret information. At the same time,

increasing the number of key templates increases the

resistance of the stegosystem to enemy attacks. The division

into sets of key templates, as a result of threshold processing

of arrays of differences, increases the resistance to partial

losses of hidden information due to its duplication in the codes

of the pixels' bytes, allocated in accordance with the formed

sets of key templates.

Experimental studies have confirmed an increase in the

volume of hidden information due to the use of the proposed

method, as a greater number of bits are embedded in the least

significant byte codes of only the pixels that record the greatest

difference. As a result of the experimental studies conducted,

significant visual deviations from the original videos are

observed when introducing secret bits into the four least

significant digits of pixel codes with the greatest difference. In

this case, visual changes are not recorded in single pixels

isolated from all others, in which a small difference is

determined (less than the threshold). Visual changes are

recorded in the combined groups of selected pixels with the

greatest differences. In this case, such a group occupies a part

of the image measuring 3 × 3 pixels.

In future research, we plan to implement a steganographic

protection method that increases the amount of embedded

information in a video generated by a stationary video camera.

REFERENCES

[1] Khan, N., Gorde, K.S. (2015). Video steganography by

using statistical key frame extraction method and LSB

technique. International Journal of Innovative Research

in Science, Engineering and Technology, 4(10): 10410-

10417. https://doi.org/10.15680/IJIRSET.2015.0410114

[2] Yahya, A. (2019). Steganography Techniques for Digital

Images. Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-78597-4

[3] Kipper, G. (2003). Investigator's Guide to Steganography.

Auerbach Publications.

https://doi.org/10.1201/9780203504765

[4] Sapate, P., Patil, V., Pardeshi, M., Nichal, A. (2016). A

review paper on video steganography. International

Journal of Advanced Research in Science, Engineering

and Technology, 3(12): 204-207.

[5] Kunhoth, J., Subramanian, N., Al-Maadeed, S.,

Bouridane, A. (2023). Video steganography: Recent

advances and challenges. Multimedia Tools and

1543

Applications, 82(27): 41943-41985.

https://doi.org/10.1007/s11042-023-14844-w

[6] Pal, S., Bandyopadhyay, S.K. (2016). Various methods

of video steganography. International Journal of

Information Research and Review, 3(6): 2569-2573.

[7] Albdour, N. (2019). A novel methods for image

steganography by effective image points selection.

Journal of Electrical and Electronics Engineering, 14(5):

6-11.

[8] Bilan, S., Viacheslav, R., Andriy, D. (2020). Volume

increasing of secret message in a fixed graphical stego

container based on intelligent image analysis.

Information Technology and Security, 8(2): 133-143.

https://doi.org/10.20535/2411-1031.2020.8.2.222589

[9] Jangid, S., Sharma, S. (2017). High PSNR based video

steganography by MLC (multi-level clustering)

algorithm. In 2017 International Conference on

Intelligent Computing and Control Systems (ICICCS),

Madurai, India, pp. 589-594.

https://doi.org/10.1109/ICCONS.2017.8250530

[10] Khupse, S., Patil, N.N. (2014). An adaptive

steganography technique for videos using Steganoflage.

In 2014 International Conference on Issues and

Challenges in Intelligent Computing Techniques

(ICICT), Ghaziabad, India, pp. 811-815.

https://doi.org/10.1109/ICICICT.2014.6781384

[11] Ramalingam, M., Isa, N.A.M. (2015). A steganography

approach over video images to improve security. Indian

Journal of Science and Technology, 8(1): 79.

https://doi.org/10.17485/ijst/2015/v8i1/53100

[12] Pandey, G.K., Zafar, S. (2016). A secure data hiding

technique using video steganography. International

Journal of Innovative Research in Science, Engineering

and Technology, 5(4): 6380-6388.

[13] Mstafa, R.J., Elleithy, K.M. (2015). An efficient video

steganography algorithm based on BCH codes. In 2015

Northeast Section Meeting, Boston, Massachusetts,

USA. https://doi.org/10.18260/1-2-1153-53379

[14] Mstafa, R.J., Elleithy, K.M. (2015). A high payload

video steganography algorithm in DWT domain based on

BCH codes (15, 11). In 2015 Wireless

Telecommunications Symposium (WTS), York, NY,

USA, pp. 1-8.

https://doi.org/10.1109/WTS.2015.7117257

[15] Shanthakumari, R., Malliga, D.S. (2014). Video

Steganography using LSB matching revisited algorithm.

IOSR Journal of Computer Engineering, 16(6): 1-6.

[16] Kelash, H.M., Wahab, O.F.A., Elshakankiry, O.A., El-

sayed, H.S. (2014). Utilization of steganographic

techniques in video sequences. International Journal of

Computing and Network Technology, 2(1): 17-24.

[17] Bilan, M., Bilan, A. (2020). Research of methods of

steganographic protection of audio information based on

video containers. In Handbook of Research on Intelligent

Data Processing and Information Security Systems. IGI

Global Scientific Publishing, pp. 79-94.

https://doi.org/10.4018/978-1-7998-1290-6.ch004

[18] Modenova, O.G.V. (2010). Steganography and

steganalysis in video files. Prikladnaya Diskretnaya

Matematika, 12: 37-39.

[19] Shmatok, A., Petrenko, A., Tytov, V., Borysenko, E.

(2013). Active attack on steganography container.

Science-Based Technologies, 18(2): 189-192.

https://doi.org/10.18372/2310-5461.18.4934

[20] Motornyuk, R.L., Bilan, S.M. (2020). The moving object

detection and research effects of noise on images based

on cellular automata with a hexagonal coating form and

radon transform. In Handbook of Research on Intelligent

Data Processing and Information Security Systems. IGI

Global Scientific Publishing, pp. 330-359.

[21] Bilan, S. (2020). Identification of rolling stock of

railways based on multi-projection image processing

methods. In IT&I-2020 Information Technology and

Interactions Workshops, Kyiv, Ukraine, pp. 33-42.

1544

