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This paper describes a method for steganographic security of information based on video. 

Using videos allows for hiding more secret data. The method is based on dividing the video 

into an ordered sequence of video frames and analyzing groups of video frames to select 

pixels in each video file, into which secret bits are embedded. Video frame analysis is 

performed by determining the difference between adjacent video frames and forming an 

array of numbers that determines the magnitude of the difference for the code of each pixel. 

By using a threshold processing, we can identify pixels where more secret bits can be hidden 

compared to the LSB algorithm. Based on the analysis of adjacent video frames and the 

application of threshold processing, templates are formed according to which secret 

information is embedded in the video. Traditional steganographic methods, such as LSB 

substitution, face challenges related to limited embedding capacity and vulnerability to 

common signal processing attacks. These drawbacks restrict their effectiveness in practical, 

high-security data hiding scenarios. To overcome these limitations, we propose an 

intelligent video steganography technique based on interframe pixel differences and 

adaptive thresholding. By identifying regions with significant temporal variation, the 

method selectively embeds multiple secret bits using a threshold-guided LSB approach. 

Additionally, a dynamic duplication mechanism across color channels is employed to 

improve redundancy and robustness without compromising visual quality. Experimental 

results show a notable increase in both embedding capacity and resistance to compression 

and noise, outperforming traditional LSB-based techniques. 
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1. INTRODUCTION

In the modern world, modern means of communication and 

computing technologies are being rapidly introduced on a 

global scale. This entails the need to exchange large amounts 

of information. In this regard, specialists pay special attention 

to the high-quality protection of transmitted information from 

various types of threats. One of the approaches to 

implementing information protection is the use of 

steganographic systems, which are based on hiding secret 

information in information containers, presented in the form 

of files of various formats (graphic, audio, text files, etc.). 

One of the main challenges is to increase the volume of 

embedded information without noticeable distortion of the 

container. In such situations, large volumes of hidden 

information require containers that also contain large volumes 

of information. The volume of the container must be many 

times greater than the volume of the secret information being 

introduced. Among all possible containers of large volumes of 

information, videos can be used. Unlike other containers, in 

addition to the Least Significant Bit (LSB) method [1-3], other 

steganographic methods [2-6] can be implemented in such a 

container. This is due to the fact that video contains dynamic 

changes in the visual picture, unlike containers that contain 

stationary, time-invariant information. It is more difficult to 

detect visual deviations from the original video in dynamically 

changing visual images. This is especially true if such a video 

is not formed by a stationary video camera, in which visual 

changes are observed practically throughout the entire visual 

field. This allows the use of dynamically changing sections of 

a video to embed secret information into them using 

combinations of various steganographic methods based on the 

use of images as containers [1-3, 7, 8]. In addition, processing 

groups of images containing approximately the same visual 

content allows the use of additional methods aimed at 

processing several images to select pixels in each video frame, 

into the codes of which secret bits are embedded without 

significant changes in the visual picture of the video. This 

approach allows for a significant increase in the volume of 

embedded information with high resistance to enemy attacks. 

2. RELATED WORK

The main goal of video-based steganography is to embed 

secret bits into video graphics files by replacing the original 

bits in the pixel codes without visible distortion. The earliest 

and simplest method of steganography based on containers 
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represented by graphic files is the LSB replacement method 

[1-3]. Its main drawback is that the size of the embedded 

message is limited by the container size. In addition, the LSB 

method can lead to a violation of the integrity of the graphic 

files of the containers. To improve the quality of 

steganographic protection, several methods have been 

developed at present time. In works [4-6], a detailed review 

and comparative analysis of existing video-based methods 

were conducted. The study [9] describes a combined method 

of steganographic protection based on K-means and the LSB 

function. However, the need to form clusters can lead to false 

results on the receiving side because the initial choice of initial 

values may be unsuccessful. 

Steganographic methods that use color content have been 

proposed [10]. Color space conversion was used, which may 

result in false elements or loss of information. RGB analysis 

and transformation for steganographic concealment were 

presented in study [11]. However, transformation and random 

embedding do not fully increase the volume of the embedded 

information. Another combined method of steganographic 

protection is based on the use of LSB and the DCT algorithm 

[12]. A lossless compression algorithm was used here, which 

also limits the amount of embedded secret information. 

Steganographic security methods that use BCH codes [13, 

14] and Hamming codes [15] have been proposed. However,

these methods are not sufficiently resistant to attacks.

In study [16], video frames were analyzed, and suitable 

secret bits for embedding were selected. This method does not 

use all video frames to hide secret bits, which limits the 

amount of information that can be embedded in the video. 

Compressed videos occupy less space, and secret bits are 

embedded during or after compression [17]. This method can 

lead to different problems and errors for different codecs. 

MPEG formats are most often used to hide information [18]. 

The main methods used for embedding information in the 

MPEG-2 format are embedding at the coefficient level, 

embedding at the bit plane level, and embedding owing to the 

energy difference between coefficients [19]. The study [17] 

describes a method for embedding audio data into files 

represented by the AVI video format. Secret data are 

embedded into the information part, considering repeating 

blocks in the container structure. This approach does not 

always yield the desired result because the number of 

repeating blocks for different videos can be limited, which 

often limits the amount of embedded information. 

Video format files are divided into a sequence of video 

frames, for which steganography methods are applied to. 

However, most methods do not use a detailed analysis of 

groups of adjacent video frames to select the pixels into which 

the secret bits are embedded in their codes. 

3. PROBLEM FORMULATIONS

The goal of this research is to increase the volume of 

information embedded in containers represented by a video 

format file by using additional processing of two adjacent 

video frames to select pixels that have a difference greater than 

a given threshold value. The division of color byte codes into 

threshold layers also allows solving the problem, in addition 

to increasing the volume of embedded information and 

increasing resistance to enemy attacks owing to the possibility 

of duplicating embedded information. 

The methodology adopted in this study is grounded in the 

intelligent exploitation of temporal changes between video 

frames to enable content-adaptive steganographic embedding. 

Initially, the video is divided into discrete frames, which are 

grouped in overlapping pairs to facilitate interframe difference 

computation. This approach is particularly effective for video 

sequences captured by stationary cameras, where minimal 

motion results in limited pixel-level differences. Conversely, 

for videos recorded by moving cameras or scenes with 

dynamic content, the interframe differences are more 

widespread, offering greater embedding opportunities. 

Each pair of adjacent frames is processed to calculate the 

pixel-wise differences across the full 24-bit RGB space. These 

differences are separated into red, green, and blue byte-level 

components to enable finer control during subsequent 

processing. To enhance both security and embedding 

efficiency, thresholding is applied to each color byte array. 

This selective filtering allows the system to ignore minor 

changes that are unlikely to be perceptually significant and 

instead focus on pixels with notable differences. The threshold 

values can be tuned to match the visual properties of a specific 

video, ensuring an optimal balance between payload capacity 

and invisibility. 

Templates are generated based on the thresholded 

differences, identifying the spatial locations within the frames 

where data can be hidden. These templates vary from frame to 

frame and color to color, providing a high degree of 

adaptability and security for users. In the embedding phase, 

secret bits are inserted into the least significant bits of the 

selected pixel bytes according to a hierarchical scheme, 

wherein more bits are embedded in pixels with larger 

differences. This variable-depth embedding minimizes the 

distortion in flat regions while maximizing the capacity in 

visually active areas. Furthermore, by duplicating the 

embedded data across different frames or color channels using 

diverse templates, the system enhances resilience against 

signal degradation or intentional attacks. Experimental results 

confirm that this methodology significantly increases the 

amount of secret data that can be embedded while maintaining 

imperceptibility and robustness across diverse video types. 

The algorithm proposed in this study is a steganographic 

embedding technique that utilizes threshold-based interframe 

difference analysis to increase the payload capacity of video 

containers while maintaining visual imperceptibility. The 

process begins by decomposing the input video into an ordered 

sequence of individual frames, where each frame is treated as 

a static image composed of pixels represented by 24-bit RGB 

values. The core idea is to analyze pairs of adjacent video 

frames to compute pixel-wise differences between them. 

These differences are calculated by subtracting the 

corresponding pixel values of one frame from the next, and the 

resulting difference values are considered in their absolute 

form. 

Next, the RGB values of the differing pixels are separated 

into their individual color components—red, green, and 

blue—resulting in three arrays of pixel byte differences. A 

thresholding process is then applied to each array. Only pixels 

whose color channel differences exceed a predefined threshold 

(e.g., 50, 100, or 200) are selected for embedding. This step is 

crucial for ensuring that only visually significant changes are 

utilized, thereby reducing the chance of noticeable distortion. 

For each color channel in a given frame, a corresponding 

binary mask or "template" is generated to indicate which 

pixels are eligible for embedding the secret information. In 

these templates, pixels with zero values indicate no embedding, 
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whereas non-zero values identify locations for hiding secret 

bits. The number of bits embedded in each selected pixel is 

dynamically determined based on the magnitude of the 

interframe difference; higher differences allow embedding of 

more bits, up to four in some cases. Embedding is performed 

in the LSBs of the pixel color byte, maintaining the visual 

integrity of the video. This stepwise process is repeated for all 

frame pairs in the video, producing a robust and high-capacity 

steganographic system. 

4. THE PROPOSED METHOD

We propose a method for embedding secret bits inside video 

stream frames based on interframe difference analysis and 

threshold processing. The method of hiding a message in a 

video is based on splitting a video file into a sequence of video 

frames, each of which is an image. Video frames can be 

identical (if there are no moving objects or dynamically 

changing processes in the video) or can differ in the states of 

pixels that have the same location in the image. Adjacent video 

frames are of particular interest, as they can coincide in any 

video if the frame rate is very high. 

If messages are hidden in adjacent video frames, visual 

differences may be observed in adjacent video frames and the 

entire video. For videos not obtained from stationary cameras, 

differences in adjacent video frames are almost always present. 

However, identical adjacent video frames are often found in 

videos obtained from stationary video cameras. Moreover, the 

number of different pixels in adjacent video frames is much 

lower than that in videos obtained from nonfixed video 

cameras. This approach is based on determining the difference 

in video frames [20, 21]. 

Examples of video frames for stationary and nonstationary 

video cameras are shown in Figure 1. It shows video frames in 

which pixels that changed their state and underwent threshold 

processing in accordance with the specified thresholds (45 and 

150) in the next video frame are highlighted in red. The red

rectangular frame highlights areas with different values of the

difference thresholds in two adjacent video frames. Because

the maximum value for each byte of an RGB image is 255, the

differences are recorded in the range of 0–255. Differences in

pixel codes can be recorded in both individual color bytes and

the overall pixel code, the maximum value of which for an

RGB image is 16777215. The difference in pixel codes

between two images can be either negative or positive. As a

rule, such quantities are taken as absolute values with a

positive sign.

Figure 1. Examples of video frames obtained from stationary and non-stationary video cameras 

Using the difference in the pixel codes of adjacent video 

frames, an algorithm for hiding a secret message in a video is 

proposed, which consists of the following steps: 

(1) The video is split into a sequence of frames.

(2) The difference in the codes of the pixels with the same

coordinates in adjacent video frames is determined. To

determine the difference, video frames from the initial

video are used.

(3) The codes of the pixels in which the presence of

differences is determined are divided into three color

bytes: R, G, and B.

(4) Threshold processing is applied to the values of the codes

of each byte of pixels greater than 0 in absolute value. The

threshold value in the range from 0 to 255 is set, and the

bytes of those pixels whose codes exceed the threshold

value are selected.

(5) In accordance with the allocated pixels for the bytes of

each color, templates with allocated pixels are formed.

Each template is an image the size of a video frame with

black pixels (code 0), into whose codes the bits of the

secret message are not embedded, and with pixels of a

different color (code greater than 0), into whose codes the

bits of the secret message are embedded. For each video

frame, three templates are generated: R-template, G-

template, and B-template. These patterns are used to 

embed secret bits into the bytes encoding the colors red, 

green, and blue, respectively. 

(6) For each selected pixel, the code value is analyzed to

determine the difference between two adjacent video

frames. The number of least significant bits in the color

byte into which the secret bits are embedded is determined

based on the magnitude of the difference.

(7) In accordance with the selected templates and the results

of the analysis of the difference values, the bits of the

secret message are implemented.

Videos can be generated using a stationary camera or a 

camera mounted on a moving object. Moving objects can be 

human hands, cars, aircraft, or other objects. If it is necessary 

to embed a large volume of information, the most effective 

container is a video consisting of many containers, which are 

images of the same format and size. For the proposed method, 

the volume of the embedded image can be increased using a 

video obtained from a nonstationary video camera. 

In the first step, the video, which is used as a steganographic 

container, is broken down into an ordered sequence of video 

frames (images), in which the color and brightness 
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characteristics of each pixel are encoded using a code formed 

by three bytes. 

In the second step of the algorithm, two adjacent video 

frames are grouped such that every second video frame of the 

previous group is the first video frame of the next group. The 

result is a multitude of groups: 

𝑉 = {(𝑓1, 𝑓2), (𝑓2, 𝑓3), … , (𝑓𝑖−1, 𝑓𝑖), … , (𝑓𝑛−1, 𝑓𝑛)},

Giving a set of arrays of numbers that are the result of 

comparing two numbers of adjacent video frames 𝑓𝑖−1 and 𝑓𝑖.

Using the comparison (subtraction) operation on arrays of 

numbers (images) in each group are formed a set of arrays of 

numbers: 

𝑅 = {(𝑟1,2), (𝑟2,3), … , (𝑟𝑖−1,𝑖), … , (𝑟𝑛−1,𝑛)},

where, 𝑟𝑖−1,𝑖 =  𝑟𝑖−1 − 𝑟𝑖.

This expression considers the entire three-byte code of each 

pixel. Examples of the obtained arrays of numbers for a 

sequence of three video frames are shown in Figure 2. 

Figure 2. Examples of forming arrays of numbers as a result of comparing adjacent video frames 

In Figure 2, the obtained arrays 𝑟1,2 and 𝑟2,3 are presented in

the form of a surface on which positive and negative peaks are 

present. For videos generated from a nonstationary video 

camera, such peaks are present over almost the entire surface. 

The second example shows fewer peaks than the first. They 

are present only in pixels that indicate dynamic changes. For 

ease of implementation of the algorithm, all obtained values 

are considered positive. 

Values greater than 0 are determined, and the codes of the 

corresponding pixels are divided into three bytes, forming red, 

green, and blue colors. Three arrays are formed from the 

received bytes 𝑅𝑅, 𝑅𝐺 and 𝑅𝐵 as following:

{

𝑅𝑅 = {𝑟1,2
𝑅 , 𝑟2,3

𝑅 , … , 𝑟𝑖−1,𝑖
𝑅 , … , 𝑟𝑛−1,𝑛

𝑅 }

𝑅𝐺 = {𝑟1,2
𝐺 , 𝑟2,3

𝐺 , … , 𝑟𝑖−1,𝑖
𝐺 , … , 𝑟𝑛−1,𝑛

𝐺 }

𝑅𝐵 = {𝑟1,2
𝐵 , 𝑟2,3

𝐵 , … , 𝑟𝑖−1,𝑖
𝐵 , … , 𝑟𝑛−1,𝑛

𝐵 }

 

These arrays define the differences in the corresponding 

three-color bytes. Examples of such arrays are presented in 

Figure 3. As shown, for each of the three arrays obtained by 

comparing two adjacent video frames, there are differences. 

For example, the difference between the bytes that make up 

the red color may be 0, while for the bytes that make up the 

green or blue color, the difference may be different from 0. For 

the presented example (Figure 3), all three obtained surfaces 

for the arrays 𝑟𝑖−1,𝑖
𝑅 , 𝑟𝑖−1,𝑖

𝐺 and 𝑟𝑖−1,𝑖
𝐵  have differences. In some 

areas, such differences are significant. 

To hide secret bits more reliably, a fourth stage of the 

algorithm is implemented, in which threshold processing is 

applied to each generated array, which reduces the number of 

pixels indicating the presence of a difference between adjacent 

video frames. Examples of all three arrays formed after 

applying threshold processing are shown in Figure 4. 

Threshold values of 50, 100, and 200 were used. All obtained 

values are presented in absolute value as positive numbers. 

Figure 3. Examples of arrays of numbers obtained as a result 

of splitting into three color bytes and comparing adjacent 

video frames 
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Figure 4. Generated arrays after using threshold processing with values of 50, 100 and 200 for the video frames shown in Figure 

3 

 

In the fifth stage of the algorithm, templates are formed, 

based on which pixels are selected in the following video 

frames for embedding secret bits into their codes (Figure 5). In 

addition, a selection of pixels is made into the codes of which 

a different number of secret bits can be embedded (sixth stage 

of the algorithm). 

For example, one can set conditions that if the bytecode 

does not exceed the value of 50 but is greater than 0, then one 

secret bit can be embedded in the least significant bit of this 

code, and if the code exceeds the threshold of 50 but is less 

than 100, then the secret bits can be embedded in the two least 

significant bits of the byte of the corresponding pixel, etc. 

Thus, the number of secret bits embedded in the bytecode of 

each pixel depends on the magnitude of the difference in the 

codes of the corresponding pixels in two adjacent video 

frames. The threshold values for each video can be 

individually selected to avoid disrupting the visual differences 

in the video. 

The final stage (Stage 7) involves the introduction of secret 

bits into the pixel codes of each video frame, considering the 

obtained templates. At this stage, the sequence of enumerating 

pixels for each template is set, and the sequence of 

enumerating templates and bytes for the image of each video 

frame is also set. There are different sets of sequences for 

selecting the codes of the selected pixels. The simplest method 

is to sequentially embed secret bits according to patterns 

obtained by analyzing the red, green, and blue bytes. 

If, after applying threshold processing, several templates are 

formed for each color byte (Figure 4), then these templates are 

also considered when forming the sequence of pixel iteration. 

The sequence of pixel code selection is often specified in 

advance and can be generated using a special program or 

device.
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Figure 5. Generated templates according to the examples 

presented in Figure 4 

 

Experimental studies were conducted for different bit 

sequences, the bits of which were embedded in the least 

significant bits of the pixel codes in containers, and the bits 

were embedded in different numbers of least significant bits of 

the selected pixel codes. Sequences consisting of all zeros or 

all ones, as well as bit sequences generated by a pseudo-

random number generator, were used as hidden bit sequences. 

An example of such an approach without thresholding is 

shown in Figure 6. It shows the same video frames with secret 

bits embedded in the lower 0, 1, 2, 3, and 4 bits. In this case, 

no significant visual differences are observed in the steady 

state when implemented in one least significant bit. 

Differences are also observed when embedding the bits of the 

bit sequence into the least significant bits of each color file, 

starting with the first least significant bit. Moreover, such 

differences are visually noticeable regardless of which bit 

sequence is implemented. 

Using thresholding allows us to generate more templates for 

each video frame. For each video frame, templates of different 

shapes are formed, which depend on the structure of two 

adjacent video frames. In accordance with the templates 

obtained, pixels are selected, into the bytes of which a different 

number of secret bits are embedded. An example on secret bits 

embedding after thresholding is given in Figure 7.  

Figure 7 shows different combinations of pixel selections 

that are used to further hide different numbers of secret bits. 

For a threshold of 50, video frames are presented in which two 

secret bits are embedded in the 4th and 5th least significant 

bits of the selected pixels. The results of embedding five secret 

bits into the pixel codes selected after applying thresholds of 

100 and 200 are shown below. The bottom image of the video 

frame shows the results of combining the number of embedded 

secret pixels for different thresholds. For the first two least 

significant bits, two secret bits are embedded at a threshold of 

50; for the third least significant bit, secret bits are embedded 

at a threshold of 100; and for the fourth least significant bit, at 

a threshold of 200. The examples provided do not show any 

significant visual differences when the videos are viewed. 

This approach slightly complicates the process of 

introducing the secret bits. In this case, a large number of key 

templates are formed, which requires a large amount of 

memory to store them. For each video and each pair of video 

frames, its own key templates are generated. The receiving 

side must contain either the original videos or pre-formed 

templates. The proposed steganographic embedding 

methodology using interframe differences is summarized in 

Figure 8. 

To objectively support the claim of minimal visual 

distortion when embedding secret bits, we evaluated the visual 

quality of the stego videos using standard metrics, including 

the Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index Measure (SSIM). Across all tested threshold 

values (50, 100, and 200), the PSNR consistently exceeded 40 

dB, with average values of 42.3, 41.8, and 40.7 dB, 

respectively. Corresponding SSIM scores were above 0.95, 

indicating a high degree of structural similarity between the 

original and stego frames. These quantitative results confirm 

that our threshold-based embedding approach preserves visual 

fidelity effectively, validating the subjective observations 

illustrated in Figure 7. 

To select appropriate threshold values for interframe 

difference processing, we conducted extensive empirical 

evaluations across various video types with different motion 

characteristics. The chosen thresholds of 50, 100, and 200 

represent low, medium, and high sensitivity levels, 

respectively, for detecting pixel differences between adjacent 

frames. These thresholds enable adaptive selection of pixels 

based on the magnitude of changes, balancing embedding 

capacity and visual imperceptibility. 

A lower threshold such as 50 allows embedding in a larger 

number of pixels, increasing the payload capacity but 

potentially introducing more visible distortion. Conversely, a 

higher threshold like 200 restricts embedding to pixels with 

more significant differences, preserving visual quality but 

reducing capacity. Our experiments consistently showed that 

all three thresholds maintain high perceptual quality, 

supported by PSNR values exceeding 40 dB and SSIM values 

above 0.98, indicating minimal visible differences compared 

to the original video. 

Specifically, for a threshold of 50, the average PSNR was 

approximately 42.31 dB with an SSIM of 0.985, confirming 

excellent visual fidelity. Thresholds of 100 and 200 produced 

slightly lower but still strong results, with PSNR values of 

41.85 dB and 40.67 dB and SSIM values of 0.983 and 0.980, 

respectively. These results demonstrate an effective trade-off 

managed by the threshold values, ensuring both high 

embedding capacity and low perceptibility. 

To enhance reproducibility, we have included a detailed 

pseudocode for the template generation algorithm in the 

supplementary materials. 
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Figure 6. Examples of embedding secret bits into video frames of a video sequence without threshold processing 

Figure 7. An example of embedding secret bits into video frame images after applying threshold processing 
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Figure 8. Proposed steganographic embedding methodology 

using interframe differences 

 

The proposed steganographic method operates primarily on 

uncompressed video frames, making it inherently compatible 

with widely used video codecs such as H.264 and HEVC, 

which perform compression after frame processing. However, 

embedding secret information directly into compressed video 

streams poses significant challenges due to compression 

artifacts and lossy encoding that can degrade or distort hidden 

data. To ensure robustness, the method can be adapted to 

embed data either before compression or by exploiting codec-

specific features, although this requires additional complexity 

and careful synchronization. 

Real-time performance is another critical factor, 

particularly for deployment scenarios involving live streaming, 

IoT devices, and edge computing platforms with limited 

processing power and memory resources. The interframe 

difference analysis and template generation steps introduce 

computational overhead that may affect frame rate (fps) and 

latency. For resource-constrained devices, this can limit 

practical applicability unless optimizations are applied. 

To address these challenges, several strategies can be 

considered: hardware acceleration using GPUs or FPGAs to 

offload intensive computations; algorithmic optimizations to 

reduce complexity by limiting analysis to key frames or 

regions of interest; and lightweight compression of templates 

can reduce memory footprint. Such adaptations are essential 

for real-world applications where low latency and efficient 

resource utilization are paramount. 

The memory requirements for storing multiple key 

templates generated for each video frame have been estimated 

for a standard 720p video at 30 frames per second. Template 

storage demands approximately 5 MB per minute of video, 

primarily due to maintaining binary masks for each color 

channel across overlapping frame pairs. To reduce this 

overhead, compression techniques such as run-length 

encoding or block-based compression can be employed to 

significantly decrease storage size without compromising 

accuracy. Furthermore, optimization strategies similar to those 

discussed in the study [17] may be applied to further minimize 

memory usage. Future work will focus on implementing these 

approaches to improve the efficiency and practicality of the 

proposed method in real-world applications. 

 

 

5. EXPERIMENTAL RESULTS 

 

To assess the performance, reliability, and adaptability of 

the proposed steganographic embedding methodology, a 

comprehensive set of experiments was conducted under 

various real-world video conditions. These experiments were 

designed to validate the effectiveness of the system across 

different motion dynamics, frame characteristics, and noise 

levels. 

The experimental evaluation focused on five distinct test 

scenarios, each representing a unique context in which the 

embedding algorithm could be applied. The objective was to 

determine how the methodology performs in terms of 

embedding capacity, bit extraction accuracy, and visual 

fidelity, measured by the PSNR. Additionally, the experiments 

investigated the robustness of the system under noise injection 

and compression artifacts. 

 

 
 

Figure 9. Evaluation and testing workflow for the proposed 

steganographic method 

 

Figure 9 shows the evaluation and testing workflow for the 

proposed steganographic method. 

The scenarios tested include the following: 

Scenario 1: Stationary Camera with Minimal Motion 

A video was captured using a stationary surveillance camera 

in a low-activity environment, such as an empty corridor. This 
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setup allowed us to evaluate the performance of the algorithm 

under limited interframe changes. The embedding was 

configured to use thresholds of 50, 100, and 200, with up to 

two bits embedded per byte. 

Scenario 2: Moving Camera with Moderate Scene 

Change 

This scenario simulated a handheld recording inside a 

building by introducing moderate motion and changing 

backgrounds. Thresholds of 30, 100, and 180 were used, 

allowing up to three bits per byte. Adaptive bit-depth 

embedding was applied based on the magnitude of the 

interframe differences. 

Scenario 3: High-Dynamic Scene (Traffic or Crowd) 

A video from a crowded street was used to test the limits of 

the algorithm under heavy motion and frequent pixel changes. 

Lower thresholds (20, 50, 100) and redundancy through 

duplicated templates enabled high-capacity embedding, with 

up to 4 bits per byte. 

Scenario 4: Low-Resolution Compressed Video 

This test involved a 240p compressed video containing 

visible encoding artifacts. High thresholds (60, 120, 200) and 

error-detection via CRC were employed to mitigate the impact 

of compression. 

Scenario 5: Bit-Recovery Robustness Evaluation 

In this scenario, the system was tested under noisy and 

degraded conditions. Random bit sequences were embedded 

and extracted after applying Gaussian noise (σ = 5). The 

embedding depth ranged from 1 to 4 bits based on the pixel 

difference magnitude. 

We summarize the experimental outcomes of these 

scenarios in Table 1. These results demonstrate that the 

proposed method achieves a good trade-off between the 

payload capacity and visual quality. In low-motion scenes 

(Scenario 1), the algorithm preserves visual integrity with 

minimal distortion, while still allowing efficient data 

embedding. In high-motion environments (Scenario 3), the 

system maximizes the capacity with acceptable visual 

degradation. The bit recovery test (Scenario 5) confirmed the 

robustness of the system against mild distortion and 

compression, achieving over 95% accuracy even in noisy 

environments. 

 

Table 1. Summary of experimental results across different 

video scenarios 

 

Scenario 
Capacity 

(bits/frame) 

Accuracy 

(%) 

PSNR 

(dB) 
BER 

1 ~3,200 96.5% 48.7 — 

2 ~6,700 94.1% 44.3 — 

3 ~11,200 90.8% 39.2 — 

4 ~2,500 89.4% 41.8 — 

5 ~7,800 95.2% 42.6 4.8% 

 

To validate the enhanced resistance of the proposed 

steganographic scheme against common attacks, we 

performed evaluations using well-known steganalysis tools, 

including StegExpose and CNN-based detectors. The 

threshold-based pixel selection mechanism significantly 

reduces statistical anomalies in the video frames, whereas the 

duplication of embedded information across different 

templates increases redundancy, making detection by 

conventional steganalysis methods more difficult. Our 

experimental results show that the detection accuracy of 

StegExpose dropped by approximately 15% compared to 

baseline LSB methods, and the CNN-based detectors showed 

a lower confidence level in identifying embedded data. These 

results align with similar findings reported in a previous study 

[14], confirming that adaptive embedding combined with 

redundancy substantially improves robustness against 

steganalysis. This supports the claim that our method achieves 

superior security and resistance to both passive and active 

attacks. 

 

 

6. CONCLUSIONS 

 

This study explores a method for steganographic 

concealment of information in a container represented by a 

video file. The use of videos has made it possible to increase 

the volume of classified information. Determining the 

difference between images of adjacent video frames, as well 

as using threshold processing, allows for increasing the 

volume of embedded secret information. At the same time, 

increasing the number of key templates increases the 

resistance of the stegosystem to enemy attacks. The division 

into sets of key templates, as a result of threshold processing 

of arrays of differences, increases the resistance to partial 

losses of hidden information due to its duplication in the codes 

of the pixels' bytes, allocated in accordance with the formed 

sets of key templates. 

Experimental studies have confirmed an increase in the 

volume of hidden information due to the use of the proposed 

method, as a greater number of bits are embedded in the least 

significant byte codes of only the pixels that record the greatest 

difference. As a result of the experimental studies conducted, 

significant visual deviations from the original videos are 

observed when introducing secret bits into the four least 

significant digits of pixel codes with the greatest difference. In 

this case, visual changes are not recorded in single pixels 

isolated from all others, in which a small difference is 

determined (less than the threshold). Visual changes are 

recorded in the combined groups of selected pixels with the 

greatest differences. In this case, such a group occupies a part 

of the image measuring 3 × 3 pixels. 

In future research, we plan to implement a steganographic 

protection method that increases the amount of embedded 

information in a video generated by a stationary video camera. 
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