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Large data centers continuously move data from one server to another due to up- or down-
scaling virtual server specifications to meet user requirements. Most data center topologies
allow multipath routing between any pair of nodes within their network to increase
throughput, as well as resilience against link failures. Several approaches have been
proposed and developed to utilize these routes to improve network performance. Existing
methods often face challenges in achieving maximum throughput across diverse topologies
without requiring kernel modifications, leaving room for improvement in practicality and
scalability. In this paper, we propose a novel system, MaxFlowSDN, which uses the
maximum flow algorithm along with traditional SDN and TCP to deliver higher throughput
in data centers. MaxFlowSDN yielded 80% higher throughput in the Fat-Tree topology
compared to StandardTCP, ParallelTCP, and MPTCP. In DCell and BCube topologies, it
achieved approximately 190% higher throughput than StandardTCP and nearly 50%
improvement over ParallelITCP and MPTCP. For evaluation, we deployed our system in
different data center topologies and compared our results against existing methods. These
results demonstrate that MaxFlowSDN provides maximum flow throughput in the data

center environment while addressing the limitations of current approaches.

1. INTRODUCTION

Data centers have a crucial role to play in the computing
landscape of any organization. In most recent years, the
number of existing data centers has observed a rapid growth.
The latest forecast study showed that the total number of data
center sites will increase to 3.6 million by 2023 [1].
Furthermore, data centers are also continuously growing in
size in terms of the number of servers they host. Such growth
has been fueled by an increased demand for diverse facilities
provided by these servers and their affiliate resources. The
number of hyper-scale data centers was expected to increase
to 628 by 2021 [2]. To adequately meet the expected
performance, the incrementally growing data centers would
need higher network bandwidth as well as more integrated
resources. It was expected that traffic within data centers
would quintuple by the end of 2021 [2].

Both large and small organizations of big and small sizes
need to capture, clean, park, analyze, and use a massive
amount of data for data supply chain and production purposes.
These processes need essential components of a complex
system, including storage and computing resources. Due to
these dependencies, a data center remains a vital asset for day-
to-day operations. To adequately handle such Big Data hosted
in data centers (such as shown in Figure 1), a system requires
huge throughput to avoid the degradation of global or local
network performance.
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Data centers have a set of large-scale data requests that incur
a vast number of policies for traffic management transactions
per second, which makes it difficult for network administrators
to monitor and manage the network [3]. A software-defined
network (SDN) [4] is a widely used technology in data centers
to customize routing and manage traffic, with a view to
achieve more scalability in a network [5]. The structure of an
SDN segregates data and control planes. SDNs are applied in
diverse ranges of network applications — one of these being
Data Centers [6]. Many world-class companies, such as
Microsoft [7] and Google [8], have adopted SDNs as a way to
provide needed traffic management and throughput for their
local- and wide-area networks.

The SDN system itself is widely adopted thanks to its
abstraction, management flexibility, and network
virtualization capability. A single interface is used by Standard
TCP to establish a connection with other networked devices.
However, most networked devices have at least two network
interfaces; consequently, Parallel TCP utilizes this by creating
one TCP connection for each interface. Multipath TCP
(MPTCP) [9] was introduced to use other network interfaces
and to improve resilience against interface failures. In Data
Centers, MPTCP creates multiple subflows between any pair
of servers to engage the full bisection bandwidth for
techniques such as BCube and dual-homed Fat-Tree [10, 11].
Since its introduction, MPTCP performance has been
evaluated in several environments and applications, including
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cellular networks, data centers, home networks, and enterprise
networks. In fact, MPTCP is supported by some of the largest
IT companies in the world, like Apple [12, 13].
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Figure 1. Typical data center architecture

Our contributions in this paper:

1. We introduce MaxFlowSDN, a novel system that
integrates SDN with the maximum flow algorithm to enable
multipath routing without requiring kernel modifications.

2. Our system dynamically selects multiple paths between
source and destination, optimizing throughput based on real-
time link capacities and network conditions.

3. We evaluate MaxFlowSDN on multiple data center
topologies, including Fat-Tree, DCell, and BCube,
demonstrating its superior performance compared to
StandardTCP, ParallelTCP, and MPTCP.

The rest of the paper is structured as follows. Background
for the proposed methodology is provided in Section 2. This
background mainly comprises an introduction to the Software
Defined Network, MPTCP, and Maximum Flow algorithms.
Related Works are presented in Section 3, whereas the
mechanics of the Proposed Methodology (i.e., MaxFlowSDN)
are introduced in Section 4. Section 5 presents the Experiment
Setup and Performance Metrics used in our paper. Section 6
shows the Evaluation of the results and a Discussion of them.
In the final section, i.e., Section 7, the Conclusion and possible
remedies and inclusions in Future Work are presented.

2. BACKGROUND

An overview of the architectures of data centers, such as
MPTCP, SDN, and maximum Flow problems, is presented in
this section.

2.1 Data centers overview and architectures

A data center is an infrastructure element composed of
connected computing resources that provide any organization
or institution with data storage, applications, and services
needed for their essential operations [14]. The data center
network is the major part of the design of a data center [15].
Many topologies have been used to meet evolving data center
requirements [16]. The following are the most popular and
most studied topologies of data center networks.

2.1.1 Fat-Tree topology

The Fat-tree is a multi-rooted tree topology whose roots
serve as core switches. In addition, there is an aggregation
layer between roots and access switches. Fat-Tree has identical
bandwidth at any bisection, and uses a large number of
inexpensive switches to allow the deployment of a large

number of hosts at low cost. It uses complex routing
configurations in switches to prevent creating loops while
using the available paths for load balancing [14]. The Fat-Tree
topology is depicted in Figure 2.
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Figure 2. Fat-Tree topology

2.1.2 Leaf-Spine topology

The Leaf-Spine topology consists of two layers of switches:
leaf switches attached to servers, and spine switches connected
to all leaf switches. The capacity of the cables between leaf
switches and servers is different from those between leaf and
spine switches. A routing suite with load balancing can be used
in the Leaf-Spine topology without causing loops [14]. Figure
3 shows the Leaf-Spine topology.

Spine Switches

Leaf Switches

Servers and Hosts

Figure 3. Leaf-Spine topology

2.1.3 VL2 topology

VL2 is similar to Fat-Tree and runs the routing suite on a
multi-rooted tree topology. However, it differs from the Fat-
Tree topology in terms of link capacities. The links between
switch layers have a higher capacity than the links between
servers and switches. This results in fewer cables between
aggregation and core layers [14]. The VL2 topology is shown
in Figure 4.
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Figure 4. VL2 topology

2.1.4 DCell topology
DCell is a hierarchical data center topology, where the



lower DCell structure level is the building block of the whole
system. Higher levels of cells are formed by combining many
lower-level DCells together. This topology is highly
expandable simply by adding more levels, and has no single
failure point. It uses a fault-tolerant, custom routing algorithm,
that aims for the shortest routing path [14, 15]. DCell topology
is shown in Figure 5.

&= Switch
a Servers and Hosts

Figure 5. DCell topology

Level 2 DCell is shown in Figure 6.

& Switch
. Servers and Hosts

Figure 6. DCell2 topology

2.1.5 BCube topology

BCube is a network structure centered around a server. For
this network design, servers which have many network ports
can link to multiple switch layers. Additionally, the servers
work as forwarding nodes for other servers. The BCube
network structure uses source routing and must change the
protocol stack of server networking either in hardware or in
software [14, 16]. BCube topology is shown in Figure 7.

Level 1 Switches

Servers and Hosts

Level 2 Switches

o
/l\

Figure 7. BCube topology
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2.2 Data centers overview and architectures

SDN is a network technology which uses the concept of
programmable network, simplifying network operations and
making it more scalable and adaptable. The main idea is to
decouple the control and data plane by using a control console
that handles all decision-making tasks (control plane).
Switches and routers in the network will only be packet
forwarding units (data plane) that may be configured and
programmed through an open interface (e.g., OpenFlow17). In
contrast, for traditional networks, each individual device needs
to be configured, to independently make its traffic forwarding
decisions [3, 4].

Figure 8 represents the prominent differences between the
software-defined and conventional networks.

EX3  SDN Controller
EE  Embedded control

Forwarding device

Software-Defined Network
(Control plane is separated)

Traditional Network
(Forwarding devices with local control)

Figure 8. Structure of SDN compared to conventional
network
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Figure 9. SDN Architecture

Software defined architecture consists of four main
interfaces, as shown in Figure 9:

* Southbound-API — The Southbound API acts as interface
between controller and forwarding devices (data plane). The
OpenFlow protocol [17] is a widely used southbound interface
that describes the exchange of information between data plane
devices and SDN controller.

* Northbound-API — The Northbound API describes the
interfaces between SDN controller and application control
plane containing applications running on top of the network.
There is no standardized Northbound-API. This interface
allows application programmers and developers to administer
the network using applications.

* Westbound-API — The Westbound-API represents the
interface between different SDN controllers in various
network domains. It enables the transfer of network state data
used in making routing decisions in every controller by
providing the global network view of other domains.



* Eastbound-API — The Eastbound API describes the
interface between SDN controller and legacy network control
plane in order for the SDN domain to be fully compatible with
other (non-SDN) domains, including the routing protocol
deployed [18, 19].

2.3 Multipath TCP

Certain limitations exist between communicating pairs
when using the standard TCP in the context of multiple
interfaces. This is due to the fact that only a single interface is
used at each communication end, whereas MPTCP can take
advantage of more than one interface by establishing many
parallel subflow connections among communicating peers.
Parallel connections open a path for increasing resource usage
and redundancy, and to enhance overall throughput. At the
same time, the socket implementation at the MPTCP transport
layer is the same as for standard TCP. A comparison of the
MPTCP and standard TCP structures is shown in Figure 10.

Standard TCP MPTCP

Application Application

single Socket Single Sacket
) \

MPTCP

TCP
:
TCP Connection - P
- MPTCP MPTCP MPTCP
subflow-0 || subflow-
=

- i =S
IP Address IP Address IP Address#1 IP Address#2
T ¥ 7

i
Network Interface #1 Network Interface #2 Network Interface #1 Network Interface #2

Figure 10. Standard TCP compared to MPTCP

When a single socket is created by the application to use
standard TCP, a single TCP connection is created that uses
only one IP address and one network interface. However,
when MPTCP is enabled and a single socket is created by the
application, MPTCP creates multiple subflows to make use of
all available network addresses. The packet scheduler in
MPTCP divides the segments, and each of these segments is
transferred using subflows, which act as a standard TCP’s
single path [9].

Figure 11 depicts an example of the use of MPTCP in
mobile devices. The device benefits from the Wi-Fi
connection and cellular network connection at the same time
by having one sub-flow in each connection.

0
o
7 Mobile Device
:  (Supports MPTCP)
RN

%N
Tn, S
‘C, N,

N

Mobile Network

Wired Connection

Figure 11. A typical use of MPTCP protocol in mobile
devices
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2.4 Maximum flow problem

Finding the highest flow value from source (S) to
destination (D) node is regarded as a Maximum flow problem.
This concept is crucial for almost every network, including
communication networks and transportation networks [20].
The earliest method to effectively solve this problem was
proposed by Ford and Fulkerson [21], and was seen as the
Ford-Fulkerson algorithm. Later on, many other
methodologies and algorithms were proposed, like the one
proposed by Edmonds and Karp, i.e., the Shortest
Augmentation Path [22], but also Dinic’s method of Power
Estimation [23], Karzanov’s algorithm of Preflow Push [24],
Goldberg and Tarjan’s Push-Relabel Algorithm [25], and
Goldberg and Rao’s methodology of Binary Blocking Flow
[26], to name a few.

3. RELATED WORKS

This section deals with related literature featuring both
Software-Defined Network and Multipath TCP to boost data
centers’ mass data transfer capability. Several studies made
use of the MPTCP to improve the throughput of congestion
management and control in data center networks. For instance,
fine temporal granularity of congestion control and detection
for the MPTCP have been proposed to reduce latency for small
flows and higher throughput for large flows [27]. Similarly, A
machine learning approach has been introduced to improve
multipath  congestion control by enabling adaptive
management of congestion across heterogeneous networks.
By leveraging reinforcement learning, this approach addresses
challenges like bufferbloat and suboptimal bandwidth usage,
achieving improvements in throughput [28]. In addition, Pang
et al. designed a queue cache balance factor to estimate the
value of a sub-flow congestion window [29]. They avoided
throughput collapse, achieved the load balance of MPTCP data
transfer, and improved network throughput. However, while
these works enhanced MPTCP’s congestion control, they still
depend on MPTCP’s core mechanisms that require kernel
modifications, limiting their deployment practicality.

Another line of research has used the MPTCP to enhance
routing algorithms of a data center network. For instance, Fu
et al. suggested a DQL (Deep Q-Learning) based Al strategy
to produce the paths for optimal routing for data centers opting
for SDN networks [30]. Moreover, Jung et al. proposed and
developed distributed multiple path routing methods to reduce
finish time while executing multiple jobs [31]. These studies
highlight the benefits of integrating learning or distributed
approaches, but do not explore SDN’s potential for dynamic
rule generation based on global network views.

MPTCP is used to improve the flow completion time of data
center networks. For example, Jung et al. [31] and Liu et al.
[32] presented a new approach to improve existing data center
TCP protocols by decreasing task completion time through
receiver-driven coordination. Cheng and Jia [33] suggested an
improved network-aware multi-pathing scheme in SDN
networks to reduce transmission time by taking heterogeneous
network bandwidths into account. Zhang et al. [34] focused on
how to provide deadline-sensitive services and achieve high
throughput in data center networks. The proposed scheme
minimizes average flow completion time by using the full
available capacity of the data center network. These studies
focused on latency and flow completion time, but did not



target throughput maximization using SDN with standard
TCP.

In the literature, many researchers have used multi-pathing
TCP to improve load balancing for data center networks. Park
et al. [35] presented MaxPass, a novel adaptive load balancing
system for data center networks, in which multiple paths are
adaptively selected and dynamically changed based on the
existing network load. An improvement of TCP-Path
scalability was proposed by Alvarez-Horcajo et al. [36] to
handle elephant flows for data center networks. While these
works improved load balancing, they did not apply maximum
flow algorithms within SDN to systematically exploit all
available paths.

AlShammari and Alenazi [37, 38] proposed to improve data
center performance by using SDN and graph theoretics to
make use of all available paths. Their results showed
significant improvement against baseline schemes, such as
round-robin and least-congested. Furthermore, their methods
did not explicitly apply classical network flow algorithms for
optimal throughput.

While there has been considerable research on improving
data center traffic using SDN and multipath routing, several
important gaps remain. Many existing solutions, such as

MPTCP, require kernel-level modifications, making them less
practical for widespread deployment in real-world
environments. Furthermore, there is a lack of solutions that
effectively combine SDN programmability with classical flow
algorithms, such as maximum flow, to optimize throughput
without altering the transport layer protocols. Current
approaches often focus on specific data center topologies, such
as Fat-Tree, and do not evaluate performance across diverse
architectures like DCell and BCube. Additionally, most
existing systems do not dynamically adapt to real-time
network conditions, such as fluctuating bandwidth, link
failures, or congestion hotspots, limiting their ability to
optimize traffic flows and ensure resiliency. Addressing these
gaps is crucial for developing more flexible, scalable, and
easily deployable solutions for data center networks.

In contrast, our work introduces MaxFlowSDN, a novel
system that couples SDN with classical maximum flow
algorithms to compute and apply optimal multipath routing
dynamically. This approach provides kernel-agnostic, high-
throughput data delivery across diverse topologies and adapts
to current link conditions via SDN rule updates. Table 1
summarizes how MaxFlowSDN addresses limitations found in
existing methods.

Table 1. Comparison of MaxFlowSDN with existing methods

. SDN Load Graph-Theoretic .
Aspect MPTCP & Variants Balancing SDN MaxFlowSDN (This Work)
Requires kernel
Transport layer changes modifications No No No (standard TCP)
Use of cla§5|cal flow No No Partlal_ (graph Yes (maximum flow algorithms)
algorithms heuristics)

Adaptivity to bandwidth ~ Limited (congestion control ~ Dynamic paths based Static or semi- Dynamic via SDN + max flow
changes only) on load dynamic recomputation
Topology diversity Primarily Fat-Tree, dual- Fat-Tree Limited Fat-Tree, DCell, BCube

evaluated homed BCube
Deployment practicality Reduced (due to kernel Practical Practical Highly practical (no kernel

dependency)

changes)

4. MAXFLOWSDN SYSTEM

This section introduces a system that combines a Software-
Defined Network and Maximum Flow Algorithm to enhance
the flow between two servers in a data center.

4.1 MaxFlowSDN components

The MaxFlowSDN system has several components, as
shown in Figure 12. These components include Topology
discovery, Maximum Flow Algorithm, Residual Link
Capacities, and Rule Generators.

The Topology discovery component is responsible for
creating a graph that consists of nodes, i.e., SDN switches, and
links that connect these switches. The Maximum Flow
Algorithm component is responsible for determining paths
that generate the maximum flow between two nodes given
currently available link capacities. The Residual Link
Capacities component monitors the topology links and
identifies currently usable and available bandwidth on every
link. The Rule Generators component is responsible for
determining the paths.

Multiple paths exist between sender and receiver in a
standard computer network. In a standard TCP/IP protocol, a
single path is used between receiver and sender. Yet, this
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method deteriorates the performance due to a bottleneck link
that introduces extra constraint on top of end-to-end
throughput. To handle this problem, several researchers put
forward methodologies revolving around multiple-path
solutions that take advantage of alternate paths to increase end-
to-end throughput. Multipath solutions depend on the k-
shortest path methodology to deliver alternative paths, which
yield an inconsistent path without considering the highest flow
among senders and receivers.

MaxFlow Transport System for SDN Networks (MaxFlowSDN)

Application
Layer

Residual Link
Capacities

Topology

Maximum Flow Algorithm
Discovery

Rule Generator

Northbound-API
Control

SDN Control Plane
Layer

Figure 12. MaxFlowSDN system

Southbound-API

Infrastructure

Core Switches
Layer

== Aggregation Switches

‘ Servers and Hosts



The proposed scheme employs the Maximum Flow
algorithm among senders and receivers to pick out
intermediary switches where flows are split. Once
intermediary switches are identified, TCP port number-based
rules are pushed using OpenFlow, so that the flow can be split
accordingly. Traditionally, forwarding and routing are
accomplished using the destination IP addresses. However, for
the multipath method, we use both the addresses and port
numbers. Finally, senders generate many TCP links with port
numbers used in OpenFlow. A typical topology of the SDN is
depicted in Figure 12, where the MaxFlowSDN system is
implemented. When data is sent to another host, the SDN
controller utilizes the Maximum Flow Algorithm to find
intermediate switches and forwards information to the sending
host about the number of TCP connections it must make to
reach the maximum flow to the destination host.

Table 2. Maximum flow solution for the example network
[39]

Link Flow Value
(H1, SW1)
(H1, SW2)

(SW1, SW2)
(SW1, H2)
(SW2, H2)

S wnrpNDOT

Swl

Figure 13. Example topology

Figure 13 shows the graphical representation of the network
example. Because the Maximum Flow Algorithm is
implemented, source and destination are indicated by H1 and
H2, respectively. The solution for the example network is
explained in Table 2. The flow-in for SW1 is observed to be 5
when using the (H1, SW1) link, whereas flow-out is split
among the (SW1, SW2) links with flow value of 2 and (SW1,
H2) link with a flow value of 3. Two TCP connections, i.e.,
TCP-Conn-1 and TCP-Conn-2, are made from H1 to SWI,
since a split at SW1 into two flows occurred as shown in
Figure 13. For SWI, two OpenFlow protocols are pushed to
forward packets from H1 to SW2, and H2 according to TCP
port numbers. Additionally, the value of 4 is noted for flow-in,
for SW2, using two links, i.e., (H1, SW2) and (SW1, SW2),
whereas the flow-out is noted to be 4 for the (SW2, H2) link.
For SW2, OpenFlow rules are added to ensure the forwarding
of incoming packets to SW2 and H2 from H1, according to
TCP port numbers. As observed, data flow from the (H1, SW2)
link is not fragmented; instead, one TCP connection is needed
for the specific link, as noted by TCP-Conn-3. Effectively, this
example warrants the use of three connections.

4.2 Overview of the MaxFlowSDN

This section explains the application of the MaxFlowSDN
algorithm in the suggested system. The algorithm aims to
determine routes between source and destination that provide
the optimal maximum flow for TCP in a data center topology.
The pseudocode is demonstrated in Algorithm 1.

Algorithm 1. MaxFlow Algorithm.

Functions:

MaxFlow(&, s7c, ds?): computes the maximum
flow between source s7cand destination sz for a
graph &. SplitFlows2Paths(/4): split flows #’into
several flows.

& an input graph.

s7c. source node.

dst. destination node.

SplittedPaths: splits paths

flows = MaxFlow( &, s7c, dst)

SplittedPaths = []

for flow in flows do SplittedPath =
SplitFlows2Paths(/Zow)
SplittedPaths.append(SplittedPath)

return SplittedPaths

OO0 N OO0~ wWwNPEF

Two functions make up the algorithm: MaxFlow(G, src,
dst) and SplitFlows2Paths(F). The MaxFlow function
computes the maximum flow between source src and
destination dst for a graph G. The SplitFlows2Paths(F) splits
flows F into several paths.

Consider a DCN topology as shown in Figure 13 to illustrate
the work of the MaxFlowSDN algorithm. Link weights
represent the available bandwidth. In this topology, host H1
sends traffic to H2. The max flow function returns flow values
for the given topology as follows: ['H1->SW1"5,
"H1->SW2":2,"SW1->H2":3,"SW1->SW2":2,
"SW2->H2":4]. The flow values list is passed to
SplitFlows2Paths(F), which processes each flow to generate
the list of paths. In this example, the list of paths is
[(H1,SW1,H2), (H1,SW1,SW2,H2), (H1,SW2,H2)].

Algorithm 2. SDN Rule Generator Algorithm.
Functions:
FindSwitches(path): ldentifies switches along a
given path.
DeterminelnOut(sw, path): Determines optimal
input/output ports on switch 'sw'.
GenerateRule(sw, in, out): Creates the SDN rule
for the switch sw, for ports in and out
Input:

1 paths: split the paths between the source node (src)
and the destination node (dst).

Output:
SDN Rules for multipath routing.
SDNRules =]

for path in paths do
for sw in findSwitches(path)
in, out = determinelnOut(sw, path)
SDNRule = generateRule(sw,src,dst, in ,
out) S
SDNRules.append(sw,SDNRule)
return SplittedPaths

©ow N ok~ w N



After finding the paths, MaxFlowSDN generates the SDN
Rules for every switch in all paths. The pseudo-code for
generating the SDN rule algorithm is presented in Algorithm
2. It consists of three functions: FindSwitches,
DeterminelnOut, and GenerateRule. All paths are first passed
to the FindSwitches function, which finds the switches for a
given path.

Every switch in the path is then passed to the
DeterminelnOut function to determine input and output ports
for switch sw, given the path. The last step is the GenerateRule
function that creates an SDN code for a switch sw, based on
source srcand destination dst nodes. In addition to in and out
ports, every switch in all paths is given to the GenerateRule
function in order to construct all SDN rules.

5. EVALUATION

This section presents our experimental setup and its
parameters, and presents the baseline evaluation methods of
MaxFlowSDN.

5.1 Experimental setup and parameters

This section presents our experiment and its parameters. We
used Mininet 2.3.0d4 emulation to evaluate the MaxFlowSDN
system. The host device has Ubuntu 16.04 as operating system,
with a six-core 2.2 GHz processor and 16 GB of RAM. In the
given topologies, Mininet connects virtual Linux hosts
together using OpenvSwitch switches. The switches were
configured to use the OpenFlow 1.3 protocol, and the control
logic was implemented using the Ryu 4.32 controller
framework. iperf was employed to generate data traffic
between destination and source hosts. Five runs were
performed in each evaluation test, with a duration of 30
seconds of data-flow for each run. The throughput sampling-
rate was noted as 1 sample per second. Table 3 shows all
evaluation parameters.

Table 3. Default emulation parameters

Parameter Values
Emulator Mininet 2.3.0d4
Memory 16GB

Operating System Ubuntu-16.04

Sampling-Rate
CPU
Number of Runs

1 sample per sec
six-core 2.2 GHz
Five for each method

TCP Congestion CUBIC
Virtual Switches OpenvSwitch 2.5.5
Experiment Duration 30 seconds

In a previous work [39], we evaluated multiple TCP
congestion control variants to define the most suitable one for
the experiments. Based on evaluation results, we chose Cubic.
Experimental data center topologies are: Fat-Tree, DCell, and
BCube. The Fat-Tree topology used in the evaluation is shown
in Figure 14.

The red highlighted path shows the shortest path from
source H1 to destination H2. The link capacities were
manually selected due to two reasons. First, the Mininet
virtualized environment imposed computational limitations,
making gigabit-level capacities infeasible. Second, the
capacities were configured to highlight disjoint paths between
the source and destination nodes. Table 4 shows the link
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capacities used for the Fat-Tree topology, which were
similarly applied to other topologies for consistency in
evaluation. The DCell topology used in the evaluation is
shown in Figure 15.

&

ho.a

10.0
st

Figure 15. DCell test topology

Table 4. Fat-Tree test topology links bandwidth

Link Type Link: Bandwidth
s91 - sl link: 10 Mbpss91 - s3 link: 10 Mbpss91
- 85 link: 10 Mbpss91 - s7 link: 10 Mbpss92 - sl
Core to l@nk: 10 Mbpss92 - s3 link: 10 Mbpss92 - s5
Aggregation l}nk: 10 Mbpss92 - s7 l}nk: 10 Mbpss93 - s3
links link: 10 Mbpss93 - s4 link: 10 Mbpss93 - s6
link: 10 Mbpss93 - s8 link: 10 Mbpss94 - s2
link: 10 Mbpss94 - s4 link: 10 Mbpss94 - s6
link: 10 Mbpss94 - s8 link: 10 Mbps
sl - s9 link: 7 Mbpss1 - s10 link: 5 Mbpss2 - s9
link: 7 Mbpss2 - s10 link: 5 Mbpss3 - s11 link:
Aggregation 5 Mbpss3 - s12 link: 5 Mbpss4 - s11 link: 5
to Access Mbpss4 - s12 link: 5 Mbpss5 - s13 link: 5
links MbpssS - s14 link: 5 Mbpss6 - s13 link: 5
Mbpss6 - s14 link: 5 Mbpss7 - s15 link: 7
Mbpss7 - s16 link: 5 Mbpss8 - s15 link: 7
Mbpss8 - 516 link: 5 Mbps
Iﬁ)(;issl?rfl?s s9 - hl link: 13 Mbpss15 - h2 link: 13 Mbps

The red highlighted path shows the shortest-path from H1
to H2. Bandwidth details of the links are shown in Table 5.
The BCube topology used in the evaluation is shown in Figure
16.



The red highlighted path shows the shortest-path from HI
to H2. Bandwidth details of the links are shown in Table 6.

Figure 16. BCube test topology

Table 5. DCell test topology links bandwidth

Link

Link: Bandwith
Type

DCs0 - h0.1(h1) link: 10 MbpsDCs0 - h0.2 link: 10
MbpsDCs0 - h0.3 link: 10 MbpsDCs0 - h0.4 link:
10 MbpsDCsl - hl.1 link: 20 MbpsDCsl1 - h1.2
link: 10 MbpsDCs1 - h1.3 link: 10 MbpsDCs1 -
h1.4 link: 10 MbpsDCs2 - h2.1 link: 10 MbpsDCs2
- h2.2 link: 10 MbpsDCs2 - h2.3 link: 10
MbpsDCs2 - h2.4 link: 10 MbpsDCs3 - h3.1 link:
10 MbpsDCs3 - h3.2 link: 10 MbpsDCs3 - h3.3
link: 10 MbpsDCs3 - h3.4(h2) link: 20 Mbps
h0.1(h1) - h1.1 link: 20 Mbpsh0.2 - h1.4 link: 15
Mbpsh0.3 - h3.1 link: 15 Mbpsh0.4 - h4.1 link: 15
Mbpsh1.2 - h2.2 link: 15 Mbpsh1.3 - h3.2 link: 15
Mbpshl.4 - h4.2 link: 15 Mbpsh2.3 - h3.3 link: 15
Mbpsh2.4 - h4.3 link: 15 Mbpsh3.4 (h2) - h4.4 link:
15 Mbps

Switch-to-
host links

Between-
cells links

Table 6. BCube test topology links bandwidth

Link Link: Bandwidth
Type
s80 - sl link: 10 Mbpss80 - s2 link: 10 Mbpss80 - s3
link: 10 Mbpss80 - s4 link: 10 Mbpss81 - hl link: 10
Level 1 Mbpss81 - s5 ll:nk: 10 Mbpss81 - s6 l?nk: 10
links fo Mbpss81 - s7 l.mk: 10 Mbpss82 - s8 llpk: 10
Servers Mbpss82 - s9 link: 10 Mbpss82 - s10 link: 10
Mbpss82 - s11 link: 10 Mbpss83 - s12 link: 10
Mbpss83 - s13 link: 10 Mbpss83 - h2 link: 10
Mbpss83 - s14 link: 10 Mbps
890 - sl link: 10 Mbpss90 - h1 link: 20 Mbpss90 - s8
link: 10 Mbpss90 - s12 link: 10 Mbpss91 - s2 link:
Servers 10 Mbpss91 - s5 }ink: 10 Mbpss91 - s9 }ink: 10
to level 2 Mbpss91 - s13.lmk: 10 Mbpss92 - s3 ll.nk: 10
links Mbpss92 - s6 link: 10 Mbpss92 - s10 link: 10

Mbpss92 - h2 link: 20 Mbpss93 - s4 link: 10
Mbpss93 - s7 link: 10 Mbpss93 - s11 link: 10
Mbpss93 - s14 link: 10 Mbps

5.2 Performance metric and baseline methods

The performance of MaxFlowSDN is matched with three
other approaches, considering all tested data center topologies.
For each method, we had five runs with data produced via iperf
sent between Hl and H2 hosts. The number of runs is
sufficient because data variance is low, as will be observed in
results later. The methods which are compared here are given
below:
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1. StandardTCP: Only one TCP connection is used to
transfer application data, without considering the number of
available interfaces.

2. ParallelTCP: To transfer application data, one TCP
connection is created for each available interface. These
connections exist and work in parallel.

3. MPTCP: MPTCP connection is used to transfer
application data. For all available interfaces, MPTCP
internally generates multiple sub-TCP connections for
everyone.

4. MaxFlowSDN: To transfer application data, multiple
TCP connections are created for each available interface.
These connections exist and work in parallel. The MaxFlow
algorithm’s flow value is used to determine the number of
connections.

For each method, the throughput from H1 to H2 was
observed.

6. RESULTS AND DISCUSSION

This section shows the findings of three types of data center
topologies, as shown in subsection 5.1.

6.1 Fat-Tree topology

In the Fat-Tree test topology as shown in Figure 14, we
compared the performance of MaxFlowTCP against three
methods: StandardTCP, ParallelTCP, and MPTCP. Figure 17
shows the average throughput from H1 to H2 for all methods
in the Fat-Tree topology. Table 7 shows the full data and
throughput results obtained for the Fat-Tree topology. In the
Fat-Tree test topology, we compared the MaxFlowTCP
performance against three methods: StandardTCP,
ParallelTCP, and MPTCP. Figure 17 shows the average
throughput from H1 to H2 for all methods in the Fat-Tree
topology. Table 7 shows the full data and throughput results
obtained for the Fat-Tree topology.
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Figure 17. Fat-Tree average throughput

In the Fat-Tree topology experiment, only one network
interface was available in H1 source node and H2 destination
node. Consequently, the Parallel TCP and StandardTCP
performance were identical, since only one TCP connection
was created for both methods. Both obtained an average
throughput of 6.5 Mbps after the first two seconds of the
experiment. MPTCP performance was similar to StandardTCP
and ParallelTCP because it also could not benefit from its main
advantage of having multiple internal paths created for



different interfaces. MaxFlowSDN outperformed the three
methods with an average throughput around 12 Mbps, because
it created two connections to reach the maximum flow possible
from source to destination. Figure 18 shows the two
connection paths created by the MaxFlowSDN algorithm.
Results show that MaxFlowSDN had approximately 80%
more throughput compared to Parallel TCP, StandardTCP and
MPTCP.

Table 7. Throughput in the Fat-Tree topology

Average Standard Deviation
Methods rf)(;t:: Throughput ’f)(;ttz;l Throughput
MaxFlowSDN 411\5)1586 11.76 Mbps ~ 5.55 0.17
MPTCP 211\250 6.38 Mbps 1.17 0.04
ParallelTCP 2 113&)21 6.49 Mbps 5.60 0.02
StandardTCP 2 ll\jhfl 6.49 Mbps 5.60 0.02

— — — —  First MaxFlowSDN connection

= == = — Second MaxFlowSDN connection

Maximum flow value from H1 to H2 : 13 Mpbs

Figure 18. MaxFlowSDN connections in Fat-Tree test
6.2 DCell topology

In the DCell test topology, we compared MaxFlowSDN
performance against the three methods: StandardTCP,
ParallelITCP and MPTCP. Figure 19 shows the average
throughput from H1 to H2 for all methods in the DCell
topology. Table 8 explains the full data and throughput results
obtained for DCell topology.
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Figure 19. DCell average throughputTopology

1531

In the DCell topology experiment, two network interfaces
were available in the H1 source node and H2 destination node.
In StandardTCP method, one TCP connection was created
between source and destination. The average throughput for
StandardTCP after two seconds of the experiment was 9.33
Mbps. The average throughput for ParalleITCP and MPTCP
was around 18 Mbps. They obtained similar results because
they both have two connections going from the two interfaces
available at the source. MaxFlowSDN outperformed all the
three methods as the MaxFlow algorithm used in
MaxFlowSDN creates three connections to use the maximum
available bandwidth. Figure 20 shows the three connection
paths created by the MaxFlowSDN algorithm. The average
throughput reached 27 Mbps after two seconds of the
experiment. Results showed that MaxFlowSDN had around
185% more throughput when compared to StandardTCP, and
47% more compared to ParallelTCP and MPTCP.

Table 8. Throughput in DCell topology

Average Standard Deviation
Methods T)(;t:‘; Throughput ’f)(;t:: Throughput
MaxFlowSDN 9'171558 26.58 Mbps  6.12 0.16
MPTCP ?3159 17.94 Mbps ~ 11.62 0.35
ParallelTCP 6‘5&?3 18.36 Mbps 1.38 0.05
StandardTCP 3%\?&?3 9.33 Mbps 0.81 0.03

First MaxFlowSDN connection

Second MaxFlowSDN connection

Third MaxFlowSDN connection

Maximum flow value
from H1 to H2 : 30 Mpbs

Figure 20. MaxFlowSDN connections in the DCell
6.3 BCube topology

In the BCube test topology, we compared MaxFlowSDN
performance against three methods: StandardTCP,
ParallelTCP, and MPTCP. Figure 21 shows the average
throughput from H1 to H2 for all methods in the BCube
topology. Table 9 shows the results of total data and
throughput in BCube topology.

In the BCube topology experiment, two network interfaces
were available in H1 source node and H2 destination node. In
the StandardTCP method, one TCP connection was created
between source and destination. The average throughput for
StandardTCP after two seconds of the experiment was 9.35
Mbps. The average throughput for parallel and MPTCP was
around 18 Mbps. Their results were similar as they have two
connections from both interfaces available. MaxFlowSDN
outperformed the three methods because the algorithm used in
MaxFlowSDN creates three connections to make use of the



maximum available bandwidth. Figure 22 shows the three
connection paths created by MaxFlowSDN. The average
throughput yielded 27.32 Mbps after two seconds of the
experiment. Results showed that MaxFlowSDN had around
191% more throughput compared to StandardTCP, and 48%
more compared to ParallelTCP and MPTCP.
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Figure 21. BCube average throughput
Table 9. Throughput in BCube topology
Average Standard Deviation
Methods Total Total
Data Throughput Data Throughput
MaxFlowSDN 9?&59 2732 Mbps  14.01 0.25
MPTCP 5?3[572 18.21 Mbps 8.01 0.30
ParallelTCP 6‘1‘\‘/‘['1)70 18.54 Mbps 6.40 0.03
StandardTCP 321\?[']396 9.35 Mbps 1.13 0.03

Third MaxFlowTCP connec tion

Maximum flow value
from HI to H2 : 30 Mpbs

Figure 22. MaxFlowSDN connections in Bcube

The evaluation results demonstrate that MaxFlowSDN
outperforms existing methods across Fat-Tree, DCell, and
BCube topologies. The performance advantage of
MaxFlowSDN stems from its ability to determine optimal
paths using the Maximum Flow algorithm coupled with SDN-
based network control. In the Fat-Tree topology,
MaxFlowSDN achieved 80% higher throughput than
StandardTCP, ParallelTCP, and MPTCP by creating two
optimal connections between source and destination nodes. In
DCell and BCube topologies, MaxFlowSDN showed
approximately 190% higher throughput compared to
StandardTCP and almost 50% improvement over ParalleITCP
and MPTCP by effectively utilizing three connection paths.
Unlike MPTCP, which requires kernel modifications,
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MaxFlowSDN  achieves these improvements using
conventional TCP implementation while leveraging SDN
capabilities for dynamic path configuration and flow
management through OpenFlow rules. These results establish
MaxFlowSDN as an effective solution for optimizing intra-
datacenter traffic routing.

7. CONCLUSIONS AND FUTURE WORK

A data center is an essential asset for any organization with
vital systems that perform critical daily operations. Data center
networks need to process and compute bulk data using the
most practical and efficient method possible. The use of SDNs
in data centers has allowed them to improve their performance
in several respects, since SDN makes network configurations
programmable and dynamic. This has yielded improved
flexibility, better management, and more scalable schema.

In this paper, we proposed a new methodology named
MaxFlowSDN, which uses SDN coupled with conventional
TCP to deliver the highest possible data flow throughput in
data centers. Our methodology achieved this maximum
throughput by generating multiple paths between destination-
source pairs. The proposed methodology (MaxFlowSDN)
yielded significant improvement when compared with three
other methodologies, i.e., StandardTCP, ParallelTCP, and
MPTCP. The comparison was made using test topologies
commonly employed in data centers. The proposed
methodology outperformd others thanks to its ability to use the
maximum available bandwidth via the Maximum Flow
Algorithm, which permits the maximum possible throughput.
In the Fat-Tree data center topology, MaxFlowSDN had 80%
higher throughput than MPTCP, ParalleITCP, and
StandardTCP. In DCell and BCube topologies, evaluation
results demonstrated that MaxFlowSDN provides around
190% higher throughput than StandardTCP, and almost 50%
improvement compared to ParallelTCP and MPTCP.

However, MaxFlowSDN has limitations. It has been tested
on a limited number of topologies, and its scalability in larger,
real-world data centers needs further evaluation. While the
system is optimized for throughput, it does not address
latency-sensitive traffic, and it currently relies on a single SDN
controller, which may become a bottleneck. Additionally, it
lacks mechanisms for real-time fault detection and rerouting.

Future work will focus on addressing these limitations by
developing a dynamic, adaptive version of MaxFlowSDN that
handles real-time network changes, uses a distributed SDN
controller architecture for better scalability and fault tolerance,
and incorporates latency-awareness, so that optimizing path
selection not just for throughput but also for minimizing end-
to-end delays. This would be beneficial for latency-sensitive
applications such as online gaming, data exchanges between
autonomous vehicles, or telemedicine, where even slight
delays can significantly impact user experience. We also plan
to evaluate the system in larger, real-world environments, such
as GENI (Global Environment for Network Innovations), to
further refine its capabilities.
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