
MaxFlowSDN: SDN-Based Maximum Flow Routing for High-Throughput Data Center

Networks

Maazen Alsabaan* , Mohammed J.F. Alenazi , Norah S. Bin Saeed , Abdulrahman Almutari

Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh

11451, Saudi Arabia

Corresponding Author Email: malsabaan@ksu.edu.sa

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300611 ABSTRACT

Received: 3 March 2025

Revised: 4 June 2025

Accepted: 24 June 2025

Available online: 30 June 2025

Large data centers continuously move data from one server to another due to up- or down-

scaling virtual server specifications to meet user requirements. Most data center topologies

allow multipath routing between any pair of nodes within their network to increase

throughput, as well as resilience against link failures. Several approaches have been

proposed and developed to utilize these routes to improve network performance. Existing

methods often face challenges in achieving maximum throughput across diverse topologies

without requiring kernel modifications, leaving room for improvement in practicality and

scalability. In this paper, we propose a novel system, MaxFlowSDN, which uses the

maximum flow algorithm along with traditional SDN and TCP to deliver higher throughput

in data centers. MaxFlowSDN yielded 80% higher throughput in the Fat-Tree topology

compared to StandardTCP, ParallelTCP, and MPTCP. In DCell and BCube topologies, it

achieved approximately 190% higher throughput than StandardTCP and nearly 50%

improvement over ParallelTCP and MPTCP. For evaluation, we deployed our system in

different data center topologies and compared our results against existing methods. These

results demonstrate that MaxFlowSDN provides maximum flow throughput in the data

center environment while addressing the limitations of current approaches.

Keywords:

MPTCP, maximum flow, SDN, data center,

OpenFlow, multipath

1. INTRODUCTION

Data centers have a crucial role to play in the computing

landscape of any organization. In most recent years, the

number of existing data centers has observed a rapid growth.

The latest forecast study showed that the total number of data

center sites will increase to 3.6 million by 2023 [1].

Furthermore, data centers are also continuously growing in

size in terms of the number of servers they host. Such growth

has been fueled by an increased demand for diverse facilities

provided by these servers and their affiliate resources. The

number of hyper-scale data centers was expected to increase

to 628 by 2021 [2]. To adequately meet the expected

performance, the incrementally growing data centers would

need higher network bandwidth as well as more integrated

resources. It was expected that traffic within data centers

would quintuple by the end of 2021 [2].

Both large and small organizations of big and small sizes

need to capture, clean, park, analyze, and use a massive

amount of data for data supply chain and production purposes.

These processes need essential components of a complex

system, including storage and computing resources. Due to

these dependencies, a data center remains a vital asset for day-

to-day operations. To adequately handle such Big Data hosted

in data centers (such as shown in Figure 1), a system requires

huge throughput to avoid the degradation of global or local

network performance.

Data centers have a set of large-scale data requests that incur

a vast number of policies for traffic management transactions

per second, which makes it difficult for network administrators

to monitor and manage the network [3]. A software-defined

network (SDN) [4] is a widely used technology in data centers

to customize routing and manage traffic, with a view to

achieve more scalability in a network [5]. The structure of an

SDN segregates data and control planes. SDNs are applied in

diverse ranges of network applications – one of these being

Data Centers [6]. Many world-class companies, such as

Microsoft [7] and Google [8], have adopted SDNs as a way to

provide needed traffic management and throughput for their

local- and wide-area networks.

The SDN system itself is widely adopted thanks to its

abstraction, management flexibility, and network

virtualization capability. A single interface is used by Standard

TCP to establish a connection with other networked devices.

However, most networked devices have at least two network

interfaces; consequently, Parallel TCP utilizes this by creating

one TCP connection for each interface. Multipath TCP

(MPTCP) [9] was introduced to use other network interfaces

and to improve resilience against interface failures. In Data

Centers, MPTCP creates multiple subflows between any pair

of servers to engage the full bisection bandwidth for

techniques such as BCube and dual-homed Fat-Tree [10, 11].

Since its introduction, MPTCP performance has been

evaluated in several environments and applications, including

Ingénierie des Systèmes d’Information
Vol. 30, No. 6, June, 2025, pp. 1523-1534

Journal homepage: http://iieta.org/journals/isi

1523

https://orcid.org/0000-0001-8601-3184
https://orcid.org/0000-0001-6593-112X
https://orcid.org/0009-0000-2407-7676
https://orcid.org/0009-0000-5821-0519
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300611&domain=pdf

cellular networks, data centers, home networks, and enterprise

networks. In fact, MPTCP is supported by some of the largest

IT companies in the world, like Apple [12, 13].

Figure 1. Typical data center architecture

Our contributions in this paper:

1. We introduce MaxFlowSDN, a novel system that

integrates SDN with the maximum flow algorithm to enable

multipath routing without requiring kernel modifications.

2. Our system dynamically selects multiple paths between

source and destination, optimizing throughput based on real-

time link capacities and network conditions.

3. We evaluate MaxFlowSDN on multiple data center

topologies, including Fat-Tree, DCell, and BCube,

demonstrating its superior performance compared to

StandardTCP, ParallelTCP, and MPTCP.

The rest of the paper is structured as follows. Background

for the proposed methodology is provided in Section 2. This

background mainly comprises an introduction to the Software

Defined Network, MPTCP, and Maximum Flow algorithms.

Related Works are presented in Section 3, whereas the

mechanics of the Proposed Methodology (i.e., MaxFlowSDN)

are introduced in Section 4. Section 5 presents the Experiment

Setup and Performance Metrics used in our paper. Section 6

shows the Evaluation of the results and a Discussion of them.

In the final section, i.e., Section 7, the Conclusion and possible

remedies and inclusions in Future Work are presented.

2. BACKGROUND

An overview of the architectures of data centers, such as

MPTCP, SDN, and maximum Flow problems, is presented in

this section.

2.1 Data centers overview and architectures

A data center is an infrastructure element composed of

connected computing resources that provide any organization

or institution with data storage, applications, and services

needed for their essential operations [14]. The data center

network is the major part of the design of a data center [15].

Many topologies have been used to meet evolving data center

requirements [16]. The following are the most popular and

most studied topologies of data center networks.

2.1.1 Fat-Tree topology

The Fat-tree is a multi-rooted tree topology whose roots

serve as core switches. In addition, there is an aggregation

layer between roots and access switches. Fat-Tree has identical

bandwidth at any bisection, and uses a large number of

inexpensive switches to allow the deployment of a large

number of hosts at low cost. It uses complex routing

configurations in switches to prevent creating loops while

using the available paths for load balancing [14]. The Fat-Tree

topology is depicted in Figure 2.

Figure 2. Fat-Tree topology

2.1.2 Leaf-Spine topology

The Leaf-Spine topology consists of two layers of switches:

leaf switches attached to servers, and spine switches connected

to all leaf switches. The capacity of the cables between leaf

switches and servers is different from those between leaf and

spine switches. A routing suite with load balancing can be used

in the Leaf-Spine topology without causing loops [14]. Figure

3 shows the Leaf-Spine topology.

Figure 3. Leaf-Spine topology

2.1.3 VL2 topology

VL2 is similar to Fat-Tree and runs the routing suite on a

multi-rooted tree topology. However, it differs from the Fat-

Tree topology in terms of link capacities. The links between

switch layers have a higher capacity than the links between

servers and switches. This results in fewer cables between

aggregation and core layers [14]. The VL2 topology is shown

in Figure 4.

Figure 4. VL2 topology

2.1.4 DCell topology

DCell is a hierarchical data center topology, where the

1524

lower DCell structure level is the building block of the whole

system. Higher levels of cells are formed by combining many

lower-level DCells together. This topology is highly

expandable simply by adding more levels, and has no single

failure point. It uses a fault-tolerant, custom routing algorithm,

that aims for the shortest routing path [14, 15]. DCell topology

is shown in Figure 5.

Figure 5. DCell topology

Level 2 DCell is shown in Figure 6.

Figure 6. DCell2 topology

2.1.5 BCube topology

BCube is a network structure centered around a server. For

this network design, servers which have many network ports

can link to multiple switch layers. Additionally, the servers

work as forwarding nodes for other servers. The BCube

network structure uses source routing and must change the

protocol stack of server networking either in hardware or in

software [14, 16]. BCube topology is shown in Figure 7.

Figure 7. BCube topology

2.2 Data centers overview and architectures

SDN is a network technology which uses the concept of

programmable network, simplifying network operations and

making it more scalable and adaptable. The main idea is to

decouple the control and data plane by using a control console

that handles all decision-making tasks (control plane).

Switches and routers in the network will only be packet

forwarding units (data plane) that may be configured and

programmed through an open interface (e.g., OpenFlow17). In

contrast, for traditional networks, each individual device needs

to be configured, to independently make its traffic forwarding

decisions [3, 4].

Figure 8 represents the prominent differences between the

software-defined and conventional networks.

Figure 8. Structure of SDN compared to conventional

network

Figure 9. SDN Architecture

Software defined architecture consists of four main

interfaces, as shown in Figure 9:

• Southbound-API – The Southbound API acts as interface

between controller and forwarding devices (data plane). The

OpenFlow protocol [17] is a widely used southbound interface

that describes the exchange of information between data plane

devices and SDN controller.

• Northbound-API – The Northbound API describes the

interfaces between SDN controller and application control

plane containing applications running on top of the network.

There is no standardized Northbound-API. This interface

allows application programmers and developers to administer

the network using applications.

• Westbound-API – The Westbound-API represents the

interface between different SDN controllers in various

network domains. It enables the transfer of network state data

used in making routing decisions in every controller by

providing the global network view of other domains.

1525

• Eastbound-API – The Eastbound API describes the

interface between SDN controller and legacy network control

plane in order for the SDN domain to be fully compatible with

other (non-SDN) domains, including the routing protocol

deployed [18, 19].

2.3 Multipath TCP

Certain limitations exist between communicating pairs

when using the standard TCP in the context of multiple

interfaces. This is due to the fact that only a single interface is

used at each communication end, whereas MPTCP can take

advantage of more than one interface by establishing many

parallel subflow connections among communicating peers.

Parallel connections open a path for increasing resource usage

and redundancy, and to enhance overall throughput. At the

same time, the socket implementation at the MPTCP transport

layer is the same as for standard TCP. A comparison of the

MPTCP and standard TCP structures is shown in Figure 10.

Figure 10. Standard TCP compared to MPTCP

When a single socket is created by the application to use

standard TCP, a single TCP connection is created that uses

only one IP address and one network interface. However,

when MPTCP is enabled and a single socket is created by the

application, MPTCP creates multiple subflows to make use of

all available network addresses. The packet scheduler in

MPTCP divides the segments, and each of these segments is

transferred using subflows, which act as a standard TCP’s

single path [9].

Figure 11 depicts an example of the use of MPTCP in

mobile devices. The device benefits from the Wi-Fi

connection and cellular network connection at the same time

by having one sub-flow in each connection.

Figure 11. A typical use of MPTCP protocol in mobile

devices

2.4 Maximum flow problem

Finding the highest flow value from source (S) to

destination (D) node is regarded as a Maximum flow problem.

This concept is crucial for almost every network, including

communication networks and transportation networks [20].

The earliest method to effectively solve this problem was

proposed by Ford and Fulkerson [21], and was seen as the

Ford-Fulkerson algorithm. Later on, many other

methodologies and algorithms were proposed, like the one

proposed by Edmonds and Karp, i.e., the Shortest

Augmentation Path [22], but also Dinic’s method of Power

Estimation [23], Karzanov’s algorithm of Preflow Push [24],

Goldberg and Tarjan’s Push-Relabel Algorithm [25], and

Goldberg and Rao’s methodology of Binary Blocking Flow

[26], to name a few.

3. RELATED WORKS

This section deals with related literature featuring both

Software-Defined Network and Multipath TCP to boost data

centers’ mass data transfer capability. Several studies made

use of the MPTCP to improve the throughput of congestion

management and control in data center networks. For instance,

fine temporal granularity of congestion control and detection

for the MPTCP have been proposed to reduce latency for small

flows and higher throughput for large flows [27]. Similarly, A

machine learning approach has been introduced to improve

multipath congestion control by enabling adaptive

management of congestion across heterogeneous networks.

By leveraging reinforcement learning, this approach addresses

challenges like bufferbloat and suboptimal bandwidth usage,

achieving improvements in throughput [28]. In addition, Pang

et al. designed a queue cache balance factor to estimate the

value of a sub-flow congestion window [29]. They avoided

throughput collapse, achieved the load balance of MPTCP data

transfer, and improved network throughput. However, while

these works enhanced MPTCP’s congestion control, they still

depend on MPTCP’s core mechanisms that require kernel

modifications, limiting their deployment practicality.

Another line of research has used the MPTCP to enhance

routing algorithms of a data center network. For instance, Fu

et al. suggested a DQL (Deep Q-Learning) based AI strategy

to produce the paths for optimal routing for data centers opting

for SDN networks [30]. Moreover, Jung et al. proposed and

developed distributed multiple path routing methods to reduce

finish time while executing multiple jobs [31]. These studies

highlight the benefits of integrating learning or distributed

approaches, but do not explore SDN’s potential for dynamic

rule generation based on global network views.

MPTCP is used to improve the flow completion time of data

center networks. For example, Jung et al. [31] and Liu et al.

[32] presented a new approach to improve existing data center

TCP protocols by decreasing task completion time through

receiver-driven coordination. Cheng and Jia [33] suggested an

improved network-aware multi-pathing scheme in SDN

networks to reduce transmission time by taking heterogeneous

network bandwidths into account. Zhang et al. [34] focused on

how to provide deadline-sensitive services and achieve high

throughput in data center networks. The proposed scheme

minimizes average flow completion time by using the full

available capacity of the data center network. These studies

focused on latency and flow completion time, but did not

1526

target throughput maximization using SDN with standard

TCP.

In the literature, many researchers have used multi-pathing

TCP to improve load balancing for data center networks. Park

et al. [35] presented MaxPass, a novel adaptive load balancing

system for data center networks, in which multiple paths are

adaptively selected and dynamically changed based on the

existing network load. An improvement of TCP-Path

scalability was proposed by Alvarez-Horcajo et al. [36] to

handle elephant flows for data center networks. While these

works improved load balancing, they did not apply maximum

flow algorithms within SDN to systematically exploit all

available paths.

AlShammari and Alenazi [37, 38] proposed to improve data

center performance by using SDN and graph theoretics to

make use of all available paths. Their results showed

significant improvement against baseline schemes, such as

round-robin and least-congested. Furthermore, their methods

did not explicitly apply classical network flow algorithms for

optimal throughput.

While there has been considerable research on improving

data center traffic using SDN and multipath routing, several

important gaps remain. Many existing solutions, such as

MPTCP, require kernel-level modifications, making them less

practical for widespread deployment in real-world

environments. Furthermore, there is a lack of solutions that

effectively combine SDN programmability with classical flow

algorithms, such as maximum flow, to optimize throughput

without altering the transport layer protocols. Current

approaches often focus on specific data center topologies, such

as Fat-Tree, and do not evaluate performance across diverse

architectures like DCell and BCube. Additionally, most

existing systems do not dynamically adapt to real-time

network conditions, such as fluctuating bandwidth, link

failures, or congestion hotspots, limiting their ability to

optimize traffic flows and ensure resiliency. Addressing these

gaps is crucial for developing more flexible, scalable, and

easily deployable solutions for data center networks.

In contrast, our work introduces MaxFlowSDN, a novel

system that couples SDN with classical maximum flow

algorithms to compute and apply optimal multipath routing

dynamically. This approach provides kernel-agnostic, high-

throughput data delivery across diverse topologies and adapts

to current link conditions via SDN rule updates. Table 1

summarizes how MaxFlowSDN addresses limitations found in

existing methods.

Table 1. Comparison of MaxFlowSDN with existing methods

Aspect MPTCP & Variants
SDN Load

Balancing

Graph-Theoretic

SDN
MaxFlowSDN (This Work)

Transport layer changes
Requires kernel

modifications
No No No (standard TCP)

Use of classical flow

algorithms
No No

Partial (graph

heuristics)
Yes (maximum flow algorithms)

Adaptivity to bandwidth

changes

Limited (congestion control

only)

Dynamic paths based

on load

Static or semi-

dynamic

Dynamic via SDN + max flow

recomputation

Topology diversity

evaluated

Primarily Fat-Tree, dual-

homed BCube
Fat-Tree Limited Fat-Tree, DCell, BCube

Deployment practicality
Reduced (due to kernel

dependency)
Practical Practical

Highly practical (no kernel

changes)

4. MAXFLOWSDN SYSTEM

This section introduces a system that combines a Software-

Defined Network and Maximum Flow Algorithm to enhance

the flow between two servers in a data center.

4.1 MaxFlowSDN components

The MaxFlowSDN system has several components, as

shown in Figure 12. These components include Topology

discovery, Maximum Flow Algorithm, Residual Link

Capacities, and Rule Generators.

The Topology discovery component is responsible for

creating a graph that consists of nodes, i.e., SDN switches, and

links that connect these switches. The Maximum Flow

Algorithm component is responsible for determining paths

that generate the maximum flow between two nodes given

currently available link capacities. The Residual Link

Capacities component monitors the topology links and

identifies currently usable and available bandwidth on every

link. The Rule Generators component is responsible for

determining the paths.

Multiple paths exist between sender and receiver in a

standard computer network. In a standard TCP/IP protocol, a

single path is used between receiver and sender. Yet, this

method deteriorates the performance due to a bottleneck link

that introduces extra constraint on top of end-to-end

throughput. To handle this problem, several researchers put

forward methodologies revolving around multiple-path

solutions that take advantage of alternate paths to increase end-

to-end throughput. Multipath solutions depend on the k-

shortest path methodology to deliver alternative paths, which

yield an inconsistent path without considering the highest flow

among senders and receivers.

Figure 12. MaxFlowSDN system

1527

The proposed scheme employs the Maximum Flow

algorithm among senders and receivers to pick out

intermediary switches where flows are split. Once

intermediary switches are identified, TCP port number-based

rules are pushed using OpenFlow, so that the flow can be split

accordingly. Traditionally, forwarding and routing are

accomplished using the destination IP addresses. However, for

the multipath method, we use both the addresses and port

numbers. Finally, senders generate many TCP links with port

numbers used in OpenFlow. A typical topology of the SDN is

depicted in Figure 12, where the MaxFlowSDN system is

implemented. When data is sent to another host, the SDN

controller utilizes the Maximum Flow Algorithm to find

intermediate switches and forwards information to the sending

host about the number of TCP connections it must make to

reach the maximum flow to the destination host.

Table 2. Maximum flow solution for the example network

[39]

Link Flow Value

(H1, SW1) 5

(H1, SW2) 2

(SW1, SW2) 2

(SW1, H2) 3

(SW2, H2) 4

Figure 13. Example topology

Figure 13 shows the graphical representation of the network

example. Because the Maximum Flow Algorithm is

implemented, source and destination are indicated by H1 and

H2, respectively. The solution for the example network is

explained in Table 2. The flow-in for SW1 is observed to be 5

when using the (H1, SW1) link, whereas flow-out is split

among the (SW1, SW2) links with flow value of 2 and (SW1,

H2) link with a flow value of 3. Two TCP connections, i.e.,

TCP-Conn-1 and TCP-Conn-2, are made from H1 to SW1,

since a split at SW1 into two flows occurred as shown in

Figure 13. For SW1, two OpenFlow protocols are pushed to

forward packets from H1 to SW2, and H2 according to TCP

port numbers. Additionally, the value of 4 is noted for flow-in,

for SW2, using two links, i.e., (H1, SW2) and (SW1, SW2),

whereas the flow-out is noted to be 4 for the (SW2, H2) link.

For SW2, OpenFlow rules are added to ensure the forwarding

of incoming packets to SW2 and H2 from H1, according to

TCP port numbers. As observed, data flow from the (H1, SW2)

link is not fragmented; instead, one TCP connection is needed

for the specific link, as noted by TCP-Conn-3. Effectively, this

example warrants the use of three connections.

4.2 Overview of the MaxFlowSDN

This section explains the application of the MaxFlowSDN

algorithm in the suggested system. The algorithm aims to

determine routes between source and destination that provide

the optimal maximum flow for TCP in a data center topology.

The pseudocode is demonstrated in Algorithm 1.

Algorithm 1. MaxFlow Algorithm.

Functions:

MaxFlow(𝐺, 𝑠𝑟𝑐, 𝑑𝑠𝑡): computes the maximum

flow between source 𝑠𝑟𝑐 and destination 𝑑𝑠𝑡 for a

graph 𝐺. SplitFlows2Paths(𝐹): split flows 𝐹 into

several flows.

1 𝐺: an input graph.

2 𝑠𝑟𝑐: source node.

3 𝑑𝑠𝑡: destination node.

4 𝑆𝑝𝑙𝑖𝑡𝑡𝑒𝑑𝑃aths: splits paths

5 flows = MaxFlow(𝐺, 𝑠𝑟𝑐, 𝑑𝑠𝑡)
6 SplittedPaths = []

7
for flow in flows do SplittedPath =

SplitFlows2Paths(𝑓𝑙𝑜𝑤)

8 SplittedPaths.append(SplittedPath)

9 return SplittedPaths

Two functions make up the algorithm: MaxFlow(𝐺, 𝑠𝑟𝑐,

𝑑𝑠𝑡) and SplitFlows2Paths(𝐹). The MaxFlow function

computes the maximum flow between source 𝑠𝑟𝑐 and

destination 𝑑𝑠𝑡 for a graph 𝐺. The SplitFlows2Paths(𝐹) splits

flows 𝐹 into several paths.

Consider a DCN topology as shown in Figure 13 to illustrate

the work of the MaxFlowSDN algorithm. Link weights

represent the available bandwidth. In this topology, host H1

sends traffic to H2. The max flow function returns flow values

for the given topology as follows: ["H1->SW1":5,

"H1->SW2":2,"SW1->H2":3,"SW1->SW2":2,

"SW2->H2":4]. The flow values list is passed to

SplitFlows2Paths(𝐹), which processes each flow to generate

the list of paths. In this example, the list of paths is

[(H1,SW1,H2), (H1,SW1,SW2,H2), (H1,SW2,H2)].

Algorithm 2. SDN Rule Generator Algorithm.

Functions:

FindSwitches(𝑝𝑎𝑡h): Identifies switches along a

given path.

DetermineInOut(𝑠𝑤, 𝑝𝑎𝑡h): Determines optimal

input/output ports on switch 'sw'.

GenerateRule(𝑠𝑤, 𝑖𝑛, 𝑜𝑢𝑡): Creates the SDN rule

for the switch 𝑠𝑤, for ports 𝑖𝑛 and 𝑜𝑢𝑡

1

Input:

𝑝𝑎𝑡h𝑠: split the paths between the source node (𝑠𝑟𝑐)

and the destination node (𝑑𝑠𝑡).

2
Output:

SDN Rules for multipath routing.

3 SDNRules = []

4 for path in paths do

5 for 𝑠𝑤 in findSwitches(path)

6 in, out = determineInOut(𝑠𝑤, 𝑝𝑎𝑡ℎ)

7
 SDNRule = generateRule(𝑠𝑤,𝑠𝑟𝑐,𝑑𝑠𝑡, 𝑖𝑛 ,

𝑜𝑢𝑡) S

8 SDNRules.append(sw,SDNRule)

9 return SplittedPaths

1528

After finding the paths, MaxFlowSDN generates the SDN

Rules for every switch in all paths. The pseudo-code for

generating the SDN rule algorithm is presented in Algorithm

2. It consists of three functions: FindSwitches,

DetermineInOut, and GenerateRule. All paths are first passed

to the FindSwitches function, which finds the switches for a

given path.

Every switch in the path is then passed to the

DetermineInOut function to determine input and output ports

for switch sw, given the path. The last step is the GenerateRule

function that creates an SDN code for a switch sw, based on

source src and destination dst nodes. In addition to in and out

ports, every switch in all paths is given to the GenerateRule

function in order to construct all SDN rules.

5. EVALUATION

This section presents our experimental setup and its

parameters, and presents the baseline evaluation methods of

MaxFlowSDN.

5.1 Experimental setup and parameters

This section presents our experiment and its parameters. We

used Mininet 2.3.0d4 emulation to evaluate the MaxFlowSDN

system. The host device has Ubuntu 16.04 as operating system,

with a six-core 2.2 GHz processor and 16 GB of RAM. In the

given topologies, Mininet connects virtual Linux hosts

together using OpenvSwitch switches. The switches were

configured to use the OpenFlow 1.3 protocol, and the control

logic was implemented using the Ryu 4.32 controller

framework. iperf was employed to generate data traffic

between destination and source hosts. Five runs were

performed in each evaluation test, with a duration of 30

seconds of data-flow for each run. The throughput sampling-

rate was noted as 1 sample per second. Table 3 shows all

evaluation parameters.

Table 3. Default emulation parameters

Parameter Values

Emulator Mininet 2.3.0d4

Memory 16GB

Operating System Ubuntu–16.04

Sampling-Rate 1 sample per sec

CPU six-core 2.2 GHz

Number of Runs Five for each method

TCP Congestion CUBIC

Virtual Switches OpenvSwitch 2.5.5

Experiment Duration 30 seconds

In a previous work [39], we evaluated multiple TCP

congestion control variants to define the most suitable one for

the experiments. Based on evaluation results, we chose Cubic.

Experimental data center topologies are: Fat-Tree, DCell, and

BCube. The Fat-Tree topology used in the evaluation is shown

in Figure 14.

The red highlighted path shows the shortest path from

source H1 to destination H2. The link capacities were

manually selected due to two reasons. First, the Mininet

virtualized environment imposed computational limitations,

making gigabit-level capacities infeasible. Second, the

capacities were configured to highlight disjoint paths between

the source and destination nodes. Table 4 shows the link

capacities used for the Fat-Tree topology, which were

similarly applied to other topologies for consistency in

evaluation. The DCell topology used in the evaluation is

shown in Figure 15.

Figure 14. Fat-Tree test topology

Figure 15. DCell test topology

Table 4. Fat-Tree test topology links bandwidth

Link Type Link: Bandwidth

Core to

Aggregation

links

s91 - s1 link: 10 Mbpss91 - s3 link: 10 Mbpss91

- s5 link: 10 Mbpss91 - s7 link: 10 Mbpss92 - s1

link: 10 Mbpss92 - s3 link: 10 Mbpss92 - s5

link: 10 Mbpss92 - s7 link: 10 Mbpss93 - s3

link: 10 Mbpss93 - s4 link: 10 Mbpss93 - s6

link: 10 Mbpss93 - s8 link: 10 Mbpss94 - s2

link: 10 Mbpss94 - s4 link: 10 Mbpss94 - s6

link: 10 Mbpss94 - s8 link: 10 Mbps

Aggregation

to Access

links

s1 - s9 link: 7 Mbpss1 - s10 link: 5 Mbpss2 - s9

link: 7 Mbpss2 - s10 link: 5 Mbpss3 - s11 link:

5 Mbpss3 - s12 link: 5 Mbpss4 - s11 link: 5

Mbpss4 - s12 link: 5 Mbpss5 - s13 link: 5

Mbpss5 - s14 link: 5 Mbpss6 - s13 link: 5

Mbpss6 - s14 link: 5 Mbpss7 - s15 link: 7

Mbpss7 - s16 link: 5 Mbpss8 - s15 link: 7

Mbpss8 - s16 link: 5 Mbps

Access to

Hosts links
s9 - h1 link: 13 Mbpss15 - h2 link: 13 Mbps

The red highlighted path shows the shortest-path from H1

to H2. Bandwidth details of the links are shown in Table 5.

The BCube topology used in the evaluation is shown in Figure

16.

1529

The red highlighted path shows the shortest-path from H1

to H2. Bandwidth details of the links are shown in Table 6.

Figure 16. BCube test topology

Table 5. DCell test topology links bandwidth

Link

Type
Link: Bandwith

Switch-to-

host links

DCs0 - h0.1(h1) link: 10 MbpsDCs0 - h0.2 link: 10

MbpsDCs0 - h0.3 link: 10 MbpsDCs0 - h0.4 link:

10 MbpsDCs1 - h1.1 link: 20 MbpsDCs1 - h1.2

link: 10 MbpsDCs1 - h1.3 link: 10 MbpsDCs1 -

h1.4 link: 10 MbpsDCs2 - h2.1 link: 10 MbpsDCs2

- h2.2 link: 10 MbpsDCs2 - h2.3 link: 10

MbpsDCs2 - h2.4 link: 10 MbpsDCs3 - h3.1 link:

10 MbpsDCs3 - h3.2 link: 10 MbpsDCs3 - h3.3

link: 10 MbpsDCs3 - h3.4(h2) link: 20 Mbps

Between-

cells links

h0.1(h1) - h1.1 link: 20 Mbpsh0.2 - h1.4 link: 15

Mbpsh0.3 - h3.1 link: 15 Mbpsh0.4 - h4.1 link: 15

Mbpsh1.2 - h2.2 link: 15 Mbpsh1.3 - h3.2 link: 15

Mbpsh1.4 - h4.2 link: 15 Mbpsh2.3 - h3.3 link: 15

Mbpsh2.4 - h4.3 link: 15 Mbpsh3.4 (h2) - h4.4 link:

15 Mbps

Table 6. BCube test topology links bandwidth

Link

Type
Link: Bandwidth

Level 1

links to

servers

s80 - s1 link: 10 Mbpss80 - s2 link: 10 Mbpss80 - s3

link: 10 Mbpss80 - s4 link: 10 Mbpss81 - h1 link: 10

Mbpss81 - s5 link: 10 Mbpss81 - s6 link: 10

Mbpss81 - s7 link: 10 Mbpss82 - s8 link: 10

Mbpss82 - s9 link: 10 Mbpss82 - s10 link: 10

Mbpss82 - s11 link: 10 Mbpss83 - s12 link: 10

Mbpss83 - s13 link: 10 Mbpss83 - h2 link: 10

Mbpss83 - s14 link: 10 Mbps

Servers

to level 2

links

s90 - s1 link: 10 Mbpss90 - h1 link: 20 Mbpss90 - s8

link: 10 Mbpss90 - s12 link: 10 Mbpss91 - s2 link:

10 Mbpss91 - s5 link: 10 Mbpss91 - s9 link: 10

Mbpss91 - s13 link: 10 Mbpss92 - s3 link: 10

Mbpss92 - s6 link: 10 Mbpss92 - s10 link: 10

Mbpss92 - h2 link: 20 Mbpss93 - s4 link: 10

Mbpss93 - s7 link: 10 Mbpss93 - s11 link: 10

Mbpss93 - s14 link: 10 Mbps

5.2 Performance metric and baseline methods

The performance of MaxFlowSDN is matched with three

other approaches, considering all tested data center topologies.

For each method, we had five runs with data produced via iperf

sent between H1 and H2 hosts. The number of runs is

sufficient because data variance is low, as will be observed in

results later. The methods which are compared here are given

below:

1. StandardTCP: Only one TCP connection is used to

transfer application data, without considering the number of

available interfaces.

2. ParallelTCP: To transfer application data, one TCP

connection is created for each available interface. These

connections exist and work in parallel.

3. MPTCP: MPTCP connection is used to transfer

application data. For all available interfaces, MPTCP

internally generates multiple sub-TCP connections for

everyone.

4. MaxFlowSDN: To transfer application data, multiple

TCP connections are created for each available interface.

These connections exist and work in parallel. The MaxFlow

algorithm’s flow value is used to determine the number of

connections.

For each method, the throughput from H1 to H2 was

observed.

6. RESULTS AND DISCUSSION

This section shows the findings of three types of data center

topologies, as shown in subsection 5.1.

6.1 Fat-Tree topology

In the Fat-Tree test topology as shown in Figure 14, we

compared the performance of MaxFlowTCP against three

methods: StandardTCP, ParallelTCP, and MPTCP. Figure 17

shows the average throughput from H1 to H2 for all methods

in the Fat-Tree topology. Table 7 shows the full data and

throughput results obtained for the Fat-Tree topology. In the

Fat-Tree test topology, we compared the MaxFlowTCP

performance against three methods: StandardTCP,

ParallelTCP, and MPTCP. Figure 17 shows the average

throughput from H1 to H2 for all methods in the Fat-Tree

topology. Table 7 shows the full data and throughput results

obtained for the Fat-Tree topology.

Figure 17. Fat-Tree average throughput

In the Fat-Tree topology experiment, only one network

interface was available in H1 source node and H2 destination

node. Consequently, the Parallel TCP and StandardTCP

performance were identical, since only one TCP connection

was created for both methods. Both obtained an average

throughput of 6.5 Mbps after the first two seconds of the

experiment. MPTCP performance was similar to StandardTCP

and ParallelTCP because it also could not benefit from its main

advantage of having multiple internal paths created for

1530

different interfaces. MaxFlowSDN outperformed the three

methods with an average throughput around 12 Mbps, because

it created two connections to reach the maximum flow possible

from source to destination. Figure 18 shows the two

connection paths created by the MaxFlowSDN algorithm.

Results show that MaxFlowSDN had approximately 80%

more throughput compared to ParallelTCP, StandardTCP and

MPTCP.

Table 7. Throughput in the Fat-Tree topology

Methods

Average Standard Deviation

Total

Data
Throughput

Total

Data
Throughput

MaxFlowSDN
410.86

Mb
11.76 Mbps 5.55 0.17

MPTCP
216.60

Mb
6.38 Mbps 1.17 0.04

ParallelTCP
214.21

Mb
6.49 Mbps 5.60 0.02

StandardTCP
214.21

Mb
6.49 Mbps 5.60 0.02

Figure 18. MaxFlowSDN connections in Fat-Tree test

6.2 DCell topology

In the DCell test topology, we compared MaxFlowSDN

performance against the three methods: StandardTCP,

ParallelTCP and MPTCP. Figure 19 shows the average

throughput from H1 to H2 for all methods in the DCell

topology. Table 8 explains the full data and throughput results

obtained for DCell topology.

Figure 19. DCell average throughputTopology

In the DCell topology experiment, two network interfaces

were available in the H1 source node and H2 destination node.

In StandardTCP method, one TCP connection was created

between source and destination. The average throughput for

StandardTCP after two seconds of the experiment was 9.33

Mbps. The average throughput for ParallelTCP and MPTCP

was around 18 Mbps. They obtained similar results because

they both have two connections going from the two interfaces

available at the source. MaxFlowSDN outperformed all the

three methods as the MaxFlow algorithm used in

MaxFlowSDN creates three connections to use the maximum

available bandwidth. Figure 20 shows the three connection

paths created by the MaxFlowSDN algorithm. The average

throughput reached 27 Mbps after two seconds of the

experiment. Results showed that MaxFlowSDN had around

185% more throughput when compared to StandardTCP, and

47% more compared to ParallelTCP and MPTCP.

Table 8. Throughput in DCell topology

Methods

Average Standard Deviation

Total

Data
Throughput

Total

Data
Throughput

MaxFlowSDN
937.58

Mb
26.58 Mbps 6.12 0.16

MPTCP
582.09

Mb
17.94 Mbps 11.62 0.35

ParallelTCP
647.43

Mb
18.36 Mbps 1.38 0.05

StandardTCP
329.03

Mb
9.33 Mbps 0.81 0.03

Figure 20. MaxFlowSDN connections in the DCell

6.3 BCube topology

In the BCube test topology, we compared MaxFlowSDN

performance against three methods: StandardTCP,

ParallelTCP, and MPTCP. Figure 21 shows the average

throughput from H1 to H2 for all methods in the BCube

topology. Table 9 shows the results of total data and

throughput in BCube topology.

In the BCube topology experiment, two network interfaces

were available in H1 source node and H2 destination node. In

the StandardTCP method, one TCP connection was created

between source and destination. The average throughput for

StandardTCP after two seconds of the experiment was 9.35

Mbps. The average throughput for parallel and MPTCP was

around 18 Mbps. Their results were similar as they have two

connections from both interfaces available. MaxFlowSDN

outperformed the three methods because the algorithm used in

MaxFlowSDN creates three connections to make use of the

1531

maximum available bandwidth. Figure 22 shows the three

connection paths created by MaxFlowSDN. The average

throughput yielded 27.32 Mbps after two seconds of the

experiment. Results showed that MaxFlowSDN had around

191% more throughput compared to StandardTCP, and 48%

more compared to ParallelTCP and MPTCP.

Figure 21. BCube average throughput

Table 9. Throughput in BCube topology

Methods

Average Standard Deviation

Total

Data
Throughput

Total

Data
Throughput

MaxFlowSDN
926.39

Mb
27.32 Mbps 14.01 0.25

MPTCP
588.72

Mb
18.21 Mbps 8.01 0.30

ParallelTCP
644.70

Mb
18.54 Mbps 6.40 0.03

StandardTCP
326.96

Mb
9.35 Mbps 1.13 0.03

Figure 22. MaxFlowSDN connections in Bcube

The evaluation results demonstrate that MaxFlowSDN

outperforms existing methods across Fat-Tree, DCell, and

BCube topologies. The performance advantage of

MaxFlowSDN stems from its ability to determine optimal

paths using the Maximum Flow algorithm coupled with SDN-

based network control. In the Fat-Tree topology,

MaxFlowSDN achieved 80% higher throughput than

StandardTCP, ParallelTCP, and MPTCP by creating two

optimal connections between source and destination nodes. In

DCell and BCube topologies, MaxFlowSDN showed

approximately 190% higher throughput compared to

StandardTCP and almost 50% improvement over ParallelTCP

and MPTCP by effectively utilizing three connection paths.

Unlike MPTCP, which requires kernel modifications,

MaxFlowSDN achieves these improvements using

conventional TCP implementation while leveraging SDN

capabilities for dynamic path configuration and flow

management through OpenFlow rules. These results establish

MaxFlowSDN as an effective solution for optimizing intra-

datacenter traffic routing.

7. CONCLUSIONS AND FUTURE WORK

A data center is an essential asset for any organization with

vital systems that perform critical daily operations. Data center

networks need to process and compute bulk data using the

most practical and efficient method possible. The use of SDNs

in data centers has allowed them to improve their performance

in several respects, since SDN makes network configurations

programmable and dynamic. This has yielded improved

flexibility, better management, and more scalable schema.

In this paper, we proposed a new methodology named

MaxFlowSDN, which uses SDN coupled with conventional

TCP to deliver the highest possible data flow throughput in

data centers. Our methodology achieved this maximum

throughput by generating multiple paths between destination-

source pairs. The proposed methodology (MaxFlowSDN)

yielded significant improvement when compared with three

other methodologies, i.e., StandardTCP, ParallelTCP, and

MPTCP. The comparison was made using test topologies

commonly employed in data centers. The proposed

methodology outperformd others thanks to its ability to use the

maximum available bandwidth via the Maximum Flow

Algorithm, which permits the maximum possible throughput.

In the Fat-Tree data center topology, MaxFlowSDN had 80%

higher throughput than MPTCP, ParallelTCP, and

StandardTCP. In DCell and BCube topologies, evaluation

results demonstrated that MaxFlowSDN provides around

190% higher throughput than StandardTCP, and almost 50%

improvement compared to ParallelTCP and MPTCP.

However, MaxFlowSDN has limitations. It has been tested

on a limited number of topologies, and its scalability in larger,

real-world data centers needs further evaluation. While the

system is optimized for throughput, it does not address

latency-sensitive traffic, and it currently relies on a single SDN

controller, which may become a bottleneck. Additionally, it

lacks mechanisms for real-time fault detection and rerouting.

Future work will focus on addressing these limitations by

developing a dynamic, adaptive version of MaxFlowSDN that

handles real-time network changes, uses a distributed SDN

controller architecture for better scalability and fault tolerance,

and incorporates latency-awareness, so that optimizing path

selection not just for throughput but also for minimizing end-

to-end delays. This would be beneficial for latency-sensitive

applications such as online gaming, data exchanges between

autonomous vehicles, or telemedicine, where even slight

delays can significantly impact user experience. We also plan

to evaluate the system in larger, real-world environments, such

as GENI (Global Environment for Network Innovations), to

further refine its capabilities.

ACKNOWLEDGMENT

The authors extend their appreciation to Deanship of

scientific research in King Saud University, Saudi Arabia.

1532

REFERENCES

[1] O’Connell, A. (2019). Forecast: Data centers,

worldwide, 2016-2023, 2019 update.

https://www.gartner.com/en/documents/3956376.

[2] IEA. (2019). Data centres and energy – From global

headlines to local headaches? IEA, Paris.

https://www.iea.org/commentaries/data-centres-and-

energy-from-global-headlines-to-local-headaches.

[3] Nunes, B.A.A., Mendonca, M., Nguyen, X.N., Obraczka,

K., Turletti, T. (2014). A survey of software-defined

networking: Past, present, and future of programmable

networks. IEEE Communications Surveys & Tutorials,

16(3): 1617-1634.

https://doi.org/10.1109/SURV.2014.012214.00180

[4] ONF. (2012). Software-defined networking: The new

norm for networks. https://opennetworking.org/wp-

content/uploads/2011/09/wp-sdn-newnorm.pdf.

[5] Hwang, R.H., Tseng, H.P., Tang, Y.C. (2015). Design of

SDN-Enabled cloud data center. In 2015 IEEE

International Conference on Smart

City/SocialCom/SustainCom (SmartCity), Chengdu,

China, pp. 950-957.

https://doi.org/10.1109/SmartCity.2015.193

[6] Alenazi, M.J.F., Almutairi, A., Almowuena, S., Wadood,

A., Çetinkaya, E.K. (2020). NFV provisioning in large-

scale distributed networks with minimum delay. IEEE

Access, 8: 151753-151763.

https://doi.org/10.1109/ACCESS.2020.3017667

[7] Hong, C.Y., Kandula, S., Mahajan, R., Zhang, M., Gill,

V., Nanduri, M., Wattenhofer, R. (2013). Achieving high

utilization with software-driven WAN. In Proceedings of

the ACM SIGCOMM 2013 Conference on SIGCOMM,

Hong Kong China, pp. 15-26.

https://doi.org/10.1145/2486001.2486012

[8] Jin, X., Li, Y.R., Wei, D., Li, S.M., Gao, J., Xu, L., Li,

G.Z., Xu, W., Rexford, J. (2016). Optimizing bulk

transfers with software-defined optical WAN. In

Proceedings of the 2016 ACM SIGCOMM Conference,

Florianopolis Brazil, pp. 87-100.

https://doi.org/10.1145/2934872.2934904

[9] Ford, A., Raiciu, C., Handley, M., Bonaventure, O.

(2013). TCP extensions for multipath operation with

multiple addresses (No. rfc6824).

[10] Peng, Q.Y., Walid, A., Hwang, J., Low, S.H. (2014).

Multipath TCP: Analysis, design, and implementation.

IEEE/ACM Transactions on networking, 24(1): 596-609.

https://doi.org/10.1109/TNET.2014.2379698

[11] Tang, W.S., Fu, Y.S., Dong, P.P., Yang, W.J., Yang, B.,

Xiong, N.X. (2019). A MPTCP scheduler combined with

congestion control for short flow delivery in signal

transmission. IEEE Access, 7: 116195-116206.

https://doi.org/10.1109/ACCESS.2019.2933880

[12] Bonaventure, O., Seo, S. (2016). Multipath TCP

deployments. IETF Journal, 12(2): 24-27.

[13] Mehani, O., Holz, R., Ferlin, S., Boreli, R. (2015). An

early look at multipath TCP deployment in the wild. In

Proceedings of the 6th International Workshop on Hot

Topics in Planet-Scale Measurement, pp. 7-12.

https://doi.org/10.1145/2798087.2798088

[14] Noormohammadpour, M., Raghavendra, C.S. (2017).

Datacenter traffic control: Understanding techniques and

tradeoffs. IEEE Communications Surveys & Tutorials,

20(2): 1492-1525.

https://doi.org/10.1109/COMST.2017.2782753.

[15] Sharma, V., Mishra, R. (2020, June). A comprehensive

survey on data center network architectures. In 2020 8th

International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future

Directions) (ICRITO), Noida, India, pp. 222-228.

https://doi.org/10.1109/ICRITO48877.2020.9197934

[16] Guo, C.X., Lu, G.H., Li, D., Wu, H.T., Zhang, X., Shi,

Y.F., Tian, C., Zhang, Y.G., Lu, S.W. (2009). BCube: A

high performance, server-centric network architecture

for modular data centers. In Proceedings of the ACM

SIGCOMM 2009 conference on Data communication,

Barcelona, Spain, pp. 63-74.

https://doi.org/10.1145/1592568.1592577

[17] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,

G., Peterson, L., Rexford, J., Shenker, S., Turner, J.

(2008). OpenFlow: Enabling innovation in campus

networks. ACM SIGCOMM Computer Communication

Review, 38(2): 69-74.

https://doi.org/10.1145/1355734.1355746

[18] Wu, X., Lu, K., Zhu, G. (2018). A survey on software-

defined wide area networks. Journal of Communications,

13(5): 253-258.

[19] Sahoo, K.S., Mohanty, S., Tiwary, M., Mishra, B.K.,

Sahoo, B. (2016). A comprehensive tutorial on software

defined network: The driving force for the future internet

technology. In Proceedings of the International

Conference on Advances in Information Communication

Technology & Computing, Bikaner, India, pp. 1-6.

https://doi.org/10.1145/2979779.2983928

[20] Kinariwala, B., Rao, A.G. (1977). Flow switching

approach to the maximum flow problem: I. Journal of the

ACM (JACM), 24(4): 630-645.

[21] Ford, L.R., Fulkerson, D.R. (2009). Maximal flow

through a network. In Classic Papers in Combinatorics,

pp. 243-248.

[22] Edmonds, J., Karp, R.M. (1972). Theoretical

improvements in algorithmic efficiency for network flow

problems. Journal of the ACM (JACM), 19(2): 248-264.

[23] Dinic, E.A. (1970). Algorithm for solution of a problem

of maximum flow in networks with power estimation.

Soviet Mathematics Doklady, 11: 1277-1280.

[24] Karzanov, A.V. (1974). Determining the maximal flow

in a network by the method of preflows. Soviet

Mathematics Doklady, 15: 434-437.

[25] Goldberg, A.V., Tarjan, R.E. (1988). A new approach to

the maximum-flow problem. Journal of the ACM

(JACM), 35(4): 921-940.

https://doi.org/10.1145/48014.61051

[26] Goldberg, A.V., Rao, S. (1998). Beyond the flow

decomposition barrier. Journal of the ACM (JACM),

45(5): 783-797. https://doi.org/10.1145/290179.290181

[27] Ye, J., Feng, L.T., Xie, Z.Q., Huang, J.W., Li, X.H.

(2019). Fine-grained congestion control for multipath

TCP in data center networks. IEEE Access, 7: 31782-

31790. https://doi.org/10.1109/ACCESS.2019.2902860

[28] Li, W., Zhang, H., Gao, S., Xue, C., Wang, X., Lu, S.

(2019). SmartCC: A reinforcement learning approach for

multipath TCP congestion control in heterogeneous

networks. IEEE Journal on Selected Areas in

Communications, 37(11): 2621-2633.

https://doi.org/10.1109/JSAC.2019.2933761

1533

[29] Pang, S.C., Yao, J.M., Wang, X., Ding, T., Zhang, L.

(2019). Transmission control of MPTCP Incast based on

buffer balance factor allocation in data center networks.

IEEE Access, 7: 183428-183434.

https://doi.org/10.1109/ACCESS.2019.2960180

[30] Fu, Q., Sun, E., Meng, K., Li, M., Zhang, Y. (2020).

Deep Q-learning for routing schemes in SDN-based data

center networks. IEEE Access, 8: 103491-103499.

https://doi.org/10.1109/access.2020.2995511

[31] Jung, E.S., Vishwanath, V., Kettimuthu, R. (2014).

Distributed multipath routing algorithm for data center

networks. In 2014 International Workshop on Data

Intensive Scalable Computing Systems, New Orleans,

LA, USA, pp. 49-56.

https://doi.org/10.1109/DISCS.2014.14.

[32] Liu, S., Huang, J.W., Zhou, Y.T., Wang, J.X., He, T.

(2019). Task-aware TCP in data center networks.

IEEE/ACM Transactions on Networking, 27(1): 389-

404. https://doi.org/10.1109/TNET.2018.2890010

[33] Cheng, Y.Y., Jia, X.H. (2020). NAMP: Network-aware

multipathing in software-defined data center networks.

IEEE/ACM Transactions on Networking, 28(2): 846-

859. https://doi.org/10.1109/TNET.2020.2971587

[34] Zhang, X.M., Liu, S.K., Xu, J. (2018). An efficient

scheduling scheme for XMP and DCTCP mixed flows in

commodity data centers. IEEE Communications Letters,

22(9): 1770-1773.

https://doi.org/10.1109/LCOMM.2018.2853616

[35] Park, M., Sohn, S., Kwon, K., Kwon, T.T. (2019).

MaxPass: Credit-based multipath transmission for load

balancing in data centers. Journal of Communications

and Networks, 21(6): 558-568.

https://doi.org/10.1109/JCN.2019.000047

[36] Alvarez-Horcajo, J., Lopez-Pajares, D., Martinez-

Yelmo, I., Carral, J.A., Arco, J.M. (2019). Improving

multipath routing of TCP flows by network exploration.

IEEE Access, 7: 13608-13621.

https://doi.org/10.1109/ACCESS.2019.2893412

[37] AlShammari, W.M., Alenazi, M.J. (2020). Performance

analysis of a graph-theoretic load balancing method for

data centers. International Journal of Advanced

Computer Science and Applications, 11(8): 666-674.

[38] AlShammari, W.M., Alenazi, M.J.F. (2021). BL‐Hybrid:

A graph‐theoretic approach to improving software‐

defined networking‐based data center network

performance. Transactions on Emerging

Telecommunications Technologies, 32(1): e4163.

https://doi.org/10.1002/ett.4163

[39] Saeed, N.S.B., Alenazi, M.J. (2020). Utilizing SDN to

deliver maximum TCP flow for data centers. In

Proceedings of the 3rd International Conference on

Information Science and Systems, Cambridge United

Kingdom, pp. 181-187.

https://doi.org/10.1145/3388176.3388216

1534

