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Large data centers continuously move data from one server to another due to up- or down-

scaling virtual server specifications to meet user requirements. Most data center topologies 

allow multipath routing between any pair of nodes within their network to increase 

throughput, as well as resilience against link failures. Several approaches have been 

proposed and developed to utilize these routes to improve network performance. Existing 

methods often face challenges in achieving maximum throughput across diverse topologies 

without requiring kernel modifications, leaving room for improvement in practicality and 

scalability. In this paper, we propose a novel system, MaxFlowSDN, which uses the 

maximum flow algorithm along with traditional SDN and TCP to deliver higher throughput 

in data centers. MaxFlowSDN yielded 80% higher throughput in the Fat-Tree topology 

compared to StandardTCP, ParallelTCP, and MPTCP. In DCell and BCube topologies, it 

achieved approximately 190% higher throughput than StandardTCP and nearly 50% 

improvement over ParallelTCP and MPTCP. For evaluation, we deployed our system in 

different data center topologies and compared our results against existing methods. These 

results demonstrate that MaxFlowSDN provides maximum flow throughput in the data 

center environment while addressing the limitations of current approaches.  
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1. INTRODUCTION

Data centers have a crucial role to play in the computing 

landscape of any organization. In most recent years, the 

number of existing data centers has observed a rapid growth. 

The latest forecast study showed that the total number of data 

center sites will increase to 3.6 million by 2023 [1]. 

Furthermore, data centers are also continuously growing in 

size in terms of the number of servers they host. Such growth 

has been fueled by an increased demand for diverse facilities 

provided by these servers and their affiliate resources. The 

number of hyper-scale data centers was expected to increase 

to 628 by 2021 [2]. To adequately meet the expected 

performance, the incrementally growing data centers would 

need higher network bandwidth as well as more integrated 

resources. It was expected that traffic within data centers 

would quintuple by the end of 2021 [2]. 

Both large and small organizations of big and small sizes 

need to capture, clean, park, analyze, and use a massive 

amount of data for data supply chain and production purposes. 

These processes need essential components of a complex 

system, including storage and computing resources. Due to 

these dependencies, a data center remains a vital asset for day-

to-day operations. To adequately handle such Big Data hosted 

in data centers (such as shown in Figure 1), a system requires 

huge throughput to avoid the degradation of global or local 

network performance.  

Data centers have a set of large-scale data requests that incur 

a vast number of policies for traffic management transactions 

per second, which makes it difficult for network administrators 

to monitor and manage the network [3]. A software-defined 

network (SDN) [4] is a widely used technology in data centers 

to customize routing and manage traffic, with a view to 

achieve more scalability in a network [5]. The structure of an 

SDN segregates data and control planes. SDNs are applied in 

diverse ranges of network applications – one of these being 

Data Centers [6]. Many world-class companies, such as 

Microsoft [7] and Google [8], have adopted SDNs as a way to 

provide needed traffic management and throughput for their 

local- and wide-area networks.  

The SDN system itself is widely adopted thanks to its 

abstraction, management flexibility, and network 

virtualization capability. A single interface is used by Standard 

TCP to establish a connection with other networked devices. 

However, most networked devices have at least two network 

interfaces; consequently, Parallel TCP utilizes this by creating 

one TCP connection for each interface. Multipath TCP 

(MPTCP) [9] was introduced to use other network interfaces 

and to improve resilience against interface failures. In Data 

Centers, MPTCP creates multiple subflows between any pair 

of servers to engage the full bisection bandwidth for 

techniques such as BCube and dual-homed Fat-Tree [10, 11]. 

Since its introduction, MPTCP performance has been 

evaluated in several environments and applications, including 
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cellular networks, data centers, home networks, and enterprise 

networks. In fact, MPTCP is supported by some of the largest 

IT companies in the world, like Apple [12, 13]. 

Figure 1. Typical data center architecture 

Our contributions in this paper: 

1. We introduce MaxFlowSDN, a novel system that

integrates SDN with the maximum flow algorithm to enable 

multipath routing without requiring kernel modifications. 

2. Our system dynamically selects multiple paths between

source and destination, optimizing throughput based on real-

time link capacities and network conditions. 

3. We evaluate MaxFlowSDN on multiple data center

topologies, including Fat-Tree, DCell, and BCube, 

demonstrating its superior performance compared to 

StandardTCP, ParallelTCP, and MPTCP. 

The rest of the paper is structured as follows. Background 

for the proposed methodology is provided in Section 2. This 

background mainly comprises an introduction to the Software 

Defined Network, MPTCP, and Maximum Flow algorithms. 

Related Works are presented in Section 3, whereas the 

mechanics of the Proposed Methodology (i.e., MaxFlowSDN) 

are introduced in Section 4. Section 5 presents the Experiment 

Setup and Performance Metrics used in our paper. Section 6 

shows the Evaluation of the results and a Discussion of them. 

In the final section, i.e., Section 7, the Conclusion and possible 

remedies and inclusions in Future Work are presented. 

2. BACKGROUND

An overview of the architectures of data centers, such as 

MPTCP, SDN, and maximum Flow problems, is presented in 

this section. 

2.1 Data centers overview and architectures 

A data center is an infrastructure element composed of 

connected computing resources that provide any organization 

or institution with data storage, applications, and services 

needed for their essential operations [14]. The data center 

network is the major part of the design of a data center [15]. 

Many topologies have been used to meet evolving data center 

requirements [16]. The following are the most popular and 

most studied topologies of data center networks. 

2.1.1 Fat-Tree topology 

The Fat-tree is a multi-rooted tree topology whose roots 

serve as core switches. In addition, there is an aggregation 

layer between roots and access switches. Fat-Tree has identical 

bandwidth at any bisection, and uses a large number of 

inexpensive switches to allow the deployment of a large 

number of hosts at low cost. It uses complex routing 

configurations in switches to prevent creating loops while 

using the available paths for load balancing [14]. The Fat-Tree 

topology is depicted in Figure 2. 

Figure 2. Fat-Tree topology 

2.1.2 Leaf-Spine topology 

The Leaf-Spine topology consists of two layers of switches: 

leaf switches attached to servers, and spine switches connected 

to all leaf switches. The capacity of the cables between leaf 

switches and servers is different from those between leaf and 

spine switches. A routing suite with load balancing can be used 

in the Leaf-Spine topology without causing loops [14]. Figure 

3 shows the Leaf-Spine topology. 

Figure 3. Leaf-Spine topology 

2.1.3 VL2 topology 

VL2 is similar to Fat-Tree and runs the routing suite on a 

multi-rooted tree topology. However, it differs from the Fat-

Tree topology in terms of link capacities. The links between 

switch layers have a higher capacity than the links between 

servers and switches. This results in fewer cables between 

aggregation and core layers [14]. The VL2 topology is shown 

in Figure 4. 

Figure 4. VL2 topology 

2.1.4 DCell topology 

DCell is a hierarchical data center topology, where the 
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lower DCell structure level is the building block of the whole 

system. Higher levels of cells are formed by combining many 

lower-level DCells together. This topology is highly 

expandable simply by adding more levels, and has no single 

failure point. It uses a fault-tolerant, custom routing algorithm, 

that aims for the shortest routing path [14, 15]. DCell topology 

is shown in Figure 5. 

Figure 5. DCell topology 

Level 2 DCell is shown in Figure 6. 

Figure 6. DCell2 topology 

2.1.5 BCube topology 

BCube is a network structure centered around a server. For 

this network design, servers which have many network ports 

can link to multiple switch layers. Additionally, the servers 

work as forwarding nodes for other servers. The BCube 

network structure uses source routing and must change the 

protocol stack of server networking either in hardware or in 

software [14, 16]. BCube topology is shown in Figure 7. 

Figure 7. BCube topology 

2.2 Data centers overview and architectures 

SDN is a network technology which uses the concept of 

programmable network, simplifying network operations and 

making it more scalable and adaptable. The main idea is to 

decouple the control and data plane by using a control console 

that handles all decision-making tasks (control plane). 

Switches and routers in the network will only be packet 

forwarding units (data plane) that may be configured and 

programmed through an open interface (e.g., OpenFlow17). In 

contrast, for traditional networks, each individual device needs 

to be configured, to independently make its traffic forwarding 

decisions [3, 4].  

Figure 8 represents the prominent differences between the 

software-defined and conventional networks. 

Figure 8. Structure of SDN compared to conventional 

network 

Figure 9. SDN Architecture 

Software defined architecture consists of four main 

interfaces, as shown in Figure 9: 

• Southbound-API – The Southbound API acts as interface

between controller and forwarding devices (data plane). The 

OpenFlow protocol [17] is a widely used southbound interface 

that describes the exchange of information between data plane 

devices and SDN controller.  

• Northbound-API – The Northbound API describes the

interfaces between SDN controller and application control 

plane containing applications running on top of the network. 

There is no standardized Northbound-API. This interface 

allows application programmers and developers to administer 

the network using applications.  

• Westbound-API – The Westbound-API represents the

interface between different SDN controllers in various 

network domains. It enables the transfer of network state data 

used in making routing decisions in every controller by 

providing the global network view of other domains. 
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• Eastbound-API – The Eastbound API describes the

interface between SDN controller and legacy network control 

plane in order for the SDN domain to be fully compatible with 

other (non-SDN) domains, including the routing protocol 

deployed [18, 19]. 

2.3 Multipath TCP 

Certain limitations exist between communicating pairs 

when using the standard TCP in the context of multiple 

interfaces. This is due to the fact that only a single interface is 

used at each communication end, whereas MPTCP can take 

advantage of more than one interface by establishing many 

parallel subflow connections among communicating peers. 

Parallel connections open a path for increasing resource usage 

and redundancy, and to enhance overall throughput. At the 

same time, the socket implementation at the MPTCP transport 

layer is the same as for standard TCP. A comparison of the 

MPTCP and standard TCP structures is shown in Figure 10. 

Figure 10. Standard TCP compared to MPTCP 

When a single socket is created by the application to use 

standard TCP, a single TCP connection is created that uses 

only one IP address and one network interface. However, 

when MPTCP is enabled and a single socket is created by the 

application, MPTCP creates multiple subflows to make use of 

all available network addresses. The packet scheduler in 

MPTCP divides the segments, and each of these segments is 

transferred using subflows, which act as a standard TCP’s 

single path [9]. 

Figure 11 depicts an example of the use of MPTCP in 

mobile devices. The device benefits from the Wi-Fi 

connection and cellular network connection at the same time 

by having one sub-flow in each connection. 

Figure 11. A typical use of MPTCP protocol in mobile 

devices 

2.4 Maximum flow problem 

Finding the highest flow value from source (S) to 

destination (D) node is regarded as a Maximum flow problem. 

This concept is crucial for almost every network, including 

communication networks and transportation networks [20]. 

The earliest method to effectively solve this problem was 

proposed by Ford and Fulkerson [21], and was seen as the 

Ford-Fulkerson algorithm. Later on, many other 

methodologies and algorithms were proposed, like the one 

proposed by Edmonds and Karp, i.e., the Shortest 

Augmentation Path [22], but also Dinic’s method of Power 

Estimation [23], Karzanov’s algorithm of Preflow Push [24], 

Goldberg and Tarjan’s Push-Relabel Algorithm [25], and 

Goldberg and Rao’s methodology of Binary Blocking Flow 

[26], to name a few. 

3. RELATED WORKS

This section deals with related literature featuring both 

Software-Defined Network and Multipath TCP to boost data 

centers’ mass data transfer capability. Several studies made 

use of the MPTCP to improve the throughput of congestion 

management and control in data center networks. For instance, 

fine temporal granularity of congestion control and detection 

for the MPTCP have been proposed to reduce latency for small 

flows and higher throughput for large flows [27]. Similarly, A 

machine learning approach has been introduced to improve 

multipath congestion control by enabling adaptive 

management of congestion across heterogeneous networks. 

By leveraging reinforcement learning, this approach addresses 

challenges like bufferbloat and suboptimal bandwidth usage, 

achieving improvements in throughput [28]. In addition, Pang 

et al. designed a queue cache balance factor to estimate the 

value of a sub-flow congestion window [29]. They avoided 

throughput collapse, achieved the load balance of MPTCP data 

transfer, and improved network throughput. However, while 

these works enhanced MPTCP’s congestion control, they still 

depend on MPTCP’s core mechanisms that require kernel 

modifications, limiting their deployment practicality. 

Another line of research has used the MPTCP to enhance 

routing algorithms of a data center network. For instance, Fu 

et al. suggested a DQL (Deep Q-Learning) based AI strategy 

to produce the paths for optimal routing for data centers opting 

for SDN networks [30]. Moreover, Jung et al. proposed and 

developed distributed multiple path routing methods to reduce 

finish time while executing multiple jobs [31]. These studies 

highlight the benefits of integrating learning or distributed 

approaches, but do not explore SDN’s potential for dynamic 

rule generation based on global network views. 

MPTCP is used to improve the flow completion time of data 

center networks. For example, Jung et al. [31] and Liu et al. 

[32] presented a new approach to improve existing data center

TCP protocols by decreasing task completion time through

receiver-driven coordination. Cheng and Jia [33] suggested an

improved network-aware multi-pathing scheme in SDN

networks to reduce transmission time by taking heterogeneous

network bandwidths into account. Zhang et al. [34] focused on

how to provide deadline-sensitive services and achieve high

throughput in data center networks. The proposed scheme

minimizes average flow completion time by using the full

available capacity of the data center network. These studies

focused on latency and flow completion time, but did not
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target throughput maximization using SDN with standard 

TCP. 

In the literature, many researchers have used multi-pathing 

TCP to improve load balancing for data center networks. Park 

et al. [35] presented MaxPass, a novel adaptive load balancing 

system for data center networks, in which multiple paths are 

adaptively selected and dynamically changed based on the 

existing network load. An improvement of TCP-Path 

scalability was proposed by Alvarez-Horcajo et al. [36] to 

handle elephant flows for data center networks. While these 

works improved load balancing, they did not apply maximum 

flow algorithms within SDN to systematically exploit all 

available paths. 

AlShammari and Alenazi [37, 38] proposed to improve data 

center performance by using SDN and graph theoretics to 

make use of all available paths. Their results showed 

significant improvement against baseline schemes, such as 

round-robin and least-congested. Furthermore, their methods 

did not explicitly apply classical network flow algorithms for 

optimal throughput. 

While there has been considerable research on improving 

data center traffic using SDN and multipath routing, several 

important gaps remain. Many existing solutions, such as 

MPTCP, require kernel-level modifications, making them less 

practical for widespread deployment in real-world 

environments. Furthermore, there is a lack of solutions that 

effectively combine SDN programmability with classical flow 

algorithms, such as maximum flow, to optimize throughput 

without altering the transport layer protocols. Current 

approaches often focus on specific data center topologies, such 

as Fat-Tree, and do not evaluate performance across diverse 

architectures like DCell and BCube. Additionally, most 

existing systems do not dynamically adapt to real-time 

network conditions, such as fluctuating bandwidth, link 

failures, or congestion hotspots, limiting their ability to 

optimize traffic flows and ensure resiliency. Addressing these 

gaps is crucial for developing more flexible, scalable, and 

easily deployable solutions for data center networks. 

In contrast, our work introduces MaxFlowSDN, a novel 

system that couples SDN with classical maximum flow 

algorithms to compute and apply optimal multipath routing 

dynamically. This approach provides kernel-agnostic, high-

throughput data delivery across diverse topologies and adapts 

to current link conditions via SDN rule updates. Table 1 

summarizes how MaxFlowSDN addresses limitations found in 

existing methods. 

Table 1. Comparison of MaxFlowSDN with existing methods 

Aspect MPTCP & Variants 
SDN Load 

Balancing 

Graph-Theoretic 

SDN  
MaxFlowSDN (This Work) 

Transport layer changes 
Requires kernel 

modifications 
No No No (standard TCP) 

Use of classical flow 

algorithms 
No No 

Partial (graph 

heuristics) 
Yes (maximum flow algorithms) 

Adaptivity to bandwidth 

changes 

Limited (congestion control 

only) 

Dynamic paths based 

on load 

Static or semi-

dynamic 

Dynamic via SDN + max flow 

recomputation 

Topology diversity 

evaluated 

Primarily Fat-Tree, dual-

homed BCube 
Fat-Tree Limited Fat-Tree, DCell, BCube 

Deployment practicality 
Reduced (due to kernel 

dependency) 
Practical Practical 

Highly practical (no kernel 

changes) 

4. MAXFLOWSDN SYSTEM

This section introduces a system that combines a Software-

Defined Network and Maximum Flow Algorithm to enhance 

the flow between two servers in a data center. 

4.1 MaxFlowSDN components 

The MaxFlowSDN system has several components, as 

shown in Figure 12. These components include Topology 

discovery, Maximum Flow Algorithm, Residual Link 

Capacities, and Rule Generators. 

The Topology discovery component is responsible for 

creating a graph that consists of nodes, i.e., SDN switches, and 

links that connect these switches. The Maximum Flow 

Algorithm component is responsible for determining paths 

that generate the maximum flow between two nodes given 

currently available link capacities. The Residual Link 

Capacities component monitors the topology links and 

identifies currently usable and available bandwidth on every 

link. The Rule Generators component is responsible for 

determining the paths. 

Multiple paths exist between sender and receiver in a 

standard computer network. In a standard TCP/IP protocol, a 

single path is used between receiver and sender. Yet, this 

method deteriorates the performance due to a bottleneck link 

that introduces extra constraint on top of end-to-end 

throughput. To handle this problem, several researchers put 

forward methodologies revolving around multiple-path 

solutions that take advantage of alternate paths to increase end-

to-end throughput. Multipath solutions depend on the k-

shortest path methodology to deliver alternative paths, which 

yield an inconsistent path without considering the highest flow 

among senders and receivers. 

Figure 12. MaxFlowSDN system 
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The proposed scheme employs the Maximum Flow 

algorithm among senders and receivers to pick out 

intermediary switches where flows are split. Once 

intermediary switches are identified, TCP port number-based 

rules are pushed using OpenFlow, so that the flow can be split 

accordingly. Traditionally, forwarding and routing are 

accomplished using the destination IP addresses. However, for 

the multipath method, we use both the addresses and port 

numbers. Finally, senders generate many TCP links with port 

numbers used in OpenFlow. A typical topology of the SDN is 

depicted in Figure 12, where the MaxFlowSDN system is 

implemented. When data is sent to another host, the SDN 

controller utilizes the Maximum Flow Algorithm to find 

intermediate switches and forwards information to the sending 

host about the number of TCP connections it must make to 

reach the maximum flow to the destination host.  

Table 2. Maximum flow solution for the example network 

[39] 

Link Flow Value 

(H1, SW1) 5 

(H1, SW2) 2 

(SW1, SW2) 2 

(SW1, H2) 3 

(SW2, H2) 4 

Figure 13. Example topology 

Figure 13 shows the graphical representation of the network 

example. Because the Maximum Flow Algorithm is 

implemented, source and destination are indicated by H1 and 

H2, respectively. The solution for the example network is 

explained in Table 2. The flow-in for SW1 is observed to be 5 

when using the (H1, SW1) link, whereas flow-out is split 

among the (SW1, SW2) links with flow value of 2 and (SW1, 

H2) link with a flow value of 3. Two TCP connections, i.e., 

TCP-Conn-1 and TCP-Conn-2, are made from H1 to SW1, 

since a split at SW1 into two flows occurred as shown in 

Figure 13. For SW1, two OpenFlow protocols are pushed to 

forward packets from H1 to SW2, and H2 according to TCP 

port numbers. Additionally, the value of 4 is noted for flow-in, 

for SW2, using two links, i.e., (H1, SW2) and (SW1, SW2), 

whereas the flow-out is noted to be 4 for the (SW2, H2) link. 

For SW2, OpenFlow rules are added to ensure the forwarding 

of incoming packets to SW2 and H2 from H1, according to 

TCP port numbers. As observed, data flow from the (H1, SW2) 

link is not fragmented; instead, one TCP connection is needed 

for the specific link, as noted by TCP-Conn-3. Effectively, this 

example warrants the use of three connections. 

4.2 Overview of the MaxFlowSDN 

This section explains the application of the MaxFlowSDN 

algorithm in the suggested system. The algorithm aims to 

determine routes between source and destination that provide 

the optimal maximum flow for TCP in a data center topology. 

The pseudocode is demonstrated in Algorithm 1. 

Algorithm 1. MaxFlow Algorithm. 

Functions: 

MaxFlow(𝐺, 𝑠𝑟𝑐, 𝑑𝑠𝑡): computes the maximum 

flow between source 𝑠𝑟𝑐 and destination 𝑑𝑠𝑡 for a 

graph 𝐺. SplitFlows2Paths(𝐹): split flows 𝐹 into 

several flows. 

1 𝐺: an input graph. 

2 𝑠𝑟𝑐: source node. 

3 𝑑𝑠𝑡: destination node. 

4 𝑆𝑝𝑙𝑖𝑡𝑡𝑒𝑑𝑃aths: splits paths 

5 flows = MaxFlow(𝐺, 𝑠𝑟𝑐, 𝑑𝑠𝑡) 
6 SplittedPaths = [] 

7 
for flow in flows do SplittedPath = 

SplitFlows2Paths(𝑓𝑙𝑜𝑤) 

8 SplittedPaths.append(SplittedPath) 

9 return SplittedPaths 

Two functions make up the algorithm: MaxFlow(𝐺, 𝑠𝑟𝑐, 

𝑑𝑠𝑡) and SplitFlows2Paths(𝐹). The MaxFlow function 

computes the maximum flow between source 𝑠𝑟𝑐 and 

destination 𝑑𝑠𝑡 for a graph 𝐺. The SplitFlows2Paths(𝐹) splits 

flows 𝐹 into several paths.  

Consider a DCN topology as shown in Figure 13 to illustrate 

the work of the MaxFlowSDN algorithm. Link weights 

represent the available bandwidth. In this topology, host H1 

sends traffic to H2. The max flow function returns flow values 

for the given topology as follows: ["H1->SW1":5, 

"H1->SW2":2,"SW1->H2":3,"SW1->SW2":2, 

"SW2->H2":4]. The flow values list is passed to 

SplitFlows2Paths(𝐹), which processes each flow to generate 

the list of paths. In this example, the list of paths is 

[(H1,SW1,H2), (H1,SW1,SW2,H2), (H1,SW2,H2)]. 

Algorithm 2. SDN Rule Generator Algorithm. 

Functions: 

FindSwitches(𝑝𝑎𝑡h): Identifies switches along a 

given path. 

DetermineInOut(𝑠𝑤, 𝑝𝑎𝑡h): Determines optimal 

input/output ports on switch 'sw'. 

GenerateRule(𝑠𝑤, 𝑖𝑛, 𝑜𝑢𝑡): Creates the SDN rule 

for the switch 𝑠𝑤, for ports 𝑖𝑛 and 𝑜𝑢𝑡 

1 

Input:   

𝑝𝑎𝑡h𝑠: split the paths between the source node (𝑠𝑟𝑐) 

and the destination node (𝑑𝑠𝑡). 

2 
Output:  

SDN Rules for multipath routing. 

3 SDNRules = [] 

4 for path in paths do 

5      for 𝑠𝑤 in findSwitches(path) 

6   in, out = determineInOut(𝑠𝑤, 𝑝𝑎𝑡ℎ) 

7 
  SDNRule = generateRule(𝑠𝑤,𝑠𝑟𝑐,𝑑𝑠𝑡, 𝑖𝑛 , 

𝑜𝑢𝑡) S 

8 SDNRules.append(sw,SDNRule) 

9 return SplittedPaths 
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After finding the paths, MaxFlowSDN generates the SDN 

Rules for every switch in all paths. The pseudo-code for 

generating the SDN rule algorithm is presented in Algorithm 

2. It consists of three functions: FindSwitches, 

DetermineInOut, and GenerateRule. All paths are first passed 

to the FindSwitches function, which finds the switches for a 

given path. 

Every switch in the path is then passed to the 

DetermineInOut function to determine input and output ports 

for switch sw, given the path. The last step is the GenerateRule 

function that creates an SDN code for a switch sw, based on 

source src and destination dst nodes. In addition to in and out 

ports, every switch in all paths is given to the GenerateRule 

function in order to construct all SDN rules. 

5. EVALUATION

This section presents our experimental setup and its 

parameters, and presents the baseline evaluation methods of 

MaxFlowSDN. 

5.1 Experimental setup and parameters 

This section presents our experiment and its parameters. We 

used Mininet 2.3.0d4 emulation to evaluate the MaxFlowSDN 

system. The host device has Ubuntu 16.04 as operating system, 

with a six-core 2.2 GHz processor and 16 GB of RAM. In the 

given topologies, Mininet connects virtual Linux hosts 

together using OpenvSwitch switches. The switches were 

configured to use the OpenFlow 1.3 protocol, and the control 

logic was implemented using the Ryu 4.32 controller 

framework. iperf was employed to generate data traffic 

between destination and source hosts. Five runs were 

performed in each evaluation test, with a duration of 30 

seconds of data-flow for each run. The throughput sampling-

rate was noted as 1 sample per second. Table 3 shows all 

evaluation parameters. 

Table 3. Default emulation parameters 

Parameter Values 

Emulator Mininet 2.3.0d4 

Memory 16GB 

Operating System Ubuntu–16.04 

Sampling-Rate 1 sample per sec 

CPU six-core 2.2 GHz 

Number of Runs Five for each method 

TCP Congestion CUBIC 

Virtual Switches OpenvSwitch 2.5.5 

Experiment Duration 30 seconds 

In a previous work [39], we evaluated multiple TCP 

congestion control variants to define the most suitable one for 

the experiments. Based on evaluation results, we chose Cubic. 

Experimental data center topologies are: Fat-Tree, DCell, and 

BCube. The Fat-Tree topology used in the evaluation is shown 

in Figure 14. 

The red highlighted path shows the shortest path from 

source H1 to destination H2. The link capacities were 

manually selected due to two reasons. First, the Mininet 

virtualized environment imposed computational limitations, 

making gigabit-level capacities infeasible. Second, the 

capacities were configured to highlight disjoint paths between 

the source and destination nodes. Table 4 shows the link 

capacities used for the Fat-Tree topology, which were 

similarly applied to other topologies for consistency in 

evaluation. The DCell topology used in the evaluation is 

shown in Figure 15. 

Figure 14. Fat-Tree test topology 

Figure 15. DCell test topology 

Table 4. Fat-Tree test topology links bandwidth 

Link Type Link: Bandwidth 

Core to 

Aggregation 

links 

s91 - s1 link: 10 Mbpss91 - s3 link: 10 Mbpss91 

- s5 link: 10 Mbpss91 - s7 link: 10 Mbpss92 - s1

link: 10 Mbpss92 - s3 link: 10 Mbpss92 - s5

link: 10 Mbpss92 - s7 link: 10 Mbpss93 - s3

link: 10 Mbpss93 - s4 link: 10 Mbpss93 - s6

link: 10 Mbpss93 - s8 link: 10 Mbpss94 - s2

link: 10 Mbpss94 - s4 link: 10 Mbpss94 - s6

link: 10 Mbpss94 - s8 link: 10 Mbps 

Aggregation 

to Access 

links 

s1 - s9 link: 7 Mbpss1 - s10 link: 5 Mbpss2 - s9 

link: 7 Mbpss2 - s10 link: 5 Mbpss3 - s11 link: 

5 Mbpss3 - s12 link: 5 Mbpss4 - s11 link: 5 

Mbpss4 - s12 link: 5 Mbpss5 - s13 link: 5 

Mbpss5 - s14 link: 5 Mbpss6 - s13 link: 5 

Mbpss6 - s14 link: 5 Mbpss7 - s15 link: 7 

Mbpss7 - s16 link: 5 Mbpss8 - s15 link: 7 

Mbpss8 - s16 link: 5 Mbps 

Access to 

Hosts links 
s9 - h1 link: 13 Mbpss15 - h2 link: 13 Mbps 

The red highlighted path shows the shortest-path from H1 

to H2. Bandwidth details of the links are shown in Table 5. 

The BCube topology used in the evaluation is shown in Figure 

16. 
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The red highlighted path shows the shortest-path from H1 

to H2. Bandwidth details of the links are shown in Table 6. 

Figure 16. BCube test topology 

Table 5. DCell test topology links bandwidth 

Link 

Type 
Link: Bandwith 

Switch-to-

host links 

DCs0 - h0.1(h1) link: 10 MbpsDCs0 - h0.2 link: 10 

MbpsDCs0 - h0.3 link: 10 MbpsDCs0 - h0.4 link: 

10 MbpsDCs1 - h1.1 link: 20 MbpsDCs1 - h1.2 

link: 10 MbpsDCs1 - h1.3 link: 10 MbpsDCs1 - 

h1.4 link: 10 MbpsDCs2 - h2.1 link: 10 MbpsDCs2 

- h2.2 link: 10 MbpsDCs2 - h2.3 link: 10

MbpsDCs2 - h2.4 link: 10 MbpsDCs3 - h3.1 link: 

10 MbpsDCs3 - h3.2 link: 10 MbpsDCs3 - h3.3 

link: 10 MbpsDCs3 - h3.4(h2) link: 20 Mbps 

Between-

cells links 

h0.1(h1) - h1.1 link: 20 Mbpsh0.2 - h1.4 link: 15 

Mbpsh0.3 - h3.1 link: 15 Mbpsh0.4 - h4.1 link: 15 

Mbpsh1.2 - h2.2 link: 15 Mbpsh1.3 - h3.2 link: 15 

Mbpsh1.4 - h4.2 link: 15 Mbpsh2.3 - h3.3 link: 15 

Mbpsh2.4 - h4.3 link: 15 Mbpsh3.4 (h2) - h4.4 link: 

15 Mbps 

Table 6. BCube test topology links bandwidth 

Link 

Type 
Link: Bandwidth 

Level 1 

links to 

servers 

s80 - s1 link: 10 Mbpss80 - s2 link: 10 Mbpss80 - s3 

link: 10 Mbpss80 - s4 link: 10 Mbpss81 - h1 link: 10 

Mbpss81 - s5 link: 10 Mbpss81 - s6 link: 10 

Mbpss81 - s7 link: 10 Mbpss82 - s8 link: 10 

Mbpss82 - s9 link: 10 Mbpss82 - s10 link: 10 

Mbpss82 - s11 link: 10 Mbpss83 - s12 link: 10 

Mbpss83 - s13 link: 10 Mbpss83 - h2 link: 10 

Mbpss83 - s14 link: 10 Mbps 

Servers 

to level 2 

links 

s90 - s1 link: 10 Mbpss90 - h1 link: 20 Mbpss90 - s8 

link: 10 Mbpss90 - s12 link: 10 Mbpss91 - s2 link: 

10 Mbpss91 - s5 link: 10 Mbpss91 - s9 link: 10 

Mbpss91 - s13 link: 10 Mbpss92 - s3 link: 10 

Mbpss92 - s6 link: 10 Mbpss92 - s10 link: 10 

Mbpss92 - h2 link: 20 Mbpss93 - s4 link: 10 

Mbpss93 - s7 link: 10 Mbpss93 - s11 link: 10 

Mbpss93 - s14 link: 10 Mbps 

5.2 Performance metric and baseline methods 

The performance of MaxFlowSDN is matched with three 

other approaches, considering all tested data center topologies. 

For each method, we had five runs with data produced via iperf 

sent between H1 and H2 hosts. The number of runs is 

sufficient because data variance is low, as will be observed in 

results later. The methods which are compared here are given 

below: 

1. StandardTCP: Only one TCP connection is used to

transfer application data, without considering the number of 

available interfaces.  

2. ParallelTCP: To transfer application data, one TCP

connection is created for each available interface. These 

connections exist and work in parallel.  

3. MPTCP: MPTCP connection is used to transfer

application data. For all available interfaces, MPTCP 

internally generates multiple sub-TCP connections for 

everyone.  

4. MaxFlowSDN: To transfer application data, multiple

TCP connections are created for each available interface. 

These connections exist and work in parallel. The MaxFlow 

algorithm’s flow value is used to determine the number of 

connections. 

For each method, the throughput from H1 to H2 was 

observed. 

6. RESULTS AND DISCUSSION

This section shows the findings of three types of data center 

topologies, as shown in subsection 5.1. 

6.1 Fat-Tree topology 

In the Fat-Tree test topology as shown in Figure 14, we 

compared the performance of MaxFlowTCP against three 

methods: StandardTCP, ParallelTCP, and MPTCP. Figure 17 

shows the average throughput from H1 to H2 for all methods 

in the Fat-Tree topology. Table 7 shows the full data and 

throughput results obtained for the Fat-Tree topology. In the 

Fat-Tree test topology, we compared the MaxFlowTCP 

performance against three methods: StandardTCP, 

ParallelTCP, and MPTCP. Figure 17 shows the average 

throughput from H1 to H2 for all methods in the Fat-Tree 

topology. Table 7 shows the full data and throughput results 

obtained for the Fat-Tree topology. 

Figure 17. Fat-Tree average throughput 

In the Fat-Tree topology experiment, only one network 

interface was available in H1 source node and H2 destination 

node. Consequently, the Parallel TCP and StandardTCP 

performance were identical, since only one TCP connection 

was created for both methods. Both obtained an average 

throughput of 6.5 Mbps after the first two seconds of the 

experiment. MPTCP performance was similar to StandardTCP 

and ParallelTCP because it also could not benefit from its main 

advantage of having multiple internal paths created for 
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different interfaces. MaxFlowSDN outperformed the three 

methods with an average throughput around 12 Mbps, because 

it created two connections to reach the maximum flow possible 

from source to destination. Figure 18 shows the two 

connection paths created by the MaxFlowSDN algorithm. 

Results show that MaxFlowSDN had approximately 80% 

more throughput compared to ParallelTCP, StandardTCP and 

MPTCP. 

Table 7. Throughput in the Fat-Tree topology 

Methods 

Average Standard Deviation 

Total 

Data 
Throughput 

Total 

Data 
Throughput 

MaxFlowSDN 
410.86 

Mb 
11.76 Mbps 5.55 0.17 

MPTCP 
216.60 

Mb 
6.38 Mbps 1.17 0.04 

ParallelTCP 
214.21 

Mb 
6.49 Mbps 5.60 0.02 

StandardTCP 
214.21 

Mb 
6.49 Mbps 5.60 0.02 

Figure 18. MaxFlowSDN connections in Fat-Tree test 

6.2 DCell topology 

In the DCell test topology, we compared MaxFlowSDN 

performance against the three methods: StandardTCP, 

ParallelTCP and MPTCP. Figure 19 shows the average 

throughput from H1 to H2 for all methods in the DCell 

topology. Table 8 explains the full data and throughput results 

obtained for DCell topology. 

Figure 19. DCell average throughputTopology 

In the DCell topology experiment, two network interfaces 

were available in the H1 source node and H2 destination node. 

In StandardTCP method, one TCP connection was created 

between source and destination. The average throughput for 

StandardTCP after two seconds of the experiment was 9.33 

Mbps. The average throughput for ParallelTCP and MPTCP 

was around 18 Mbps. They obtained similar results because 

they both have two connections going from the two interfaces 

available at the source. MaxFlowSDN outperformed all the 

three methods as the MaxFlow algorithm used in 

MaxFlowSDN creates three connections to use the maximum 

available bandwidth. Figure 20 shows the three connection 

paths created by the MaxFlowSDN algorithm. The average 

throughput reached 27 Mbps after two seconds of the 

experiment. Results showed that MaxFlowSDN had around 

185% more throughput when compared to StandardTCP, and 

47% more compared to ParallelTCP and MPTCP. 

Table 8. Throughput in DCell topology 

Methods 

Average Standard Deviation 

Total 

Data 
Throughput 

Total 

Data 
Throughput 

MaxFlowSDN 
937.58 

Mb 
26.58 Mbps 6.12 0.16 

MPTCP 
582.09 

Mb 
17.94 Mbps 11.62 0.35 

ParallelTCP 
647.43 

Mb 
18.36 Mbps 1.38 0.05 

StandardTCP 
329.03 

Mb 
9.33 Mbps 0.81 0.03 

Figure 20. MaxFlowSDN connections in the DCell 

6.3 BCube topology 

In the BCube test topology, we compared MaxFlowSDN 

performance against three methods: StandardTCP, 

ParallelTCP, and MPTCP. Figure 21 shows the average 

throughput from H1 to H2 for all methods in the BCube 

topology. Table 9 shows the results of total data and 

throughput in BCube topology. 

In the BCube topology experiment, two network interfaces 

were available in H1 source node and H2 destination node. In 

the StandardTCP method, one TCP connection was created 

between source and destination. The average throughput for 

StandardTCP after two seconds of the experiment was 9.35 

Mbps. The average throughput for parallel and MPTCP was 

around 18 Mbps. Their results were similar as they have two 

connections from both interfaces available. MaxFlowSDN 

outperformed the three methods because the algorithm used in 

MaxFlowSDN creates three connections to make use of the 
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maximum available bandwidth. Figure 22 shows the three 

connection paths created by MaxFlowSDN. The average 

throughput yielded 27.32 Mbps after two seconds of the 

experiment. Results showed that MaxFlowSDN had around 

191% more throughput compared to StandardTCP, and 48% 

more compared to ParallelTCP and MPTCP. 

Figure 21. BCube average throughput 

Table 9. Throughput in BCube topology 

Methods 

Average Standard Deviation 

Total 

Data 
Throughput 

Total 

Data 
Throughput 

MaxFlowSDN 
926.39 

Mb 
27.32 Mbps 14.01 0.25 

MPTCP 
588.72 

Mb 
18.21 Mbps 8.01 0.30 

ParallelTCP 
644.70 

Mb 
18.54 Mbps 6.40 0.03 

StandardTCP 
326.96 

Mb 
9.35 Mbps 1.13 0.03 

Figure 22. MaxFlowSDN connections in Bcube 

The evaluation results demonstrate that MaxFlowSDN 

outperforms existing methods across Fat-Tree, DCell, and 

BCube topologies. The performance advantage of 

MaxFlowSDN stems from its ability to determine optimal 

paths using the Maximum Flow algorithm coupled with SDN-

based network control. In the Fat-Tree topology, 

MaxFlowSDN achieved 80% higher throughput than 

StandardTCP, ParallelTCP, and MPTCP by creating two 

optimal connections between source and destination nodes. In 

DCell and BCube topologies, MaxFlowSDN showed 

approximately 190% higher throughput compared to 

StandardTCP and almost 50% improvement over ParallelTCP 

and MPTCP by effectively utilizing three connection paths. 

Unlike MPTCP, which requires kernel modifications, 

MaxFlowSDN achieves these improvements using 

conventional TCP implementation while leveraging SDN 

capabilities for dynamic path configuration and flow 

management through OpenFlow rules. These results establish 

MaxFlowSDN as an effective solution for optimizing intra-

datacenter traffic routing. 

7. CONCLUSIONS AND FUTURE WORK

A data center is an essential asset for any organization with 

vital systems that perform critical daily operations. Data center 

networks need to process and compute bulk data using the 

most practical and efficient method possible. The use of SDNs 

in data centers has allowed them to improve their performance 

in several respects, since SDN makes network configurations 

programmable and dynamic. This has yielded improved 

flexibility, better management, and more scalable schema. 

In this paper, we proposed a new methodology named 

MaxFlowSDN, which uses SDN coupled with conventional 

TCP to deliver the highest possible data flow throughput in 

data centers. Our methodology achieved this maximum 

throughput by generating multiple paths between destination-

source pairs. The proposed methodology (MaxFlowSDN) 

yielded significant improvement when compared with three 

other methodologies, i.e., StandardTCP, ParallelTCP, and 

MPTCP. The comparison was made using test topologies 

commonly employed in data centers. The proposed 

methodology outperformd others thanks to its ability to use the 

maximum available bandwidth via the Maximum Flow 

Algorithm, which permits the maximum possible throughput. 

In the Fat-Tree data center topology, MaxFlowSDN had 80% 

higher throughput than MPTCP, ParallelTCP, and 

StandardTCP. In DCell and BCube topologies, evaluation 

results demonstrated that MaxFlowSDN provides around 

190% higher throughput than StandardTCP, and almost 50% 

improvement compared to ParallelTCP and MPTCP. 

However, MaxFlowSDN has limitations. It has been tested 

on a limited number of topologies, and its scalability in larger, 

real-world data centers needs further evaluation. While the 

system is optimized for throughput, it does not address 

latency-sensitive traffic, and it currently relies on a single SDN 

controller, which may become a bottleneck. Additionally, it 

lacks mechanisms for real-time fault detection and rerouting. 

Future work will focus on addressing these limitations by 

developing a dynamic, adaptive version of MaxFlowSDN that 

handles real-time network changes, uses a distributed SDN 

controller architecture for better scalability and fault tolerance, 

and incorporates latency-awareness, so that optimizing path 

selection not just for throughput but also for minimizing end-

to-end delays. This would be beneficial for latency-sensitive 

applications such as online gaming, data exchanges between 

autonomous vehicles, or telemedicine, where even slight 

delays can significantly impact user experience. We also plan 

to evaluate the system in larger, real-world environments, such 

as GENI (Global Environment for Network Innovations), to 

further refine its capabilities. 
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