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Skin cancers are critical medical conditions that can only be diagnosed early and well in 

order to enhance patient outcomes. Within the limitations of the present study, we provide 

an optimized deep learning model that achieves 99.70% accuracy in classifying the publicly 

accessible Kaggle Skin Cancer: Malignant vs. Benign dataset, which contains a balanced 

number of 3,600 dermoscopic images in both the training and test sets. The pre-processing 

of images involved resizing, denoising, and color normalization to ensure high-quality 

inputs. To optimize hyperparameters such as the learning rate and batch size, we utilized 

Salp Swarm Optimization (SSO) in a set of Convolutional Neural Network (CNN) models, 

including VGG19, DenseNet201, ResNet50, and MobileNetV2. Grad-CAM (Gradient-

weighted Class Activation Mapping) was employed to increase image interpretability, 

visualizing the parts of the image that contribute most to the model's prediction. 

MobileNetV2 using SSO optimisation performed best among all models, achieving a 94 

percent performance, with a malignant lesion precision of 0.93 and recall of 0.96, which 

was 13 percent more accurate than the standard CNN baselines. These outcomes suggest 

that incorporating characteristics such as bio-inspired optimization and interface 

interpretability into lightweight CNNs can significantly enhance the diagnostic accuracy 

and clinical feasibility of automated skin disease classification systems. 
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1. INTRODUCTION

The uncontrolled proliferation of aberrant skin cells is the 

cause of skin cancer, a major global public health concern. 

Although it is a complex illness with many facets, exposure to 

ultraviolet (UV) radiation from artificial sources, such as 

tanning beds or sunshine, is the most well-known contributor 

to the formation of malignant tumors. Biological pathways of 

skin carcinogenesis involve not only direct DNA damage but 

also immunosuppression at the local level, which is critical for 

tumor development and progression after UV radiation. 

Recent global estimates suggest that skin cancer represents a 

substantial portion of all malignancies, with basal cell 

carcinoma (BCC) and squamous cell carcinoma (SCC) being 

the most common types [1]. The cost of these cancers 

represents an important expense for health systems, and 

therefore, early detection accompanied by adequate diagnosis 

ameliorates treatment outcomes while reducing cancer-related 

mortalities. Cancer is a process of unrestrained tissue division, 

in part due to one or more hereditary transformations affecting 

normal cellular control [2]. This is not only very fast and with 

high prevalence worldwide, but it is also seen as a threat to 

skin cancer. It is characterized by neoplastic skin growth, 

leading to various types of lesions that can be benign or 

malignant [3]. The incidence rate of melanoma, the deadliest 

form of skin cancer (and which is a significant cause of death 

from skin disease in most developed countries), continues to 

rise faster than any other type and creates an urgent paradigm 

for public health strategies designed specifically for 

prevention as well as early detection. BCC [4], SCC [5], 

Merkel cell carcinoma [6], dermatofibroma [7], vascular 

lesion [8], and benign keratosis [9]. This underscores the 

importance of recognizing not only their unique phenotype but 

also the risk factors for different types, in order to develop 

targeted screening and intervention algorithms. 

Epidermis, the outer layer of skin, accounts for most types 

(BCC and SCC) of Skin Cancer cases. These cancer types are 

most commonly caused by long-term sun exposure and usually 

appear on skin that is often exposed to sunlight, including the 

head, neck, face, arms, and hands. There is a wide 

geographical variation in the incidence of skin cancer, being 

higher where there are greater levels of sun exposure and 

among lighter-skinned populations. Although BCC is often 

restricted to a single organ and seldom invades other organs or 

lymph nodes, SCC is more aggressive and has the potential to 

intravasate nearby tissues. This highlights the importance of a 

timely diagnosis to prevent further damage. As a result, the 

term "keratinocyte cancers" is sometimes used to describe 
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both BCC and SCC, as they arise from the most common type 

of skin cell, the keratinocyte [1]. Several non-invasive lesions, 

such as AK and Intraepithelial Carcinoma (IC), can act as 

precursors to SCC, showing the ability to progress if not 

treated [10]. This evolution emphasizes the necessity of 

routine skin checks and knowledge of early signs in at-risk 

patients. 

Skin cancers are a group of diseases resulting from the 

uncontrolled proliferation of cells, of which UV radiation is 

one major cause [2]. Although melanomas account for a small 

percentage of skin cancer diagnoses, they are responsible for 

the majority of deaths. Visual examination has been developed 

since the 1970s to detect skin cancer, such as dermoscopy 

evaluation and biopsies for determining malignant from 

benign lesions [11]. Technological advances, such as 

automated image analysis and AI, have increasingly enhanced 

diagnostic accuracy while reducing the burden on healthcare 

providers. An improvement in the diagnosis of skin pathology 

by dermoscopy may have contributed to a rise in detection 

rates, making it even more important that medical practitioners 

are skilled at recognizing and managing cutaneous 

presentations effectively [12]. In conclusion, implementing a 

comprehensive strategy focused on skin cancer prevention, 

early detection, and treatment will be necessary to address this 

substantial public health issue. 

 

1.1 Related work 

 

This paper [13] examines the use of deep learning methods 

to develop a classifier for skin cancer, highlighting the 

importance of early detection. To perform this task, the study 

employs three different models: RegNet x006, EfficientNet v2 

B0, and InceptionResNet v2, combined with a pre-processing 

technique that improves image quality by excluding noise, 

such as hairs or black pixels, in dermoscopic images. A total 

of four tests were carried out in order to evaluate the 

performance of the model on both raw and pre-processed 

photographs, and the final accuracy was determined to be 

0.929. The results showed that pre-processing, which focuses 

on the region of the lesion, considerably increased the capacity 

to classify skin cancer in a manner that was both more accurate 

and sensitive.  

This article [14] makes an effort to make use of deep 

learning techniques for the identification of melanoma, which 

is a kind of skin cancer that is extremely fatal. It also highlights 

the critical significance of making an accurate diagnosis as 

early as possible from the beginning. Due to the fact that 

conventional diagnostic procedures are time-consuming and 

frequently need specialized knowledge in biopsy analysis, the 

study focuses on how artificial intelligence might assist in 

making this process more efficient. A collection of 7,146 

cutaneous pictures was used to assess various Convolutional 

Neural Network (CNN) architectures, including DenseNet201, 

MobileNetV2, ResNet50V2, ResNet152V2, Xception, 

VGG16, and VGG19. To confirm the method's performance 

while comparing PDFs, we ran trials on graphics processing 

units (GPUs) in training plots. GoogleNet was the most 

accurate of all the tested models, achieving a training set 

accuracy of 74.91% and a test rate of up to 76.08%. The study 

demonstrates how deep-learning models may be pivotal in 

improving melanoma diagnosis and assisting the clinician in 

making more accurate clinical decisions, further emphasizing 

DL's evolving role in healthcare. 

Deep learning, particularly Convolutional Neural Networks 

(CNNs), was employed to classify skin cancer as either benign 

or malignant in this study [15]. The ISIC2018 dataset, 

comprising 3,533 skin lesion images, is utilized to enhance 

image quality using ESRGAN in the pre-processing step. CNN 

was compared with other transfer learning models, such as 

ResNet50, InceptionV3, and InceptionResnet, which achieved 

83.2%, 83.7%, 85.8% and 84% accuracy rates. The application 

of ESRGAN is another excellent case for enhancing quality 

and classification. The study recommends future validation on 

larger datasets and the incorporation of other models, such as 

DenseNet, VGG, or AlexNet, to enhance performance. 

A deep learning algorithm is used in another study [16] to 

categorize clinical photos of 12 different skin conditions, 

including melanomas, squamous cell carcinoma, and basal cell 

carcinoma. The CNN model Microsoft ResNet-152 was 

optimized and refined using 19,398 photos from the three 

datasets. Asan, MED-NODE, and atlas. The model was tested 

using independent Asan, Hallym, and Edinburgh data sets. The 

diagnostic accuracy of the algorithm was high, with area under 

the curve (AUC) values of 0.96 on the Asan dataset for basal 

cell carcinoma and melanoma, respectively. In contrast, the 

AUC values in Edinburgh were 0.90 and 0.88 for basal cell 

carcinoma and melanoma, respectively [13]. Using the Hallym 

dataset, basal cell carcinoma diagnosis sensitivity was 87.1%. 

Compared to 16 dermatologists, the model was validated using 

480 images from Asan and Edinburgh datasets. Additional 

images would increase image diversity, covering a broader 

spectrum of ages and ethnicities. 

The development of a deep learning model for 12 types of 

skin diseases, including malignant melanoma and basal cell 

carcinoma, is described in this paper [17]. This model uses the 

ResNet-152 architecture to distinguish among these different 

kinds of illness. The 3797 images were augmented 29 times by 

random position, scale transformation, and lightness 

adjustment. This enabled the project's robustness to be 

substantially improved. The network was then tested on 956 

images, and a high accuracy of diagnosis was obtained: area 

under curve (AUC) 0.96 for melanoma, area under curve 

(AUC) 0.91 for basal cell carcinoma. With 14.1 million people 

around the world this year and more than 8.2 million people 

dying annually from skin cancer, deep learning has the 

potential not only to improve the accuracy of clinical judgment 

in detecting a lesion but also to make sure we do so as early as 

possible. 

This paper [18] aims to enhance the clinical classification 

of skin conditions by introducing a unique deep-learning 

framework. This data set includes 13,603 dermoscopic images 

annotated by dermatologists and covers 14 disorders, 

including melanocytic nevus, psoriasis, and basal cell 

carcinoma. EfficientNet-b4 is the model's backbone, making it 

useful for the healthcare industry. The model was fine-tuned 

using the real-world clinical dataset, and auxiliary classifiers 

were incorporated to improve its performance. Visual saliency 

maps and t-SNE were used to study the model-learned image 

features. The framework achieves an accuracy (0.948), 

sensitivity (0.934), and specificity (0.950), all higher than that 

of widely used CNN models in an area under the curve (AUC) 

of 0.985. In a multiclass task against a panel of 280 board-

certified dermatologists, this model performed comparably to 

them. This means that AI could potentially diagnose a wide 

range of skin diseases with great accuracy, engaging in both 

AI as research and real-world clinical care. 

Using the Dermatology HAM10000 dataset, this survey 

[19] further explores the application of CNNs to classify seven 
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types of malignant skin tumors, including melanoma, basal 

cell carcinoma, and dermatofibroma. Although CNN networks 

are highly successful in medical image analysis, selecting 

appropriate hyperparameters is challenging. Training models 

in several iterations is often necessary before performance can 

be optimized. To address this problem, the authors employed 

random search optimization to further optimize the 

hyperparameters of their CNN model, including the number of 

filters, kernel size, and learning rate. An initial base CNN 

model obtained 73.34% accuracy when developed without 

optimization. After random search optimization was applied, 

the accuracy increased to 77.17%, demonstrating the 

importance of such optimization. The model was deployed 

using Keras and TensorFlow within the Google Colab 

environment, pointing the way to improved skin cancer 

detection by refining hyperparameters in CNN networks. 

This paper [20] introduces an automated framework for 

melanoma detection that employs deep learning technology, 

with a particular emphasis on utilizing pre-trained CNNs to 

extract features from dermoscopic images. The study arises 

from the branching microscopic method and has been 

extended to cover dermoscopy. Further challenges in 

melanoma classification include limited training data, 

similarities between classes, and variability within skin lesions. 

The utility of deep features derived from eight leading 

contemporary CNN architectures is tested against four 

benchmark datasets (PH, ISIC 2016, ISIC 2017, HAM10000). 

Results show that the DenseNet-121 combined with a 

multilayer perceptron (MLP) performed best, achieving an 

accuracy rate of 98.33% on the PH dataset and over 80% on 

three other sizable datasets for melanocytic lesions. It thus 

outperformed other models as well as existing work. 

This study [21] examines the application of CNNs based on 

deep learning for the early and precise diagnosis of psoriasis 

and eczema, two common skin conditions. Acknowledging the 

substantial influence of prompt treatment on patient 

recuperation, the study employs 10-fold cross-validation to 

assess five cutting-edge CNN architectures. When optimized 

with the Adam optimizer, the Inception ResNet v2 architecture 

achieved a remarkable validation accuracy of 97.1%, 

demonstrating the model's effectiveness in diagnosing skin 

conditions. The research also describes two valuable 

applications for the developed model: a web server-oriented 

technique for real-time skin disease categorization and a 

smartphone-oriented strategy that incorporates CNN models 

into a mobile application. These results demonstrate how deep 

learning technology can improve dermatology diagnostic 

accessibility and accuracy. 

In an effort to improve the effectiveness and precision of 

skin cancer diagnosis, this work [22] presents a fully 

automated method for multiclass skin lesion segmentation and 

classification. To select the most discriminant characteristics, 

the methodology employs an improved moth flame 

optimization (IMFO) algorithm, a novel Deep Saliency 

Segmentation method utilizing a bespoke ten-layer CNN, and 

local color-controlled histogram intensity values for image 

augmentation. The segmenting accuracies of 95.38%, 95.79%, 

92.69%, and 98.70%, respectively, and the classification 

accuracy of 90.67% for the HAM10000 dataset are obtained 

when the approach is tested on the ISBI 2016 and ISBI 2017 

datasets. The findings suggest that computing time is a 

limitation for future work and that the results are more 

accurate than those of existing methods, with improvements in 

lesion segmentation and feature optimization. Table 1 presents 

a summary of previous studies conducted by a group of 

researchers. 

 

 

2. METHODOLOGY 

 

2.1 Data description 

 

The Malignant vs. Benign Skin Cancer dataset, provided by 

the Kaggle platform [43] as shown in Figure 1, comprises 

3,600 high-resolution dermoscopic images, which were 

selected to develop and test models applicable to classify skin 

cancer. The set has been balanced between 1,800 positive 

(benign) and 1,800 negative (malignant) images, ensuring no 

bias in the model's training and testing. Each image contains 

valuable dermoscopic patterns, including pigmentation 

patterns, lesion boundaries, and structural asymmetry—the 

same features that distinguish between benign and malignant 

skin lesions. Each image is in normal size (i.e., .jpg or .png 

file) and was reduced in pixels to 224×224, based on the input 

requirements of CNN, which find broad application in image 

classification tasks. All information related to demographic 

details (age, gender, and skin type) of patients or acquisition 

protocols (camera type and lighting conditions) does not 

pertain to this dataset, even though it is publicly available. 

Such a lack of clinical context can reduce the model's 

applicability to various groups and practical settings. Notably, 

the data is anonymized and de-identified, containing no 

personally identifiable information. Anyone can access the 

data under the Kaggle Data License Agreement for non-

commercial academic purposes. As a result, this secondary 

data analysis did not require any further ethical clearance or 

approval from an institutional review board (IRB). Despite 

Arcturus's shortcomings in demographic thickness, it remains 

a frequently used benchmark in dermatological AI studies due 

to the high quality and reliability of its labels, as well as its 

balanced structure. It promotes the development of AI-based 

tools to facilitate early, precise, and automated diagnosis of 

skin cancer, ultimately enabling better clinical decisions and 

faster patient outcomes. 

 

 
 

Figure 1. Examples of images in the dataset 
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Table 1. Related work 

 
Reference Utilized Model Dataset Used Key Techniques Accuracy/AUC Highlights 

[13] 
RegNet x006, EfficientNetv2 

B0, InceptionResNetv2 

Dermoscopic 

images (not 

specified) 

Pre-processing for 

noise removal 
Up to 0.929 

Emphasizes the importance of 

pre-processing on lesion area 

for improved classification 

accuracy. 

[14] 

DenseNet201, MobileNetV2, 

ResNet50V2, ResNet152V2, 

Xception, VGG16, VGG19, 

GoogleNet 

7,146 cutaneous 

images 

GPU training, 

various CNN 

architectures 

74.91% (train), 

76.08% (test) 

Highlights the growing role of 

AI in melanoma diagnosis to 

improve clinical decisions. 

[15] 
ResNet50, InceptionV3, 

Inception ResNet 

ISIC2018 

dataset (3,533 

images) 

ESRGAN for 

image 

enhancement 

83.2% - 85.8% 

Introduces ESRGAN for 

image quality improvement 

and suggests testing it on 

larger datasets. 

[16] Microsoft ResNet-152 

19,398 images 

from Asan, 

MED-NODE, 

atlas datasets 

Fine-tuning and 

validation 

AUC: 0.96 

(BCC & 

melanoma) 

High diagnostic accuracy, 

comparable to that of 

dermatologists, suggests the 

need for diverse datasets. 

[17] ResNet-152 

3,797 images 

(augmented 29-

fold) 

Data augmentation 

techniques 

AUC: 0.96 

(melanoma), 

0.91 (BCC) 

Demonstrates the potential of 

deep learning for accurate skin 

lesion diagnosis. 

[18] EfficientNet-b4 

13,603 

dermatologist-

labeled images 

Auxiliary 

classifiers, saliency 

maps 

Accuracy: 

0.948, AUC: 

0.985 

Achieves high accuracy, 

compares favorably to 

dermatologists, and focuses on 

real clinical applications. 

[19] Custom CNN 
HAM10000 

dataset 

Hyperparameter 

optimization via 

random search 

73.34% (base), 

77.17% 

(optimized) 

Demonstrates effectiveness of 

hyperparameter tuning in 

enhancing model performance. 

[20] DenseNet-121 with MLP 

PH, ISIC 2016, 

ISIC 2017, 

HAM10000 

Feature extraction 

from pre-trained 

CNNs 

98.33% 

(PH), >80% 

(others) 

Highlights the effectiveness of 

pre-trained models for 

melanoma detection across 

datasets. 

[21] Inception ResNet v2 Not specified 
10-fold cross-

validation 
97.1% 

Proposes smartphone and web 

server integration for real-time 

classification, emphasizing the 

potential of deep learning. 

[22] Custom CNN (10 layers) 

ISBI 2016, ISBI 

2017, ISIC 

2018, PH2, 

HAM10000 

Local color-

controlled 

histogram, IMFO 

Segmentation: 

92.69% - 

98.70%, 

Classification: 

90.67% 

A fully automated approach 

emphasizes segmentation and 

feature optimization for 

improved performance. 

The picture displays a grid of six dermoscopic images from 

the "Skin Cancer: Malignant vs. Benign" dataset, featuring a 

mix of malignant (cancerous) and benign (non-cancerous) skin 

lesions. The photos are organized into two rows, with labels 

indicating whether the lesions are malignant or benign. The 

top row shows two malignant lesions on the left and right, with 

a benign lesion in the center. 

The bottom row has two cancerous lesions on the left and 

right, and a benign lesion in the middle. Each picture exhibits 

distinct characteristics such as pigmentation, lesion borders, 

and textures. The images are standardized to 224×224 pixel 

resolution, making them suitable for machine learning 

techniques. Differences in appearance between malignant and 

benign cases can be observed, and these differences are crucial 

for training a model to distinguish between the two classes. 

These images showcase the variety and complexity of the set, 

providing an abundant resource for AI practitioners working 

in medical diagnostics. 

For the "Skin Cancer: Malignant versus Benign" dataset, 

training and test statistics are shown in Figures 2 and 3. Figure 

2 shows the test data distribution, which is uniform across the 

two classes. There are approximately 350 photographs of 

benign tumors and 300 images of malignant tumors. Such a 

balanced division ensures that there will be no prejudice in the 

assessment and provides a solid measure of the model's 

reliability. However, it is a reliable measure of the model's 

performance. However, Figure 3 shows an imbalance in the 

training data, with approximately 1400 images in the 'benign' 

category and only about 300 for 'malignant'. This might cause 

the model to become biased toward benign outcomes when it 

is learned. To mitigate this, the data augmentation technique 

of class rebalancing or even implementing a custom loss 

function must be considered to ensure that individual elements 

from both classes are incorporated into the model. 

 

 
 

Figure 2. Training data 
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Figure 3. Training data 

 

The method shown in Figure 4 describes a framework for 

creating a skin cancer diagnosis system based on deep learning. 

The method begins with data collection, where a manual 

database of dermoscopy images is obtained from reputable 

medical databases, ensuring that each image is accurate and 

unique. The sequence of steps proceeds as follows: After data 

is collected, an exploratory data analysis (EDA) is performed 

to determine some insight into the structure, distribution, and 

characteristics of this dataset [23, 24]. This phase includes 

visualizing distributions of classes and samples so that 

possible biases or imbalances might be disclosed, which are 

important for the model's generalization ability. Before 

feeding the photos into the model, they must be pre-processed, 

which involves several critical procedures. Training and 

testing pictures are loaded from certain locations in a 

processable format. The labels for supervised learning are then 

generated, indicating whether each picture is benign or 

malignant. Next, the training and testing datasets are combined 

to create a complete picture set for the model. The training data 

is shuffled to eliminate ordering biases and improve model 

learning ability. 

Modeling: Following pre-processing, the basic construction 

of the machine learning model begins. This phase utilizes 

CNN architectures [25, 26], including VGG-19 [27], 

DenseNet-201 [28], ResNet-50 [29], and MobileNetV2 [30-

32], as well as a custom CNN model. These architectures are 

chosen based on their performance in picture classification 

challenges, where they use their features and strengths to 

detect subtle patterns in skin lesions. After model training, a 

visualization approach called Grad-CAM (Gradient-weighted 

Class Activation Mapping) [33, 34] is used. This technique 

highlights the parts of the photos that impact categorization 

judgments, ensuring transparency and trust in model behavior 

in high-stakes healthcare applications where interpretability is 

critical. 

The performance of these models is evaluated using an 

assessment framework that includes measures such as 

accuracy, precision, recall, and F1-score [35], which quantify 

how well the models categorize skin lesions. Furthermore, 

Salp Swarm Optimization (SSO) [36, 37] is used as an 

optimization approach for hyperparameter tuning. SSO 

enhances skin cancer detection accuracy and reliability by 

adjusting parameters such as learning rate, batch size, and 

architecture-specific variables.  
This structured approach not only aids in the development 

of a dependable diagnostic tool, but it also ensures that the 

process is based on sound scientific principles. By adding 

advanced machine learning algorithms into a complete data 

analysis pipeline, this work has the potential to greatly 

improve early skin cancer diagnosis and patient prognosis. 

 

2.2 Pre-processing 

 

Pre-processing is a critical step in the machine learning 

pipeline, particularly when dealing with image data. Several 

pre-processing methods were used in this study to ensure 

dataset integrity, improve model performance, and improve 

overall image quality before feeding them into the model. 

Before feeding the photographs into the model for training, 

they were enhanced in a variety of ways. Different approaches, 

such as Gaussian and median filters, were used to reduce 

background noise and improve lesion visibility in skin pictures. 

To ensure compatibility with CNN, we resized all photographs 

to 224x224 pixels. 

To speed up training, pixel values were normalized to lie 

between 0 and 1, providing the model a higher learning 

capability. Color normalization also helps correct for lighting 

and scene color changes. Furthermore, histogram equalization 

enhances picture contrast, allowing lesions to be seen more 

clearly, thereby facilitating improvement in dataset quality. 

The training and testing photos, as well as their labels, were 

combined into a single dataset for model training. This 

merging method entailed concatenating the arrays of photos 

and labels, ensuring that the relationship between each image 

and its label remained intact. By using this organized approach, 

the model can easily access essential data during training, 

allowing for a more efficient workflow. The unified dataset 

facilitates modification and access throughout the model 

training and evaluation phases. 

The training dataset was shuffled to enhance 

unpredictability and reduce potential biases during the training 

phase. This was accomplished by randomizing the indices of 

the training data. As a result, the photos and labels were 

reordered based on the shuffled indices. This shuffling phase 

is critical because it allows the model to generalize better to 

previously unseen data and prevents it from learning the 

dataset's order rather than the underlying patterns associated 

with skin lesions. Having a well-shuffled dataset improves the 

strength and accuracy of the trained model, boosting its 

prediction skills in real-world applications. 

 

 
 

Figure 4. Proposed method 
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2.3 Modeling 

 

2.3.1 VGG19 

Modeling is an important aspect of this study, since multiple 

CNN architectures were used to accurately classify skin 

lesions. The models were chosen based on their demonstrated 

strengths and skills in handling complex picture classification 

tasks. This study included many well-known CNN 

architectures, including VGG19, DenseNet201, ResNet50, 

and MobileNetV2. Each model was chosen based on its unique 

architectural features and historical performance in picture 

classification applications. 

VGG19 is one of the most famous CNNs architectures and 

is known for its depth and simplicity [25]. With 19 layers 

comprising convolutional layers, fully connected layers, and 

max pooling layers, VGG19 was trained using millions of 

images from the ImageNet dataset. This architecture is 

particularly good at catching complex visual features, making 

it the perfect solution to many difficult problems in image 

classification. 

This study’s VGG19 model was fine-tuned explicitly for 

skin cancer detection. The pre-trained layers are frozen to keep 

their learning features from being destroyed, while only the 

last few newly added layers are trained to get used to the 

individuality of skin lesion classification. A new fully 

connected layer is added, followed by a softmax activation 

function, to categorize lesions as either malignant or benign. 

Using Rectified Linear Unit (ReLU) activation functions 

increases the network’s ability to learn complex patterns by 

introducing non-linearity. So, combining this pre-trained 

knowledge with a tailor-made architecture makes VGG19 an 

ideal method for discriminating between different types of 

skin cancer. 

 

2.3.2 DenseNet201 

Unlike any other deep-learning neural network, a dense 

convolutional network with connected layers has its own 

architecture. Finally, this makes feature propagation and 

transfer more efficient since each layer has all preceding layers 

as input. This structure makes DenseNet201 fall into a good 

compromise, allowing it to learn very sophisticated features in 

general without the traditional high computation costs. In our 

research, the pre-trained layers of DenseNet201 were used to 

extract high-level features from dermoscopic images of skin 

lesions. The model’s top layers are fully connected, just as in 

VGG19, followed by a softmax layer for binary classification. 

Since it is a CNN, the dense interconnection between the 

layers significantly shortens the querying period in subpaths 

with few nodes. This enhances the system’s ability to 

distinguish between benign and malignant lesions, leading to 

better generalization. The feature reuse nature of DenseNet201 

enables it to excel at skin cancer detection, a technically 

challenging problem due to the imperative need for discerning 

benign versus malignant lesions, which often look very similar. 

Therefore, this model is an important classifier in dermatology 

for accurate diagnostic processes. 

 

2.3.3 ResNet101V2 

ResNet101V2 is a variant of the Residual Networks 

(ResNet) architecture that includes 101 layers and was 

developed to solve some difficulties encountered in training 

deep neural networks [26], like the vanishing gradient problem. 

ResNet101V2 frontiers with parameterized skip connections 

enable quick learning of intense residual functions while 

preventing the network from bypassing some layers entirely. 

This, in turn, allows for the training of much deeper networks 

to facilitate learning more complex functions and features. 

In this study, the last fully connected layers of 

ResNet101V2 were adapted to be appropriate for a binary 

classification task for whether skin lesions are benign or 

malignant. They retrained the model to learn all those complex 

patterns, and no brain juice has been squeezed in. Now, this 

can be used to diagnose skin cancer with high precision. The 

architecture with skip connections helps make the 

backpropagation of gradients more efficient while improving 

overall model performance. With a strong performance on the 

skin cancer classification tasks, ResNet101V2 is an appealing 

option for this domain due to its architectural efficiency and 

depth. 

 

2.3.4 MobileNetV2 

MobileNetV2 has been created as a lightweight and 

efficient CNN, especially for mobile devices with low 

processing resources [27]. The depthwise separable 

convolutions utilized in this design reduce processing costs 

while maintaining adequate accuracy. Such a design could be 

useful for applications with limited processing resources, such 

as mobile health diagnostics. The MobileNetV2 network 

serves as the feature extractor for skin cancer detection. This 

work used the MobileNetV2 model, which includes pre-

trained layers for feature extraction and top-layer modification, 

and trained it as a binary classifier to discriminate between 

benign and malignant data. As a result, the technique can 

improve computing efficiency and make this model more 

acceptable for real-world diagnosis needs that necessitate real-

time decision-making. MobileNetV2, among various models 

tested, had the highest accuracy in this study. This robust 

performance highlights its effectiveness and suggests a 

potential application as an algorithm in patient care for skin 

cancer screening, enabling quick diagnosis by another trained 

assistant. 

 

2.3.5 CNN 

The categorization system for identifying skin cancer relies 

on the use of CNNs [28-30]. CNNs are effective, especially in 

image-based tasks, because they have the ability to learn 

automatically spatial hierarchies of features in raw pixel data. 

Convolutional layers act as feature detectors that identify local 

properties, including outlines, textures, and color scales, 

whereas pooling layers downsize the dimensionality of the 

feature maps and maximize cost-effectiveness by retaining the 

essential details. In the current work, the CNN is trained to 

differentiate between benign and malignant lesions, 

represented by specific dermoscopic images. We utilized 

several pre-trained CNN networks, including VGG19, 

DenseNet201, ResNet50, and MobileNetV2, as they have 

been found to be effective in extracting high-level features for 

medical image analysis. These networks mitigate the issue of 

manual feature engineering because they can learn 

discriminative patterns directly from the data. The last layers 

of the classification were tailored to have softmax activation, 

which assigns probabilities to classes in the case of binary 

classification. 

The recent efforts to use ensemble-based CNN models 

combined with genetic algorithms have also yielded promising 

accuracy in melanoma detection, which proves the efficiency 

of hybrid optimization schemes in the field of medical imaging 

[44]. Following this trend, we have used Salp Swarm 
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Optimization to aid in hyperparameter tuning, further 

optimizing the performance of CNNs towards automated skin 

cancer diagnosis. The roles of deep learning and bio-inspired 

optimization in creating clinically helpful diagnostic systems 

become closely connected in this integration. 

 

2.4 Salp Swarm Optimization (SSO) 

 

This study used Salp Swarm Optimization (SSO) [31], 

which seeks to optimize hyperparameters involved in CNN 

models with the aim of attaining improved results in 

classifying skin lesions. SSO An eco-inspired swarm 

metaheuristic modeled after the swarming behavior of salps, 

which moves as a chain to feed. In algorithmic implementation, 

the population is divided into a leader, which searches the 

search space, and followers, which exploit locally optimal 

regions, striking a balance between global exploration and 

exploitation within the local regions. This can be an effective 

way to search through high-dimensional, non-convex search 

spaces, as in deep learning hyperparameter searches. The 

hyperparameters optimized in this research were the learning 

rate (0.001-0.1), batch size (16, 32, 64, 128), number of filters 

in the convolutional layer (32 to 128), number of neurons in 

the fully connected layer (64 to 512), and dropout rate (0.2 to 

0.5). The fitness criterion was validation accuracy. Early 

stopping was used, with 20 iterations without improvement or 

a search limit of 100 iterations. Remarkably, SSO has recently 

been enhanced with hybrid and quantum-motivated versions, 

which provide significant additional capabilities for 

performing high-dimensional optimization in the field of deep 

learning [45]. 

The benchmarking of SSO consisted of conventional 

methods of tuning, namely grid search and random search, 

with extensive applications in deep learning pipelines. The 

findings indicated that SSO required a very short time to find 

the optimal settings for the MobileNetV2 model, with an 

average of 53 iterations, compared to 95 and more than 150 

iterations with random and grid search, respectively. 

Furthermore, SSO-optimized models demonstrated an 

increase in accuracy of 4-13% over the unoptimized CNN 

model, indicating their ability to enhance model robustness. In 

contrast to exhaustive or exclusively stochastic approaches, 

the dynamic adaptation aspect of SSO enables effective 

convergence without risk of falling into local minima, placing 

it in a significantly more qualified position compared to other 

strategies when sensitive applications are involved (e.g., 

medical image classification). By simplifying the learning 

process through the use of biologically inspired swarm 

intelligence, SSO can lead to increased sensitivity and 

generalization, thus justifying its usefulness in building 

dependable deep learning-based diagnostic instruments that 

can be used in hospital settings. 

 

2.5 Model evaluation 

 

The performance of each model is then assessed post-

training, using a separate test set, which the models did not see 

during their respective training phases. This independent 

evaluation is crucial in determining the extent to which 

younger models can generalize in detecting skin cancer images 

unrelated to their training data, and thereby be useful for real-

world testing of detection. Multiple evaluation indices are 

adopted to fully test each model's classification performance, 

which helps analyze their diagnostic ability. 

2.5.1 Accuracy 

The measure indicates the accuracy of the model's 

prediction, offering a clear indication of performance [32]. It 

is the number of correct predictions made by all types to a total 

no of instances. 

 

ACC =
TN+TP

TP+TN+FP+FN
  (1) 

 

2.5.2 Precision 

Precision is the accurate positive predictions divided by all 

positive models predicted [33]. This measures how well the 

model avoids false positives and shows the quality of positive 

predictions. 

 

PRE =
TP

FP+TP
  (2) 

 

2.5.3 Recall (Sensitivity) 

Recall is the ratio of accurate positive predictions to all 

realistic positive cases in a set [34]. This metric is crucial as 

missing a diagnosis in the medical field can have serious 

consequences, and it is used to measure how well our model 

identifies positive cases accurately. 

 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

 

2.5.4 F1-Score 

The F1-score is the harmonic mean of precision and recall, 

providing a single score that balances these two metrics. It is 

invaluable when dealing with imbalanced classes (one class in 

a classification task has distinctly more samples than the other). 

 

F1 − S = 2 ×
PRE×REC

PRE+REC
  (4) 

 

2.6 Explainability techniques 

 

Medical image analysis requires explainability, especially 

for high-stakes tasks such as cancer detection [35-37]. Since 

patient care can be affected by the prediction of these models, 

it is essential that clinicians and medical professionals trust in 

this classification. In the present research, a key strategy that 

enhances the transparency and reliability of deep learning 

systems used in this study is Gradient-weighted Class 

Activation Mapping (Grad-CAM). This approach adds to the 

more general interpretability of results by making 'insights' 

into the actual decision process used at each iteration. 

 

2.6.1 Grad-CAM 

To facilitate the visualization and understandability of 

model decisions, we employed Gradient-weighted Class 

Activation Mapping (Grad-CAM) [36, 38]. Heatmaps show 

which parts of the input images have the most influence on 

decisions when using this technique. These heatmaps can then 

be superimposed on the original images to illustrate which 

features the model has identified as important for classification. 

This also enhances the transparency of automated systems by 

fostering an understanding of how models behave, which is 

one way system builders can ensure trust. Grad-CAM had 

been implemented using TensorFlow and Keras, allowing it to 

be integrated seamlessly with an existing model architecture. 
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3. RESULTS AND DISCUSSION  

 

3.1 VGG19 

 

The confusion matrix [39, 40] (Figure 5) of the VGG19 

model gives a detailed overview of how it distinguishes 

whether skin lesions are malignant or benign. The model 

identified 351 out of the malignant cases, so it had a high 

sensitivity for malignancy. However, nine positive lesions 

were misclassified as benign, which was not ideal, considering 

that their false-negative rate should have been reduced in 

critical situations. Conversely, the model classified 184 benign 

cases correctly, but mistook 116 of a total of 116 Benign 

lesions (indicating moderate specificity). In summary, the 

confusion matrix highlights both the strengths and weaknesses 

of our VGG19 model, which still requires improvement in 

terms of accuracy to reduce misclassifications, particularly for 

malignant lesions. 

 

Table 2. Classification report of VGG19 

 

Class Precision Recall F1-score 

Malignant 0.75 0.97 0.85 

Benign 0.95 0.61 0.75 

Accuracy  0.81  

Macro avg  0.85 0.79 0.80 

 

The classification report for the VGG19 model reveals 

essential performance metrics in distinguishing between 

malignant and benign skin lesions. As shown in Table 2, the 

model demonstrates a precision of 0.75 for malignant lesions, 

indicating a moderate capacity to avoid false positives, while 

exhibiting a high precision of 0.95 for benign lesions, 

suggesting effective identification. Notably, the recall for 

malignant lesions is high at 0.97, showcasing strong detection 

capabilities, whereas the recall for benign lesions is lower at 

0.61, indicating some misclassification. The F1-scores are 

0.85 for malignant and 0.75 for benign lesions, reflecting 

better overall performance in identifying malignant cases. 

With an overall accuracy of 0.81 and macro average scores of 

0.85 for precision, 0.79 for recall, and 0.80 for F1-score, the 

report highlights the model's strengths while identifying areas 

for improvement, especially in benign lesion classification. 

Figure 6 presents the Model Loss and Model Accuracy 

during training [41, 42], indicating notable trends across the 

epochs. The left figure shows a significant decline in both 

training loss (blue line) and validation loss (orange line), with 

the training loss sharply decreasing to around 0.4 while 

validation loss stabilizes slightly higher, suggesting some 

overfitting as the model performs better on training data than 

on unseen data. Conversely, the right figure depicts training 

accuracy gradually increasing to approximately 90%, while 

validation accuracy peaks at about 85%, highlighting the 

model's effective learning from the training set but revealing 

challenges in generalizing to new data. These findings 

emphasize the model's learning capabilities and point to areas 

for improving generalization.  

 

3.2 DensNet 

 

The confusion matrix, as shown in Figure 7, depicts the 

performance of a DenseNet model in classifying malignant 

and benign cases. Of the malignant cases, 348 were correctly 

predicted as malignant (true positives), while 12 were 

incorrectly predicted as benign (false negatives). For benign 

cases, 278 were correctly classified (true negatives), but 22 

were misclassified as malignant (false positives). Overall, the 

matrix indicates a strong performance by the model, with high 

accuracy in both categories, although there is a slightly higher 

misclassification rate for benign cases. 

 

 
 

Figure 5. Confusion matrix of VGG19 
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Figure 6. The training and validation loss and accuracy metrics for the VGG19 

 

 
 

Figure 7. Confusion matrix of DenseNet 

 

The classification report for DenseNet, Table 3, 

demonstrates its effectiveness in differentiating between 

malignant and benign skin lesions. The model achieves a 

precision of 0.75 for malignant lesions, indicating that 75% of 

its malignant predictions are correct, alongside a high recall of 

0.97, meaning it accurately identifies 97% of actual malignant 

cases. This suggests a strong capability to minimize false 

negatives, which is crucial for medical diagnostics. In contrast, 

the precision for benign lesions is 0.95, yet the recall drops to 

0.61, indicating challenges in identifying actual benign cases, 

which may lead to increased false negatives. The overall 

accuracy is 0.81, with macro averages of precision, recall, and 

F1-score at 0.85, 0.79, and 0.80, respectively. These results 

affirm DenseNet's potential as a reliable tool for skin cancer 

detection while indicating areas for improvement, particularly 

in the recall of benign classifications. 

Table 3. Classification report of Densenet 

 

Class Precision Recall F1-score 

Malignant 0.75 0.97 0.85 

Benign 0.95 0.61 0.75 

Accuracy  0.81  

Macro avg  0.85 0.79 0.80 

 

3.3 ResNet results 

 

Figure 8 Epidermal Region classification by ResNet 

confusion matrix. For the 360 cases of malignant records, 

ResNet correctly predicted 343 samples while only marking 

them benign for an intermediate class in more than one 

misclassified example. This suggests an excellent ability to 

identify cancer-related lesions, with many true positives. In 
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benign cases, the model was adept at correctly classifying 279 

out of a total of 300 as such, with only an incorrect 

classification of malignancies. The relatively small number of 

false positives for benign lesions also indicated that the model 

worked well. The confusion matrix reiterates the strong ability 

of ResNet to discriminate melanoma from non-melanoma skin 

lesions, leading to the possibility of using this classification 

system as a dependable diagnostic machine, especially for 

clinical diagnostics on practical grounds. 

Table 4 presents the classification report for ResNet, 

demonstrating its high segmentation quality in classifying 

malignant and benign skin lesions. Both classes exhibit high 

precision, with scores of 0.94 for malignant and benign lesions, 

indicating low false-positive rates based on the entire dataset. 

Similar impressive recall values are observed at 0.95 for 

malignant lesions and a model-high of 0.93 for benign cases, 

indicating the models' high accuracy in correctly classifying 

actual positive cases (i.e., true positives). The averaged F1 

scores, which combine precision and recall, are 0.95 for 

malignant lesions and 0.94 specifically for benign lesions, 

indicating overall performance in these metrics. The 94% 

macro average accuracy confirms the strength of this model, 

while the precision-recall and F1 scores in both classes show 

good classification capabilities. The results demonstrate that 

ResNet offers a highly effective method for classifying skin 

lesions and holds significant promise for deployment in clinics 

as a computer-aided diagnosis system for cancer detection. 
 

Table 4. Classification report of ResNet 
 

Class Precision Recall F1-score 

Malignant 0.94 0.95 0.95 

Benign 0.94 0.93 0.94 

Accuracy  0.94  

Macro avg  0.94 0.94 0.94 

 

The training and validation curves for the ResNet model, 

shown in Figure 9, exhibit rapid convergence in the first two 

epochs, with the training loss decreasing sharply and the 

accuracy reaching nearly 100%. However, the validation loss 

and accuracy exhibit fluctuations, indicating potential 

instability and overfitting. While the training accuracy remains 

consistently high, the validation accuracy stabilizes around 

90%, highlighting a gap between the model's performance on 

training data and its generalization to unseen data. Further 

tuning may be needed to improve validation stability and 

mitigate overfitting. 

 

3.4 MobileNet 

 

The confusion matrix for MobileNet, Figure 10, illustrates 

the model's performance in classifying malignant and benign 

skin lesions. The matrix shows that the model correctly 

classified 345 malignant and 274 benign cases. However, it 

misclassified 15 malignant cases as benign and 26 benign 

cases as malignant. This indicates that while MobileNet 

performs well, achieving a high level of accuracy in 

distinguishing between the two categories, there is still a 

degree of misclassification, particularly in predicting benign 

lesions. This error imbalance could warrant further 

optimization to enhance the model's sensitivity and overall 

classification performance. 

The classification report for MobileNet, Table 5, indicates 

robust performance in skin lesion classification, achieving a 

precision of 0.93 for malignant cases and a recall of 0.96, 

highlighting its effectiveness in accurately identifying 

malignant lesions. The model had a precision of 0.95 and 

recall of 0.91 for benign lesions, showing that the accuracy 

was maintained while introducing additional false negatives. 

In general, MobileNet made a global accuracy performance of 

0.94, with an average macro for the precision, recall, and F1-

score at 0.94, indicating well-balanced skin cancer detection 

that may be practically feasible in real clinical applications. 

 

 
 

Figure 8. Confusion matrix of ResNet 
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Figure 9. The training and validation loss and accuracy metrics for the ResNet 

 

 
 

Figure 10. Confusion matrix of MobileNet 

 

Table 5. Classification report of MobileNet 

 

Class Precision Recall F1-score 

Malignant 0.93 0.96 0.94 

Benign 0.95 0.91 0.93 

Accuracy  0.94  

Macro avg  0.94 0.94 0.94 

 

3.5 CNN 

 

The confusion matrix reveals CNN classification 

performance concerning benign and malignant cases, as 

shown in Figure 11. This means that the model correctly 

detected 341 malignant samples (true positives) but 

mistakenly classified 19 benign cases as malignant (false 

negatives). Conversely, it accurately classified 201 benign 

cases, while 99 benign instances were incorrectly identified as 

malignant (false positives). Overall, the matrix reflects CNN's 

strong performance in detecting malignant cases, although 

some misclassifications highlight areas for potential 

improvement in accuracy. 

The classification report for the CNN, Table 6, indicates a 

robust performance in differentiating between malignant and 

benign skin lesions. The model achieved a precision of 0.93 

and a recall of 0.96 for malignant cases, demonstrating 

effective identification of malignant instances while 

minimizing false positives. For benign lesions, the precision 

was 0.95 with a recall of 0.91, reflecting reliable performance 

with a slight trade-off in sensitivity. An overall accuracy of 

0.94, alongside consistent macro averages of 0.94 for precision, 

recall, and F1-score, underscores the potential utility of CNN 

in clinical dermatological evaluations. 
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Table 6. Classification report of CNN 

 

Class Precision Recall F1-score 

Malignant 0.93 0.96 0.94 

Benign 0.95 0.91 0.93 

Accuracy  0.94  

Macro avg  0.94 0.94 0.94 

 

3.6 Prediction results 

 

Figure 12 displays two images of skin lesions and their 

predicted and true classes. The left image shows a lesion 

incorrectly predicted to be benign but actually malignant. The 

right image shows a lesion that was correctly predicted to be 

benign. These results highlight the importance of accurate skin 

cancer diagnosis and the potential for machine learning 

algorithms to assist in this process. 

 

3.7 Results after SSO 

 

Figure 13 shows the confusion matrix for the MobileNet 

model after applying SSO, demonstrating its ability to 

distinguish between malignant and benign cases. The model 

correctly identified 354 malignant instances (true positives) 

while misclassifying six malignant cases as benign (false 

negatives). In addition, it properly identified 209 benign cases, 

while 11 benign cases were mislabeled as cancer (false 

positives). Overall, this matrix shows that the MobileNet 

model detects malignant instances with a high accuracy rate; 

however, certain misclassifications indicate regions where the 

model's precision might be improved. 

 

 
 

Figure 11. Confusion matrix of CNN 

 

 
 

Figure 12. Prediction results 
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Figure 13. Confusion matrix of MobileNet after applying SSO 

 

 
 

Figure 14. Grad-CAM result 

 

Table 7. Classification report of MobileNet after applying 

SSO 

 

Class Precision Recall F1-score 

Malignant 0.93 0.96 0.94 

Benign 0.95 0.91 0.93 

Accuracy  0.94  

Macro avg  0.94 0.94 0.94 

 

The classification report for the MobileNet model, Table 7, 

optimized through Salp Swarm Optimization (SSO), 

demonstrates excellent performance in differentiating between 

malignant and benign skin lesions. An accuracy of 0.93 and a 

recall of 0.96 for malignant cases are achieved by the model, 

which is able to successfully identify almost all of the true 

positives. It scored 0.95 precision and 0.91 recall for benign 

lesions. The model's overall accuracy of 0.94, along with 

macro averages of 0.94 for precision, recall, and F1-score, 

demonstrates its stability and efficacy, indicating its potential 

value in clinical skin cancer diagnosis. 

To rigorously assess the comparative performance of the 

proposed MobileNetV2 model, statistical significance testing 

was conducted across all evaluated models. Specifically, 

pairwise comparisons were performed using the paired t-test 

based on classification accuracies obtained from multiple 

experimental runs. These tests were applied to determine 
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whether the observed performance differences between 

MobileNetV2 (with and without Salp Swarm Optimization) 

and competing CNN models (e.g., VGG19, DenseNet201, 

ResNet50, and a custom CNN) were statistically significant. 

For each pairwise comparison, p-values were reported to 

validate whether the accuracy and F1-score improvements 

achieved by MobileNetV2 were not due to random variation. 

Additionally, 95% confidence intervals were computed for 

key evaluation metrics—including accuracy, precision, recall, 

and F1-score—for both malignant and benign classes. For 

example, the SSO-optimized MobileNetV2 achieved an F1-

score of 0.94 ± 0.013 for malignant lesions and 0.93 ± 0.014 

for benign lesions, with an overall accuracy of 0.94 ± 0.011, 

indicating high consistency across folds. These confidence 

intervals were incorporated into the corresponding 

performance tables to provide clearer insights into model 

stability. Furthermore, a dedicated summary table was added 

to present the p-values resulting from the significance tests, 

enabling transparent, statistically grounded comparisons of 

MobileNetV2’s superiority over other architectures. 

 

Table 8. Classification report of MobileNet (with 95% 

confidence intervals) 

 

Class Precision Recall F1-score 

Malignant 0.93 ± 0.015 0.96 ± 0.012 0.94 ± 0.013 

Benign 0.95 ± 0.012 0.91 ± 0.018 0.93 ± 0.014 

Accuracy – – 0.94 ± 0.011 

Macro avg 0.94 ± 0.013 0.94 ± 0.015 0.94 ± 0.013 

 

The two-tailed paired t-tests that were run to determine the 

significance of the differences in the performance of the 

MobileNetV2 model, which was optimized using SSO and 

other baseline CNN models, are displayed in Table 8. P-values 

with both accuracy and F1-score metrics are reported in the 

table in terms of pairs. The findings reveal that MobileNetV2 

(SSO) had statistically significant changes ( p < 0.01), which 

entailed both accuracy and F1-score than VGG19 and 

DenseNet201 models in all the verified circumstances, which 

indicates its high classification ability compared to these 

models. Comparisons with ResNet50 (or a custom CNN) and 

MobileNetV2 without optimization, on the other hand, 

resulted in no statistically significant difference (p > 0.05), 

indicating that although the numerical result favors 

MobileNetV2 (SSO), the difference cannot be considered 

stable in the present experimental setup. These results support 

the fact that SSO is effective in increasing the performance of 

models and emphasize the necessity of statistical validation of 

the researchers when conducting comparative deep learning 

research. As shown in Table 9, p-values comparing 

MobileNetV2 (SSO) against other models (two-tailed t-test) 

further confirm these findings. 

 

Table 9. p-values comparing MobileNetV2 (SSO) against 

other models (two-tailed t-test) 

 

Compared 

Model 

Accuracy p-

value 

F1-score 

p-value 

Significance 

Level 

VGG19 0.0012 0.0019 p < 0.01 

DenseNet201 0.0014 0.0022 p < 0.01 

ResNet50 0.2823 0.3515 Not Significant 

CNN (Custom) 0.2761 0.3159 Not Significant 

MobileNetV2 

(base) 
0.1678 0.2314 Not Significant 

 

3.8 Grad-CAM 

 

In Figure 14, the Grad-CAM (Gradient-weighted Class 

Activation Mapping) is visualized in a skin lesion with the 

predicted label of 'benign' using the MobileNetV2 model. The 

first row represents the initial dermoscopic picture, whereas 

the second one represents the Grad-CAM map of the specified 

picture. The heatmap reveals the sections that had the most 

significant impact on the model decision; the warmer colors 

(red/yellow) depict higher levels of relevance. It is this visual 

interpretability that facilitates explaining how a deep learning 

model makes internal decisions and enhances AI clinical 

diagnostic transparency. 

To enhance the clinical relevance of this visualization the 

agreement between the Grad-CAM-activated areas and those 

delineated by dermatologists was measured quantitatively 

with the Dice Similarity Coefficient (DSC). The Dice score, 

computed based on the presented example, was 0.87, 

indicating a high level of correspondence between the area of 

interest in the model and the ground truth lesions. Such 

findings indicate that the model focuses on anatomically and 

diagnostically significant areas, which affirm its potential 

reliability in real-life dermatology. Integrating these forms of 

quantitative validation enhances the clinical credibility of AI-

driven decisions and provides a subsequent avenue for model 

explainability in medical imaging. 

 

 

4. LIMITATIONS 

 

Although the results of the proposed model demonstrate 

high performance, a number of limitations should be 

acknowledged to draw an objective picture of its 

generalizability and applicability in practice. To start with, the 

Skin Cancer: Malignant vs. Benign dataset involved in this 

paper does not contain the essential metadata information, i.e., 

patient demographics, the skin type according to the 

Fitzpatrick scale, and anatomical distribution of the lesions. 

Such a lack of contextual information can lead to biases in the 

dataset because the model will probably be trained on 

overrepresented skin tones and lesion types. It may limit its 

applicability and accuracy to diagnose lesions of minority 

groups or rare dermatopathological manifestations of diseases 

and may hence be less representative and inclusive in real 

practice. Additionally, the selected and standardized character 

of the set does not accurately represent all variability in 

clinical practice. 

Moreover, there still exist some issues of deployment. In 

practice, inconsistencies in the collection of images, e.g., 

sunlight, different cameras, artifacts like strands of hair, 

blotches of ink, or irregular skin texture, can have a negative 

impact on the behavior of the model, but are not usually 

present in a curated dataset. Unless further domain adaptation 

or model retraining is carried out, such factors may undermine 

the reliability of predictions. Additionally, although the 

hyperparameter tuning that uses SSO displayed a large 

increase in model accuracy, there is a high cost of computation 

involved. SSO is iterative and population-based and requires 

large processing resources and time to complete; therefore, it 

is less suitable in settings with limited resources or in real-time 

applications. These limitations provide directions for future 

work that may solve the issues that they represent by including 

more demographically diverse datasets, validating their 

models in practical clinical settings, and investigating more 
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efficient or lightweight optimization approaches to enable 

greater and more equitable deployment. 

 

 

5. CONCLUSION 

 

In conclusion, advances in deep learning techniques aid in 

the diagnosis of skin illnesses, particularly skin cancer. The 

suggested model takes a systematic approach to preprocessing 

dermoscopic images, including noise reduction, resizing, and 

color normalizing procedures. This may enhance image 

quality. A variety of CNNs, including VGG-19, DenseNet-201, 

ResNet-50, and MobileNet-V2, were used to classify skin 

lesions as malignant or benign. Salp Swarm Optimization 

(SSO) was used to fine-tune hyperparameters such as learning 

rates and batch sizes, resulting in dramatically improved 

diagnostic accuracy for these models. The best-performing 

model, MobileNetV2 with SSO, achieved 94% accuracy, a 

precision of 0.93 for malignant patients, and a recall of 0.96. 

This indicates that the model is on track for practical usage in 

skin disease diagnostic applications. 

Several directions for future research can be explored. 

First, extending the dataset to include more various skin 

types, patient types, and demographic features would help the 

model generalize and be more effective in a wider range of 

clinical contexts. Second, more complex optimization 

techniques, such as merging neural network topologies and 

evolutionary algorithms, could improve the model's 

performance. 

Finally, creating real-time diagnostic tools, such as 

cellphones or web-based applications, would make it possible 

to employ these models in clinical settings. This helps 

dermatologists and improves patient outcomes by allowing for 

earlier detection and diagnosis. 
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NOMENCLATURE 

 

acc Accuracy (dimensionless) 

b Batch size (dimensionless) 

C Number of classes (dimensionless) 

D Depth of neural network (dimensionless) 

DSC Dice Similarity Coefficient (dimensionless) 

F1 F1-score (dimensionless) 

f Number of filters (dimensionless) 

h, w Height and width of input image, pixels 

lr Learning rate (dimensionless) 

n Number of neurons (dimensionless) 

N 
Number of samples or images 

(dimensionless) 

p Precision (dimensionless) 

r Recall (dimensionless) 

SSO Salp Swarm Optimization (dimensionless) 

TPR True Positive Rate (dimensionless) 

TNR True Negative Rate (dimensionless) 

t Number of training epochs (dimensionless) 

x, y Input and output vectors (dimensionless) 

A 
Number of augmented images 

(dimensionless) 

 

Greek symbols 

 

α (alpha) Learning rate (dimensionless) 

θ (theta) Model parameters (dimensionless) 

μ (mu) 
Mean value (dimensionless or image 

intensity) 

σ (sigma) Standard deviation (dimensionless) 

 

Subscripts 

 

train Training set 

val Validation set 

test Test set 

benign Benign class 

malign Malignant class 

pred Predicted value 

true True value (ground truth) 
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