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Sensors embedded in Wireless Sensor Networks (WSNs) form a foundation in the Internet
of Things (IoT) architecture. Nonetheless, packet loss caused by unreliable communication,
interference, and energy limitations continues to be a major issue. In this paper, we propose
a Convolutional Neural Networks and Bidirectional Long Short Term Memory
(CNN-BiLSTM) combined Deep Learning (DL) approach for packet loss minimization in
IoT based WSNs. Our model uniquely integrates CNN to capture spatial features with a
BiLSTM to capture temporal dependencies, allowing for more accurate inherent prediction
of packet loss and intelligent routing in IoT-enabled WSNs. This hybrid design allows for
the proposed model to outperform independent deep learning models and traditional routing
protocols in both prediction accuracy and performance at the network level. Given the
traditional models such as AODV and independent LSTM/CNN approaches. Proposed
model has a packet loss reduction of 52%, an overall throughput improvement of 18.7%,
and maintained low latency and energy consumption, contributing to the overall success of
routing decisions in practical WSN scenarios. This makes the proposed hybrid model is
highly suitable for the implementation in the real-time applications.

1. INTRODUCTION

A WSN forms the backbone of the 10T, changing the way
devices interact with each other. This will be set up as a part
of generation, where this is the third generation of IoT, where
everything will be connected to the cloud at real time, together
with the database which will be used to collect and monitor
different things at real time, such as is done in healthcare,
agriculture and industrial automation. In spite of their utility,
WSNs are affected by limited energy resources, unreliable
links, and data congestion that cause a lot of packet loss.
Packet loss should be avoided as much as possible, since it can
result in the loss of data during transmission. Deep learning
methods have achieved incredible performance on complex,
nonlinear data in the last few years. We introduce a hybrid
Convolutional Neural Networks and Bidirectional Long Short
Term Memory (CNN-BIiLSTM) model that learns both the
spatial and temporal features of WSN data for packet loss
prevention which help proactive approach for network
management.

Ever since the advent of the Internet of Things (IoT), WSNs
have seen an exponential growth in the deployment over the
years in various sectors like environmental monitoring,
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healthcare, smart agriculture, industrial automation etc. These
networks consist of spatially distributed sensor nodes that
cooperatively monitor physical or environmental conditions
and aggregate data to send to central hubs for processing and
analysis. Said et al. [1] have discussed the benefits and utility
of WSNs are expanding, in effect, their packet loss rates
remain high due to limited energy constraints, volatile
communication links, and dynamic network topologies.

Especially in mission-critical environments, minimizing
packet loss is crucial for the reliability and accuracy of IoT-
based systems. Standard protocols like AODV and DSR do not
adapt well in frequency in node behavior and network load
causing deterioration in performance [2]. In this context,
Machine Learning (ML)-based approaches have been
proposed, as they allow for strategies for routing and
transmission to be dynamically adapted in light of historical
data behavioral patterns. Nevertheless, these models struggle
to accurately identify spatial and temporal dependencies
present in WSN data streams [3].

Recently, DL methods have become appealing alternatives
for optimizing networks because they outperform other
approaches in modeling complex, nonlinear relations. CNNs
have been extensively applied for spatial feature extraction on


https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300607&domain=pdf

structured data, whereas LSTM networks and their variants,
especially BILSTM, are very effective in learning sequential
dependencies [4]. In other domains, hybrid approaches
consisting of CNNs and BiLSTMs have been proven
successful when applied to traffic prediction or anomaly
detection, yet, to our knowledge, this approach has not been
tested to minimize packet loss in WSNs [5]. In this paper, we
propose a hybrid DL architecture based on the combination of
CNN and BiLSTM layers which is used to predict and smartly
reduce packet loss in IoT-enabled WSNs. The use of sensor
network data would allow the model to utilize both spatial and
temporal features to find optimal routing decisions, thus
improving network reliability. Results show substantial
benefits when compared to state-of-the-art methods in packet
delivery ratio, energy efficiency and throughput.

Few previous studies had applied either CNNs for spatial
feature representation, or LSTMs/BiLSTMs for temporal
representational purposes, and none of them implemented a
joint optimization process that incorporated both spatial and
temporal features to be able to predict packet loss within
WSNs. Additionally, the models described above do not take
into account the deployment constraints imposed by energy-
constrained IoT devices, limiting the possibility of developing
a lightweight and strong predictive system for practical real
world environments.

The paper is structured as follows. Section 2 presents a
complete review of the state-of-the-art in IoT energy
efficiency and packet loss and a summary of some of the most
relevant works and a description of pre-existing approaches to
address attacks in the IoT space. Section 3 explains the
proposed model in depth with mathematical model and
pseudocode. Section 4 provides the experimental evaluation of
the proposed detection scheme and displays the results with a
complete comparative discussion between proposed model
and other related researches conducted. Finally, we conclude
proposed work results and provide future perspectives in
Section 5 followed by references section.

2. RELATED WORK

DL has recently demonstrated considerable promise in
increasing data accuracy and managing traffic within IoT-
based WSNs. Zhang et al. [6] presented a DL for IoT devices
data processing. Similarly, Inayat et al. [7] discussed hybrid
DL models focused on IoT security, indicating their ability to
improve data transmission reliability. Jing et al. [8] conducted
an extensive literature review where the various ML
techniques applied for resource management of cellular and
IoT networks are classified, noting that DL-based traffic
prediction is the leading solution to reduce the loss of packets.

Ullah et al. [9] launched a review of Al associated data
transport in IOT, where they claim that hybrid DL models
(CNN-LSTMs) are more effective than conventional
techniques in applications where loss is a major concern.
Wang et al. [10] reviewed DL applications in IoT and pointed
out that in network traffic, CNNs capture local patterns, which
are important for minimizing loss. Such a framework can
target specifically packet loss in WSNs that using CNNs
provides better accuracy in predicting packet loss than
traditional statistical models [11].

In order to introduce temporal dependencies in IoT traffic,
BiLSTM networks have been combined with CNNs. Omarov
et al. [12] used BiLSTM to classify multi-class IoT traffic,
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showing that BiLSTM outperforms vanilla LSTMs at
processing sequential data. Data collection and transmission is
another area in WSNs where DL has been introduced due to
the importance of energy efficiency. Yuan et al. [13] used a
deep reinforcement learning (DRL) based model for energy-
efficient data aggregation in WSNs that decreases the number
of packets loss at the same time as extending network lifetime.
Their experiment shows that collisions and retransmissions
could be reduced by a sufficiently intelligent schedule.
Bauyrzhan Omarov et al. [14] made significant progress by
proposing a hybrid CNN-BiLSTM model for anomaly
detection in IoT that indirectly helps to mitigate packet loss by
detecting faulty transmissions.

Hybrid CNN-BiLSTM models have been leveraged in the
context of packet loss in the IoT networks by several authors
in recent studies. Rajalakshmi et al. [15] presented a CNN-
LSTM model in this system to minimize latency and loss in
industrial IoT and stimulate traffic forecast. Latif et al. [16]
introduced a DL-based reliability framework for Industrial
Internet of Things (IloT) applications in which real-time fault
detection is further utilized to prevent data loss in mission-
critical applications. Lopez-Ardao et al. [17] proposed a DL-
based system for packet loss recovery in WSNs, and attained
better results with CNN-BiLSTM hybrids than with
standalone models in noisy conditions. These works
emphasize the promise of hybrid models while leaving
opportunities to better optimize WSNs with energy constraints.

Evolving ML and DL has played a major role in reducing
the packet loss in the IoT based WSNs. Ullah Khan et al. [18]
proposed a novel routing mechanism that utilizes ML to
dynamically update routing paths in IoT networks. This
approach reported a packet loss of 30%, which is a significant
reduction compared to static routing protocols. In their study,
they emphasise the necessity of keeping routing decisions
intelligent in context to the network congested IoT
environments. Similarly, Elsayem et al. [19] proposed a
reinforcement learning (RL)-based method for dynamic
resource allocation. Raman [20] focused on optimizing
bandwidth and transmission power to reduce packet drops
associated with real-time IoT traffic. Their network
framework performed at a higher level with varying network
conditions. The spatial feature extraction is realized through
CNNs in WSNs. Hong et al. [21] showed the effectiveness of
CNNs particular for UAV-based sensor networks: CNNs are
shown to improve routing efficiency by capturing spatial-
temporal data correlation.

Altunay and Albayrak [22] integrated CNNs and long-short
term memory (LSTM) networks for real-time edge analytics
in intelligent transportation systems, demonstrating enhanced
robustness for dynamic environments. Sadhwani et al. [23] re-
engineered a replicable architecture for data intrusion
detection to guarantee continuity and security of data flow.
Additionally, Dritsas and Trigka [24] addressed federated
learning (FL) for distributed IoT networks, where they
concluded that decentralized training may improve prediction
accuracy with lower communication overhead, which is an
essential contribution to reducing packet losses in large-scale
WSNs.

For proactive packet loss mitigation, accurate real-time
traffic forecasting is a prerequisite. Ghosh et al. [25] proposed
a hybrid CNN-LSTM model for traffic prediction in IoT
systems, providing a 25% enhancement in loss avoidance over
individual models. The latter is successful in modeling spatial
(CNN) and temporal (LSTM) dependencies of network traffic.



Meanwhile, Rajawat et al. [26] analyzed quantum-augmented
ML tailored for IoT security, proposing that quantum neural
networks (QNNs) may create a paradigm shift in loss-resistant
communication for future WSNs. Kaur and Gupta [27]
expanded this research line by integrating both Al and 6G-IoT
in their framework to ensure secure and reliable data
transmission through adaptive encryption and attack
prediction. Xu et al. [28] recently improved latency-sensitive
IoT applications with edge intelligence, resulting in DL
inference on a given localized IoT device, which considerably
reduced the remote dependency leading to packet loss. Packet
loss in IoT networks is also caused by security-related
disruptions.

Recent advancements in Transformer architectures and
quantum ML (QML) are changing the paradigm of IoT
reliability. Tseng et al. [29] demonstrated the use of
Transformer architectures for loT data analytics, achieving
state-of-the-art sequence modeling in traffic prediction.
Ahanger et al. [30] conducted a survey on DL for anomaly
detection, indicating that Al-driven intrusion detection
systems (IDS) are capable of blocking harmful packet drops.

Although early approaches have advanced ML-enabled
routing, real-time prediction, and security, most methods fall
into one of three categories:

*  Be pre-trained on CNNs or LSTMs only.

* Ignore energy constraints in WSNs in the DL model
deployment.

*  Traditional modeling approaches do not have
mechanisms to adapt to the dynamic nature of IoT
environments.

Although previous studies investigated DL for IoT
reliability, the major of these studies consider CNN or
BiLSTM spatial or temporal features only. Very few discuss
the joint optimization of both aimed at reducing packet loss in
resource-constrained WSNs. Our work bridges this gap by:

* A lightweight hybrid CNN-BILSTM model for low-
power WSNss is proposed.

* Incorporating real-time traffic prediction with adaptive
routing to avoid loss of packets.

* Navigate performance locked under different network
congestion.

3. PROPOSED METHOD

We propose a hybrid Al model to perform this task by
combining Convolutional Neural Network (CNN) with
Bidirectional Long Short-Term Memory (BiLSTM) network
in order to reduce packet loss in IoT-enabled WSNs. The CNN
is used for extracting spatial features from the structured
sensor data, while the BILSTM is used for modeling temporal
dependencies over packet data stored in the time sequence.
The architecture of this system presents five stages, namely
Data acquisition from sensors, Preprocessing and reshaping
into 2D matrices of data, Feature extraction via CNN,
Sequence learning via BiLSTM, and Output classification
indicating packet delivery success or failure. The output that
this model provides is end-to-end trainable, which means that
its implementation is adaptable to different use cases such as
changing load on the network, interference, or node failures.

The algorithm we propose, termed Hybrid CNN_BiLSTM
for Packet Loss Prediction, first takes as an input time series
of sensor data S={s1, s2, ..., sn} collected from different IoT
nodes for a certain period of time in a wireless sensor network.

The performance of the algorithm is fundamentally to mine
this spatiotemporal data and predict if a packet will be lost
during transmission. This produces a binary output 0 for no
packet loss and 1 for predicted packet loss. Let the raw sensor
data at time step t from N nodes be denoted as a multivariate
time series in Eq. (1).
X, = [x¢,x2,...,xNTe RN )
To feed it into a CNN, the data is reshaped into a 2D matrix
X € Ri™*™, where m x n =N, to simulate spatial structure.
Data Preprocessing: This is the first stage of the Algorithm.
Normalize all sensor values to a common scale since it is
important for stable and fast convergence during training of
the model as shown in Eq. (2).

% =k 2)

a

The data is reshaped into 2D matrices leR#XW | where the

rows generally indicate time steps, and the columns hold
readings from various sensors or node features. The datasets is
then split into training and test datasets after reshaping so that
the model can learn with one subset and test its predictions
with the other.

As given below in the CNN module, every reshaped 2D
matrix from the training data is fed into a consecutive series of
convolutional layers. Then, with the final model, utilize
convolutional layers to highlight surroundings changes, faults,
or interferences. This will also use ReLU (Rectified Linear
Unit) activation to add non-linearity and then followed max-
pooling to down-sample the feature maps, retaining the most
important features. A final flattened one-dimensional feature
vector that contains a lot of spatial information is then
generated as the output of the CNN block as shown in Eq. (3).

iy = o (ZE B Widh) - X{5a)

{i+aj+b} + b(l)) (3)

Here, F{(ll ?} is an output feature map at position (i,j) in layer
1, W{g)b} is a learnable kernel weights, ¢ is an activation

function i.e. ReLU: o(x) = max(0, x), b® is a bias term and k
is a kernel size. The pooling operation is used here is max
pooling that reduces dimensionality as shown in Eq. (4).

p{i’j} - {(a,b)(rfnvai)r(ldow} F{i+a,j+b} (4)

The second step is a BILSTM module, which is aimed to
learn temporal dependencies from the sequential feature data.
The output features of the CNN are reshaped into a time-series
this is suitable for LSTM processing. We make the assumption
that the input data is sequential, meaning that the data that we
feed into LSTMs have a time relation or dependency. At each
time step, the forward and backward hidden states are
concatenated to achieve a complete temporal feature
representation as shown in Egs. (5)-(11).

he = LSTM¢ ) (5)
fe= o(Wr - [he-1y %] + by) (6)
ir = o(W; - [hy—1px] + bi) (7)

a(W, - [hge—1p %] + bo) ®)

0¢



Et = tal’lh(VVC . [h{t—l}’ xt] + bC) (9)
= fr O Ce—uy t+ it (O (10)
h; = o, O tanh(c,) (11)

Eq. (12) shows the backward LSTM working procedure in
reverse:

ht = LSTMb(ftm) (12)

Eq. (13) shows the BiLSTM output at time t with forward
pass E) and backward pass (h_t

he = [hg h] € RCD (13)

These temporal features are then fed forward through a
dense output layer forming the classification unit. The output
is then mapped to probability (0, 1) using sigmoid activation
function. This value indicates the probability of packet loss for
the current input sample. If its output value is equal to or
exceeds 0.5, this output is labelled as packet loss (label = 1);
else this output is labelled as successful transmission (label =
0). The final hidden state hr (concatenated forward and
backward states) is fed into a fully connected layer, sigmoid
function for binary classification, softmax layer for multilayer
classification and cross entropy in Eqs. (14)-(17) respectively.

z = Wyhy + b, (14)
A _ 1
y =0 = ) (15)
N e{zi}
Vi = {Z‘},fOT‘l =1,..,C (16)
et
Lece = — XfioqyYilog(h) (17)

Eq. (18) shows the model is trained using Adam optimizer
to minimize loss with 8 for all learnable parameters of CNN,
BiLSTM, and output layer, and n as the learning rate.

0 <06 —1n- Vgl (18)

The final output of the algorithm are the predicted labels for
the test dataset. The predicted status can then be used to notify
the network controller to take proactive remedial actions, such
as rerouting, transmission power adjustment, etc. to reduce
packet loss in real-time. In summary, the goal of this hybrid
model is to combine the intelligent extraction of spatial
patterns with temporal sequence modeling, providing an
effective approach for real-time, data-driven packet loss
prediction in complex IoT-enabled WSN environments.

4. RESULTS AND DISCUSSION
4.1 Simulation environment
A series of experiments were conducted to evaluate the

performance of the proposed Hybrid CNN-BIiLSTM in terms
of predicting and reducing packet drops in IoT-enabled WSN5s
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on the overall (on-model) packet drops. These experiments
were performed in a custom simulation environment built in
Python, utilizing Tensorflow for model implementation and
NS-3 (Network Simulator 3) for communication protocols and
network simulation for WSN. All the tools together enabled an
accurate model of both, the learning process, and the WSNs
physical-layer dynamics.

NS-3 simulator is used to simulate realistic WSN scenarios
like mobility of nodes, packet transmission, routing protocols
(AODV, DSDV, etc.), impacts of interference, range of
communication, etc. Important parameters for an actual WSN,
namely node transmission power, buffer size, link failure
probability, and congestion behavior, were configured
accordingly in the simulation. Python bindings and trace file
parsing were used to integrate with Python—-NS-3, which
facilitates real-time data feed into TensorFlow-based hybrid
model for learning and inference. The CNN-BiLSTM The
model was implemented using TensorFlow 2 using Keras
APIs. Model was trained on a dataset which has been obtained
from NS-3 trace logs with packet delivery time, RSSI, buffer
occupancy, hop count, and transmission delay features.
Training Data and Setup Training was performed on a CUDA-
compatible system equipped with an NVIDIA RTX 3080 GPU,
which facilitated the processing of large-scale datasets and
deep network parameters.

In this work, a Synthetic dataset was being generated, to
reflect various WSN layouts and situations that cover a wide
range of environmental and operational aspects. The dataset
included different node densities 100, 150, 200, 300, 400, and
500 nodes emulating various deployment scales. Furthermore,
various network topologies, such as star, grid, tree, and
random node distributions were simulated for robustness
against different structural configurations. For evaluating the
performance in the scenarios where the nodes are static and
mobile, so mobility patterns were defined to cover both node
scenarios, while the transmission rates varied between 50 kbps
and 500 kbps, considering other data traffic intensities. For
generating realistic traffic behavior, a Poisson distribution was
used to model the packet inter-arrival times, resulting in
stochastic but representative communication behaviors.

For each of the simulated network scenarios, the simulation
lasted 1000 seconds, during which key features, including
signal strength, distance between nodes, congestion levels, and
routing paths were monitored at regular intervals. At the same
time, packet loss events were logged as the labelled outputs,
creating a supervised learning paradigm for the model. The
output dataset formed more than 100K labelled samples and
was divided into training, validation and test sets. This large
dataset allowed for comprehensive testing of the proposed
hybrid CNN-BiLSTM model performance ensuring its
generalization across a diverse set of network conditions and
improving its prediction capability for real-world deployments
of wireless sensor networks.

4.2 Network level evaluation

Packet Loss Ratio: In WSNs, outage of the node which
leads to data loss will lead to a major drop in the performance
of the network; also, in general as the availability of data drops,
the Packet Loss Ratio (PLR) can be an important indicator of
the overall performance of the network. Mathematically, it is
defined as Eq. (19). The performance comparison is outlined
in Figure 1.

PLR =

Number of Packets Lost

X 100%

(19)

Total number of Packets Sent



It assists in quantifying the frequency at which packets do
not reach their destination. High PLR signifies poor network
condition, which is highly undesired from the perspective of
an loT-based system thriving on accurate as well as timely
transmission of data. The hybrid DL model that has been
proposed uses CNN to extract spatial features and BiLSTM to
learn temporal sequence. By learning how the network
behaves in the past as well as the spatial data from the sensor
that are available, the objective is to predict/ prevent the
packets loss events in a real-time manner.
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Figure 1. Packet loss ratio

Energy Consumption: Energy consumption is the very
important evaluation metric for the sensor network to enhance
the network lifetime. Indicating the power consumed, in
millijoules per node (mJ/node), this metric accounts for the
average power spent on transmitting, receiving, idle listening,
and computation. We extended NS-3's energy module to
include model computation costs incurred at the edge. The
performance comparison is outlined in Figure 2.

1.2 —@— GA based Routing
—&—AODV

1
0.8 random routing

' —&— CNN-BiLSTM
0.6
0.2

—
0
0 200 400 600 800 1000 1200

Figure 2. Energy consumption v/s Number of iterations

Throughput: An average successful data delivery rate,
measured in kilobits per second (kbps), through all of its nodes.
It is computed as Eq. (20). As outlined in Figure 3, the
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proposed CNN-BiLSTM model achieved a reduction in packet
loss of up to 52% (mean + SD: 3.7% = 0.4) and consistently
outperformed the baseline approaches. Trial results displayed
narrow error bars confirming that overall performance
remained stable despite changing network dynamics.

Total Successfully Received Data (bits)

Throughput = (20)

Simulation Time (s)

——DEDV

—m— AODV

100
a0 All-direction random

e 30 routing
E 70
m 60
5 30
E 40
20
10

100 200 300 400 500
NUMBEE. OF NODES

Figure 3. Throughput v/s Number of nodes

Latency: Latency in WSNs is defined as the average time
taken for a data packet to travel from the source sensor node
to its destination which is usually either a sink node or a central
server. It is computed using Eq. (21). Where N is the number
®

of packets successfully delivered, t .,

is the time the packet
i was transmitted, tﬁ?ceive is the time it was received at the

destination. Latency comparison is outlined in Figure 4.

L , .
Latencyqyy = N éil(tge)ceive - tsgtle)nd) (21)
100
90 ——GA based Routing
80 -
_ 70 ==—AOD}
g 60 ———=DSDV
s 5
= 40 A.ll-_directlon ¢
30
20
10
100 200 300 400 500

Number of Nodes
Figure 4. Latency v/s Number of nodes

In this study, the NS-3 simulation environment was used to
measure the latency, which allows for precise control and
realistic representation of network elements. By predicting
where transmissions will bottleneck and strategically routing
data, the hybrid CNN-BIiLSTM model indirectly reduces
latency by ensuring faster and more efficient routing decisions.
In the hybrid CNN-BiLSTM model, the amount of packets lost
was less than it was in conventional AODV routing and
standalone LSTM-based methods. There was also increased
energy efficiency due to reduced retransmissions. The results



show that the model can learn effective routing strategies from

historical data and adapt to changing network conditions.

Table 1. Performance comparison of hybrid model with based models

Model Accuracy Precision Recall F1-Score AUC-ROC Training Time (s/Epoch) Memory Usage (MB)
CNN-BILSTM 96.3% 94.8% 95.6% 95.2% 0.978 11.3 54
(Proposed)
LSTM Only 91.5% 89.2% 88.6% 88.9% 0.936 10.4 50
CNN Only 88.2% 85.4% 84.1% 84.7% 0.912 9.1 42
Random Forest 82.6% 78.5% 80.3% 79.4% 0.851 - -
SVM (RBF Kernel) 79.7% 75.9% 74.6% 75.2% 0.839 - -

4.3 Model level evaluation

The proposed hybrid model is evaluated to check its
performance using accuracy, precision, recall, F1-Score, and
AUC-ROC. Four baseline models were used to evaluate the
performance of the proposed CNN-BiLSTM hybrid model
using standard classification metrics, including accuracy,
precision, recall, Fl-score, and AUC-ROC. The results
demonstrate that compared to traditional models, the hybrid
architecture clearly has superior performance in predicting
packet loss in IoT-enabled WSNSs. This is primarily due to the
complementary nature of the components of the model CNN
layers learn spatial features from input from the sensor in an
efficient way, while the BiLSTM layers learn more complex
temporal dependencies. This allows the model to jointly gather
information relevant to packets on whether they will be
delivered or not. With the highest accuracy of 96.3%, CNN-
BiLSTM model showed promising results and its ability to
generalised well with different WSN configurations and
conditions.

The proposed model also surpasses other models in
precision and recall, achieving 94.8% and 95.6%, respectively.
This balance indicates that the model is identifying true
positives well packets predicted as successful that are indeed
successful and is also reducing false positives i.e., predicting
success when there is actually loss. The F1-score was 95.2%,
a clear indication of the stability and reliability of our model
on detection and classification tasks. Also, the AUC-ROC
score of 0.978, wherein the CNN-BiLSTM classifies the
packets as either being lost or delivered across all threshold
values, indicates excellent representation of the two classes.
The high AUC value confirms that regardless of the operating
conditions, the model exhibits excellent discrimination power.

The model built only using LSTMs attained 91.5% accuracy
but had marginally lower precision and recall scores 89.2%
and 88.6% respectively. It means that while it can fit temporal
features and it misses the spatial correlation captured by the
convolutional neural network part. The model that used only
CNN fell further behind with an 88.2% accuracy and less F1-
score because traditional CNN does not learn sequential
dependencies which are prevalent in WSN environments. The
traditional ML methods like Random Forest and SVM with an
RBF kernel achieved the worst results as they achieved
accuracies of 82.6% and 79.7%, respectively. Their lower
AUC-ROC scores 0.851 and 0.839 highlight the superiority of
using DL based sequential models in dealing with complicated
real-time WSN data as shown in Table 1.

Results indicate that the combined hybrid model achieves
both high predictive accuracy and also plays an on-the-level
role in network advancements. The spatial information
extracted by CNN layers significantly supplements the
learning of temporal sequence in BILSTM layers, allowing the
system to effectively learn complex dependencies in packet
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delivery patterns. Its generalizability is underscored by its
robustness over different topologies, densities and
transmission rates. This predictive paradigm forms a core part
of a reactive mechanism that, when compared against
traditional approaches in WSN routing protocols, represents a
data-driven forward-looking approach in direct line with the
redesigned paradigms of intelligent IoT systems.

5. CONCLUSION

This paper presented a hybrid CNN-BiLSTM model for
minimizing packet loss in loT-enabled WSNs. The
combination of spatial and temporal learning enabled more
robust predictions and routing decisions. Future work will
focus on deploying this model on edge devices and testing in
real-world IoT applications with dynamic mobility and
environmental  factors. This research presents a
comprehensive DL-based approach for minimizing packet loss
in IoT-enabled WSN through a hybrid CNN-BiLSTM
architecture. By integrating CNN for spatial feature extraction
with bidirectional LSTM for capturing temporal dependencies
in transmission behavior, the proposed model demonstrates a
significant improvement in predictive accuracy and network-
level efficiency compared to traditional models and standalone
neural architectures.

Experimental evaluations conducted using a custom
simulation environment combining Python, TensorFlow, and
NS-3 confirmed the robustness of the model across diverse
WSN topologies, node densities, and transmission rates.
Notably, the hybrid model achieved a packet loss ratio
reduction of up to 52% and improved network throughput by
18.7%, while maintaining energy efficiency suitable for
constrained IoT environments Although the proposed CNN-
BiLSTM model achieves a significant reduction in terms of
packet loss and energy efficiency, there are still some
limitations. The first limitation is that the performance of the
model has not been evaluated on ultra-dense WSN
deployments (i.e., >500 nodes) due to the simulation. The
second limitation is that although the model itself is
lightweight, real-time inference capabilities on ultra-low-
power microcontrollers (e.g., MSP430/ATmega328) has yet to
be tested. Future work will include optimizing the model for
embedded deployment, validating the model performance on
real-world IoT testbeds, and extending the study to dynamic
routing environments in the presence of mobile nodes.
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