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Sensors embedded in Wireless Sensor Networks (WSNs) form a foundation in the Internet 

of Things (IoT) architecture. Nonetheless, packet loss caused by unreliable communication, 

interference, and energy limitations continues to be a major issue. In this paper, we propose 

a Convolutional Neural Networks and Bidirectional Long Short Term Memory 

(CNN-BiLSTM) combined Deep Learning (DL) approach for packet loss minimization in 

IoT based WSNs. Our model uniquely integrates CNN to capture spatial features with a 

BiLSTM to capture temporal dependencies, allowing for more accurate inherent prediction 

of packet loss and intelligent routing in IoT-enabled WSNs. This hybrid design allows for 

the proposed model to outperform independent deep learning models and traditional routing 

protocols in both prediction accuracy and performance at the network level. Given the 

traditional models such as AODV and independent LSTM/CNN approaches. Proposed 

model has a packet loss reduction of 52%, an overall throughput improvement of 18.7%, 

and maintained low latency and energy consumption, contributing to the overall success of 

routing decisions in practical WSN scenarios. This makes the proposed hybrid model is 

highly suitable for the implementation in the real-time applications. 
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1. INTRODUCTION

A WSN forms the backbone of the IoT, changing the way 

devices interact with each other. This will be set up as a part 

of generation, where this is the third generation of IoT, where 

everything will be connected to the cloud at real time, together 

with the database which will be used to collect and monitor 

different things at real time, such as is done in healthcare, 

agriculture and industrial automation. In spite of their utility, 

WSNs are affected by limited energy resources, unreliable 

links, and data congestion that cause a lot of packet loss. 

Packet loss should be avoided as much as possible, since it can 

result in the loss of data during transmission. Deep learning 

methods have achieved incredible performance on complex, 

nonlinear data in the last few years. We introduce a hybrid 

Convolutional Neural Networks and Bidirectional Long Short 

Term Memory (CNN-BiLSTM) model that learns both the 

spatial and temporal features of WSN data for packet loss 

prevention which help proactive approach for network 

management. 

Ever since the advent of the Internet of Things (IoT), WSNs 

have seen an exponential growth in the deployment over the 

years in various sectors like environmental monitoring, 

healthcare, smart agriculture, industrial automation etc. These 

networks consist of spatially distributed sensor nodes that 

cooperatively monitor physical or environmental conditions 

and aggregate data to send to central hubs for processing and 

analysis. Said et al. [1] have discussed the benefits and utility 

of WSNs are expanding, in effect, their packet loss rates 

remain high due to limited energy constraints, volatile 

communication links, and dynamic network topologies. 

Especially in mission-critical environments, minimizing 

packet loss is crucial for the reliability and accuracy of IoT-

based systems. Standard protocols like AODV and DSR do not 

adapt well in frequency in node behavior and network load 

causing deterioration in performance [2]. In this context, 

Machine Learning (ML)-based approaches have been 

proposed, as they allow for strategies for routing and 

transmission to be dynamically adapted in light of historical 

data behavioral patterns. Nevertheless, these models struggle 

to accurately identify spatial and temporal dependencies 

present in WSN data streams [3]. 

Recently, DL methods have become appealing alternatives 

for optimizing networks because they outperform other 

approaches in modeling complex, nonlinear relations. CNNs 

have been extensively applied for spatial feature extraction on 
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structured data, whereas LSTM networks and their variants, 

especially BiLSTM, are very effective in learning sequential 

dependencies [4]. In other domains, hybrid approaches 

consisting of CNNs and BiLSTMs have been proven 

successful when applied to traffic prediction or anomaly 

detection, yet, to our knowledge, this approach has not been 

tested to minimize packet loss in WSNs [5]. In this paper, we 

propose a hybrid DL architecture based on the combination of 

CNN and BiLSTM layers which is used to predict and smartly 

reduce packet loss in IoT-enabled WSNs. The use of sensor 

network data would allow the model to utilize both spatial and 

temporal features to find optimal routing decisions, thus 

improving network reliability. Results show substantial 

benefits when compared to state-of-the-art methods in packet 

delivery ratio, energy efficiency and throughput. 

Few previous studies had applied either CNNs for spatial 

feature representation, or LSTMs/BiLSTMs for temporal 

representational purposes, and none of them implemented a 

joint optimization process that incorporated both spatial and 

temporal features to be able to predict packet loss within 

WSNs. Additionally, the models described above do not take 

into account the deployment constraints imposed by energy-

constrained IoT devices, limiting the possibility of developing 

a lightweight and strong predictive system for practical real 

world environments. 

The paper is structured as follows. Section 2 presents a 

complete review of the state-of-the-art in IoT energy 

efficiency and packet loss and a summary of some of the most 

relevant works and a description of pre-existing approaches to 

address attacks in the IoT space. Section 3 explains the 

proposed model in depth with mathematical model and 

pseudocode. Section 4 provides the experimental evaluation of 

the proposed detection scheme and displays the results with a 

complete comparative discussion between proposed model 

and other related researches conducted. Finally, we conclude 

proposed work results and provide future perspectives in 

Section 5 followed by references section. 

 

 

2. RELATED WORK 

 

DL has recently demonstrated considerable promise in 

increasing data accuracy and managing traffic within IoT-

based WSNs. Zhang et al. [6] presented a DL for IoT devices 

data processing. Similarly, Inayat et al. [7] discussed hybrid 

DL models focused on IoT security, indicating their ability to 

improve data transmission reliability. Jing et al. [8] conducted 

an extensive literature review where the various ML 

techniques applied for resource management of cellular and 

IoT networks are classified, noting that DL-based traffic 

prediction is the leading solution to reduce the loss of packets. 

Ullah et al. [9] launched a review of AI associated data 

transport in IOT, where they claim that hybrid DL models 

(CNN-LSTMs) are more effective than conventional 

techniques in applications where loss is a major concern. 

Wang et al. [10] reviewed DL applications in IoT and pointed 

out that in network traffic, CNNs capture local patterns, which 

are important for minimizing loss. Such a framework can 

target specifically packet loss in WSNs that using CNNs 

provides better accuracy in predicting packet loss than 

traditional statistical models [11]. 

In order to introduce temporal dependencies in IoT traffic, 

BiLSTM networks have been combined with CNNs. Omarov 

et al. [12] used BiLSTM to classify multi-class IoT traffic, 

showing that BiLSTM outperforms vanilla LSTMs at 

processing sequential data. Data collection and transmission is 

another area in WSNs where DL has been introduced due to 

the importance of energy efficiency. Yuan et al. [13] used a 

deep reinforcement learning (DRL) based model for energy-

efficient data aggregation in WSNs that decreases the number 

of packets loss at the same time as extending network lifetime. 

Their experiment shows that collisions and retransmissions 

could be reduced by a sufficiently intelligent schedule. 

Bauyrzhan Omarov et al. [14] made significant progress by 

proposing a hybrid CNN-BiLSTM model for anomaly 

detection in IoT that indirectly helps to mitigate packet loss by 

detecting faulty transmissions. 

Hybrid CNN-BiLSTM models have been leveraged in the 

context of packet loss in the IoT networks by several authors 

in recent studies. Rajalakshmi et al. [15] presented a CNN-

LSTM model in this system to minimize latency and loss in 

industrial IoT and stimulate traffic forecast. Latif et al. [16] 

introduced a DL-based reliability framework for Industrial 

Internet of Things (IIoT) applications in which real-time fault 

detection is further utilized to prevent data loss in mission-

critical applications. López-Ardao et al. [17] proposed a DL-

based system for packet loss recovery in WSNs, and attained 

better results with CNN-BiLSTM hybrids than with 

standalone models in noisy conditions. These works 

emphasize the promise of hybrid models while leaving 

opportunities to better optimize WSNs with energy constraints. 

Evolving ML and DL has played a major role in reducing 

the packet loss in the IoT based WSNs. Ullah Khan et al. [18] 

proposed a novel routing mechanism that utilizes ML to 

dynamically update routing paths in IoT networks. This 

approach reported a packet loss of 30%, which is a significant 

reduction compared to static routing protocols. In their study, 

they emphasise the necessity of keeping routing decisions 

intelligent in context to the network congested IoT 

environments. Similarly, Elsayem et al. [19] proposed a 

reinforcement learning (RL)-based method for dynamic 

resource allocation. Raman [20] focused on optimizing 

bandwidth and transmission power to reduce packet drops 

associated with real-time IoT traffic. Their network 

framework performed at a higher level with varying network 

conditions. The spatial feature extraction is realized through 

CNNs in WSNs. Hong et al. [21] showed the effectiveness of 

CNNs particular for UAV-based sensor networks: CNNs are 

shown to improve routing efficiency by capturing spatial-

temporal data correlation. 

Altunay and Albayrak [22] integrated CNNs and long-short 

term memory (LSTM) networks for real-time edge analytics 

in intelligent transportation systems, demonstrating enhanced 

robustness for dynamic environments. Sadhwani et al. [23] re-

engineered a replicable architecture for data intrusion 

detection to guarantee continuity and security of data flow. 

Additionally, Dritsas and Trigka [24] addressed federated 

learning (FL) for distributed IoT networks, where they 

concluded that decentralized training may improve prediction 

accuracy with lower communication overhead, which is an 

essential contribution to reducing packet losses in large-scale 

WSNs. 

For proactive packet loss mitigation, accurate real-time 

traffic forecasting is a prerequisite. Ghosh et al. [25] proposed 

a hybrid CNN-LSTM model for traffic prediction in IoT 

systems, providing a 25% enhancement in loss avoidance over 

individual models. The latter is successful in modeling spatial 

(CNN) and temporal (LSTM) dependencies of network traffic. 
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Meanwhile, Rajawat et al. [26] analyzed quantum-augmented 

ML tailored for IoT security, proposing that quantum neural 

networks (QNNs) may create a paradigm shift in loss-resistant 

communication for future WSNs. Kaur and Gupta [27] 

expanded this research line by integrating both AI and 6G-IoT 

in their framework to ensure secure and reliable data 

transmission through adaptive encryption and attack 

prediction. Xu et al. [28] recently improved latency-sensitive 

IoT applications with edge intelligence, resulting in DL 

inference on a given localized IoT device, which considerably 

reduced the remote dependency leading to packet loss. Packet 

loss in IoT networks is also caused by security-related 

disruptions. 

Recent advancements in Transformer architectures and 

quantum ML (QML) are changing the paradigm of IoT 

reliability. Tseng et al. [29] demonstrated the use of 

Transformer architectures for IoT data analytics, achieving 

state-of-the-art sequence modeling in traffic prediction. 

Ahanger et al. [30] conducted a survey on DL for anomaly 

detection, indicating that AI-driven intrusion detection 

systems (IDS) are capable of blocking harmful packet drops. 

Although early approaches have advanced ML-enabled 

routing, real-time prediction, and security, most methods fall 

into one of three categories: 

• Be pre-trained on CNNs or LSTMs only. 

• Ignore energy constraints in WSNs in the DL model 

deployment. 

• Traditional modeling approaches do not have 

mechanisms to adapt to the dynamic nature of IoT 

environments. 

Although previous studies investigated DL for IoT 

reliability, the major of these studies consider CNN or 

BiLSTM spatial or temporal features only. Very few discuss 

the joint optimization of both aimed at reducing packet loss in 

resource-constrained WSNs. Our work bridges this gap by: 

• A lightweight hybrid CNN-BiLSTM model for low-

power WSNs is proposed. 

• Incorporating real-time traffic prediction with adaptive 

routing to avoid loss of packets. 

• Navigate performance locked under different network 

congestion. 

 

 

3. PROPOSED METHOD 

 

We propose a hybrid AI model to perform this task by 

combining Convolutional Neural Network (CNN) with 

Bidirectional Long Short-Term Memory (BiLSTM) network 

in order to reduce packet loss in IoT-enabled WSNs. The CNN 

is used for extracting spatial features from the structured 

sensor data, while the BiLSTM is used for modeling temporal 

dependencies over packet data stored in the time sequence. 

The architecture of this system presents five stages, namely 

Data acquisition from sensors, Preprocessing and reshaping 

into 2D matrices of data, Feature extraction via CNN, 

Sequence learning via BiLSTM, and Output classification 

indicating packet delivery success or failure. The output that 

this model provides is end-to-end trainable, which means that 

its implementation is adaptable to different use cases such as 

changing load on the network, interference, or node failures. 

The algorithm we propose, termed Hybrid CNN_BiLSTM 

for Packet Loss Prediction, first takes as an input time series 

of sensor data S={s1, s2, ..., sn} collected from different IoT 

nodes for a certain period of time in a wireless sensor network. 

The performance of the algorithm is fundamentally to mine 

this spatiotemporal data and predict if a packet will be lost 

during transmission. This produces a binary output 0 for no 

packet loss and 1 for predicted packet loss. Let the raw sensor 

data at time step t from N nodes be denoted as a multivariate 

time series in Eq. (1). 

 

Xt = [xt
1 , xt

2, … , xt
N]T ∈  ℝN (1) 

 

To feed it into a CNN, the data is reshaped into a 2D matrix 

X ∈ ℝ{m × n}, where m × n = N, to simulate spatial structure. 

Data Preprocessing: This is the first stage of the Algorithm. 

Normalize all sensor values to a common scale since it is 

important for stable and fast convergence during training of 

the model as shown in Eq. (2).  

 

𝑥𝐼̈ =
𝑥𝑖−𝜇

𝜎
  (2) 

 

The data is reshaped into 2D matrices 𝑙𝜖𝑅𝐻𝑋𝑊, where the 

rows generally indicate time steps, and the columns hold 

readings from various sensors or node features. The datasets is 

then split into training and test datasets after reshaping so that 

the model can learn with one subset and test its predictions 

with the other. 

As given below in the CNN module, every reshaped 2D 

matrix from the training data is fed into a consecutive series of 

convolutional layers. Then, with the final model, utilize 

convolutional layers to highlight surroundings changes, faults, 

or interferences. This will also use ReLU (Rectified Linear 

Unit) activation to add non-linearity and then followed max-

pooling to down-sample the feature maps, retaining the most 

important features. A final flattened one-dimensional feature 

vector that contains a lot of spatial information is then 

generated as the output of the CNN block as shown in Eq. (3). 

 

F{i,j}
(𝑙) =  σ (∑ ∑ W{a,b}

(l)𝑘−1
b=0

𝑘−1
𝑎=0 ·  X{i+a,j+b}

(𝑙−1)
+ b(𝑙))  (3) 

 

Here, F{I,j}
(𝑙)

 is an output feature map at position (i,j) in layer 

l, W{a,b}
(l)

 is a learnable kernel weights, σ is an activation 

function i.e. ReLU: σ(x) = max(0, x), b(𝑙) is a bias term and k 

is a kernel size. The pooling operation is used here is max 

pooling that reduces dimensionality as shown in Eq. (4). 

 

P{i,j} = max
{(a,b)∈ window}

F{i+a,j+b} (4) 

 

The second step is a BiLSTM module, which is aimed to 

learn temporal dependencies from the sequential feature data. 

The output features of the CNN are reshaped into a time-series 

this is suitable for LSTM processing. We make the assumption 

that the input data is sequential, meaning that the data that we 

feed into LSTMs have a time relation or dependency. At each 

time step, the forward and backward hidden states are 

concatenated to achieve a complete temporal feature 

representation as shown in Eqs. (5)-(11). 

 

ht = LSTMf(ft,ht−1 ⃖         ) (5) 

 

𝑓𝑡 =  𝜎(𝑊𝑓 ·  [ℎ{𝑡−1}, 𝑥𝑡] + 𝑏𝑓) (6) 

 

𝑖𝑡 =  𝜎(𝑊𝑖 ·  [ℎ{𝑡−1}, 𝑥𝑡] + 𝑏𝑖) (7) 

𝑜𝑡 =  𝜎(𝑊𝑜 ·  [ℎ{𝑡−1}, 𝑥𝑡] + 𝑏𝑜) (8) 
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𝑐̃𝑡 = tanh(𝑊𝑐 ·  [ℎ{𝑡−1}, 𝑥𝑡] +  𝑏𝑐) (9) 

 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐{𝑡−1} + 𝑖𝑡 ⊙ 𝑐̃𝑡 (10) 

 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) (11) 

 

Eq. (12) shows the backward LSTM working procedure in 

reverse: 

 

ht = LSTMb(ftht+1 ⃖          )  (12) 

 

Eq. (13) shows the BiLSTM output at time t with forward 

pass ht
    and backward pass ht

 ⃖ . 
 

ht = [ht
    ; ht

 ⃖  ] ∈  ℝ{2d} (13) 

 

These temporal features are then fed forward through a 

dense output layer forming the classification unit. The output 

is then mapped to probability (0, 1) using sigmoid activation 

function. This value indicates the probability of packet loss for 

the current input sample. If its output value is equal to or 

exceeds 0.5, this output is labelled as packet loss (label = 1); 

else this output is labelled as successful transmission (label = 

0). The final hidden state hT (concatenated forward and 

backward states) is fed into a fully connected layer, sigmoid 

function for binary classification, softmax layer for multilayer 

classification and cross entropy in Eqs. (14)-(17) respectively. 

 

𝑧 =  𝑊𝑜ℎ𝑇 + 𝑏𝑜 (14) 

 

ŷ =  σ(z) =  
1

(1 + e{−z})
  (15) 

 

ŷ𝑖 =
𝑒{𝑧𝑖}

∑ 𝑒
{𝑧𝑗}

𝑗

, 𝑓𝑜𝑟 𝑖 =  1, … , 𝐶  (16) 

 

LCCE = − ∑ yi log(ŷi)
C
{i=1}   (17) 

 

Eq. (18) shows the model is trained using Adam optimizer 

to minimize loss with θ for all learnable parameters of CNN, 

BiLSTM, and output layer, and η as the learning rate. 

 

θ ←  θ −  η ·  ∇θL (18) 

 

The final output of the algorithm are the predicted labels for 

the test dataset. The predicted status can then be used to notify 

the network controller to take proactive remedial actions, such 

as rerouting, transmission power adjustment, etc. to reduce 

packet loss in real-time. In summary, the goal of this hybrid 

model is to combine the intelligent extraction of spatial 

patterns with temporal sequence modeling, providing an 

effective approach for real-time, data-driven packet loss 

prediction in complex IoT-enabled WSN environments. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Simulation environment 

 

A series of experiments were conducted to evaluate the 

performance of the proposed Hybrid CNN-BiLSTM in terms 

of predicting and reducing packet drops in IoT-enabled WSNs 

on the overall (on-model) packet drops. These experiments 

were performed in a custom simulation environment built in 

Python, utilizing Tensorflow for model implementation and 

NS-3 (Network Simulator 3) for communication protocols and 

network simulation for WSN. All the tools together enabled an 

accurate model of both, the learning process, and the WSNs 

physical-layer dynamics. 

NS-3 simulator is used to simulate realistic WSN scenarios 

like mobility of nodes, packet transmission, routing protocols 

(AODV, DSDV, etc.), impacts of interference, range of 

communication, etc. Important parameters for an actual WSN, 

namely node transmission power, buffer size, link failure 

probability, and congestion behavior, were configured 

accordingly in the simulation. Python bindings and trace file 

parsing were used to integrate with Python–NS-3, which 

facilitates real-time data feed into TensorFlow-based hybrid 

model for learning and inference. The CNN-BiLSTM The 

model was implemented using TensorFlow 2 using Keras 

APIs. Model was trained on a dataset which has been obtained 

from NS-3 trace logs with packet delivery time, RSSI, buffer 

occupancy, hop count, and transmission delay features. 

Training Data and Setup Training was performed on a CUDA-

compatible system equipped with an NVIDIA RTX 3080 GPU, 

which facilitated the processing of large-scale datasets and 

deep network parameters. 

In this work, a Synthetic dataset was being generated, to 

reflect various WSN layouts and situations that cover a wide 

range of environmental and operational aspects. The dataset 

included different node densities 100, 150, 200, 300, 400, and 

500 nodes emulating various deployment scales. Furthermore, 

various network topologies, such as star, grid, tree, and 

random node distributions were simulated for robustness 

against different structural configurations. For evaluating the 

performance in the scenarios where the nodes are static and 

mobile, so mobility patterns were defined to cover both node 

scenarios, while the transmission rates varied between 50 kbps 

and 500 kbps, considering other data traffic intensities. For 

generating realistic traffic behavior, a Poisson distribution was 

used to model the packet inter-arrival times, resulting in 

stochastic but representative communication behaviors. 

For each of the simulated network scenarios, the simulation 

lasted 1000 seconds, during which key features, including 

signal strength, distance between nodes, congestion levels, and 

routing paths were monitored at regular intervals. At the same 

time, packet loss events were logged as the labelled outputs, 

creating a supervised learning paradigm for the model. The 

output dataset formed more than 100K labelled samples and 

was divided into training, validation and test sets. This large 

dataset allowed for comprehensive testing of the proposed 

hybrid CNN-BiLSTM model performance ensuring its 

generalization across a diverse set of network conditions and 

improving its prediction capability for real-world deployments 

of wireless sensor networks. 

 

4.2 Network level evaluation 

 

Packet Loss Ratio: In WSNs, outage of the node which 

leads to data loss will lead to a major drop in the performance 

of the network; also, in general as the availability of data drops, 

the Packet Loss Ratio (PLR) can be an important indicator of 

the overall performance of the network. Mathematically, it is 

defined as Eq. (19). The performance comparison is outlined 

in Figure 1. 

𝑃𝐿𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝐿𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡 
𝑋 100%  (19) 
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It assists in quantifying the frequency at which packets do 

not reach their destination. High PLR signifies poor network 

condition, which is highly undesired from the perspective of 

an IoT-based system thriving on accurate as well as timely 

transmission of data. The hybrid DL model that has been 

proposed uses CNN to extract spatial features and BiLSTM to 

learn temporal sequence. By learning how the network 

behaves in the past as well as the spatial data from the sensor 

that are available, the objective is to predict/ prevent the 

packets loss events in a real-time manner. 

 

 
 

Figure 1. Packet loss ratio 

 

Energy Consumption: Energy consumption is the very 

important evaluation metric for the sensor network to enhance 

the network lifetime. Indicating the power consumed, in 

millijoules per node (mJ/node), this metric accounts for the 

average power spent on transmitting, receiving, idle listening, 

and computation. We extended NS-3's energy module to 

include model computation costs incurred at the edge. The 

performance comparison is outlined in Figure 2. 

 

 
 

Figure 2. Energy consumption v/s Number of iterations 

 

Throughput: An average successful data delivery rate, 

measured in kilobits per second (kbps), through all of its nodes. 

It is computed as Eq. (20). As outlined in Figure 3, the 

proposed CNN-BiLSTM model achieved a reduction in packet 

loss of up to 52% (mean ± SD: 3.7% ± 0.4) and consistently 

outperformed the baseline approaches. Trial results displayed 

narrow error bars confirming that overall performance 

remained stable despite changing network dynamics. 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
Total Successfully Received Data (bits)

Simulation Time (s)
  (20) 

 

  
 

Figure 3. Throughput v/s Number of nodes 

 

Latency: Latency in WSNs is defined as the average time 

taken for a data packet to travel from the source sensor node 

to its destination which is usually either a sink node or a central 

server. It is computed using Eq. (21). Where N is the number 

of packets successfully delivered, 𝑡𝑠𝑒𝑛𝑑
(𝑖)

 is the time the packet 

i was transmitted, 𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒
(𝑖)

 is the time it was received at the 

destination. Latency comparison is outlined in Figure 4. 

 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑎𝑣𝑔 =
1

𝑁
∑ (𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

(𝑖)𝑁
𝑖=1 − 𝑡𝑠𝑒𝑛𝑑

(𝑖) )  (21) 

 

 
 

Figure 4. Latency v/s Number of nodes 

 

In this study, the NS-3 simulation environment was used to 

measure the latency, which allows for precise control and 

realistic representation of network elements. By predicting 

where transmissions will bottleneck and strategically routing 

data, the hybrid CNN-BiLSTM model indirectly reduces 

latency by ensuring faster and more efficient routing decisions. 

In the hybrid CNN-BiLSTM model, the amount of packets lost 

was less than it was in conventional AODV routing and 

standalone LSTM-based methods. There was also increased 

energy efficiency due to reduced retransmissions. The results 
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show that the model can learn effective routing strategies from historical data and adapt to changing network conditions. 

 

Table 1. Performance comparison of hybrid model with based models 

 
Model Accuracy Precision Recall F1-Score AUC-ROC Training Time (s/Epoch) Memory Usage (MB) 

CNN-BiLSTM 

(Proposed) 
96.3% 94.8% 95.6% 95.2% 0.978 11.3 54 

LSTM Only 91.5% 89.2% 88.6% 88.9% 0.936 10.4 50 

CNN Only 88.2% 85.4% 84.1% 84.7% 0.912 9.1 42 

Random Forest 82.6% 78.5% 80.3% 79.4% 0.851 - - 

SVM (RBF Kernel) 79.7% 75.9% 74.6% 75.2% 0.839 - - 

4.3 Model level evaluation  

 

The proposed hybrid model is evaluated to check its 

performance using accuracy, precision, recall, F1-Score, and 

AUC-ROC. Four baseline models were used to evaluate the 

performance of the proposed CNN-BiLSTM hybrid model 

using standard classification metrics, including accuracy, 

precision, recall, F1-score, and AUC-ROC. The results 

demonstrate that compared to traditional models, the hybrid 

architecture clearly has superior performance in predicting 

packet loss in IoT-enabled WSNs. This is primarily due to the 

complementary nature of the components of the model CNN 

layers learn spatial features from input from the sensor in an 

efficient way, while the BiLSTM layers learn more complex 

temporal dependencies. This allows the model to jointly gather 

information relevant to packets on whether they will be 

delivered or not. With the highest accuracy of 96.3%, CNN-

BiLSTM model showed promising results and its ability to 

generalised well with different WSN configurations and 

conditions.  

The proposed model also surpasses other models in 

precision and recall, achieving 94.8% and 95.6%, respectively. 

This balance indicates that the model is identifying true 

positives well packets predicted as successful that are indeed 

successful and is also reducing false positives i.e., predicting 

success when there is actually loss. The F1-score was 95.2%, 

a clear indication of the stability and reliability of our model 

on detection and classification tasks. Also, the AUC-ROC 

score of 0.978, wherein the CNN-BiLSTM classifies the 

packets as either being lost or delivered across all threshold 

values, indicates excellent representation of the two classes. 

The high AUC value confirms that regardless of the operating 

conditions, the model exhibits excellent discrimination power. 

The model built only using LSTMs attained 91.5% accuracy 

but had marginally lower precision and recall scores 89.2% 

and 88.6% respectively. It means that while it can fit temporal 

features and it misses the spatial correlation captured by the 

convolutional neural network part. The model that used only 

CNN fell further behind with an 88.2% accuracy and less F1- 

score because traditional CNN does not learn sequential 

dependencies which are prevalent in WSN environments. The 

traditional ML methods like Random Forest and SVM with an 

RBF kernel achieved the worst results as they achieved 

accuracies of 82.6% and 79.7%, respectively. Their lower 

AUC-ROC scores 0.851 and 0.839 highlight the superiority of 

using DL based sequential models in dealing with complicated 

real-time WSN data as shown in Table 1. 

Results indicate that the combined hybrid model achieves 

both high predictive accuracy and also plays an on-the-level 

role in network advancements. The spatial information 

extracted by CNN layers significantly supplements the 

learning of temporal sequence in BiLSTM layers, allowing the 

system to effectively learn complex dependencies in packet 

delivery patterns. Its generalizability is underscored by its 

robustness over different topologies, densities and 

transmission rates. This predictive paradigm forms a core part 

of a reactive mechanism that, when compared against 

traditional approaches in WSN routing protocols, represents a 

data-driven forward-looking approach in direct line with the 

redesigned paradigms of intelligent IoT systems. 

 

 

5. CONCLUSION 

 

This paper presented a hybrid CNN-BiLSTM model for 

minimizing packet loss in IoT-enabled WSNs. The 

combination of spatial and temporal learning enabled more 

robust predictions and routing decisions. Future work will 

focus on deploying this model on edge devices and testing in 

real-world IoT applications with dynamic mobility and 

environmental factors. This research presents a 

comprehensive DL-based approach for minimizing packet loss 

in IoT-enabled WSN through a hybrid CNN-BiLSTM 

architecture. By integrating CNN for spatial feature extraction 

with bidirectional LSTM for capturing temporal dependencies 

in transmission behavior, the proposed model demonstrates a 

significant improvement in predictive accuracy and network-

level efficiency compared to traditional models and standalone 

neural architectures. 

Experimental evaluations conducted using a custom 

simulation environment combining Python, TensorFlow, and 

NS-3 confirmed the robustness of the model across diverse 

WSN topologies, node densities, and transmission rates. 

Notably, the hybrid model achieved a packet loss ratio 

reduction of up to 52% and improved network throughput by 

18.7%, while maintaining energy efficiency suitable for 

constrained IoT environments Although the proposed CNN-

BiLSTM model achieves a significant reduction in terms of 

packet loss and energy efficiency, there are still some 

limitations. The first limitation is that the performance of the 

model has not been evaluated on ultra-dense WSN 

deployments (i.e., >500 nodes) due to the simulation. The 

second limitation is that although the model itself is 

lightweight, real-time inference capabilities on ultra-low-

power microcontrollers (e.g., MSP430/ATmega328) has yet to 

be tested. Future work will include optimizing the model for 

embedded deployment, validating the model performance on 

real-world IoT testbeds, and extending the study to dynamic 

routing environments in the presence of mobile nodes. 
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