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The imbalance and irrelevant or redundant features often hinder the performance of accurate 

prediction models. This can aid healthcare professionals in the early detection and 

intervention of heart failure (HF). HF is a critical cardiovascular condition that poses a 

significant risk to human health, frequently resulting in high mortality rates if not diagnosed 

and managed early. In this paper, we propose an enhanced prediction approach for HF 

survivors based on a hybrid model (hybrid HF) that integrates feature selection techniques 

with the resampling technique—synthetic minority oversampling technique combined with 

edited nearest neighbors (SMOTEENN). SMOTEENN effectively addresses the class 

imbalance problem by synthesizing new minority class instances and improving noisy 

samples after selecting the most relevant features from the data, thereby enhancing the 

quality of the training data. Additionally, applied feature selection to identify the most 

relevant predictors, reducing model complexity and enhancing interpretability. 

Experimental results demonstrate that our hybrid HF model outperforms existing methods 

by uniquely integrating SMOTEENN with feature selection to achieve 0.9315 accuracy in 

predicting a heart patient’s survival, improving model accuracy by 8% compared to the 

baseline methods for the RF algorithm. Finally, improving classification, sensitivity, and 

overall model robustness compared to the baseline method. 
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1. INTRODUCTION

Heart failure (HF), also known as congestive heart failure 

(CHF), is a chronic condition in which the heart cannot pump 

blood effectively to meet the body’s needs [1]. To prevent 

cardiovascular disease (CVD), it is essential to recognize that 

it is caused by multiple contributing factors, including 

excessive blood pressure, cholesterol, irregular pulse rate, and 

others; distinguishing between heart disease and CVD can be 

challenging [2]. Numerous approaches have been investigated 

by researchers to anticipate heart illnesses; however, early 

disease prediction is ineffective for a variety of reasons, such 

as approach complexity, execution time, and accuracy [3, 4]. 

Therefore, several lives can be saved by appropriate diagnosis 

and treatment [5].  

Many data-driven and method-driven challenges frequently 

confront machine learning (ML) [6]. On the other hand, it is 

characterized by its robustness and reliability in real-world 

settings, such as patient self-assessment or as an aid for clinical 

support and decision-making [7].  

The main challenge in predicting critical cases or survivors 

of heart failure is the imbalance in data and the bias of most 

models toward the majority class [8]. This underrepresented 

dataset, particularly relevant in classification issues. ENN 

stands for Edited Nearest Neighbors, while SMOTE stands for 

Synthetic Minority Over-sampling Technique [9]. By 

interpolating between current minority samples and their 

closest neighbors, SMOTE creates artificial examples of the 

minority class. ENN reduces noise and borderline examples by 

eliminating examples that are incorrectly classified by their k-

nearest neighbors [10].  

Ensemble methods significantly improve the performance 

of conventional ML classifiers when applied to class 

imbalance techniques, and ensemble ML classifiers to predict 

HF [11]. Noting a set of benefits of medical dataset balancing 

[12-15]: 

Keeping the distribution of classes balanced and assisting 

models in discovering patterns associated with both outcomes 

(survival or death). 

By balancing the data, the minority class's models perform 

better and can produce more accurate forecasts. 

1. For the minority class, which is frequently the more

clinically significant class in healthcare settings,

balancing improves memory, precision, F1-score, and

Accuracy.

2. Improves the model capacity to identify patients who are

danger of dying by lowering bias toward the majority

class and assisting in treating both classes more fairly.

3. Improves generalization instead of memorization of

particular instance. Because it offers a wider variety of

training samples, this is particularly useful for small

dataset.

4. Prevents customization by generating new synthetic

instances based on interpolation. As opposed to simple
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oversampling. 

This paper highlights a critical research hiatus in developing 

an integrated, clinically viable framework that balances data 

enhancement and feature reduction for more accurate and 

practical HF survival predication. Several studies have 

explored the use of either SMOTE for class imbalance 

correction or feature selection techniques or enhance model 

interpretability and performance [16-18]. Moreover, existing 

methods often neglect clinical constraints such as data sparsity, 

limited feature availability, and the need for explainable 

outcomes in medical decision-making [19-21]. 

Most existing studies apply these techniques sequentially 

without optimizing their interaction, potentially leading to 

overfitting, information leakage, or suboptimal feature 

relevance [22]. This lack of a unified, clinically aware 

framework restricts the development of robust and 

generalizable models for HF survival under real-word clinical 

constrain. 

This paper, we propose a novel hybrid model (hybrid HF) 

that combines feature selection MLs and an imbalance 

technique (SMOTEENN) to enhance predictive data from the 

training dataset, and then trains the model to obtain the best 

accuracy for disease survivors. The paper demonstrate that 

ensemble methods are becoming increasingly state-of-the-art 

solutions for addressing multiple challenges encountered with 

ML algorithms, including overfitting, computational intensity, 

underfitting, and representation. 

This hybrid model objectives to enhancing predictive model 

performance, lessening overfitting, and better feature selection 

strategies, addressing the class imbalance, and ensuring that 

only the most pertinent features are used for model training. 

As a result, achieving more balanced and effective ML results 

from this model's efficient handling of both class imbalance 

and irrelevant features [23].  

To demonstrate its effectiveness, we employ nine ML 

models: Random Forest (RF), Extra Tree Classifier (ETC), 

Extreme Gradient Boosting (XGBoost), Gaussian Naive 

Bayes classifier (G-NB), Decision Tree (DT), Logistic 

Regression (LR), Gradient Boosting classifier (GBM), K-

nearest neighbor (KNN), and Support Vector Machine (SVM) 

[11, 24, 25]. 
 

 

2. RELATED WORKS  
 

In this section, review a group of studies that have 

contributed to improving heart failure prediction, as well as the 

most important techniques and algorithms used in the 

prediction process. Most studies have not extensively 

discussed the misclassification of inliers vs. outliers, which 

could introduce biases and degrade model performance. 

Additionally, heart failure datasets are often imbalanced, 

which leads to a consequence of lower recall for the minority, 

which is often more important. Reduced robustness when 

deployed on heterogeneous or real patient populations because 

the model may become too specialized in detecting patterns in 

"clean" or ideal data, and generalize poorly to more complex, 

noisy, or real-world clinical data. 

Improvements to the conventional RF method were 

proposed to enhance heart failure prognostics [26]. 

Particularly in clinical datasets where outliers are prevalent, 

traditional RF model’s sensitivity to outliers might reduce 

their predictive accuracy. The author used the funnel technique, 

which proactively detects and eliminates outliers before 

training. Training performance on benchmark medical 

datasets improved after this funnel technique was put into 

practices. Especially when used in patients’ health records for 

heart failure. According to some results the funnel RF 

approach provides improved, explain ability and performance, 

which makes it a useful tool for clinical decision support in 

predicting the prognosis of heart failure. 

The study [22] focused on applying ML techniques to 

improve the predication accuracy of patient survival in HF. By 

using SMOTE, it tackles the problem of class imbalance, 

where survivors greatly outnumber non-survivors. To balance 

the dataset and enhance ML model performance, SMOTE 

create fake samples for the minority class. The research 

concludes that by precisely identifying patients with high-risk 

heart failure, integrating SMOTE with strong ML can improve 

clinical decision-making. 

ML techniques were employed to analyze and predict heart 

failure in patients [27]. In order to determine the best 

predictors of HF outcome. Uses a number of models, including 

LR, DT, RF, KNN, and SVM, using a clinical dataset that 

includes patient health metrics (e.g. age blood pressure, serum 

creatinine, and ejection fraction). Performance parameters 

such as accuracy, precision, recall, and F1-score are used to 

assess the models. The findings show that when compared to 

individual classifiers, ensemble models such as RF performed 

better in terms of prediction. 

Sophisticated ML algorithms were explored for CVD risk 

detection and control [28]. Assesses the effectiveness of 

several MLs, such as RF, SVM, Gradient boosting, and neural 

networks, in identifying high-risk individuals based on 

variables by utilizing extensive clinical dataset. Shows that in 

terms of accuracy, sensitivity, and specificity, ML models 

perform better than conventional risk-scouring methods. 

Furthermore, to improve clinical trust and applicability, 

interpretability technique like SHAP (Shapley Additive 

explanations) are used to offer insights into model judgments. 

A hybrid ML algorithm combining two methods was 

proposed to enhance lung cancer prediction accuracy [29]. The 

most pertinent feature is chosen from high-dimensional 

clinical datasets using Recursive Feature Elimination (RFE) in 

conjunction with SVM. Second, the Extreme Gradient 

Boosting (XGBoost) classifier, a derivative-free technique 

useful for navigating intricate search spaces, is employed for 

prediction in this step, which also lowers noise and enhances 

model interpretability and performance. In comparison to 

conventional techniques, the suggested model greatly 

increases predication accuracy by fusing a robust tuned 

classifier with strong feature selection. The method is 

performing better in terms of F1-score, recall, accuracy, and 

precision. 

An innovative XGBoost-based approach was proposed to 

predict stroke risk, aiming to improve early detection and 

prevention [30]. With focus on the importance of ML in 

medical diagnostics, the outcomes show that XGBoost is a 

dependable technique for assessing stroke risk since it 

produces high predictive performance.  
 

 

3. THE PROPOSED HYBRID HF MODEL 
 

This section details the methodologies employed in the 

study, providing an in-depth exposition of the proposed 

framework for breast cancer diagnosis and prediction. The 

performance of the Hybrid HF model is rigorously evaluated 

using standard metrics, including Precision, Accuracy, Recall 

and F1-score. 
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3.1 Proposed model 

 

The hybrid HF model is enhanced prediction for survivors 

from heart failure disease by integrating feature selection 

techniques with resampling technique (SMOTEENN) to 

create a novel hybrid HF model. Applying SMOTEENN after 

feature selection to create highly correlated synthetic samples 

for the minority class. Additionally, feature selection first 

guarantees the model-selected features are balanced, have a 

high impact on the accuracy of the results, and robustly 

correlated with each other.   

To balance the class, the hybrid HF model applies 

SMOTEENN to the smaller dataset after performing features 

selection to eliminate superfluous or irrelevant features. The 

ML model should be trained. The hybrid HF model following 

benefits: 

1. Lowers computing costs by removing extraneous features 

before creating synthetic samples. 

2. Reduces the possibility of adding noisy by assisting 

SMOTEENN in working on only the most essential 

elements. 

3. Prevents the overfitting and improves generalization. 

The flowchart of the proposed methodology is presented in 

Figure 1. 

 

 
 

Figure 1. The hybrid HF model 

 

3.2 Description of the methodology 

 

Class imbalance is a dataset that contains significantly 

fewer samples than the rest of the data. The effect on the model 

is a bias toward the majority of the data classes. The model is 

biased toward predicting the majority class most of the time, 

achieving high accuracy, and showing poor performance on 

the minority class, which is often the most important to detect.  

In feature selection issues, the number of possible feature 

subsets increases exponentially as the number of features 

increases. In addition, there are numerous problems with 

feature selection. Therefore, it is not feasible to carry out a 

thorough search to find the optimal answer, even with low-

dimensional data. 

SMOTEENN is chosen over other resampling techniques 

such as SMOTE-Tomek, due to its enhanced ability to address 

both class imbalance and noise in the clinical dataset. While 

SMOTE generates synthetic minority class samples to balance 

the dataset, ENN goes further by removing ambiguous or 

mislabeled instances from both classes, which helps reduce 

overlapping and improves class separation [31]. In contrast, 

SMOTE-Tomek focuses on eliminating overlapping samples 

but retains noisy data points that may negatively impact model 

performance [32]. Therefore, SMOTEENN provides a more 

aggressive and effective cleansing mechanism, leading to 

improved classification accuracy and robustness in real-world 

clinical environments [9]. 

Predictive mode performance can be enhanced by 

integrating feature selection MLs with SMOTEENN, 

particularly when working with unbalanced datasets. In order 

to train a classifier on the resampled data, we first apply feature 

selection to the training data, then SMOTEENN to the training 

data, and evaluate on the unaltered test set. To prevent 

information from the synthetic sample from leaking and to 

make sure that irrelevant feature selection is completed before 

to resampling. 

 

4. EXPERIMENTATION 

 

4.1 Dataset set overview 

 

This paper utilizes the Heart Failure Clinical Records 

dataset (HFCR), is a widely used dataset for predicting 

mortality in patients with HF. The dataset includes 233 

patients' records with a mean age of 69.5 years [5, 22, 26]. 

Among the patients, 156 (67%) are alive (class 0) and 77 

(33%) are deceased (class 1). The overview of the data is 

illustrated in Table 1. 

 

4.2 Evaluation matrices 

 

There are various techniques for assessing an ML model’s 

[33]. It is anticipated that the combination of several 

assessment instruments will support the advancement of 

analytical research [7], which will compare ML based on 

algorithms using four fundamentals measures accuracy (ac) Eq. 

(1), precision (pr) Eq. (2), recall (re) Eq. (3), and F1-Score (fs) 

Eq. (4). We compute all four measures with the use of a 

confusion matrix [4, 34]. The most important predication is 

whether the data is connected to a medical false negative. 

 

𝑎𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

 

𝑝𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 
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𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝑓𝑠 =
2 × 𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

Table 1. HFCR dataset overview 

 
Column Name Description Column 

Age (years) Age of the patient 

Anaemia (binary:0=no,1=yes) 
Decrease of red blood cells or 

hemoglobin 

Creatinine_phosphokinase 

CPK mcg/L 

Level of the CPK enzyme in 

the blood 

Diabetes (binary) 
If the patient has diabetes 

(1=Yes,0=No) 

Ejection_fraction (percentage 

each time) 

Percentage of blood leaving 

the heart at each contraction 

High blood pressure (binary) 
If the patient has hypertension 

(1=Yes,0=No) 

Platelets (kilo platelets/mL) Platelets count in blood  

Serum creatinine (mg/dL) 
Level of serum creatinine in 

the blood 

Serum sodium (mEq/L) 
Level of serum sodium in the 

blood  

Sex (binary) 
Gender of the patient (1=Male, 

0=Female) 

Smoking (binary) 
Whether the patient smokes 

(1=Yes,0=No) 

Time (follow-up in day) 
Follow-up period (how long 

the patient was observed) 

Death event (target) 

Whether the patient died 

during the follow-up 

(1=Yes,0=No) 

 

 

5. WORKING OF THE PROPOSED METHOD 

 

The hybrid HF framework decreased the initial feature set 

from original number to reduced number crucial predictors by 

integrating feature selection-based methods (such as RF, ETC, 

DT, and mutual information) with class imbalance techniques. 

Both clinical markers (e.g., time, ejection fraction, serum 

creatinine, serum sodium, age, platelets, and creatinine 

phosphokinase) were included in the characteristics that were 

chosen, highlighting their combined influence on prediction. 

The nine ML algorithms- RF, ETC, KNN, SVM, XGBoost, 

DT, LR, GBM, and G-NB—that were trained and assessed are 

used in the hybrid HF model. Other models were routinely 

outperformed by RF. 

 

5.1 Standard scaler 

 

In ML, the Standard Scaler is a data preprocessing tool that 

normalizes features (columns) by scaling to unit variance and 

eliminating the mean. Make use of it to improve algorithm 

performance, accelerate convergence, and prevent bias. 

Standardization guarantees that every feature contributes 

equally and that no feature is dominant just due to its size. 

 

5.2 Feature selection 

 

The process of choosing the variables required to improve 

accuracy is known as feature selection. To explain the hidden 

patterns found within the dataset, data visualization can be 

used. Using a set of feature selection ML algorithms, the best 

dataset to be used in the data imbalance process is selected. 

Figure 2 illustrates the steps in the feature selection process 

from a set of algorithms. This will be used in the next stage to 

remove noise and balance the minority data classes present in 

the medical data. 

 
 

Figure 2. The feature importance models 

 

5.3 Feature importance and average score 

 

The flowchart focuses on enhancing model performance 

and efficiency by offering an organized method for feature 

selection ML algorithms. The procedure finds and keeps just 

the most important features by using a variety of importance 

algorithms (such as RF, ETC, DT, Mutual Information, and 

XGBoost). As a result, a fine tuned dataset with carefully 

chosen features is produces, which can increase model 

accuracy, decrease overfitting, and boost computing efficiency 

in later training and forecasting.  

 

5.4 Reduce training set 

 

This step, which follows the use of several ML feature 

selection techniques, is essential to maximizing the 

performance of the suggested model. Sub setting the training 

dataset to only contain those chosen top features is what this 

step entails. The step is critical. By removing superfluous or 

redundant features, it lessens overfitting, enhances model 

performance, and expedites training. Reduced features 

improve interpretability and speed up training. 

Acquisition of a more qualitative understanding of the 

dataset is facilitated by visualizing its features. To implement 

feature ranking, use ETC. Table 2 shows the expected feature 
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significance of the ETC. Time, ejection fraction, serum 

creatinine, serum sodium, age, platelets, and creatinine 

phosphokinase are the most crucial factors, according to ETC. 

ETC is selected for feature importance analysis due to its 

computational efficiency and effectiveness in handling high-

dimensional clinical data. ETC, as an ensemble of randomized 

decision trees, provides robust, impurity-based feature 

rankings by averaging across multiple models, making it less 

sensitive to variance and more stable than single-tree 

approaches [35]. While SHAP values offer advanced 

interpretability and local feature contributions, they are 

computationally intensive, especially on large datasets and 

may not be practical for rapid experimentation or resource-

constrained clinical environments [36]. Therefore, we 

preferred ETC because a scalable, fast, and reliable method to 

identify the most relevant features for HF survival prediction 

[37]. 

 

Table 2. Feature significance of the ETC 

 
No. Column Name Mean Score 

1 time 1 

2 Ejection fraction 0.476161 

3 Serum creatinine 0.402527 

4 Serum sodium 0.252218 

5 age 0.312342 

6 platelets 0.240603 

7 Creatinine phosphokinase 0.250505 

 

5.5 Handling class imbalance 

 

After extracting the most closely related classes by applying 

the algorithm ETC, the data with high convergence will be 

used to remove any noise or imbalance in the classes.  

 

 

 
 

Figure 3. The imbalanced and balanced data 

The class imbalance using SMOTEENN technique, a 

prevalent problem in medical dataset, assessed for the training 

set after the feature selection procedure on the HFCR Dataset 

was finished. Applied SMOTEENN solely to the training set 

to solve this problem and enhance the performance of the 

prediction models. Applying SMOTEEN after feature 

selection, the structure of the chosen feature space preserved, 

and the resampling procedure is guide by the most pertinent 

variables. To assist in the creation of more reliable and broadly 

applicable models, this stage contributes to the creation of a 

training set that is cleaner and more balanced. Crucially, to 

avoid data and preserve the integrity of the assessment 

procedure on the test set, only used SMOTEENN on the 

training data. Figure 3 illustrates the features before and after 

applying SMOTEEN technique. Where one (1) represents 

death and zero (0) survivors of the HF. 

 

5.6 Classifiers 

 

Training and assessing several classification algorithms to 

predict HF after using feature selection to preserve the most 

informative variables and using the SMOTEENN technique to 

solve class imbalance. By clearing overlapping majority class 

instances and synthesizing minority class case, SMOTEENN 

produced a balanced dataset, while the chosen features 

guaranteed decreased model complexity and enhanced 

generalization. RF, ETC, KNN, SVM, XGBoost, DT, LR, 

GBM, and G-NB were among the classifiers they tested with. 

To provide reliable performance estimation, stratified cross-

validation was used to train each classifier on the processed 

dataset. Accuracy, precision, recall, and F1-score are used to 

evaluation measures; accuracy received special emphasis 

because it is crucial to identify cases of HF. 

 

 

6. DISCUSSION OF RESULTS 

 

In this section, every experiment’s design and outcomes are 

examined to forecast the survival of heat patients. The results 

with a significant set of features are shown after the results 

with the full set of features. Thirteen feature of clinical and 

bodily features are included in the dataset. Anemia, diabetes, 

blood pressure, smoking, and gender are a few examples of 

these binary characteristics. In the binary classification task, 

which determines whether a patient lived or passed away 

before 130 days of the follow-up period, the death event 

feature is used as the target class. To balance the dataset, 

SMOTEEN is used. The balanced dataset is used to train set 

not on the test set ML models, which were then assessed for 

accuracy, precision, recall, and F-score. We conducted the first 

experiments using all the features available in the database 

HFCR, and the results are shown in Table 3. 

The HFCR dataset, while valuable for studying heart 

survival, is prone to biases such as small size, demographic 

imbalance, and class skew. Without proper handling, these 

factors can impair the model’s clinical relevance and fairness.  

Integrating robust validation techniques, applying data 

augmentation techniques SMOTEENN, to balance minority 

classes can help mitigate these biases and support more 

reliable, equitable predictive modeling. 

With an accuracy of 88% XGBoost outperformed the other 

models under evaluation, demonstrating its superior ability to 

handle the dataset with all of features. Its ensemble nature, 

regularization methods, and capacity to identify intricate 
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patterns are probably the cause of this. In the second stage, the 

best feature selection was applied, and seven distinct and 

highly convergent features were selected, to which the data-

balancing SMOTEENN technique will be applied. The results 

are shown in Table 3. 

After improving their performance with a suggested model 

and choosing the top seven features, a variety of ML 

algorithms assessed in this work. The outcome shows how 

well the suggested fractures selection works to enhance A 

hybrid HF model performance. With 93% accuracy, RF 

outperformed all other tested models. ETC came in second 

with 92% accuracy. The most dependable and well-balanced 

classifiers in this situation were both models, which also 

showed excellent precision, recall, and F1-score. 

 

Table 3. The hybrid HF and select features 

 
 Seven Features All Features 

ML Name ac% pr% re% fs% ac% 

RF 93 94 91 91 83 

ETC 92 93 93 93 85 

KNN 75 75 75 75 68 

SVM 83 84 83 83 80 

XGBoost 86 87 87 86 88 

DT 81 81 81 81 75 

LR 81 81 82 81 75 

GBM 86 86 87 86 85 

G-NB 83 83 83 82 80 

 

To statistically compare the performance of using seven 

features vs. All features across multiple classifiers (Table 3), 

we can apply paired statistical tests to evaluate metrics 

accuracy (ac %). Then calculate the p-value using the ac of 

seven features and all features. The steps calculate the p-value 

by finding the difference in accuracy: 

1. Calculate the differences for each ac in the seven and all 

features. 

2. Compute the mean and standard deviation of differences. 

3. Calculate the t-statistic. 

4. Calculate the p-value. 

The p-value is approximately 0.0046, which is less than 

0.05, indicating that the improvement in accuracy using the 

selected features is statistically significant. 

The hybrid HF model’s application SMOTEENN shows 

better or equivalent outcomes to the top-performing 

techniques in the earlier references, especially for ensemble 

models like RF, ETC, and XGBoost. Overall performance is 

improved, whereas KNN and LR are less successful, 

demonstrating the value of SMOTEENN for unbalanced 

HFCR dataset. The compare is shown in Table 4. 

In medical diagnosis, the metric accuracy is most important 

from training time (TR-time) because the HFCR dataset is 

used for predicting death events in heart failure patients, a 

highly complex medical prediction problem. Moreover, 

accuracy is critical, especially for correctly identifying 

patients at risk. Impact on the life of patients, where a small 

drop in accuracy could mean missing a patient who might need 

life-saving intervention. 

 

Table 4. Compare the hybrid HF with the other references on 

the same datasets and ML 

 
ML [22] [38] [39] [40] [27] A Hybrid HF TR-Time 

RF 91  88  81.66 93 0.43 

ETC 92   91.62  92 0.29 

KNN  83.50 81.11  68.88 75 0.0 

SVM 76.22    81.97 83 0.0 

XGBoost 88    83.92 90 0.17 

DT 87.33  86  85.33 86 0.008 

LR 84.28    85.28 81 0.026 

G-NB 75  77   81 0.009 

GBM 88     86 0.17 

 

RF performed the best. It benefits ensemble learning by 

averaging multiple decision trees, reducing overfitting. 

However, this comes at the cost of longer training time, as 

several trees are built and evaluated. 

ETC is similar to RF but with more randomness. Slightly 

less accurate than RF and marginally faster. Well-performing 

with moderate cost. 

The choosing model with 93% accuracy for RF is better 

than ETC with 92% accuracy, but faster training time when 

screening patients. SVM (underperforms due to the default 

hyper parameters) and KNN (doesn’t train, it stores data) may 

need tuning or are less suited to this dataset. 

The hybrid HF model outperforms previous references in 

general, with an emphasis on the differences in the 

performance amongst models such as RF, ETC, KNN, etc. A 

hybrid data balancing method eliminates noisy and borderline 

cases while increasing the minority class. By managing class 

imbalance more skillfully than each approach alone, this 

technique enhances classifier performance. 

Traditional classifiers like KNN, SVM, and G-NB were 

continuously surpassed by ensemble-based models like RF, 

ETC, XGBoost, and GBM.  

This highlights how effective ensemble learning is at 

managing intricate feature interaction and minimizing 

overfitting, especially when paired with better feature 

selection. Figure 4 illustrates the accuracy for ML algorithms 

with applying the SMOTEEN technique. 

 

 
 

Figure 4. The better ML after apply a hybrid HF model 
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The performance of multiple classifiers was considerably 

enhanced by the proposed model and feature selection 

technique. The best-performing algorithms were RF, ETC, 

which makes them excellent choices for use in real-world 

applications that demand high classification accuracy and 

balanced performance across all assessment variables.  

 

 

7. CONCLUSION 

 

Integrating ML algorithms into CVS risk assessment will 

greatly enhance early diagnosis, customize treatment plans, 

and eventually lessen the prevalence of heart disease 

worldwide. This paper enhances the prediction of heart failure 

survival by a hybrid HF model that applies feature selection 

techniques (RF achieving 93% accuracy) followed by 

SMOTEENN to address class imbalance using only seven 

selected features, and demonstrates strong potential to support 

clinical decisions by minimizing false negatives in high-risk 

heart failure patients. 

Feature selection helped in reducing dimensionality and 

improving model performance by identifying the most 

relevant clinical indicators contributing to the heart failure 

outcome.  

The application of SMOTEENN further improved the 

predictive accuracy by balancing the dataset, combining 

oversampling of the minority class (survivors or not), and 

cleaning noisy or misclassified samples. This dual strategy led 

to more robust and generalizable models, as evidenced by 

improved evaluation metrics such as accuracy, precision, 

recall, and F1-score. Overall, the integration of feature 

selection with SMOTEENN proves to be an effective 

preprocessing pipeline for developing predictive models in 

medical datasets, particularly those with imbalanced classes 

like heart failure survival data. This model can support 

clinicians in risk stratification and decision-making, ultimately 

contributing to better patient outcomes. Reducing the 

misclassification, particularly false negatives, can directly 

translate to improved patient outcomes, fewer hospital 

readmissions, and more informed care planning, which is 

critical in time-sensitive cardiovascular cases. 

Ultimately, its application remains limited, particularly in 

clinically sensitive domains such as heart survival prediction, 

performance on multi-center datasets remains untested. 
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