
Comparative Analysis of Four Programming Languages for Machine Learning 

Alaa Falah Hasan1* , Saadya Fahad Jabbar2 , Firas Saadallah Raheem2

1 Development and Continuing Education Unit, Art College, University of Baghdad, Baghdad 10001, Iraq 
2 College of Education, Ibn Rushed for Human Science, University of Baghdad, Baghdad 10001, Iraq 

Corresponding Author Email: it.alaa2010@coart.uobaghdad.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300603 ABSTRACT 

Received: 1 February 2025 

Revised: 18 April 2025 

Accepted: 21 May 2025 

Available online: 30 June 2025 

Software engineers often compare programming languages. Several programming 

languages are designed, specified, and implemented every year in order to accommodate 

changing programming paradigms, hardware evolution, and other changes. In a 

comparative study of Python, Visual Basic.Net (VB.NET), C++, and Java, we examine 

machine learning capabilities of these four programming languages. This field of study 

focuses on computers that learn from experience and use information to become more 

efficient. As a general rule, it falls under the realm of computing. The process of machine 

learning entails analyzing samples of data to develop a model that can make predictions 

without any explicit programming. ML models and frameworks have evolved into 

increasingly complex models along with machine learning (ML). A number of emerging 

technologies are becoming increasingly important as software machine learning advances, 

such as Python, C++, VB.NET, and Java. Comparing these languages can reveal several 

characteristics. 

Keywords: 

Python, Java, Visual Basic.Net (VB.NET), 

C++, machine learning (ML) 

1. INTRODUCTION

Modern society relies heavily on machine learning. It 

enables systems to learn, think, and improve without being 

explicitly programmed by a human. Machine learning falls 

under artificial intelligence (AI). Computer programs are used 

in the field of machine learning in order to process and analyze 

data. Initial goals are to have computers learn habitually 

without human assistance, adjusting their actions accordingly. 

New languages have been created every decade for the past ten 

years. In addition to introducing new features, popular 

languages also introduce new concepts [1]. The advantages 

and disadvantages of each language are unique. Using several 

features, properties, and paradigms from Java, Python, and R, 

this paper compares three popular programming languages. 

When deciding which language to use, software designers and 

programmers need to be aware of the benefits and 

disadvantages of each language [2]. We compare these 

languages based on a number of characteristics. In this study, 

a similar set of programs was implemented and ran in all the 

languages under study, to identify other criteria, including the 

level of programming effort, runtime efficiency, memory 

consumption, and database connectivity that are related to the 

programming effort [3]. A Python interpreter, a R interpreter, 

and a Java interpreter all work with the very same command 

interface, and each of these languages has a large number of 

libraries that are directly connected to the interpreter to 

facilitate scientific and technical computations. Moreover, 

they are also convenient to use for creating simple plots and 

visual representations of data. By combining interactive 

notebooks with dynamic report generation engines used in 

conjunction with interactive notebooks, data analysis and 

documentation has never been easier and more convenient. 

The study results highlight the idea that choosing a 

programming language for machine learning is not a one-size-

fits-all result. The choice of strategy should be shown by the 

inherent characteristics of each language and the specific 

needs of the machine learning project at hand [4]. Python's 

dominance in this field comes from its extensive libraries and 

machine learning. However, individual requirements of some 

machine learning projects may require the use of VB.net, C++, 

or Java instead of Python. A language will be chosen 

according to the needs of the application domain. Comparing 

programming languages with informed choice algorithms 

specifically designed to meet the requirements of machine 

learning projects, this paper investigates the important role that 

programming languages play in creating machine learning [5]. 

Python, Java, C++, and VB.NET were selected for the study 

because they employ various programming styles, are used in 

many industries and are working in the field of ML. Many 

people agree that Python is the most popular language used in 

ML because it is simple, has a vast collection of ML libraries 

like TensorFlow, PyTorch and scikit-learn, plus it’s easy to 

start prototyping with, making it the top choice of experts [6]. 

Many enterprises choose Java because of its flexibility and 

object-oriented aspects [6]. High-performance C++ plays a 

major role in ML, embedded systems and inference engines 

when low-level processing efficiency is vital [7]. At the same 

time, VB.NET represents specific academic and business uses, 

especially when Microsoft technology is heavily involved. 

Because of its connection to the .NET framework and user-

friendly GUI, VB.NET supports programming ML 

Ingénierie des Systèmes d’Information 
Vol. 30, No. 6, June, 2025, pp. 1437-1445 

Journal homepage: http://iieta.org/journals/isi 

1437

https://orcid.org/0000-0001-8028-061X
https://orcid.org/0000-0002-9871-3724
https://orcid.org/0000-0002-5138-1355
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300603&domain=pdf


 

applications in schools and offices [8]. Since the frameworks 

vary in many aspects, this helps developers choose a suitable 

one for their ML projects, giving practical hints. 

 

 

2. OVERVIEW 

 

2.1 VB.NET 

 

Developed by Microsoft, Visual Basic .NET is an object-

oriented programming language that runs on .NET, Mono, 

and .NET Framework. Originally known as VB.NET, it is a 

multi-paradigm language based on the Visual Basic 

programming language. In 2002, VB.NET replaced Visual 

Basic 6 (VB6), which was introduced in reference [9]. This 

application runs on Windows and uses the .NET Framework. 

One of the main advantages of this programming language is 

its cross-platform compatibility, allowing it to be installed not 

only on Windows machines but also on Linux and Mac 

systems. It is much safer, more robust, faster, and easier to 

create applications using the VB.NET language [10]. 

The .NET Framework is abbreviated in Visual Basic 

Technology that enables networks. .NET is Microsoft's high-

level object-oriented programming language developed in 

2002. Visual Basic 6.0 has been replaced by a version that 

employs the .NET framework [11]. Abstractions, 

encapsulation, inheritance, and polymorphism are all 

supported in the new version. It is possible to create VB.NET 

objects of any type, including primitive types such as integers, 

strings, characters, longs, shorts, and Booleans. This language 

does not consider this case like C++, Java, and C# does. 

All .NET Framework libraries can be accessed by Visual 

Basic .NET programs [12]. The reliability and scalability of 

VB.NET applications are enhanced by this feature. Object-

oriented applications can be created in the language like those 

created in other programming languages such as C++, Java, or 

C#. Additionally, Linux and MacOS are compatible with 

VB.NET applications and software. With VB.NET, even the 

most novice developers can quickly develop web, Windows, 

console, and mobile applications for the .NET Framework in 

minutes [13]. Visual Studio can be used to develop Visual 

Basic applications using the Microsoft Integrated 

Development Environment (IDE). Professional versions of 

Visual Studio are only available as paid versions. Express and 

Community versions are free. Additionally, to the .NET 

framework SDK, the SDK includes a free command-line 

compiler called vbc.exe [14]. Also available with Mono is 

VB.NET's command line interpreter. Visual Basic GUI 

libraries and Windows Forms are used to create Windows 

desktop applications. Windows Forms can be programmed 

with Visual Basic by using controls and corresponding code 

[15-17]. Table 1 shows the Top-of-the-line programming 

languages comparison. 

 

Table 1. Top-of-the-line programming languages comparison 

 
Metrics Python JavaScript Java C# C C++ Go R Swift 

Typing 

Discipline 

Dynamically 

typed 

(strong) 

Weakly 

typed 

Statically 

typed 

Statically 

typed 

Weakly 

typed 

Weakly 

typed 

Statically 

typed 

Strong, 

dynamicall

y typed 

Static, 

strong, 

inferred 

Platform 

Support 

Linux, 

macOS, 

Windows, 

GUI 

environment

s 

Windows, 

macOS, 

Linux, 

browsers 

Java 

SE/EE/FX 

Mono, 

Visual 

Studio 

Writf, 

Cygwin 

Cross-

platform 

(Perl, 

FreeBSD, 

etc.) 

PowerPC, 

OpenBSD, 

etc. 

Windows, 

macOS 

iOS, 

macOS, 

watchOS 

Best for 

Data 

analytics, 

ML, 

automation 

Interactive 

web pages 

Enterprise-

level 

applications 

Windows 

apps, web 

services 

System-

level code 

Performance

-critical 

software 

Cloud 

tools, dev 

tools 

Statistical 

computing 

iOS/macOS 

developmen

t 

Availability 

Open-

source, 

widely 

supported 

Browser-

integrated, 

open-source 

Cross-

platform, 

free SDKs 

Visual 

Studio 

environment

s 

Standard C 

toolchains 

Broad 

compiler 

availability 

Compiler-

based 

deployment 

CRAN & 

IDEs 

Apple 

ecosystem 

SDKs 

Designed by 
Guido van 

Rossum 

Brendan 

Eich 

James 

Gosling 

Anders 

Hejlsberg 

Dennis 

Ritchie 

Bjarne 

Stroustrup 

Rob Pike, 

Ken 

Thompson 

Ross Ihaka 

Chris 

Lattner, 

Apple Team 

Advantages 

Readable, 

versatile, 

vast ML 

libraries 

High 

interactivity, 

asynchronou

s support 

Portable, 

robust, 

multithreade

d 

.NET 

integration, 

powerful 

IDEs 

Low-level 

control, 

speed 

High-

performance

, multi-

paradigm 

Simplicity, 

concurrenc

y model 

Excellent 

for 

statistical 

models 

Interactive, 

safe, 

expressive 

Disadvantage

s 

Slower 

performance

, high 

memory use 

Insecure for 

backend, 

less OOP 

structure 

Verbose 

syntax, 

runtime 

overhead 

Garbage 

collection 

impacts 

speed 

No memory 

safety, 

manual 

managemen

t 

Complex 

syntax, 

manual 

memory 

Limited 

third-party 

libraries 

Slower in 

general-

purpose 

tasks 

Steep 

learning 

curve, 

Apple-only 

2.2 Python 

 

Both global programming with learning and can be 

achieved using Python. Guido van Rossum developed Python, 

a programming language with an object-oriented approach that 

is in high demand. Since its introduction, Python has been 

described as an incredibly easy-to-use and beginner-friendly 

language [18]. Known for its beginner-friendliness, Python 

has surpassed Java as the leading introductory language due to 

its simplicity. Within recent years, Python has spread to be 

widely used as a general-purpose, problem-oriented 

programming language. Suitable for both global and learning 

1438



 

programming, Python can be a good choice [19]. Programmers 

can express specific concepts in fewer lines of code thanks to 

its readability-focused design philosophy. Programming in the 

language is both easy and complex, thanks to the constructs of 

the language. There are both learning applications and global 

applications that can be implemented with Python 

programming [20]. In terms of memory consumption, a 

Python program consumes 2.80MB per second and runs in 

71.90 seconds. Python is an object-oriented scripting language. 

Companies that deal with large amounts of data use Python 

primarily for evaluating them [21]. Python heavily influenced 

Modula-3's module system, exception model, and keyword 

arguments. Designed to be an extensible language, the 

language consists of a small core library that is extended by a 

comprehensive standard library. Since Python is easily 

embedded into any application, it is used for this purpose since 

it can be used to develop fully functional applications [22]. 

Multiple paradigms are supported by Python, including 

Object-Oriented, Imperative, Functional, Procedural, and 

Reflective. Python has some support for Object-Oriented 

concepts such as inheritance, polymorphism, but lacks 

encapsulation support in the OOP paradigm. In the Python 

Runtime Environment, Python compiles intermediate code 

into native code, which is finally interpreted by the Python 

language itself [23]. Because the reference implementation 

lacks a JIT compiler, it is slower than native languages. In the 

Python Runtime Environment, garbage collection handles all 

memory allocations and deals. When objects leave their scope, 

GC keeps them in memory, but they do not release them 

immediately, instead becoming eligible for trash collection, 

which may release them later. It is possible to type in Python 

both statically and dynamically. Because of its dynamic typed 

nature, Python is generally used for developing standalone 

applications, since it is intended to be flexible and can be used 

with both static and dynamic typed languages. Moreover, 

prototyping is made easier with rapid application development 

[24]. A limited amount of website creation can also be done 

with Python. In comparison to other programming languages, 

PHP has a significant overhead due to its dynamic typing and 

virtual machine, resulting in lower performance [25]. Apart 

from dynamic type systems and automatic memory 

management, Python also contains an extensive, 

comprehensive standard library. Python interpreters are 

available for multiple operating systems [26]. 

 

2.3 C++ 

 

C++ programs can be compiled for a variety of purposes. 

Bjarne Stroustrup developed the language as an extension of 

the C language. It's considered a superset of C. After initially 

being published in 1985, this book has been revised and 

updated several times. With time, C++ evolved into a complex 

programming language with features such as classes, 

inheritance, static functions, templates, libraries, and 

namespaces. It has been since 2011 that ISO has published 

standards for C++ [27]. There are many programming 

languages that have been developed using C++. As far as 

syntax and classes are concerned, C# uses many features of 

C++. Due to Java maintains simplicity, it doesn't have pointers, 

operator overloading, or multiple inheritance like C++ [28]. It 

can be used for procedural and object-oriented programming, 

but it is mostly used for Object-Oriented Programming. A 

good memory and speed efficiency makes it a better language 

than Java, Python, etc. In contrast to interpreted languages like 

Python, which translate source code into byte code first, then 

convert it to machine code at runtime, a compiled language 

like C++ allows direct conversion from source code to 

machine code. The result is an increase in execution speed [29]. 

Figure 1 shows the algorithm flowchart for visual basic-based 

applications and Figure 2 shows the flowchart of a Python tool.

 

 
 

Figure 1. Algorithm flowchart for visual basic-based applications 

1439



 

 
 

Figure 2. Diagram showing the flowchart of a Python tool 

 

2.4 Java 

 

James Gosling, Mike Sheridan, and Patrick Naughton at 

Sun Microsystems developed Java in the months of June 1991, 

which was initiated by James Gosling and released in 1995 

[30]. Many devices and applications we use on a daily basis 

are powered by Java, which makes them work. As an OOPs 

language, Java may be a good choice. A number of access 

modifiers are supported such as private, public, protected, etc. 

As a result, it facilitates the encapsulation of code, thereby 

improving code security and reliability [31]. As compared to 

other programming languages such as C++ and Python, the 

major difference between Java and these languages is that Java 

does not support multiple inheritance of classes, though it does 

support multiple inheritance through interfaces. Android 

applications can be made from Java as well as desktop 

applications for enterprise use, mobile applications, and 

enterprise-level purposes. However, it was still different in its 

own way despite being heavily influenced by C and C++. The 

designers of the software believed that developers were using 

pointers in an improper manner [32]. Additionally, trash 

collection automated memory management so users wouldn't 

have to worry about managing memory anymore. Additionally, 

Java supports procedural programming. The reason why java 

does not allow global variables or methods outside the class 

may have to do with its design goals. This makes Java more of 

an OOPs language [33]. The Java platform supports Reflective 

paradigms with API requests for accessing, creating, 

modifying, and adding members to classes. There is no limit 

to the number of threads and processes that can be created in a 

Java application due to the limitless APIs that Java supports 

for creating, managing, and communicating between threads 

and processes. In addition, it provides a large number of 

libraries and data structures that allow atomic access to threads 

and processes [34]. A Java compiler compiles code into 

bytecode and executes it through a virtual machine. As a result, 

this programming language executed extremely slowly 

compared to other programming languages. Since the 

introduction of JIT Compiler, execution speed improvements 

have been made. It is the JVM that handles all the resources 

needed by the program. All memory allocations and 

deallocations are managed by the garbage collector in the JVM. 

Java is strongly static typed as well as dynamically typed since 

it supports polymorphism and reflection [35]. As a static typed 

programming language, Java offers programmers the 

advantage of being able to detect errors at compile time. Due 

to Java's static type system, most coding errors are detected 

during compilation, reducing the amount of time spent on unit 

testing. Java also provides a wide range of quality frameworks 

for executing any task that needs to be done with the language. 

In addition to not being natively executed, these languages 

perform less than languages such as C, C++, which are 

natively executed [36]. Many developers use Java for a variety 

of reasons, including the ability to develop machine learning 

and data science applications. Java Virtual Machines are 

considered one of the best platforms for machine learning and 

data science because they allow the developer to write code 

that is identical across multiple platforms [37]. As well as 

providing a host of tool-building IDEs, it enables customized 

tools to be built more quickly. In particular, for larger or more 

complex machine learning and computing applications, Java 

is a great choice. Java is the language of choice for most 

production codebases. In order to effectively deploy Machine 

Learning solutions, developers must have a solid 

understanding of Java to generate data, submit merge requests 

to production code bases, and deploy merge requests to 

production codebases. Several libraries and tools are available 

for Machine Learning and Data Science in Java. Data 

1440



 

processing, data analysis, and predictive modeling can be 

performed using Weka 3, a Java-based workbench [38]. 

Developers often compare one programming language with 

another, but they all have their pros and cons. Because many 

languages are modeled after one another, their syntax and 

structures are typically similar, which makes it possible to 

learn one by learning the other [39]. The popularity of a 

language based on its usage is important to consider when 

choosing a language to learn. A language with more adoption 

will also have more support from fellow developers, leading 

to more jobs and projects in that language. A quick comparison 

of some of today's most popular programming languages 

follows: 

The selection of Python, Java, C++, and VB.NET for this 

comparative study is grounded in their diverse paradigms, 

industry relevance, and their established or emerging roles in 

machine learning (ML) ecosystems. Python is universally 

recognized as the dominant language in ML due to its 

simplicity, vast ecosystem of ML libraries (such as 

TensorFlow, PyTorch, and scikit-learn), and ease of 

prototyping, making it the preferred choice for researchers and 

data scientists [40]. Java is widely used in enterprise 

applications, and its strong object-oriented features and 

portability via the Java Virtual Machine (JVM) make it 

suitable for scalable ML deployments and production 

environments. C++, known for its high-performance 

capabilities, is particularly valuable in performance-critical 

ML applications, embedded systems, and real-time inference 

engines, where low-level control and execution speed are 

essential. On the other hand, VB.NET, while less common in 

modern ML research, was included to represent niche 

academic and enterprise contexts, especially in environments 

reliant on Microsoft technologies [41]. VB.NET's integration 

with the .NET framework and ease of GUI development 

allows it to serve specific educational and administrative ML 

applications. This diverse selection facilitates a balanced 

comparison across languages that vary significantly in terms 

of syntax, execution model, performance characteristics, and 

community support, offering practical insights for developers 

selecting a language based on the specific needs of their ML 

projects [42]. Figure 3 shows the Programming language 

speed and Table 2 shows a comparison between programming 

languages. 

 

Table 2. A comparison between programming languages 

 
Programming 

Languages 
Control Statement 

VB.NET 

Conditional 

statement 

Iteration 

Statement 

Selection 

Jump 

Statements 

1. if. Then 

2. if..then…else 

3. Select Case 

1. for…next 

2. do...loop 

3. while…end 

while 

 

 

 

Python 

1. if 

2. if-else 

3. if-elife-else 

4. nested id-else 

1. for 

2. whlie 

 

1.break 

2.continue 

3.pass 

C++ 
1. if 

2. switch…case 

1. for 

2. whlie 

3. do…while 

1. Break 

2. Continue 

3. goto 

Java 

1. if 

2. if…else 

3. switch 

1. for 

2. whlie 

3. do 

1. Break 

2. Continue 

3. return 

 

 
 

Figure 3. Programming language run time speed 

 

 

3. PERFORMANCE FINDINGS 

 

3.1 Run time speed 

 

Various compilers are available for different languages, 

some of which are fast, while others are slow. It's impossible 

to predict how fast or slow a language will compile unless you 

understand the language and how the compiler works, but 

there are two major factors to consider. The structure of a 

language affects compile time. There is some benefit to 

compile time optimization, although it is rarely significant. 

When it comes to C++, for example, most name and type 

resolution takes place during the compilation process, while 

Java performs some during runtime, and JavaScript performs 

most during runtime. The following chart compares the Python 

language to other languages in terms of running times. 

 

3.2 Usage of memory 

 

Allocating, finding, and managing memory effectively is 

the process of memory management. The process is controlled 

by and coordinated by a software application. A program 

allocates memory when it is needed, and then frees it when it 

is no longer needed [18]. As far as memory management is 

concerned, there are two tasks that are related: 

1) Allocation: When a program requests memory, it is 

allocated. The operating system sends this block of memory. 

In memory managers, this process is performed by the 

allocator. The memory management process involves 

recycling either manually or automatically as soon as a 

memory block has been allocated, but is no longer needed. 

Manually, it involves the programmer recycling it, but 

automatically, it involves the memory management process 

taking care of it. Comparing Java to the other two languages, 

it utilizes memory most efficiently. Figure 4 shows the 

Programming language memory utilization. 

 

 
 

Figure 4. Programming language memory utilization 

1441



 

The choice of programming language for a specific project 

should be based on the project's specific requirements and the 

programmer's familiarity with the language, as well as its 

memory management capabilities as Figure 4. 

 

3.3 Syntax 

 

A programming language's syntax is composed of series of 

symbols and words that define its structure, especially its basic 

parts. A programming language's syntax is the set of rules that 

determine which symbols constitute a program that is properly 

structured. In text-based programming languages, the syntax 

defines the surface form [43]. The surface form of a language 

is defined by its syntax. Depending on their lexical structure, 

characters are chunked into tokens in textual languages. 

Besides syntax rules, semantics also specifies the sequences of 

tokens that may be used, and the process of assigning meaning 

to these sequences is described in syntax rules. A syntax tree 

is usually formed by transforming the linear sequence of 

tokens into a hierarchical structure (abstract syntax trees are 

one convenient format). As with syntactic analysis in 

linguistics, this process is called parsing. Various tools have 

been developed for generating parsers based on a description 

of a language grammar written in Backus-Naur format. 

 

3.4 Relative power and performance of programmers 

 

Language clarity, useful tools, debugging aids and help 

from the community help programmer productivity in 

machine learning development. Python is reported by 

empirical research to be the most productive language, mainly 

for machine learning issues. Panchadara [40] discovered that 

Python users created ML prototypes about 30-40% faster than 

those using Java or C++, thanks to the clear syntax and broad 

availability of libraries in Python. Additionally, SLOC and 

time-to-completion data provide additional information. 

According to a 2021 survey by Kochhar and Kumar, to apply 

a typical machine learning method (a decision tree classifier) 

with Python required around 40% fewer lines of code than 

with Java and close to 60% fewer than with C++. The 

experiments also revealed that Python was the fastest to use 

(3.8 hours), whereas the developers took more time with Java 

(5.5 hours) and C++ (6.2 hours) when solving identical ML 

problems. JAVA and C++ are strong and efficient, but they 

force us to write more unnecessary code and take longer to 

compile. Java is faster in development thanks to its memory 

helpers and development tools. When programming for things 

like schools or applications that rely on forms, VB.NET is not 

widely used for ML, but it offers simplicity and streamlined 

visual development by letting you build complex GUIs with 

no coding. Yet, since it does not have modern ML frameworks, 

progress on advanced analytics tasks is not as fast as it could 

be. These numbers agree with open-source data and annual 

Stack Overflow surveys, both of which point out that Python 

is seen as the best in ML due to its helping community and 

easy learning steps [20]. 

The fact that many requirements are redundant and even 

ambiguous has prompted us to group them together into 

related assessment criteria and relevant references. This list of 

criteria nevertheless does not claim to be comprehensive1 or 

authoritative, as it aims to integrate many different 

requirements into an informative framework for assessing 

programming languages. The criteria should be divided into 

two levels, namely Mandatory requirements (Level 1) and 

Desirable requirements (Level 2). There are certain 

requirements that must be met by a programming language 

before it is considered suitable for implementing high integrity 

software at Level 1. An explanation is provided for each 

requirement. An efficient, comprehensible, and structured 

system can be achieved without fulfilling these levels of 

requirements immediately. Ratings are not provided at this 

level, since they are intended to be an added benefit [13]. Table 

3 shows the requirements of programming language.

 

Table 3. Requirements of programming language 

 
Feature VB.NET Python C++ Java 

Stable Version 16.9 3.11 20 17 

Main Implementation Language 

MSIL 

Microsoft Intermediate 

Language 

C C++ C 

Run Time Speed 7.2 2.34 0.009 0.048 

Primitive Datatype 

Boolean, Byte, Char, Date, 

Decimal, Double, Integer, 

Long, SByte, Short, Single, 

String 

Integer, Float, 

Complex, Boolean, 

String, Bytes, 

Bytearray, NoneType 

Boolean, Character, 

Integer, Floating-point, 

Double, Void 

Boolean, Byte, Short, 

Int, Long, Float, 

Double, Char, Void 

Object Oriented Yes Yes Yes Yes 

Code Structure classes and modules 

functions, classes, 

modules, and 

packages. 

functions, classes, and 

namespaces. 
classes and packages 

Checking the Bounds Run_Time Run_Time Run_Time Run_Time 

Memory Utilizations High High Low Low 

 

 

4. CONCLUSION 

 

This research looked at the differences between Python, 

Java, C++ and VB.NET when used in machine learning (ML). 

The manner in which a language is developed and its 

integration with other technologies affects how well it 

performs and which advantages it provides. Many studies and 

uses of ML in both universities and industry depend on Python 

for its easy-to-understand code and wealth of libraries for 

quick development. Although Java is more complicated, it 

thrives in large companies that depend on easy scalability, 

reliable types and apps that function on any device. C++ is 

preferred for high-performance reasons when controlling what 

memory is used and how fast the application runs is important. 

Though ML usually does not rely on VB.NET, it continues to 

play a role in schools and offices because of its integration 

1442



 

with Microsoft applications and simple design. Choosing the 

programming language for an ML project should not only 

focus on its rank in popularity or how quickly it runs. The 

goals should follow the needs of the project, including 

performance, deployment factors, developer skills and the 

system to be used. Prototype and research work can use Python 

well, but Java or C++ are often needed for important and 

embedded machine learning solutions. As we look at the future, 

certain challenges and advantages await as developers 

consider these languages for emerging uses in machine 

learning. Because edge computing and federated learning are 

coming into use, many are considering C++ and Rust for their 

good control and performance. Likewise, using ML across 

many platforms will spur more improvements in JVM 

languages such as Java. Though Python is popular, it must deal 

with issues of running speed and memory use, especially when 

used in mobile and real-time settings. Furthermore, DSLs and 

ML compilers such as those named TensorFlow Lite, TVM 

and ONNX, could make it possible for ML systems to be built 

without widespread use of general-purpose software 

languages. Further research is needed to examine using Python 

for experimenting and then C++ for deployment, as well as to 

examine the growing roles of other languages in specific areas 

of ML. When developers and researchers understand how 

languages differ and what their strengths and weaknesses are, 

they can choose solutions that fit their machine learning 

project objectives. 

 

 

REFERENCES 

 

[1] Dolby, J., Shinnar, A., Allain, A., Reinen, J. (2018). 

Ariadne: Analysis for machine learning programs. In 

Proceedings of the 2nd ACM SIGPLAN International 

Workshop on Machine Learning and Programming 

Languages, New York, NY, USA, pp. 1-10. 

https://doi.org/10.1145/3211346.3211349 

[2] Slama, F., Ismail, I., Latrach, L. (2023). Exploring the 

integration of machine learning models in programming 

languages on GitHub: Impact on compatibility to address 

them. Advances in Machine Learning & Artificial 

Intelligence, 4(2): 77-93. 

[3] Farooq, M.S., Khan, S.A., Ahmad, F., Islam, S., Abid, A. 

(2014). An evaluation framework and comparative 

analysis of the widely used first programming languages. 

PloS One, 9(2): e88941. 

https://doi.org/10.1371/journal.pone.0088941 

[4] Imada, K., Nakamura, K. (2008). Towards machine 

learning of grammars and compilers of programming 

languages. In European Conference on Machine 

Learning and Knowledge Discovery in Databases, 

Antwerp, Belgium, pp. 98-112. 

https://doi.org/10.1007/978-3-540-87481-2_7 

[5] Andonov, F. (2019). Comparative analysis of PYTHON 

with other programming languages. Yearbook 

Telecommunications, 6: 1-15. 

https://doi.org/10.33919/YTelecomm.19.6.1 

[6] Ali, S., Qayyum, S. (2021). A pragmatic comparison of 

four different programming languages. ScienceOpen 

Preprints. https://doi.org/10.14293/S2199-

1006.1.SOR-.PP5RV1O.v1 

[7] Wiejak, T., Smołka, J. (2024). Performance of machine 

learning tools. Comparve analysis of libraries in 

interpreted and compiled programming languages. 

Journal of Computer Sciences Institute, 33: 339-345. 

https://doi.org/10.35784/jcsi.6589 

[8] Nori, A.V., Rajamani, S.K. (2011). Program analysis and 

machine learning: A win-win deal. In APLAS 2021: 

Asian Symposium on Programming Languages and 

Systems, Kenting, Taiwan. https://doi.org/10.1007/978-

3-642-25318-8_1 

[9] Thielscher, M. (2008). Introduction. In Action 

Programming Languages. Synthesis Lectures on 

Artificial Intelligence and Machine Learning. Springer, 

Cham, pp. 1-2. https://doi.org/10.1007/978-3-031-

01547-2_1 

[10] Jia, H.Y. (2023). Comparative analysis of machine 

learning models in predictive analytics for residential 

energy consumption. In Proceedings of the 1st 

International Conference on Data Analysis and Machine 

Learning-DAML, Kuala Lumpur, Malaysia, pp. 251-255. 
https://doi.org/10.5220/0012800500003885 

[11] Sherwood, T. (2019). Session details: Machine learning 

III. In Proceedings of the Twenty-Fourth International 

Conference on Architectural Support for Programming 

Languages and Operating Systems (ASPLOS '19), New 

York, NY, USA. https://doi.org/10.1145/3324115 

[12] Ding, Y.F. (2019). Session details: Machine learning I. 

In Proceedings of the Twenty-Fourth International 

Conference on Architectural Support for Programming 

Languages and Operating Systems (ASPLOS '19), New 

York, NY, USA. https://doi.org/10.1145/3324111 

[13] Adlakha, N. (2023). A comparative analysis of machine 

learning algorithms for fake news detection. 

International Journal of Computing, Programming and 

Database Management, 4(1): 62-64. 

https://doi.org/10.33545/27076636.2023.v4.i1a.81 

[14] Koc, U., Saadatpanah, P., Foster, J.S., Porter, A.A. 

(2017). Learning a classifier for false positive error 

reports emitted by static code analysis tools. In MAPL 

2017: Proceedings of the 1st ACM SIGPLAN 

International Workshop on Machine Learning and 

Programming Languages, Barcelona, Spain, pp. 35-42. 

https://doi.org/10.1145/3088525.3088675 

[15] Goens, A., Brauckmann, A., Ertel, S., Cummins, C., 

Leather, H., Castrillon, J. (2019). A case study on 

machine learning for synthesizing benchmarks. In 

MAPL 2019: Proceedings of the 3rd ACM SIGPLAN 

International Workshop on Machine Learning and 

Programming Languages, Phoenix, AZ, USA, pp. 38-46. 

https://doi.org/10.1145/3315508.3329976 

[16] Lindsey, C.H. (1989). Comparative programming 

languages: By L.B. Wilson and R.G. Clark. Addison-

Wesley, Wokingham, United Kingdom, 1988, Price 

£16.95 (paperback), ISBN 0-201-18483-4. Science of 

Computer Programming, 12(2): 172-173. 

https://doi.org/10.1016/0167-6423(89)90047-6 

[17] Sztwiertnia, S., Grübel, M., Chouchane, A., Sokolowski, 

D., Narasimhan, K., Mezini, M. (2021). Impact of 

programming languages on machine learning bugs. In 

AISTA 2021: Proceedings of the 1st ACM International 

Workshop on AI and Software Testing/Analysis, Virtual 

Denmark, pp. 9-12. 

https://doi.org/10.1145/3464968.3468408 

[18] Vieira, T., Francis-Landau, M., Filardo, N.W., Khorasani, 

F., Eisner, J. (2017). Dyna: Toward a self-optimizing 

declarative language for machine learning applications. 

In MAPL 2017: Proceedings of the 1st ACM SIGPLAN 

1443

https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1007/978-3-540-87481-2_7
https://doi.org/10.33919/YTelecomm.19.6.1
https://doi.org/10.14293/S2199-1006.1.SOR-.PP5RV1O.v1
https://doi.org/10.14293/S2199-1006.1.SOR-.PP5RV1O.v1
https://doi.org/10.35784/jcsi.6589
https://doi.org/10.1007/978-3-642-25318-8_1
https://doi.org/10.1007/978-3-642-25318-8_1
https://doi.org/10.1007/978-3-031-01547-2_1
https://doi.org/10.1007/978-3-031-01547-2_1
https://doi.org/10.5220/0012800500003885
https://doi.org/10.1145/3324115
https://doi.org/10.1145/3324111
https://doi.org/10.33545/27076636.2023.v4.i1a.81
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3315508.3329976
https://doi.org/10.1016/0167-6423(89)90047-6
https://doi.org/10.1145/3464968.3468408


 

International Workshop on Machine Learning and 

Programming Languages, Barcelona, Spain, pp. 8-17. 

https://doi.org/10.1145/3088525.3088562 

[19] Nanz, S., Furia, C.A. (2015). A comparative study of 

programming languages in Rosetta Code. In 2015 

IEEE/ACM 37th IEEE International Conference on 

Software Engineering, Florence, Italy, pp. 778-788. 

https://doi.org/10.1109/ICSE.2015.90 

[20] Roesch, J., Lyubomirsky, S., Weber, L., Pollock, J., 

Kirisame, M., Chen, T., Tatlock, Z. (2018). Relay: A new 

ir for machine learning frameworks. In MAPL 2018: 

Proceedings of the 2nd ACM SIGPLAN International 

Workshop on Machine Learning and Programming 

Languages, Philadelphia, PA, USA, pp. 58-68. 

https://doi.org/10.1145/3211346.3211348 

[21] Gottschlich, J., Solar-Lezama, A., Tatbul, N., Carbin, M., 

Rinard, M., Barzilay, R., Amarasinghe, S., Tenenbaum, 

J.B., Mattson, T. (2018). The three pillars of machine 

programming. In MAPL 2018: Proceedings of the 2nd 

ACM SIGPLAN International Workshop on Machine 

Learning and Programming Languages, Philadelphia, PA, 

USA, pp. 69-80. 

https://doi.org/10.1145/3211346.3211355 

[22] Li, X.N. (2023). Exploring the potential of machine 

learning techniques for predicting travel insurance claims: 

A comparative analysis of four models. Academic 

Journal of Computing & Information Science, 6(4): 118-

125. https://doi.org/10.25236/AJCIS.2023.060416 

[23] Piyushkumar, P.P. (2014). Study on analysis of squential 

complex languages through machine (technology) 

learning. International Journal of Scientific Research, 

3(2): 157-160. 

[24] Murphy, C., Gray, P., Stewart, G. (2017). Verified 

perceptron convergence theorem. In MAPL 2017: 

Proceedings of the 1st ACM SIGPLAN International 

Workshop on Machine Learning and Programming 

Languages, Barcelona, Spain, pp. 43-50. 

https://doi.org/10.1145/3088525.3088673 

[25] Eastman, C.M. (1983). A lexical analysis of keywords in 

high level programming languages. International Journal 

of Man-Machine Studies, 19(6): 595-607. 

https://doi.org/10.1016/S0020-7373(83)80073-X 

[26] Yu II, E.R., Pineda, E.D., Tano, I.M., Lagman, A.C., 

Victoriano, J.M. (2025). Comparative analysis of 

supervised machine learning algorithms for predicting 

student programming anxiety levels. Journal of Artificial 

Intelligence, Machine Learning and Neural Network, 

5(1): 28-39. https://doi.org/10.55529/jaimlnn.51.28.39 

[27] Cusumano-Towner, M., Mansinghka, V.K. (2018). A 

design proposal for Gen: Probabilistic programming with 

fast custom inference via code generation. In MAPL 

2018: Proceedings of the 2nd ACM SIGPLAN 

International Workshop on Machine Learning and 

Programming Languages, Philadelphia, PA, USA, pp. 

52-57. https://doi.org/10.1145/3211346.3211350 

[28] Guo, H. (2024). Comparative study on coronary heart 

disease prediction using five machine learning models. 

In Proceedings of the 1st International Conference on 

Data Analysis and Machine Learning - DAML, Kuala 

Lumpur, Malaysia, pp. 256-261. 

https://doi.org/10.5220/0012800700003885 

[29] Yang, C.H. (2025). Predicting nutrient density in foods 

using machine learning models: A comparative study. In 

Proceedings of the 2nd International Conference on Data 

Analysis and Machine Learning - DAML, Kuala Lumpur, 

Malaysia, pp. 64-69. 

https://doi.org/10.5220/0013487500004619 

[30] Demidova, A.A. (2024). An approach to comparative 

analysis of online programming education datasets based 

on machine learning algorithms. In 2024 6th 

International Conference on Control Systems, 

Mathematical Modeling, Automation and Energy 

Efficiency (SUMMA), Lipetsk, Russian Federation, pp. 

420-425. 

https://doi.org/10.1109/SUMMA64428.2024.10803826 

[31] Dymora, P., Mazurek, M., Smyła, Ł. (2024). A 

comparative analysis of selected data mining algorithms 

and programming languages. Journal of Education, 

Technology and Computer Science, 5(35): 69-83. 

https://doi.org/10.15584/jetacomps.2024.5.7 

[32] Naik, A., Stein, A., Wu, Y., Naik, M., Wong, E. (2024). 

TorchQL: A programming framework for integrity 

constraints in machine learning. Proceedings of the ACM 

on Programming Languages, 8(OOPSLA1): 833-863. 

https://doi.org/10.1145/3649841 

[33] Zhao, R., Luk, W., Xiong, C., Niu, X., Tsoi, K.H. (2020). 

On the challenges in programming mixed-precision deep 

neural networks. In MAPL 2020: Proceedings of the 4th 

ACM SIGPLAN International Workshop on Machine 

Learning and Programming Languages, London, UK, pp. 

20-28. https://doi.org/10.1145/3394450.3397468 

[34] Dijkstra, E.W. (1963). On the design of machine 

independent programming languages. International 

Tracts in Computer Science and Technology and Their 

Application, 3: 27-42. https://doi.org/10.1016/B978-0-

08-009763-3.50007-2 

[35] Rimal, Y. (2019). Deterministic machine learning cluster 

analysis of research data: Using R programming. 

International Journal of Machine Learning and 

Networked Collaborative Engineering, 3(1): 16-31. 

https://doi.org/10.30991/IJMLNCE.2019v03i01.004 

[36] Hoffmann, P. (2008). Learning analysis by reduction 

from positive data using reverible languages. In 2008 

Seventh International Conference on Machine Learning 

and Applications, San Diego, CA, USA, pp. 141-146. 

https://doi.org/10.1109/ICMLA.2008.105 

[37] Uzoegwu, C.L., Ahmed, F., Li, H.L. (2023). 

Comparative analysis for predicting cardiovascular 

diseases using machine learning and deep learning 

approaches. International Journal of Science and 

Research, 12(8): 945-964. 

https://doi.org/10.21275/SR23809044938 

[38] Pirova, D., Zaberzhinsky, B., Mashkov, A. (2021). 

Forecasting the respiratory tract infections development 

on the basis of machine learning and climatic factors 

analysis with the use of high-level programming 

languages. In 2021 International Conference on 

Information Technology and Nanotechnology (ITNT), 

Samara, Russian Federation, pp. 1-6. 

https://doi.org/10.1109/ITNT52450.2021.9649116 

[39] Jeon, M., Jeong, S., Cha, S., Oh, H. (2019). A machine-

learning algorithm with disjunctive model for data-

driven program analysis. ACM Transactions on 

Programming Languages and Systems (TOPLAS), 41(2): 

1-41. https://doi.org/10.1145/3293607 

[40] Panchadara, K. (2024). Enhancing named entity 

recognition in low-resource Dravidian languages: A 

comparative analysis of multilingual learning and 

1444

https://doi.org/10.1145/3088525.3088562
https://doi.org/10.1145/3211346.3211348
https://dl.acm.org/doi/abs/10.1145/3211346.3211355
https://dl.acm.org/doi/abs/10.1145/3211346.3211355
https://doi.org/10.1145/3211346.3211355
https://doi.org/10.25236/AJCIS.2023.060416
https://doi.org/10.1145/3088525.3088673
https://doi.org/10.1016/S0020-7373(83)80073-X
https://doi.org/10.55529/jaimlnn.51.28.39
https://doi.org/10.1145/3211346.3211350
https://doi.org/10.5220/0012800700003885
https://doi.org/10.5220/0013487500004619
https://doi.org/10.1109/SUMMA64428.2024.10803826
https://doi.org/10.1145/3649841
https://doi.org/10.1145/3394450.3397468
https://doi.org/10.1016/B978-0-08-009763-3.50007-2
https://doi.org/10.1016/B978-0-08-009763-3.50007-2
https://doi.org/10.30991/IJMLNCE.2019v03i01.004
https://doi.org/10.1109/ICMLA.2008.105
https://doi.org/10.21275/SR23809044938
https://doi.org/10.1109/ITNT52450.2021.9649116
https://doi.org/10.1145/3293607


 

transfer learning techniques. TechRxiv. 

https://doi.org/10.36227/techrxiv.172952607.72423503/

v1 

[41] Mselle, L. (2023). Teaching and learning to program 

instead of teaching and learning programming languages. 

https://ssrn.com/abstract=4642337. 

[42] Lakshmi, S. (2024). Comparative analysis of air quality 

index prediction using machine learning. International 

Journal of Science and Research (IJSR), 13(1): 873-875. 

https://doi.org/10.21275/SR24112050412 

[43] Gao, W.C. (2025). Comparative analysis of machine 

learning models for heart disease prediction. In 

Proceedings of the 1st International Conference on 

Modern Logistics and Supply Chain Management - 

MLSCM, Singapore, pp. 234-237. 

https://doi.org/10.5220/0013296800004558

 

1445

https://doi.org/10.36227/techrxiv.172952607.72423503/v1
https://doi.org/10.36227/techrxiv.172952607.72423503/v1
https://ssrn.com/abstract=4642337
https://doi.org/10.21275/SR24112050412



